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Abstract. In this paper, we study a double phase problem with both variable

exponents. Such problem has a reaction consisting of a Carathéodory pertur-
bation defined only locally and of a critical term. The presence of the critical

term does not permit to use results of the critical point theory for the cor-

responding energy functional. Consequently, using suitable cut-off functions
and truncation techniques we focus on an auxiliary coercive problem on which,

differently from our main problem, we can act with variational tools. In this

way, we are able to produce a sequence of sign-changing solutions to our main
problem converging to 0 in L∞ and in the Musielak-Orlicz Sobolev space.

1. Introduction

Let Ω ⊆ RN with N ≥ 2 be a bounded domain with Lipschitz boundary ∂Ω.
Given r ∈ C(Ω), we define

r− = min
x∈Ω

r(x) and r+ = max
x∈Ω

r(x).

In this paper, we focus on the following critical double phase Dirichlet problem

−div
(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
= f(x, u) + |u|p

∗(x)−2u in Ω,

u = 0 on ∂Ω.
(1.1)

Here, we suppose the following hypotheses on the exponents, the weight function
and the perturbation term:

(H1) p, q ∈ C(Ω) are such that 1 < p(x) < N , p(x) < q(x) < p∗(x) := Np(x)
N−p(x)

for all x ∈ Ω and 0 ≤ µ(·) ∈ L∞(Ω) \ {0}.
(H2) f : Ω × [−η0, η0] → R, with η0 > 0, is a Carathéodory function such that

f(x, ·) is odd for a.a.x ∈ Ω and
(i) there exists a0 ∈ L∞(Ω) such that

|f(x, s)| ≤ a0(x) for a.a.x ∈ Ω and for all |s| ≤ η0;

(ii) there exist δ ∈
(
0,min{η0

2 , 1}
)
and τ ∈ C(Ω) with 1 ≤ τ(x) ≤ τ+ < p−

such that

c0 |s|τ(x) ≤ f(x, s) s ≤ c̃0 |s|τ(x)

for some c0 >
2 τ+

p− and c̃0 > c0, for a.a.x ∈ Ω and for all |s| ≤ δ.
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So, in the right-hand side of problem (1.1) we find the combined effects of a
Carathéodory perturbation f(x, ·) which is defined only locally and of a critical
term u→ |u|p∗(x)−2u with p∗(·) being the critical exponent corresponding to p(·).

A function u ∈ W 1,H
0 (Ω) (the Musielak-Orlicz Sobolev space, see Section 2) is

said to be a weak solution of problem (1.1) if∫
Ω

(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇hdx =

∫
Ω

(
f(x, u) + |u|p

∗(x)−2u
)
hdx

is satisfied for all h ∈W 1,H
0 (Ω).

We point out that the main goal of this paper is to produce nodal (that is, sign-
changing) solutions for problem (1.1). Precisely, we here establish the following
result.

Theorem 1.1. Let hypotheses (H1) and (H2) be satisfied. Then, problem (1.1)
has a sequence

{zn}n∈N ⊆W 1,H
0 (Ω) ∩ L∞(Ω)

of nodal (that is, sign-changing) solutions such that

∥zn∥ → 0 and ∥zn∥∞ → 0 as n→ +∞.

The proof of Theorem 1.1 is based on the use of cut-off functions, truncation
techniques and also a generalized version of the symmetric mountain pass theorem
due to Kajikiya [19, Theorem 1]. Hence, using suitable cut-off functions and trun-
cation techniques we introduce an auxiliary coercive problem (see problem (3.4),
Section 3) on which differently from problem (1.1) we can act with variational tools.
In fact, we point out that the presence of the critical term u → |u|p∗(x)−2u in the
right-hand side of problem (1.1) does not permit us to apply results of the critical
point theory to the corresponding energy functional. Therefore, we focus on the
auxiliary coercive problem (3.4). We show the existence of extremal constant sign
solutions for such problem (see again Section 3). After that, using these extremal
solutions and Kajikiya’s theorem we are able to produce a sequence of sign-changing
solutions for problem (1.1) (see Section 4).

Also, we remark that our work was inspired by a recent paper of Liu-Papa-
georgiou [23]. Similar to our finding here, the authors in [23] consider a double
phase Dirichlet problem exhibiting the combined effects of a Carathéodory per-
turbation defined only locally and of a critical term, but they work with constant
exponents and under more restrictive conditions. Thus, we extend the results of
Liu-Papageorgiou [23] to the case of a double phase operator with both variable
exponents and under weaker conditions. Indeed, we are able to skip condition H1
(iii) in [23]. In addition, we point out that our main result extends the one of
Papageorgiou-Vetro-Winkert [31] to the case of two variable exponents. In [31]
p ≡ p(x) has to be a constant.

Finally, we mention that functionals of type

F(ω) =

∫
Ω

(
|∇ω|p + µ(x)|∇ω|q

)
dx, 1 < p < q < N,

were studied by Marcellini [26] and Zhikov [40] in order to describe strongly anisotro-
pic materials in the context of homogenization and elasticity. Such functionals also
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find application in the study of duality theory and of the Lavrentiev gap phenome-
non, see Zhikov [41, 42], and in the context of problems of the calculus of variations,
see Marcellini [25, 26].

A first mathematical framework for such functionals has been provided by Baroni-
Colombo-Mingione [4], see also the related works by the same authors in [5, 6] and
of De Filippis-Mingione [10] about nonautonomous integrals.

