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Abstract. In this paper we study a class of quasilinear elliptic equations with

double phase energy and reaction term depending on the gradient. The main
feature is that the associated functional is driven by the Baouendi-Grushin

operator with variable coefficient. This partial differential equation is of mixed

type and possesses both elliptic and hyperbolic regions. We first establish some
new qualitative properties of a differential operator introduced recently by

Bahrouni, Rădulescu and Repovš [6]. Next, under quite general assumptions

on the convection term, we prove the existence of stationary waves by applying
the theory of pseudomonotone operators. The analysis carried out in this paper

is motivated by patterns arising in the theory of transonic flows.

1. Introduction

Let Ω ⊂ RN , N > 1, be a bounded domain with smooth boundary ∂Ω and let
n,m be nonnegative integers such that N = n+m. This means that RN = Rn×Rm
and so z ∈ Ω can be written as z = (x, y) with x ∈ Rn and y ∈ Rm.

We consider the following double phase problem with convection term

−∆G(x,y)u+A(x, y)(|u|G(x,y)−1 + |u|G(x,y)−3)u = f ((x, y), u,∇u) in Ω,

u = 0 on ∂Ω,
(1.1)

with

A(x, y) = |∇xG(x, y)|+ |x|γ |∇yG(x, y)| for all (x, y) ∈ Ω.

Here, G : Ω → (1,∞) is supposed to be a continuous function and ∆G(x,y) stands
for the Baouendi-Grushin operator with variable coefficient, which is defined by

∆G(x,y)u = div
(
∇G(x,y)u

)
=

n∑
i=1

(
|∇x|G(x,y)−2uxi

)
xi

+ |x|γ
m∑
i=1

(
|∇y|G(x,y)−2uyi

)
yi
,

where

∇G(x,y)u = A(x)

 |∇x|G(x,y)−2 ∇xu

|x|γ |∇y|G(x,y)−2 ∇yu


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and

A(x) =

[
In 0n,m

0m,n |x|γIm

]
∈MN×N (R),

with In being the identity matrix of size n × n, On,m is the zero matrix of size
n×m andMN×N stands for the class of N ×N -matrices with real-valued entries.
From the representation above it is clear that ∆G(x,y) is degenerate along the m-

dimensional subspace M := {0} × Rm of RN .
The differential operator ∆G(x,y) generalizes the degenerate operator

∂2

∂x2
+ x2r ∂

2

∂y2
(r ∈ N)

introduced by Baouendi [7] and Grushin [17]. The Baouendi–Grushin operator can
be viewed as the Tricomi operator for transonic flow restricted to subsonic regions.
On the other hand, a second-order differential operator T in divergence form on the
plane, can be written as an operator whose principal part is a Baouendi-Grushin-
type operator, provided that the principal part of T is nonnegative and its quadratic
form does not vanish at any point, see Franchi & Tesi [15].

In the right-hand side of problem (1.1) we have a nonlinearity f : Ω×R×RN → R
which is a Carathéodory function, that is, f(·, s, ξ) is measurable for all (s, ξ) ∈
R× RN and f((x, y), ·, ·) is continuous for a.a. (x, y) ∈ Ω.

Problem (1.1) is strictly connected with the analysis of nonlinear patterns and
stationary waves for transonic flow models. We refer to the pioneering work of
Morawetz [20, 21, 22] on the theory of transonic fluid flow —referring to partial
differential equations that possess both elliptic and hyperbolic regions— and this
remains the most fundamental mathematical work on this subject. The flow is su-
personic in the elliptic region, while a shock wave is created at the boundary between
the elliptic and hyperbolic regions. In the 1950s, Morawetz used functional–analytic
methods to study boundary value problems for such transonic problems.

The variable coefficient G(x, y) describes the geometry of a composite realized
by using two materials with corresponding behaviour described by |∇xu|G(x,y) and
|∇yu|G(x,y). Then in the region {z ∈ Ω : x 6= 0} the material described by the
second integrand is present. In the opposite case, the material described by the
first integrand is the only one that creates the composite.

The main goal of our paper is to prove the existence of at least one weak solution
of problem (1.1) under very general conditions on the nonlinearity f : Ω × R ×
RN → R. The novelty of our paper is the fact that we combine a double phase
operator driven by the Baouendi-Grushin operator with variable growth and a right-
hand side which depends on the gradient of the solution. Such function is called
convection term.

