ON THE BOUNDEDNESS OF SOLUTIONS TO ELLIPTIC
VARIATIONAL INEQUALITIES

PATRICK WINKERT

ABSTRACT. In this paper we present global a priori bounds for a class of vari-
ational inequalities involving general elliptic operators of second-order and
terms of generalized directional derivatives. Based on Moser’s and De Giorgi’s
iteration technique we prove the boundedness of solutions of such inequali-
ties under certain criteria on the set of constraints. In our proofs we also
use the localization method with a certain partition of unity and a version of
a multiplicative inequality estimating the boundary integrals. Some sets of
constraints satisfying the required conditions are stated as well.

1. INTRODUCTION

Given a bounded domain Q@ C R¥ N > 1, with Lipschitz boundary 052, we
consider the following problem: Find v € K such that

/ A(x,u, Vu) - V(v — u)dz + / F(z,u, Vu) (v — u)da
Q Q
(1.1)
+/ Ji(z, usv —U)dw+/ 35 (z,u;v — u)do >0,
Q I}9)

for all v € K, where K is a subset of a Banach space V (will be specified below)
and jp(z,s;7) (k = 1,2) denotes the generalized directional derivative of a locally
Lipschitz function s — ji(x, s) at s in the direction . The maps 4 : Q x Rx RY —
RY and F : Q x R x RY — R are supposed to be Carathéodory functions satisfying
suitable structure conditions (see hypotheses (H1) and (H2) below) while do denotes
the usual (N — 1)-dimensional surface measure and for u € V the generalized
boundary values on 02 are well defined in the sense of traces. For reasons of
simplification we drop the notation for the trace operator.

The aim of our treatment is to present conditions on the set of constraints,
namely K, such that every solution v € K of (1.1) is essentially bounded. In
order to specify the space V we will discuss two different cases: In Section 3 we
choose V' = WHP(Q) with 1 < p < co and in Section 4 we set V = W2()(Q) with
p € C(Q) and 1 < infgp. These cases will be handled by different methods, the
first one via Moser iteration and the second one via De Giorgi’s iteration technique.

Due to the presence of the terms j; (z, s;r), inequalities of type (1.1) are called
variational-hemivariational inequalities which include several interesting problems
as special cases.
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If K =V and j; (k= 1,2) are smooth, problem (1.1) becomes

/ Az, u, Vu) - Vodx +/ F(z,u, Vu)vdx
Q Q

+/j{(w,u)vdm+/ jy(z,u)vdo =0, YveV,
Q a0

which means that v € V is a weak solution to the problem

—div A(z,u, Vu) + F(z,u, Vu) + ji(x,u) =0  in Q,
A(z,u,Vu) - v+ jh(z,u) =0  on 09,

where v(x) denotes the outer unit normal of Q at € 9. Regarding a
priori bounds for such problems we refer to Winkert-Zacher [32, Theorem
1.1 and Corollary 1.2] (if V. = W'r()(Q)), Winkert [31, Theorem 4.1]
(if V.= WbP(Q), see also Winkert [30, Proof of Proposition 5.2]) and
Hu-Papageorgiou [18, Proposition 5] (if V. = W1P(Q) with homogeneous
Neumann boundary condition).

If j, =0 (k= 1,2), (1.1) reduces to a classical variational inequality: Find
u € K such that

/A(x,u,Vu)~V(v—u)dx—|—/F(amu,Vu)(v—u)dsz Vv € K.
Q Q

Boundedness results for solutions of such variational inequalities under suit-
able criteria on the set of constraints have been obtained by Kovalevsky-
Nicolosi [20, Theorem 2.8], where V = WP(0,Q) with 1 < p < oo and

a positive weight @ satisfying 6 € L (Q) and 1/0 € Lllo/c(pfl)(ﬂ) (see also
Jezkova [19] for local boundedness results). Concerning degenerated ellip-
tic operators of high order we refer to a work of the same authors [21].
Recently, Gorban-Kovalevsky [16] have been studied the boundedness of
solutions of degenerate anisotropic elliptic variational inequalities under
certain conditions on the right-hand side and the set of constraints.