So far, there are only few results involving the variable exponent double phase
operator. We refer to the recent results of Aberqi-Bennouna-Benslimane-Ragusa [1]
for existence results in complete manifolds, Albalawi-Alharthi-Vetro [2] for convec-
tion problems with (p(·), q(·))-Laplace type operator, Bahrouni-Rădulescu-Winkert
[3] for problems with Baouendi-Grushin type operator, Crespo-Blanco-Gasiński-
Harjulehto-Winkert [8] for double phase convection problems, Kim-Kim-Oh-Zeng
[20] for concave-convex-type double phase problems, Leonardi-Papageorgiou [21]
for concave-convex problems, Liu-Pucci [24] for problems without supposing the
Ambrosetti-Rabinowitz condition, Vetro-Winkert [35] for parametric problems in-
volving superlinear nonlinearities and Zeng-Rădulescu-Winkert [39] for multivalued
problems, see also the references therein. We also recall the papers of Colasuonno-
Squassina [7] for eigenvalue problems of double phase type, Farkas-Winkert [12]
for Finsler double phase problems, Gasiński-Papageorgiou [13] for locally Lipschitz
right-hand sides, Gasiński-Winkert [14, 15] for convection problems and constant
sign-solutions, Liu-Dai [22] for a Nehari manifold approach, Papageorgiou-Vetro
[29] for superlinear problems, Papageorgiou-Vetro-Vetro [30] for parametric Robin
problems, Perera-Squassina [33] for Morse theoretical approach, Vetro-Winkert [36]
for parametric convective problems, Vetro-Winkert [37] for critical Robin double
phase problems with one variable exponent and Zeng-Bai-Gasiński-Winkert [38] for
implicit obstacle problems with multivalued operators.

2. Mathematical background

Given a bounded domain Ω ⊆ RN (N ≥ 2) with Lipschitz boundary ∂Ω, we
denote by M(Ω) the set of all measurable functions u : Ω → R. Let r ∈ C(Ω) be
such that r(x) > 1 for all x ∈ Ω. Then, the usual variable exponent Lebesgue space
Lr(·)(Ω) is defined by

Lr(·)(Ω) =

{
u ∈M(Ω) : ρr(·)(u) :=

∫
Ω

|u|r(x) dx < +∞
}
.

We furnish this space with the Luxemburg norm

∥u∥r(·) = inf
{
α > 0 : ρr(·)

(u
α

)
≤ 1
}
.

We write W 1,r(·)(Ω) and W
1,r(·)
0 (Ω) to denote the corresponding Sobolev spaces

equipped with the norms ∥ · ∥1,r(·) and ∥∇ · ∥r(·), respectively, where ∥ · ∥1,r(·) is
given by

∥u∥1,r(·) = ∥u∥r(·) + ∥∇u∥r(·),

see also Diening-Harjulehto-Hästö-Růžička [11] and Harjulehto-Hästö [17]. Below,
we recall the relations between ∥ · ∥r(·) and ρr(·), see again [11].

Proposition 2.1. Let r ∈ C(Ω) be such that r(x) > 1 for all x ∈ Ω. Then the
following hold:
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(i) ∥u∥r(·) < 1 (resp. > 1,= 1) if and only if ρr(·)(u) < 1 (resp. > 1,= 1);

(ii) if ∥u∥r(·) < 1 then ∥u∥r+r(·) ≤ ρr(·)(u) ≤ ∥u∥r−r(·);
(iii) if ∥u∥r(·) > 1 then ∥u∥r−r(·) ≤ ρr(·)(u) ≤ ∥u∥r+r(·);
(iv) ∥u∥r(·) → 0 if and only if ρr(·)(u) → 0;
(v) ∥u∥r(·) → +∞ if and only if ρr(·)(u) → +∞.

Assume that hypothesis (H1) is satisfied, then we can consider the nonlinear
function H : Ω× [0,+∞) → [0,+∞) defined by

H(x, t) = tp(x) + µ(x)tq(x) for all x ∈ Ω and for all t ≥ 0.

Here, we denote by ρH(·) the corresponding modular function, that is,

ρH(u) =

∫
Ω

H(x, |u|) dx =

∫
Ω

(
|u|p(x) + µ(x)|u|q(x)

)
dx.

Using ρH(·) we introduce the Musielak-Orlicz space LH(Ω) by

LH(Ω) = {u ∈M(Ω) : ρH(u) < +∞} .
As usual, we equip this space with the Luxemburg norm

∥u∥H = inf
{
α > 0 : ρH

(u
α

)
≤ 1
}
.

We underline that also the modular ρH and the norm ∥ · ∥H are related by a close
relation, see Crespo-Blanco-Gasiński-Harjulehto-Winkert [8, Proposition 2.13].

Proposition 2.2. Let hypotheses (H1) be satisfied. Then the following hold:

(i) ∥u∥H < 1 (resp. > 1,= 1) if and only if ρH(u) < 1 (resp. > 1,= 1);

(ii) if ∥u∥H < 1 then ∥u∥q
+

H ≤ ρH(u) ≤ ∥u∥p
−

H ;

(iii) if ∥u∥H > 1 then ∥u∥p
−

H ≤ ρH(u) ≤ ∥u∥q
+

H ;
(iv) ∥u∥H → 0 if and only if ρH(u) → 0;
(v) ∥u∥H → +∞ if and only if ρH(u) → +∞.

Now, starting from the Musielak-Orlicz space LH(Ω), we can define the corre-
sponding Musielak-Orlicz Sobolev space W 1,H(Ω) by

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
.

We consider on this space the norm

∥u∥1,H = ∥u∥H + ∥∇u∥H,

where ∥∇u∥H := ∥ |∇u| ∥H. Also, by W 1,H
0 (Ω) we mean the completion of C∞

0 (Ω)
in W 1,H(Ω).

From Crespo-Blanco-Gasiński-Harjulehto-Winkert [8, Proposition 2.12] we know

that the spaces LH(Ω), W 1,H(Ω) and W 1,H
0 (Ω) are reflexive Banach spaces. Fur-

ther, on account of Proposition 2.18 in [8] we can endow the space W 1,H
0 (Ω) with

the equivalent norm

∥u∥ = ∥∇u∥H for all u ∈W 1,H
0 (Ω).