It is well known that the Caffarelli-Kohn-Nirenberg inequality is a powerful in-
equality and it is needed in several ways in the study of partial differential equa-
tions. We refer to the works of Adimurthi, Chaudhuri & Ramaswamy [2], Baroni,
Colombo & Mingione [8], Colasuonno & Pucci [12], Colombo & Mingione [13] for
relevant applications of the Caffarelli-Kohn-Nirenberg inequality. For recent con-
tributions to the study of double-phase problems we refer to Beck & Mingione [9],
Papageorgiou, Rădulescu & Repovš [24, 25], and Zhang & Rădulescu [31].
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The following Caffarelli-Kohn-Nirenberg inequality [10] establishes that for given
p ∈ (1, N) and real numbers a, b and q such that

−∞ < a <
N − p
p

, a ≤ b ≤ a+ 1, q =
Np

N − p(1 + a− b)
,

there exists a positive constant Ca,b such that for all u ∈ C1
c (Ω)(∫

Ω

|x|−bq|u|q dx
)p/q

≤ Ca,b
∫

Ω

|x|−ap|∇u|p dx .

This inequality was extensively studied, see for example Abdellaoui & Peral
[1], Adimurthi, Chaudhuri & Ramaswamy [2], Bahrouni, Rădulescu & Repovš
[5], Bahrouni, Rădulescu & Repovš [6], Catrina & Wang [11], and the references
therein. In particular, Bahrouni, Rădulescu and Repovš [6] proved a new version
of a Caffarelli-Kohn-Nirenberg inequality with variable exponent for the Baouendi-
Grushin operator ∆G. More precisely, the following weighted inequality has been
proved.

Theorem 1.1. Assume that G is a function of class C1 and that G(x, y) ∈ (2, N)
for all (x, y) ∈ Ω. Then there exists a positive constant β such that for all u ∈ C1

c (Ω)∫
Ω

(1 + |x|γ) |u|G(x,y) dx dy

≤ β
∫

Ω

(
|∇xu|G(x,y) + |x|γ |∇yu|G(x,y)

)
dx dy

+ β

∫
Ω

|u|G(x,y)−1
(
1 + u2

)
(|∇xG(x, y)|+ |x|γ |∇yG(x, y)|) dx dy.

The paper is organized as follows. In Section 2 we present the basic properties of
variable Lebesgue and Sobolev spaces and state the main tools which will be used
later; see Rădulescu and Repovš [29] for more details. New properties concerning
the Baouendi-Grushin operator will be discussed in Section 3 and in the last section
we state and prove our main result concerning the existence of a weak solution to
problem (1.1).

2. Terminology and the abstract setting

In this section we recall some basic definitions and properties of the needed
function spaces. We refer to the works of Bahrouni & Repovš [4], Hájek, Montesinos
Santalućıa, Vanderwerff & Zizler [18], Musielak [23], Rădulescu [27, 28], Rădulescu
& Repovš [29] and the references therein. Consider the set

C+(Ω) =

{
p ∈ C(Ω)

∣∣∣∣ p(x) > 1 for all x ∈ Ω

}
and define for any p ∈ C+(Ω)

p+ := sup
x∈Ω

p(x) and p− := inf
x∈Ω

p(x).

Then 1 < p− ≤ p+ < ∞ for each p ∈ C+(Ω). The variable exponent Lebesgue
space Lp(·)(Ω) is defined by

Lp(·)(Ω) =

{
u : Ω→ R

∣∣∣∣ u is measurable and

∫
Ω

|u(x)|p(x) dx <∞
}
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equipped with the Luxemburg norm

‖u‖p(·) = inf

{
µ > 0

∣∣∣∣ ∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
.

It is known that Lp(·)(Ω) is a reflexive Banach space. Moreover, continuous func-
tions with compact support are dense in Lp(·)(Ω).

Denote by q(·) the conjugate of p(·), that is, 1/p(x) + 1/q(x) = 1 for all x ∈ Ω.
If u ∈ Lp(·)(Ω) and v ∈ Lq(·)(Ω), then we have the following Hölder-type inequality∣∣∣∣∫

Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

q−

)
‖u‖p(·)‖v‖q(·).

More generally, if pj ∈ C+(Ω) for j = 1, 2, 3 and

1

p1(x)
+

1

p2(x)
+

1

p3(x)
= 1 for all x ∈ Ω,

then we obtain for all u ∈ Lp1(·)(Ω), v ∈ Lp2(·)(Ω) and w ∈ Lp3(·)(Ω) that∣∣∣∣∫
Ω

uvw dx

∣∣∣∣ ≤ ( 1

p−1
+

1

p−2
+

1

p−3

)
‖u‖p1(·)‖v‖p2(·)‖w‖p3(·) .