In case that K is the whole space V and ji (k = 1,2) not necessarily
smooth, problem (1.1) is a hemivariational inequality which contains as a
special case the subsequent elliptic inclusion

—div A(z,u, Vu) + F(z,u, Vu) + 9j1(z,u) 50 in Q,
A(z,u,Vu) - v+ 0ja(x,u) 30 on 052,

where the expression 9ji(x,s) denotes the generalized gradient of the lo-
cally Lipschitz function ji(z,-) in the sense of Clarke (see Section 2 for
more details).

Let V = WhP(Q) with 1 < p < co. If the operator A satisfies appropriate
monotonicity conditions with respect to the second and third argument
and if the functions involved fulfill suitable structure conditions (similar to
those in Section 3), then inequality (1.1) is equivalent to the multi-valued
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variational inequality: Find u € K such that

n(z) € 9j1(x,u(z)) a.e. in Q,&(x) € dja(z, u(zx)) a.e. in IQ,

Az, u, Vu) - V(v — u)dx + / F(z,u, Vu)(v — u)dz
Q Q

+/n(v—u)dac+ E(v—u)do >0, VveK.
Q o9

This result was published by Carl [5].

We point out that our results are more general than those in [20]. On the one
hand we extend their results to variational-hemivariational inequalities including
nonlinear boundary terms and on the other hand we have weaker assumptions
on the set of constraints. Indeed, hypothesis 2.6(i) in [20] is not needed in our
treatment. For the sake of convenience we do not use Sobolev spaces with weights,
but this case can be done in the same way. Another novelty of this work is the
treatment of variational-hemivariational inequalities restricted to sets K belonging
to variable exponent spaces WL”(')(Q) with p continuous on €. To the best of our
knowledge, our a priori estimates have not been published before.

Notice that we do not suppose that the set K is closed and convex in V.
But in general, this is the typical assumption in the existence theory of inequal-
ities like (1.1). Regarding existence and multiplicity results for problems of the
form (1.1) we refer, without guarantee of completeness, to the papers of Carl [6],
Kyritsi-Papageorgiou [23], Motreanu-Bonanno-Winkert [2], Bonanno-Winkert [3],
Motreanu-Winkert [27] and the references therein. An overview about results to
nonsmooth analysis and variational-hemivariational inequalities can be found in
the monographs of Carl-Le-Motreanu [7] and Motreanu-Radulescu [26]. We also
point out a recent work of Carl [1] in which the class of variational-hemivariational
inequalities has been extended to a more general class of inequalities.

The paper is organized as follows. In Section 2 we present some basic facts
about nonsmooth analysis and the corresponding function spaces to problem (1.1).
Furthermore, we prove an useful multiplicative inequality for boundary integrals.
Section 3 handles the constant exponent case (i.e., V.= W1P(Q) with 1 < p < 00)
where we will apply Moser’s iteration following the ideas of Drabek-Kufner-Nicolosi
[12]. In the last section we extend our results to the variable exponent case (i.e.
V = whrO)(Q) with p € C(Q) and 1 < infg p) by applying De Giorgi’s iteration.
The results in this section are based on ideas of DiBenedetto [10], LadyZzenskaja-
Solonnikov-Ural’ceva [24], and Winkert-Zacher [32].