We recall that the classical Sobolev embedding theorem extends to the space

W 1,H
0 (Ω) as follows, see Crespo-Blanco-Gasiński-Harjulehto-Winkert [8, Proposi-

tion 2.16].

Proposition 2.3. Let hypotheses (H1) be satisfied. Then the following hold:
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(i) W 1,H
0 (Ω) ↪→W

1,r(·)
0 (Ω) is continuous for all r ∈ C(Ω) with 1 ≤ r(x) ≤ p(x)

for all x ∈ Ω;

(ii) W 1,H
0 (Ω) ↪→ Lr(·)(Ω) is compact for all r ∈ C(Ω) with 1 ≤ r(x) < p∗(x) for

all x ∈ Ω.

Finally, for any s ∈ R we put s± = max{±s, 0} and we have s = s+ − s− and
|s| = s+ + s−. In addition, for any function u : Ω → R we define u±(·) = [u(·)]±.

Given a Banach space X and its dual space X∗, we recall that a functional
φ ∈ C1(X) satisfies the Palais-Smale condition (PS-condition for short), if every
sequence {xn}n∈N ⊆ X such that {φ(un)}n∈N ⊆ R is bounded and

φ′(xn) → 0 in X∗ as n→ +∞,

admits a strongly convergent subsequence. We denote by Kφ the set of all critical
points of φ, that is,

Kφ = {u ∈ X : φ′(u) = 0} .

We also recall that a set S ⊆ X is said to be downward directed if for given
u1, u2 ∈ S we can find u ∈ S such that u ≤ u1 and u ≤ u2. Analogously, S ⊆ X
is said to be upward directed if for given v1, v2 ∈ S we can find v ∈ S such that
v1 ≤ v and v2 ≤ v.

3. Auxiliary problem

In this section, using suitable cut-off functions and truncation techniques, we
introduce an auxiliary coercive problem on which we can act with variational tools.
The study of this problem helps us to prove the existence of nodal (that is, sign-
changing) solutions for our main problem (1.1).

Let θ ∈ C1(R) be an even cut-off function satisfying the following conditions:

supp θ ⊆ [−η0, η0], θ∣∣[−η0
2 ,

η0
2 ]

≡ 1 and 0 < θ ≤ 1 on (−η0, η0), (3.1)

where η0 is the positive constant from hypothesis (H2). Using θ, we introduce the
Carathéodory function k : Ω× R → R defined by

k(x, s) = θ(s)
[
f(x, s) + |s|p

∗(x)−2s
]
+ (1− θ(s))|s|τ(x)−2s (3.2)

for all (x, s) ∈ Ω×R, where τ is given in (H2)(ii). The assumptions on θ (see (3.1))
and hypothesis (H2) guarantee that

|k(x, s)| ≤ c
(
1 + |s|τ(x)−1

)
(3.3)

for some c > 0, for a.a.x ∈ Ω and for all |s| ≤ δ.
Then, we consider the following auxiliary double phase Dirichlet problem

−div
(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
= k(x, u) in Ω,

u = 0 on ∂Ω.
(3.4)

Here, we denote by S+ and S− the sets of positive and negative solutions of
problem (3.4), respectively. First, we prove that these sets are nonempty.

Proposition 3.1. Let hypotheses (H1) and (H2) be satisfied. Then S+ and S− are

nonempty subsets in W 1,H
0 (Ω) ∩ L∞(Ω).
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Proof. We start by the set S+ and show that it is nonempty. To this purpose, we

consider the C1-functional ϕ+ : W 1,H
0 (Ω) → R defined by

ϕ+(u) =

∫
Ω

[
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

]
dx−

∫
Ω

K(x, u+) dx,

for all u ∈W 1,H
0 (Ω), where K(x, s) =

∫ s

0
k(x, t) dt. Due to (3.3) we obtain

ϕ+(u) ≥
1

p+

∫
Ω

|∇u|p(x) dx+
1

q+

∫
Ω

µ(x)|∇u|q(x) dx−
∫
Ω

K(x, u+) dx

≥ 1

q+
ρH(|∇u|)−

∫
Ω

K(x, u+) dx

≥ 1

q+
ρH(|∇u|)−

∫
Ω

∫ u+

0

c
(
1 + |s|τ(x)−1

)
ds

≥ 1

q+
ρH(|∇u|)− c

∫
Ω

u+ dx− c

τ−

∫
Ω

u
τ(x)
+ dx

≥ 1

q+
ρH(|∇u|)− c

∫
Ω

|u|dx− c

τ−

∫
Ω

|u|τ(x) dx.

We recall that if ∥u∥τ(·) > 1, due to Proposition 2.1(iii), we have that ρτ(·)(u) ≤
∥u∥τ+

τ(·). Similarly, if ∥u∥ := ∥∇u∥H > 1 using Proposition 2.2(iii) we know that

ρH(|∇u|) ≥ ∥∇u∥p
−

H . According of this, for any u ∈W 1,H
0 (Ω) such that ∥u∥τ(x) > 1

and ∥u∥ > 1 we can further write

ϕ+(u) ≥
1

q+
∥u∥p

−
− c∥u∥1 −

c

τ−
∥u∥τ

+

τ(·)

≥ 1

q+
∥u∥p

−
− c1∥u∥ −

c1
τ−

∥u∥τ
+

for some c1 > 0 since the embeddingsW 1,H
0 (Ω) ↪→ L1(Ω) andW 1,H

0 (Ω) ↪→ Lτ(·)(Ω)
are compact, see Proposition 2.3(ii). From this, taking into account that τ+ < p−

(see (H2)(ii)), we conclude that ϕ+ is coercive. Moreover, using the compactness

of the embedding W 1,H
0 (Ω) ↪→ Lr(·)(Ω) for any r ∈ C(Ω) with 1 ≤ r(x) < p∗(x) for

all x ∈ Ω (see Proposition 2.3(ii)), we infer that the functional ϕ+ is sequentially

weakly lower semicontinuous. Thus, there exists u0 ∈W 1,H
0 (Ω) such that

ϕ+(u0) = inf
[
ϕ+(u) : u ∈W 1,H

0 (Ω)
]
.