Moreover, for p1 ≤ p2 in Ω, then there exists the continuous embedding Lp2(·)(Ω)
↪→ Lp1(·)(Ω).

The following two propositions will be useful in the sequel.

Proposition 2.1. Let

ρ1(u) =

∫
Ω

|u|p(x) dx for all u ∈ Lp(·)(Ω).

Then the following holds:

(i) ‖u‖p(·) < 1 (resp.,= 1;> 1) if and only if ρ1(u) < 1 (resp.,= 1;> 1);

(ii) ‖u‖p(·) > 1 implies ‖u‖p
−

p(·) ≤ ρ1(u) ≤ ‖u‖p
+

p(·);

(iii) ‖u‖p(·) < 1 implies ‖u‖p
+

p(·) ≤ ρ1(u) ≤ ‖u‖p
−

p(·).

Proposition 2.2. Let

ρ1(u) =

∫
Ω

|u|p(x) dx for all u ∈ Lp(·)(Ω).

If u, un ∈ Lp(·)(Ω) and n ∈ N, then the following statements are equivalent:

(i) lim
n→+∞

‖un − u‖p(·) = 0;

(ii) lim
n→+∞

ρ1(un − u) = 0;

(iii) un(x)→ u(x) in Ω and lim
n→+∞

ρ1(un) = ρ1(u).

By W 1,p(·)(Ω) we denote the variable exponent Sobolev space

W 1,p(·)(Ω) =
{
u ∈ Lp(·)(Ω)

∣∣ |∇u| ∈ Lp(·)(Ω)
}

equipped with the norm

‖u‖1,p(·) = ‖∇u‖p(·) + ‖u‖p(·).
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Then W 1,p(·)(Ω) is a reflexive and separable Banach space.
Our main existence result will be based on the following surjectivity result, see

Gasinski & Papageorgiou [16]. First, we give the definition of pseudomonotonicity.

Definition 2.3. Let X be a reflexive Banach space, X∗ its dual space and denote by

〈·, ·〉 its duality pairing. Let A : X → X∗, then A is called pseudomonotone if un
w→

u in X and lim supn→∞〈A(un), un − u〉 ≤ 0 imply Aun
w→ Au and 〈Aun, un〉 →

〈Au, u〉.

Theorem 2.4. Let X be a real, reflexive Banach space, and let A : X → X∗ be a
pseudomonotone, bounded, and coercive operator, and b ∈ X∗. Then the problem
Au = b has at least one solution.

3. Properties of the double phase operator and the corresponding
function space

In this section we recall and prove new results concerning the Baouendi-Grushin
operator introduced in Section 1.

Based on Theorem 1.1, we denote byW the closure of C1
c (Ω) with respect to the

norm

‖u‖ = ‖∇xu‖G(·,·) +
∥∥∥|x| γ

G(·,·) ∇yu
∥∥∥
G(·,·)

+
∥∥∥u (|∇xG(x, y)|+ |x|γ |∇yG(x, y)|)

1
G(x,y)+1

∥∥∥
G(·,·)+1

+
∥∥∥u (|∇xG(x, y)|+ |x|γ |∇yG(x, y)|)

1
G(x,y)−1

∥∥∥
G(·,·)−1

.

Note that the norm ‖ · ‖ on W is equivalent to

‖u‖W

= inf

{
µ ≥ 0

∣∣∣∣ ρ(uµ
)
≤ 1

}
= inf

{
µ ≥ 0

∣∣∣∣ ∫
Ω

1

G(x, y)

[∣∣∣∣∇x(uµ
)∣∣∣∣G(x,y)

+ |x|γ
∣∣∣∣∇y (uµ

)∣∣∣∣G(x,y)
]
dx dy

+

∫
Ω

A(x, y)


∣∣∣uµ ∣∣∣G(x,y)+1

G(x, y) + 1
+

∣∣∣uµ ∣∣∣G(x,y)−1

G(x, y)− 1

 dx dy ≤ 1

 .

(3.1)

From now on we denote the duality pairing between W and its dual space W∗
by 〈·, ·〉W . Furthermore, we set

G+ := sup
(x,y)∈Ω

G(x, y) and G− := inf
(x,y)∈Ω

G(x, y).

The following compactness property was proved by Bahrouni, Rădulescu and
Repovš [6].

Lemma 3.1. Assume that G is a function of class C1 and that G(x, y) ∈ (2, N)

for all (x, y) ∈ Ω. Furthermore, suppose that s ∈ (1, G−) and 0 < γ < N(G−−s)
s .

Then W is compactly embedded in Ls(Ω).
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Now, we define ρ : W → R by

ρ (u) =

∫
Ω

1

G(x, y)

[
|∇x(u)|G(x,y)

+ |x|γ |∇y(u)|G(x,y)
]
dx dy

+

∫
Ω

A(x, y)

[
|u|G(x,y)+1

G(x, y) + 1
+
|u|G(x,y)−1

G(x, y)− 1

]
dx dy.

The following lemma will be helpful in later treatments.

Lemma 3.2. Let u ∈ W, then the following holds:

(i) For u 6= 0 we have: ‖u‖W = a if and only if ρ(ua ) = 1;

(ii) ‖u‖W < 1 implies ‖u‖G
++1
W ≤ ρ(u) ≤ ‖u‖G

−−1
W ;

(iii) ‖u‖W > 1 implies ‖u‖G
−−1
W ≤ ρ(u) ≤ ‖u‖G

++1
W .

Proof. (i) For every fixed u ∈ W, the mapping λ 7→ ρ(λu) is a continuous, convex,
even function, which is strictly increasing in [0,+∞). Thus, by the definition of ρ
and the equivalent norm given in (3.1), we have

‖u‖W = a ⇐⇒ ρ
(u
a

)
= 1.

(ii) Let u ∈ W be such that ‖u‖W < 1, then

‖∇xu‖G(·,·) < 1,∥∥∥|x| γ
G(x,y) ∇yu

∥∥∥
G(·,·)

< 1,∥∥∥u(|∇xG(x, y)|+ |x|γ |∇yG(x, y)|)
1

G(x,y)+1

∥∥∥
G(·,·)+1

< 1,∥∥∥u(|∇xG(x, y)|+ |x|γ |∇yG(x, y)|)
1

G(x,y)−1

∥∥∥
G(·,·)−1

< 1.

So, by Proposition 2.1, we get the desired result.
(iii) Let u ∈ W be such that ‖u‖W > 1. By (i), we obtain

ρ

(
u

‖u‖W

)
=

∫
Ω

1

G(x, y)

[∣∣∣∣∇x( u

‖u‖W

)∣∣∣∣G(x,y)

+ |x|γ
∣∣∣∣∇y ( u

‖u‖W

)∣∣∣∣G(x,y)
]
dx dy

+

∫
Ω

A(x, y)


∣∣∣ u
‖u‖W

∣∣∣G(x,y)+1

G(x, y) + 1
+

∣∣∣ u
‖u‖W

∣∣∣G(x,y)−1

G(x, y)− 1

 dx dy = 1.

Then, by the mean value theorem, there exist (x1, y1), (x2, y2), (x3, y3) ∈ Ω depend-
ing on u,G and Ω such that

1 =
1

‖u‖G(x1,y1)
W

∫
Ω

1

G(x, y)

[
|∇xu|G(x,y)

+ |x|γ |∇yu|G(x,y)
]
dx dy

+
1

‖u‖G(x2,y2)+1
W

∫
Ω

A(x, y)
|u|G(x,y)+1

G(x, y) + 1
dx dy

+
1

‖u‖G(x3,y3)−1
W

∫
Ω

A(x, y)
|u|G(x,y)−1

G(x, y)− 1
dx dy.
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Since ‖u‖W > 1, it follows that

1 ≤ 1

‖u‖G−−1
W

[∫
Ω

1

G(x, y)

[
|∇xu|G(x,y)

+ |x|γ |∇yu|G(x,y)
]
dx dy

]

+
1

‖u‖G−−1
W

[∫
Ω

A(x, y)

[
|u|G(x,y)+1

G(x, y) + 1
+
|u|G(x,y)−1

G(x, y)− 1

]
dx dy

]
.

This finishes the proof. �

Lemma 3.3. Assume that the assumptions of Lemma 3.1 are fulfilled. Then the
following properties hold.

(i) The functional ρ is of class C1 and for all u, v ∈ W we have

〈ρ′(u), v〉W =

∫
Ω

[
|∇xu|G(x,y)−2∇xu∇xv + |x|γ |∇yu|G(x,y)−2∇yu∇yv

]
dx dy

+

∫
Ω

A(x, y) |u|G(x,y)−3
(u2 + 1)uv dx dy.

(ii) The function ρ′ : W →W∗ is coercive, that is, 〈ρ
′(u),u〉W
‖u‖W → +∞ as ‖u‖W →

+∞.