We show that u0 is nontrivial. Hence, we consider a function ũ ∈ intC(Ω)+ and
we take t ∈ (0, 1) small enough so that tũ(x) ∈ (0, δ] for all x ∈ Ω. Then, we have

ϕ+(tũ)

=

∫
Ω

[
1

p(x)
|∇(tũ)|p(x) + µ(x)

q(x)
|∇(tũ)|q(x)

]
dx−

∫
Ω

K (x, tũ) dx

≤ tp
−

p−

[∫
Ω

|∇ũ|p(x) dx+

∫
Ω

µ(x)|∇ũ|q(x) dx
]
−
∫
Ω

K (x, tũ) dx.

(3.5)

Taking into account that tũ(x) ∈ (0, δ] and further δ ≤ η0

2 (see (H2)(ii)), from (3.1)
we have that θ(tũ(x)) = 1. This in addition gives

k(x, tũ) = f(x, tũ(x)) + (tũ(x))p
∗(x)−2tũ(x) ≥ f(x, tũ(x)). (3.6)
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Now, since tũ(x) ∈ (0, δ] and δ ≤ η0

2 , thanks to hypothesis (H2)(ii) we know that

c0 |tũ|τ(x)−1 ≤ f(x, tũ). (3.7)

So, using (3.6) and (3.7) in (3.5) we have

ϕ+(tũ)

≤ tp
−

p−

[∫
Ω

|∇ũ|p(x) dx+

∫
Ω

µ(x)|∇ũ|q(x) dx
]
− c0 t

τ+

τ+

∫
Ω

|ũ|τ(x) dx

= tτ
+

[
tp

−−τ+

p−

[∫
Ω

|∇ũ|p(x) dx+

∫
Ω

µ(x)|∇ũ|q(x) dx
]
− c0
τ+

∫
Ω

|ũ|τ(x) dx

]
.

Now, taking into account that τ+ < p− (see (H2)(ii)), choosing t ∈ (0, 1) small
enough we have that

tp
−−τ+

p−

[∫
Ω

|∇ũ|p(x) dx+

∫
Ω

µ(x)|∇ũ|q(x) dx
]
− c0
τ+

∫
Ω

|ũ|τ(x) dx < 0.

Recall that
∫
Ω
|∇ũ|p(x) dx+

∫
Ω
µ(x)|∇ũ|q(x) dx and

∫
Ω
|ũ|τ(x) dx are fixed for a given

ũ ∈ int C(Ω)+. Consequently, we conclude that ϕ+(tũ) < 0 = ϕ+(0) for t ∈ (0, 1)
sufficiently small. This guarantees that u0 ̸= 0.

Finally, we remark that u0 is a global minimizer of ϕ+, so ϕ
′
+(u0) = 0. This

implies that∫
Ω

(
|∇u0|p(x)−2∇u0 + µ(x)|∇u0|q(x)−2∇u0

)
· ∇hdx =

∫
Ω

k(x, (u0)+)hdx (3.8)

for all h ∈ W 1,H
0 (Ω). Now, using Proposition 2.17 of Crespo-Blanco-Gasiński-

Harjulehto-Winkert [8] which gives ±u± ∈ W 1,H
0 (Ω) for any u ∈ W 1,H

0 (Ω), we can
choose h = −(u0)− in (3.8). In this way, we get that (u0)− = 0 and thus we deduce
that u0 ≥ 0. As u0 ̸= 0 we conclude that u0 is a nontrivial positive weak solution
of problem (3.4), thus S+ ̸= ∅. Also, from Crespo-Blanco-Winkert [9, Theorem 3.1]

we have that u0 ∈W 1,H
0 (Ω) ∩ L∞(Ω).

In order to obtain a nontrivial negative weak solution for problem (3.4), we can

use the C1-functional ϕ− : W 1,H
0 (Ω) → R defined by

ϕ−(u) =

∫
Ω

[
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

]
dx−

∫
Ω

K(x,−u−) dx

for all u ∈W 1,H
0 (Ω). Then, arguing as in the case of the positive solution, we show

that it has a global minimizer which turns out to be nontrivial and nonpositive.
Therefore, it is a nontrivial negative weak solution of problem (3.4). □

Next, our aim is to show the existence of extremal constant sign solutions for
problem (3.4). So, we consider the following auxiliary problem

−div
(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
= c0|u|τ(x)−2u in Ω,

u = 0 on ∂Ω
(3.9)

and establish the following result.
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Proposition 3.2. Let hypothesis (H1) be satisfied. Then, problem (3.9) has a

unique positive solution u ∈ W 1,H
0 (Ω) ∩ L∞(Ω). Further, v = −u is the unique

negative solution of problem (3.9).

Proof. We point out that in order to have the claim it is sufficient to show that

problem (3.9) has a unique positive solution u ∈W 1,H
0 (Ω)∩L∞(Ω). Indeed, taking

into account that the problem (3.9) is odd, this guarantees that v = −u is a negative
solution of problem (3.9) and further it is the unique negative solution.