Proof. (i) This follows directly from the definition of ρ : W → R.
(ii) By Lemma 3.2, for ‖u‖W > 1, we obtain

〈ρ′(u), u〉W ≥ ρ(u) ≥ ‖u‖G
−−1
W .

Then

〈ρ′(u), u〉W
‖u‖W

≥ ‖u‖G
−−2
W → +∞

as ‖u‖W → +∞ since G ∈ (2, N) and so G− > 2. �

Lemma 3.4. Let the conditions of Lemma 3.1 be satisfied. Then there exists λ1 > 0
such that

λ1 = inf
u∈W
‖u‖W>1

ρ(u)

‖u‖G−−1
G−−1

.

Proof. By Lemma 3.1 there exists C > 0 such that

‖u‖W ≥ C‖u‖G−−1 for all u ∈ W.

On the other hand, by Lemma 3.2, for ‖u‖W > 1 we have

ρ(u) ≥ ‖u‖G
−−1
W .

Combining the above inequalities we obtain

ρ(u) ≥ CG
−−1‖u‖G

−−1
G−−1 for all u ∈ W with ‖u‖W > 1.

The proof is now complete. �

Lemma 3.5. Assume that the conditions of Lemma 3.1 hold. Then the double
phase operator ρ′ : W →W∗ has the following properties:

(i) ρ′ is a continuous, bounded (that is, it maps bounded sets to bounded sets),
and strictly monotone operator.
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(ii) ρ′ is a mapping of type (S+), that is, if un ⇀ u in W and

lim sup
n→+∞

〈ρ′(un), un − u〉W ≤ 0,

then un → u in W.
(iii) ρ′ is a homeomorphism.

Proof. (i) From Lemma 3.3 it is clear that ρ′ is continuous. Next, we are going to
prove that ρ′ maps bounded sets to bounded sets. By Young’s inequality, we obtain

〈ρ′(u), v〉W

=

∫
Ω

[
|∇xu|G(x,y)−2∇xu∇xv + |x|γ |∇yu|G(x,y)−2∇yu∇yv

]
dx dy

+

∫
Ω

A(x, y) |u|G(x,y)−3
(u2 + 1)uv dx dy

≤ (G+ − 1)

∫
Ω

1

G(x, y)

[
|∇xu|G(x,y)

+ |x|γ |∇yu|G(x,y)
]
dx dy

+

∫
Ω

1

G(x, y)

[
|∇xv|G(x,y)

+ |x|γ |∇yv|G(x,y)
]
dx dy

+G+

∫
Ω

A(x, y)
|u|G(x,y)+1

G(x, y) + 1
dx dy +

∫
Ω

A(x, y)
|v|G(x,y)+1

G(x, y) + 1
dx dy

+ (G+ − 2)

∫
Ω

A(x, y)
|u|G(x,y)−1

G(x, y)− 1
dx dy +

∫
Ω

A(x, y)
|v|G(x,y)−1

G(x, y)− 1
dx dy

≤ G+ρ(u) + ρ(v).

Hence, from Lemma 3.2, we get

‖ρ′(u)‖ = sup
‖v‖≤1

|〈ρ′(u), v〉W | ≤ G+ρ(u) + 3,

which implies that ρ′ maps bounded sets to bounded sets.
The strict monotonicity of ρ′ is a direct consequence of the well-known Simon

inequalities [30, formula (2.2)]

|x− y|p ≤ cp
(
|x|p−2

x− |y|p−2
y
)
· (x− y) if p ≥ 2, (3.2)

|x− y|p ≤ Cp
[(
|x|p−2

x− |y|p−2
y
)
· (x− y)

] p
2

× (|x|p + |y|p)
2−p
2 if p ∈ (1, 2),

(3.3)

for all x, y ∈ RN , where cp and Cp are positive constants depending only on p, see
Lindqvist [19, p. 71], Filippucci, Pucci & Rădulescu [14, p. 713], and Pucci, Xiang
& Zhang [26, p. 14].

(ii) Let {un}n≥1 ⊆ W be a sequence such that

un ⇀ u in W and lim sup
n→+∞

〈ρ′(un), un − u〉W ≤ 0.

Then, from (i), we deduce that

lim
n→+∞

〈ρ′(un), un − u〉W = 0. (3.4)



DOUBLE PHASE PROBLEMS FOR THE BAOUENDI-GRUSHIN OPERATOR 9

In view of (3.2) and (3.3), the sequence {∇un}n≥1 converges in measure to ∇u in
Ω. Then there is a subsequence, still denoted by {∇un}n≥1, that converges to ∇u
a.e. in Ω.