Now, in order to prove the existence of a positive solution for problem (3.9), we

consider the C1-functional ψ+ : W 1,H
0 (Ω) → R defined by

ψ+(u) =

∫
Ω

[
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

]
dx−

∫
Ω

c0
τ(x)

(u+)
τ(x) dx,

for all u ∈W 1,H
0 (Ω). We know that

ψ+(u) ≥
1

p+

∫
Ω

|∇u|p(x) dx+
1

q+

∫
Ω

µ(x)|∇u|q(x) dx− c0
τ−

∫
Ω

(u+)
τ(x) dx

≥ 1

q+
ρH(|∇u|)− c0

τ−

∫
Ω

|u|τ(x) dx.

With similar arguments as in the proof of Proposition 3.1, we can show that ψ+(·)
is coercive and sequentially weakly semicontinuous. This ensures, thanks to the

Weierstraß-Tonelli theorem, that we can find u ∈W 1,H
0 (Ω) such that

ψ+(u) = inf
[
ψ+(u) : u ∈W 1,H

0 (Ω)
]
.

Reasoning again as in the proof of Proposition 3.1, we are also able to show that

u ̸= 0 and further u ≥ 0. So, we conclude that u ∈W 1,H
0 (Ω) is a nontrivial positive

weak solution of problem (3.9).
Next, we prove that such positive solution is unique. To this purpose, we consider

the integral functional j : L1(Ω) → R ∪ {+∞} defined by

j(u) :=


∫
Ω

1

p(x)
|∇u

1

p− |p(x) +
∫
Ω

µ(x)

q(x)
|∇u

1

p− |q(x) if u ≥ 0 and u
1

p− ∈W 1,H
0 (Ω),

+∞ otherwise

and let

dom j =
{
u ∈ L1(Ω) : j(u) < +∞

}
be the effective domain of j(·). We point out that from the anisotropic Dı́az-Saa
inequality, see Takáč-Giacomoni [34], we have that j(·) is convex.

Now, let w ∈ W 1,H
0 (Ω) ∩ L∞(Ω) be another nontrivial positive weak solution

of problem (3.9). Given ε > 0, let uε = u + ε ∈ intL∞(Ω)+ and wε = w + ε ∈
intL∞(Ω)+. Thanks to Proposition 4.1.22 of Papageorgiou-Rădulescu-Repovš [27],
we know that

uε

wε ∈ L∞(Ω) and
wε

uε
∈ L∞(Ω). (3.10)

We put h = (uε)p
− − (wε)p

− ∈ W 1,H
0 (Ω) ∩ L∞(Ω). We note that from (3.10) and

the convexity of j(·) we see that the directional derivatives of j(·) at (uε)p−
and at
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(wε)p
−
in the direction h exist and are equal to

j′
(
(uε)p

−
)
(h) =

1

p−

∫
Ω

−∆p(·)u− µ(x)∆q(·)u

(uε)p−−1
hdx

=
1

p−

∫
Ω

c0 u
τ(x)−1

(uε)p−−1
hdx

and

j′((wε)p
−
)(h) =

1

p−

∫
Ω

−∆p(·)w − µ(x)∆q(·)w

(wε)p−−1
hdx

=
1

p−

∫
Ω

c0 w
τ(x)−1

(wε)p−−1
hdx,

respectively. Moreover, the convexity of j(·) implies the monotonicity of j′(·). On
account of this, we have that

0 ≤ c0

∫
Ω

(
uτ(x)−1

(uε)p−−1
− wτ(x)−1

(wε)p−−1

)(
(uε)p

−
− (wε)p

−
)
dx

Hence, for ε→ 0+, using Lebesgue’s Theorem, we obtain

0 ≤ c0

∫
Ω

(
1

up
−−τ(x)

− 1

wp−−τ(x)

)(
up

−
− wp−

)
dx.

It follows that u = w and thus we have the claim.
Finally, we point out that the double phase maximum principle leads to u(x) > 0

for a.a.x ∈ Ω. □

Now, we are ready to prove the existence of a smallest positive solution u∗ ∈ S+

and the existence of a largest negative solution v∗ ∈ S−.

Proposition 3.3. Let hypotheses (H1) and (H2) be satisfied. Then there exists
u∗ ∈ S+ such that u∗ ≤ u for all u ∈ S+ and there exists v∗ ∈ S− such that v∗ ≥ v
for all v ∈ S−.

Proof. We only show the existence of a smallest positive solution for problem (3.4),
the case of a largest negative solution works similarly.

Arguing in a similar way to the proof of Proposition 7 in Papageorgiou-Rădulescu-
Repovš [28] we can deduce that S+ is downward directed. On account of this, we
can use Lemma 3.10 of Hu-Papageorgiou [18, p. 178] which gives the existence of
a decreasing sequence {un}n∈N ⊆ S+ such that

inf
n∈N

un = inf S+.

As un ∈ S+ it follows that∫
Ω

(
|∇un|p(x)−2∇un + µ(x)|∇un|q(x)−2∇un

)
· ∇hdx =

∫
Ω

k(x, un)hdx (3.11)

for all h ∈W 1,H
0 (Ω) and for all n ∈ N. Hence, choosing h = un in (3.11) and using

(3.3) along with 0 ≤ un ≤ u1, we have that

ρH(∇un) =
∫
Ω

|∇un|p(x) dx+

∫
Ω

µ(x)|∇un|q(x) dx ≤ d1
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for some d1 > 0 and for all n ∈ N. This fact along with Proposition 2.2 shows that

{un}n∈N ⊆W 1,H
0 (Ω) is bounded. Hence, we can assume that

un ⇀ u∗ in W 1,H
0 (Ω) and un → u∗ in Lq(·)(Ω).

Thanks to (3.1), (3.2) and hypothesis (H2)(ii) we have

|k(x, s)| ≤ d2|s|τ(x)−1 (3.12)

for a.a.x ∈ Ω, for all s ∈ R and for some d2 > 0. From (3.12) along with 0 ≤ un ≤
u1, we in particular deduce that

|k(x, un)| ≤ d2|un|τ(x)−1 ≤ d2|u1|τ(x)−1.

Then, taking into account that d2|u1|τ(·)−1 ∈ L∞(Ω), from (3.11) and (3.12) along
with a Moser-iteration type argument as it was explained in Guedda-Veron [16], we
can obtain that

∥un∥∞ ≤ O(un).

Now let us check that u∗ ̸= 0. Indeed, if u∗ = 0 we have that ∥un∥∞ → 0 as
n→ +∞. This implies that we can find n0 ∈ N such that

0 < un(x) ≤ δ

for a.a.x ∈ Ω and for all n ≥ n0, where δ ∈
(
0,min{η0

2 , 1}
)
. Then, we fix n ≥ n0

and consider the Carathéodory function ln : Ω× R → R given by

ln(x, s) =

{
c0(s+)

τ(x)−1 if s ≤ un(x),

c0|un(x)|τ(x)−1 if un(x) < s.

Then we introduce the C1-functional σ+ : W 1,H
0 (Ω) → R defined by

σ+(u) =

∫
Ω

[
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

]
dx−

∫
Ω

Ln(x, u) dx

for all u ∈W 1,H
0 (Ω), where Ln(x, s) =

∫ s

0
ln(x, t) dt. Similar arguments to the ones

in the proof of Proposition 3.1 show that this functional is coercive and sequentially

weakly lower semicontinuous. Hence, we can find û ∈W 1,H
0 (Ω) such that

σ+(û) = inf
[
σ+(u) : u ∈W 1,H

0 (Ω)
]
< 0 = σ+(0),

which gives û ̸= 0. Also, we can deduce that û ≥ 0. In addition, we point out that
Kσ+

⊆ [0, un]. In fact, let v ∈ Kσ+
with v ̸= 0, un, then we have∫

Ω

(
|∇v|p(x)−2∇v + µ(x)|∇v|q(x)−2∇v

)
· ∇hdx =

∫
Ω

ln(x, v)hdx (3.13)

for all h ∈ W 1,H
0 (Ω). Taking the test function h = (v − un)+ in (3.13), using

(H2)(ii) along with 0 < un ≤ δ and un ∈ S+, we obtain∫
Ω

(
|∇v|p(x)−2∇v + µ(x)|∇v|q(x)−2∇v

)
· ∇(v − un)+ dx

=

∫
Ω

ln(x, v)(v − un)+ dx

=

∫
Ω

c0(un)
τ(x)−1(v − un)+ dx
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≤
∫
Ω

f(x, un)(v − un)+ dx

≤
∫
Ω

[f(x, un) + (un)
p∗(x)−2un] (v − un)+ dx

=

∫
Ω

k(x, un)(v − un)+ dx

=

∫
Ω

(
|∇un|p(x)−2∇un + µ(x)|∇un|q(x)−2∇un

)
· ∇(v − un)+ dx

as 0 < un ≤ δ ≤ η0

2 and (3.1) give θ(un) = 1 and so k(x, un) = f(x, un) +

(un)
p∗(x)−2un. Consequently, we have∫

Ω

(
|∇v|p(x)−2∇v − |∇un|p(x)−2∇un

)
· ∇(v − un)+ dx

+

∫
Ω

µ(x)
(
|∇v|q(x)−2∇v − |∇un|q(x)−2∇un

)
· ∇(v − un)+ dx ≤ 0,

which implies that v ≤ un. Furthermore, choosing the test function h = −(v−) in
(3.13), we easily see that v− = 0 and thus we have that v ≥ 0. We finally conclude
that Kσ+

⊆ [0, un].
Now, we recall that û is a global minimizer of σ+ and then û ∈ Kσ+

⊆ [0, un].
So, we know that∫

Ω

(
|∇û|p(x)−2∇û+ µ(x)|∇û|q(x)−2∇û

)
· ∇hdx =

∫
Ω

c0(û+)
τ(x)−1 hdx

for all h ∈ W 1,H
0 (Ω). This clearly implies that û is a positive solution of problem

(3.9). Since such solution is unique (see Proposition 3.2), we conclude that û = u.
From this, it follows that u ≤ un for all n ≥ n0, which contradicts the hypothesis
u∗ = 0. Consequently, we have that u∗ ̸= 0 and further u∗ ∈ S+. Therefore, we
have that u∗ is the smallest positive solution of (3.4) in S+.

□

4. Proof of Theorem 1.1

In this section, we use the extremal constant sign solutions u∗ and v∗ given in
Proposition 3.3 in order to produce a sequence of nodal (that is, sign-changing)
solutions for problem (1.1). In addition, we show that such sequence converges to

0 in W 1,H
0 (Ω) and in L∞(Ω).

Considering truncations of k(x, ·) at v∗(x) and u∗(x), we introduce the Carathéo-
dory function k∗ : Ω× R → R given by

k∗(x, s) :=


k(x, v∗(x)) if s < v∗(x),

k(x, s) if v∗(x) ≤ s ≤ u∗(x),

k(x, u∗(x)) if u∗(x) < s.