First, we have

〈ρ′(un), un − u〉W

=

∫
Ω

[
|∇xun|G(x,y)−2∇xun∇x(un − u)

+ |x|γ |∇yun|G(x,y)−2∇yun∇y(un − u)
]
dx dy

+

∫
Ω

A(x, y) |un|G(x,y)−3
(u2
n + 1)un(un − u) dx dy

=

∫
Ω

[
|∇xun|G(x,y)

+ |x|γ |∇yun|G(x,y)
]
dx dy

+

∫
Ω

A(x, y) |un|G(x,y)−1
(u2
n + 1) dx dy

−
∫

Ω

[
|∇xun|G(x,y)−2∇xun∇xu+ |x|γ |∇yun|G(x,y)−2∇yun∇yu

]
dx dy

−
∫

Ω

A(x, y) |un|G(x,y)−3
(u2
n + 1)unu dx dy.

Then, by applying Young’s inequality to the right-hand side of the last equation,
we obtain

〈ρ′(un), un − u〉W

≥
∫

Ω

[
|∇xun|G(x,y)

+ |x|γ |∇yun|G(x,y)
]
dx dy

+

∫
Ω

A(x, y) |un|G(x,y)−1
(u2
n + 1) dx dy

−
∫

Ω

G(x, y)− 1

G(x, y)

[
|∇xun|G(x,y)

+ |x|γ |∇yun|G(x,y)
]
dx dy

−
∫

Ω

1

G(x, y)

[
|∇xu|G(x,y)

+ |x|γ |∇yu|G(x,y)
]
dx dy

−
∫

Ω

A(x, y)
G(x, y)

G(x, y) + 1
|un|G(x,y)+1 dx dy

−
∫

Ω

A(x, y)
1

G(x, y) + 1
|u|G(x,y)+1 dx dy

−
∫

Ω

A(x, y)
G(x, y)− 2

G(x, y)− 1
|un|G(x,y)−1 dx dy

−
∫

Ω

A(x, y)
1

G(x, y)− 1
|u|G(x,y)−1 dx dy

≥ ρ(un)− ρ(u).

This finally gives

〈ρ′(un), un − u〉W ≥ ρ(un)− ρ(u). (3.5)



10 A. BAHROUNI, V.D. RĂDULESCU, AND P. WINKERT

Combining (3.4) and (3.5) leads to

lim
n→+∞

ρ(un) ≤ ρ(u).

On the other hand, it follows from Fatou’s lemma that

lim inf
n→+∞

ρ(un) ≥ ρ(u).

Thus, we have that

lim
n→+∞

ρ(un) = ρ(u),

which implies that the family of continuous functions{
1

G(x, y)

[
|∇xun|G(x,y)

+ |x|γ |∇yun|G(x,y)
]

+A(x, y)

[
|un|G(x,y)+1

G(x, y) + 1
+
|un|G(x,y)−1

G(x, y)− 1

]}
n≥1

turns out to be equicontinuous on Ω. Since

1

G(x, y)
|∇x(un − u)|G(x,y)

+
1

G(x, y)
|x|γ |∇y(un − u)|G(x,y)

+A(x, y)

[
|un − u|G(x,y)+1

G(x, y) + 1
+
|un − u|G(x,y)−1

G(x, y)− 1

]

≤ C

G(x, y)

(
|∇xun|G(x,y)

+ |∇xu|G(x,y)
)

+
C

G(x, y)

(
|∇yun|G(x,y)

+ |∇yu|G(x,y)
)

+ CA(x, y)

(
|un|G(x,y)+1

G(x, y) + 1
+
|u|G(x,y)+1

G(x, y) + 1

)

+ CA(x, y)

(
|un|G(x,y)−1

G(x, y)− 1
+
|u|G(x,y)−1

G(x, y)− 1

)
,

with positive C, the integrals of the family{
1

G(x, y)
|∇x(un − u)|G(x,y)

+
1

G(x, y)
|x|γ |∇y(un − u)|G(x,y)

+A(x, y)

[
|un − u|G(x,y)+1

G(x, y) + 1
+
|un − u|G(x,y)−1

G(x, y)− 1

]}
n≥1

are also equicontinuous on Ω and therefore

lim
n→+∞

ρ(un − u) = 0.

It follows, by Proposition 2.2, that

un → u in W.