Let Φ∗ : W
1,H
0 (Ω) → R be the C1-functional defined by

Φ∗(u) =

∫
Ω

[
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

]
dx−

∫
Ω

K∗(x, u) dx,

for all u ∈W 1,H
0 (Ω), where K∗(x, s) =

∫ s

0
k∗(x, t) dt.
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Note that the set KΦ∗ of the critical points of the functional Φ∗ is contained in
the order interval [v∗, u∗]. In fact, for a given u ∈ KΦ∗ \ {u∗, v∗} we know that∫

Ω

(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇hdx =

∫
Ω

k∗(x, u)hdx (4.1)

holds for all h ∈W 1,H
0 (Ω). Then, choosing h = (u− u∗)+ in (4.1), we have that∫

Ω

(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇(u− u∗)+ dx

=

∫
Ω

k∗(x, u)(u− u∗)+ dx

=

∫
Ω

k(x, u∗)(u− u∗)+ dx

=

∫
Ω

(
|∇u∗|p(x)−2∇u∗ + µ(x)|∇u∗|q(x)−2∇u∗

)
· ∇(u− u∗)+ dx,

since u∗ ∈ S+. Hence, we deduce that∫
Ω

(
|∇u|p(x)−2∇u− |∇u∗|p(x)−2∇u∗

)
· ∇(u− u∗)+ dx

+

∫
Ω

µ(x)
(
|∇u|q(x)−2∇u− |∇u∗|q(x)−2∇u∗

)
· ∇(u− u∗)+ dx = 0,

and consequently we have that u ≤ u∗. An analogous reasoning and the choice of
h = (v∗ − u)+ in (4.1) gives that v∗ ≤ u.

Now, let V ⊆ W 1,H
0 (Ω) ∩ L∞(Ω) be a finite dimensional subspace. Then, given

v ∈ V we put

{v < v∗} := {x ∈ Ω : v(x) < v∗(x)},
{v∗ ≤ v ≤ u∗} := {x ∈ Ω : v∗(x) ≤ v(x) ≤ u∗(x)},

{u∗ < v} := {x ∈ Ω : u∗(x) < v(x)}.
Since V is finite dimensional, all norms on V are equivalent, see for example
Papageorgiou-Winkert [32, Proposition 3.1.17, p.183]. Hence, we know that there
exists a positive constant eV , independent of v ∈ V , such that

eV ∥v∥ ≤ ∥v∥τ(·). (4.2)

Using this fact, we are able to establish the following result.

Proposition 4.1. Let hypotheses (H1) and (H2) be satisfied. Then, we can find
rV > 0 such that

sup [Φ∗(v) : v ∈ V, ∥v∥ = rV ] < 0.

Proof. Since all norms on V are equivalent, we can find rV > 0 such that

v ∈ V and ∥v∥ = rV imply |v(x)| ≤ δ for a.a. x ∈ Ω

with δ ∈
(
0,min{η0

2 , 1}
)
. Recall that from δ ≤ η0

2 it follows θ(v(x)) = 1 for
a.a.x ∈ Ω, see (3.1). Hence, given v ∈ V with ∥v∥ = rV we know that

k∗(x, v(x)) =


f(x, v∗(x)) + |v∗(x)|p

∗(x)−2v∗(x) if v(x) < v∗(x),

f(x, v(x)) + |v(x)|p∗(x)−2v(x) if v∗(x) ≤ v(x) ≤ u∗(x),

f(x, u∗(x)) + |u∗(x)|p
∗(x)−2u∗(x) if u∗(x) < v(x).

(4.3)
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Let f∗ : Ω× R → R be the function defined by

f∗(x, v(x)) =


f(x, v∗(x)) if v(x) < v∗(x),

f(x, v(x)) if v∗(x) ≤ v(x) ≤ u∗(x),

f(x, u∗(x)) if u∗(x) < v(x),

and in addition let F∗(x, s) :=
∫ s

0
f∗(x, t) dt. Then, for v < v∗ we see that

F∗(x, v) =

∫ v∗

0

f∗(x, s) ds+

∫ v

v∗

f∗(x, s) ds

=

∫ v∗

0

f(x, s) ds+ f(x, v∗)(v − v∗).

Note that according to (H2)(ii) we have

f(x, s) < 0 for all − δ < s ≤ 0 and f(x, s) > 0 for all 0 < s ≤ δ. (4.4)

Using (4.4), we see that f(x, v∗) is negative and hence we infer that f(x, v∗)(v −
v∗) > 0. Therefore, we can write

F (x, v)− F∗(x, v) = F (x, v)− F (x, v∗) + f(x, v∗)(v∗ − v)

≤ F (x, v)− F (x, v∗),

where F (x, s) :=
∫ s

0
f(x, t) dt. Moreover, for u∗ < v we have that

F∗(x, v) = F (x, u∗) + f(x, u∗)(v − u∗).

Taking into account that from (4.4) it follows f(x, u∗)(u∗ − v) < 0, we deduce that

F (x, v)− F∗(x, v) = F (x, v)− F (x, u∗) + f(x, u∗)(u∗ − v)

≤ F (x, v)− F (x, u∗).

Using this facts along with the fact that the terms

1

p∗(x)
|v∗|p

∗(x),
1

p∗(x)
|v|p

∗(x) and
1

p∗(x)
|u∗|p

∗(x)

are positive, we get that

Φ∗(v) =

∫
Ω

[
1

p(x)
|∇v|p(x) + µ(x)

q(x)
|∇v|q(x)

]
dx−

∫
Ω

K∗(x, v) dx

≤ 1

p−

∫
Ω

|∇v|p(x) dx+
1

q−

∫
Ω

µ(x)|∇v|q(x) dx

−
∫
{v<v∗}

[
F∗(x, v) +

1

p∗(x)
|v∗|p

∗(x)

]
dx

−
∫
{v∗≤v≤u∗}

[
F (x, v) +

1

p∗(x)
|v|p

∗(x)

]
dx

−
∫
{u∗<v}

[
F∗(x, v) +

1

p∗(x)
|u∗|p

∗(x)