(iii) By strict monotonicity, ρ′ is an injection. On the other hand, using Lemma
3.3 and the Minty-Browder theorem, ρ′ is a surjection. Hence ρ′ has an inverse
mapping (ρ′)−1 : W∗ → W. Therefore, in order to complete the proof of (iii), it
suffices to prove that (ρ′)−1 is continuous. If fn, f ∈ W∗, fn → f, letting un =
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(ρ′)−1(fn), u = (ρ′)−1(f), then ρ′(un) = fn, ρ
′(u) = f . Note that {un}n≥1 is

bounded in W. Without loss of generality, we can assume that un ⇀ u0 in W. We
conclude from fn → f that

lim
n→+∞

〈ρ′(un)− ρ′(u0), un − u0〉W = lim
n→+∞

〈fn − f, un − u0〉W = 0.

Since ρ′ is of type (S+), we know that un → u0 in W and so un → u in W. �

4. Existence of a solution

We suppose the following hypotheses on the reaction term in (1.1).

(H) f : Ω×R×RN → R is a Carathéodory function with f((x, y), 0, 0) 6= 0 for
a. a. (x, y) ∈ Ω such that the following holds:

(i) there exists a ∈ L∞(Ω× RN ) such that

|f((x, y), s, ξ)| ≤ a((x, y), ξ)
(

1 + |s|G
−−1

)
for a. a. all (x, y) ∈ Ω, for all s ∈ R and for all ξ ∈ RN ;

(ii) there exists ϑ ∈ (0, λ1) such that

lim sup
s→+∞

f((x, y), s, ξ)

sG−−1
≤ ϑ uniformly for a. a. (x, y) ∈ Ω

and for all ξ ∈ RN with λ1 given in Lemma 3.4.

We say that u ∈ W is a weak solution of problem (1.1) if∫
Ω

[
|∇xu|G(x,y)−2∇xu∇xϕ+ |x|γ |∇yu|G(x,y)−2∇yu∇yϕ

]
dx dy

+

∫
Ω

A(x, y) |u|G(x,y)−3
(u2 + 1)uϕdx dy

=

∫
Ω

f((x, y), u,∇u)v dx dy.

is satisfied for all ϕ ∈ W \ {0}.
Now we are in the position to state our main existence result.

Theorem 4.1. Suppose that conditions (H)(i), (ii) are fulfilled. Moreover, assume
that G is a function of class C1 and that G(x, y) ∈ (2, N) for all (x, y) ∈ Ω.

Furthermore, suppose that s ∈ (1, G−) and 0 < γ < N(G−−s)
s . Then problem (1.1)

admits at least one nontrivial weak solution.

Proof. Let Nf : W ⊆ LG
−−1 → L(G−−1)′ ⊆ W∗ be the Nemytskij operator corre-

sponding to the nonlinearity f : Ω×R×RN → R which is compact by Lemma 3.1.
Now we define the operator I : W →W∗ by

I(u) = ρ′(u)−Nf (u).

Because of the growth condition H(i) and Lemma 3.5(i) we know that I : W →W∗
maps bounded sets into bounded sets. Let us now prove that I is pseudomonotone
in the sense of Definition 2.3. To this end, let {un}n≥1 ⊆ W be a sequence such
that

un ⇀ u in W and lim sup
n→+∞

〈I(un), un − u〉W ≤ 0. (4.1)
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Recall that

〈I(un), un − u〉 = 〈ρ′(un), un − u〉 −
∫

Ω

f((x, y), un,∇un)(un − u) dx dy. (4.2)

By Lemma 3.1 we know that

un → u in LG
−−1(Ω)

since G− − 1 < G−. Moreover, hypothesis H(i) implies that

{Nf (un)}n≥1 ⊆ L(G−−1)′(Ω) is bounded.

From these facts it is clear that∫
Ω

f((x, y), un,∇un)(un − u) dx dy → 0 as n→ +∞. (4.3)

Therefore, passing to the limit in (4.2) and using (4.1) as well as (4.3) leads to

lim sup
n→+∞

〈ρ′(un), un − u〉 = lim sup
n→+∞

〈I(un), un − u〉 ≤ 0. (4.4)

From Lemma 3.5 we know that ρ′ fulfills the (S+)-property and so we conclude, in
view of (4.1) and (4.4), that

un → u in W.

Thus, because of the continuity of I : W →W∗, we have I(un)→ I(u) inW∗ which
proves that I is pseudomonotone.

Next, we have to show that the operator I : W →W∗ is coercive, that is,

lim
‖u‖W→∞

〈I(u), u〉W
‖u‖W

=∞.