]
dx

≤ 1

p−

∫
Ω

|∇v|p(x) dx+
1

q−

∫
Ω

µ(x)|∇v|q(x) dx

−
∫
{v<v∗}

F∗(x, v) dx−
∫
{v∗≤v≤u∗}

F (x, v) dx−
∫
{u∗<v}

F∗(x, v) dx
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≤ 1

p−

∫
Ω

|∇v|p(x) dx+
1

q−

∫
Ω

µ(x)|∇v|q(x) dx−
∫
Ω

F (x, v) dx

+

∫
{v<v∗}

[F (x, v)− F∗(x, v)] dx+

∫
{u∗<v}

[F (x, v)− F∗(x, v)] dx

≤ 1

p−

∫
Ω

|∇v|p(x) dx+
1

q−

∫
Ω

µ(x)|∇v|q(x) dx −
∫
Ω

F (x, v) dx

+

∫
{v<v∗}

[F (x, v)− F (x, v∗)] dx+

∫
{u∗<v}

[F (x, v)− F (x, u∗)] dx

≤ 1

p−
ρH(∇v) −

∫
Ω

F (x, v) dx

+

∫
{v<v∗}

[F (x, v)− F (x, v∗)] dx+

∫
{u∗<v}

[F (x, v)− F (x, u∗)] dx.

Now, due to hypothesis (H2)(ii) we can find δ ∈
(
0,min{η0

2 , 1}
)
such that

c0 |s|τ(x)−1 ≤ |f(x, s)| for all |s| ≤ δ.

Consequently, as τ+ < p− due to hypothesis (H2)(ii), we can choose

rV < (eV )
τ+

p−−τ+

with eV rV < 1, where eV is the positive constant introduced in (4.2), so that∫
{v<v∗}

[F (x, v)− F (x, v∗)] dx+

∫
{u∗<v}

[F (x, v)− F (x, u∗)] dx <
c0 (eV rV )

τ+

2 τ+
,

and in addition

Φ∗(v) ≤
1

p−
ρH(∇v) − c0

τ+

∫
Ω

|v|τ(x) dx+
c0 (eV rV )

τ+

2 τ+
.

Next, using Proposition 2.2 (ii), (iii) we have

ρH(∇v) ≤ max{∥v∥p
−
, ∥v∥q

+

},

and using Proposition 2.1 (ii), (iii) we have

ρτ(·)(v) ≥ min{∥v∥τ
−

τ(x), ∥v∥
τ+

τ(x)}.

Further, thanks to (4.2) we deduce that

ρτ(·)(v) ≥ min{(eV ∥v∥)τ
−
, (eV ∥v∥)τ

+

}.

Now, as rV < 1 and eV rV < 1, for v ∈ V with ∥v∥ = rV , we have

ρH(∇v) ≤ rp
−

V and ρτ(·)(v) ≥ (eV rV )
τ+

.

Hence, we get

Φ∗(v) ≤
1

p−
rp

−

V − c0 (eV rV )
τ+

τ+
+
c0 (eV rV )

τ+

2 τ+

=

(
rp

−−τ+

V

p−
− c0 e

τ+

V

2 τ+

)
rτ

+

V .
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Now, we recall that c0 >
2 τ+

p− (see (H2)(ii)) and rV < (eV )
τ+

p−−τ+ . Therefore, we

have that

rp
−−τ+

V

p−
− c0 e

τ+

V

2 τ+
<
rp

−−τ+

V

p−
− eτ

+

V

p−
< 0.

From this, we conclude that Φ∗(v) < 0 for all v ∈ V with ∥v∥ = rV and rV <

(eV )
τ+

p−−τ+ such that eV rV < 1. This clearly gives the assertion of the proposition.
□

We are now ready to establish the proof of Theorem 1.1 which is based on a
generalized version of the symmetric mountain pass theorem due to Kajikiya [19,
Theorem 1].

Proof of Theorem 1.1. According to the definition of k∗ : Ω×R → R given in (4.3),
we can show with similar arguments as in the proof of Proposition 3.1 that the func-
tional Φ∗ is even and coercive. This permits us to deduce that Φ∗ is bounded from
below. Further, from Papageorgiou-Rădulescu-Repovš [27, Proposition 5.1.15], we
also have that Φ∗ satisfies the PS-condition. Therefore, taking into account that
Proposition 4.1 holds, we can use Theorem 1 of Kajikiya [19] which guarantees

the existence of a sequence {zn}n∈N ⊂ W 1,H
0 (Ω) ∩ L∞(Ω) satisfying the following

properties

zn ∈ KΦ∗ ⊆ [v∗, u∗], zn ̸= 0, Φ∗(zn) ≤ 0 for all n ∈ N

and

∥zn∥ → 0 as n→ +∞.

Since v∗ and u∗ are extremal solutions of problem (3.4), from

zn ∈ KΦ∗ ⊆ [v∗, u∗] and zn ̸= 0 for all n ∈ N,

we conclude that zn is a nodal (that is, sign-changing) solution of problem (3.4) for
all n ∈ N. Now, we recall that

∥zn∥∞ ≤ O(un)

(see the proof of Proposition 3.3). This along with ∥zn∥ → 0 yields ∥zn∥∞ → 0 as
n→ +∞.

Finally, from ∥zn∥∞ → 0 as n → +∞ we also get that there exists n0 ∈ N such
that |zn(x)| ≤ η0

2 for a.a.x ∈ Ω and for all n ≥ n0. Thus, we have that θ(zn(x)) = 1
for a.a.x ∈ Ω and for all n ≥ n0. On account of this, in view of (3.2), we conclude
that zn is a nodal solution of problem (1.1) for all n ≥ n0. □
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[9] Á. Crespo-Blanco, P. Winkert, Nehari manifold approach for superlinear double phase prob-
lems with variable exponents, Ann. Mat. Pura Appl. (4), https://doi.org/10.1007/s10231-

023-01375-2.

[10] C. De Filippis, G. Mingione, Lipschitz bounds and nonautonomous integrals, Arch. Ration.
Mech. Anal. 242 (2021), 973–1057.
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