Note that hypothesis (H)(ii) implies that for a given ε > 0 there exists M = M(ε) >
1 such that

f(x, s, ξ)s ≤ (ϑ+ ε)sG
−−1 (4.5)

for a. a.x ∈ Ω, for all s ≥M and for all ξ ∈ RN .
Let u ∈ W be such that ‖u‖ > M > 1. Applying Lemma 3.3, (4.5), Lemma 3.4

and Lemma 3.2(iii) we get

〈I(u), u〉 = 〈ρ′(u), u〉 −
∫

Ω

f((x, y), u,∇u)u dx dy

≥ ρ(u)− (ϑ+ ε)

∫
Ω

|u|G
−−1 dx dy

= ρ(u)− (ϑ+ ε)‖u‖G
−−1

G−−1

≥
(

1− ϑ+ ε

λ1

)
ρ(u)

≥
(

1− ϑ+ ε

λ1

)
‖u‖G

−−1
W .

Choosing ε ∈ (0, λ1 − ϑ) proves that I : W →W∗ is coercive.
To sum up, we have shown that the operator I : W → W∗ is bounded, pseu-

domonotone and coercive. Therefore, the main theorem on pseudomonotone op-
erators, see Theorem 2.4, provides u ∈ W, u 6= 0 (since f(x, 0, 0) 6= 0), such that
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I(u) = 0. By the definition of I, the function u turns out to be a nontrivial weak
solution of problem (1.1) which completes the proof. �

Concluding remarks, perspectives, and open problems

(i) The mathematical analysis carried out in this paper considers the unbalanced
energy

W 3 u 7→
∫

Ω

1

G(x, y)

[
|∇x(u)|G(x,y)

+ |x|γ |∇y(u)|G(x,y)
]
dx dy

with the associated differential operator

∆G(x,y)u =

n∑
i=1

(
|∇x|G(x,y)−2uxi

)
xi

+ |x|γ
m∑
i=1

(
|∇y|G(x,y)−2uyi

)
yi
.

It appears to be worth to further investigate patterns described by the variational
integral ∫

Ω

(
|∇xu|G(x,y)

+ |x|γ |∇yu|G(x,y)
)
dz (4.6)

with corresponding anisotropic Baouendi-Grushin operator

divx

(
G(x, y) |∇x|G(x,y)−2∇x

)
+ divy

(
G(x, y) |x|γ |∇y|G(x,y)−2∇y

)
.

(ii) We remark that since both ρ and the energy functional defined in (4.6) have a
degenerate action on the set where the gradient vanishes, it is a natural question
to study what happens if the integrand is modified in such a way that, if |∇u| is
also small, there exists an imbalance between the two terms of every integrand.

(iii) The compactness property established in Lemma 3.1 plays a key role in the
proof of several crucial properties such as: coercivity of ρ′ (Lemma 3.3), existence
of a principal eigenvalue associated to the Rayleigh quotient (Lemma 3.4), as well
as in the proof of the main result established in Theorem 4.1. This compactness
property is established in a subcritical setting, which corresponds to the hypothesis
s < G−, where s describes the growth of the right-hand side of problem (1.1).
In fact, Theorem 4.1 remains true if s is replaced with a variable coefficient s(x),
provided that s+ < G−. We do not have any knowledge about the behaviour in
the almost critical case that arises in the following situation: there exists x0 ∈ Ω
such that s(x0) = G− and s(x) < G− for all x ∈ Ω \ {x0}.
(iv) It is worth noting that the study of nonlinear boundary value problems involv-
ing the magnetic Baouendi-Grushin operator [3] are of real interest for mathematical
physics patterns. This operator is

GA := −(∇G + iβA0)2 for − 1

2
≤ β ≤ 1

2
,

where

A0 = (A1,A2,A3,A4) =

(
−∂yd

d
,
∂xd

d
,−2y

∂td

d
, 2x

∂td

d

)
,

∇G = (∂x, ∂y, 2x∂t, 2y∂t),

with z = (x, y), |z| =
√
x2 + y2, and d(z, t) = (|z|4 + t2)1/4 is the Kaplan distance.
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[31] Q. Zhang, V.D. Rădulescu, Double phase anisotropic variational problems and combined
effects of reaction and absorption terms, J. Math. Pures Appl. (9) 118 (2018), 159–203.

(A. Bahrouni) Mathematics Department, University of Monastir, Faculty of Sciences,

5019 Monastir, Tunisia
Email address: bahrounianouar@yahoo.fr
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