2. PRELIMINARIES AND HYPOTHESES
Let €2 be a bounded domain in RY with Lipschitz boundary 99 and let p € C(Q)
with p(z) > 1 for all z € Q. Setting p~ := min_ g p(z) and pT := max, g p(x),

we have p~ > 1 and p* < oo. The variable exponent Lebesgue space LP()(Q) is
defined by

LrO(Q) = {u ‘ u: Q — R is measurable and / lu|P@ da < +oo}
Q
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equipped with the Luxemburg norm

p(z)
lull o gy = inf { 7> 0 / dr <1
Q

By W'P0)(Q) we identify the variable exponent Sobolev space which is defined by

ulz)

T

wir)(Q) = {u e LPO(Q) : |Vu| € Lp(')(Q)}
with the norm

ullweo @) = VUl e @y + l[ull Lro )
We refer to the papers of Fan-Zhao [15], Kovacik-Rékosnik [22] and the monograph
of Diening-Harjulehto-Hésté-Ruzicka [11] for more information and basic properties

about variable exponent spaces. If p(z) = p is a constant, the usual Sobolev space
WLP(Q) is endowed with the norm

P
Il = (/ |Vu|pdx—|—/ |u|pdx>
Q Q

Let us recall some basic facts on nonsmooth analysis. Let (X,] - ||) be a real
Banach space and denote by X* its dual space while the duality pairing between
X and X* is denoted by (-,-). The dual space X* is equipped with the dual norm
I ||, that is

1€]l« = sup{(§,v) : v € X, [Jv]| < 1}.

A function j : X — R is said to be locally Lipschitz if for every x € X there exist
a neighborhood U of z in X and a constant C' > 0 such that

3(y) =i ()| < Clly — =], forally,zeU.

The generalized directional derivative of a locally Lipschitz function j : X — R at
a point u € X along the direction v € X is defined by

. o)
P(u0) = Timsup LEF =@
r—u,t—0t t
Since j is locally Lipschitz at u we have j°(u;v) € R for all v € X. Furthermore,

the function j°(u;-) : X — R is subadditive, positively homogeneous and there
holds the inequality

[7°(u;v)| < C|lv]] for all v e X

with C being the Lipschitz constant of j near the point u € X.
The generalized gradient of a locally Lipschitz function j : X — R at a point
u € X, denoted by 9j(u), is the subset of X* defined by

0j(u) :={€€ X" :5%uv) > (&) forallve X},

which is also known as Clarke’s generalized gradient. Based on the Hahn-Banach
theorem we easily verify that 0j(u) is nonempty. Moreover, dj(u) is a convex,
weak® compact subset of X* and it holds ||¢]|« < C for all £ € 9j(u). For every
v € X, one has

J°(u;v) = max {(,v) : £ € j(u)}.
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We refer to the monographs of Clarke [9] and Motreanu-Radulescu [26] as well as
the paper of Chang [8] for more details and properties of generalized directional
derivatives and generalized gradients.

The next result is needed for the proof via Moser iteration to estimate the bound-
ary integrals by suitable integrals defined in 2. The proof is based on appropriate
embeddings and interpolation results of Besov and Sobolev Slobodeckij spaces.

Proposition 2.1. Let Q € RN, N > 1, be a bounded domain with Lipschitz bound-
ary 09), let 1 < p < oo, and let q be such that p < q < p, with the critical exponent

N— .
. = U2 ifp< N,
0 if p> N.
Then, for every € > 0, there exist constants ap > 0 and ag > 0 such that

lal? oy < llulyangey + arellul, gy for allu e WP(Q).

Proof. Since g < p, we may fix a number 6 € (0, 1) small enough such that

< (N-1)p ifn< N 1
q{ ~ NopFor np= and 1-6>-. (2.1)
< B= ifp>N p
From Triebel [28, 3.3.3], we have the continuous embedding
_ _ 1-6—1 _g_1
BN =WP(Q) = By, 7(09) =W P(09), (2.2)
where B, ;s € (0,1), denotes the Besov space which coincides with the Sobolev

Slobodeckij space W*#P. Note that the embedding (2.2) requires only a Lipschitz
boundary as 1 — 6 < 1.
From the choice of 6 € (0,1) and since p < g (see also (2.1)) we get

1 <N-1 ifp<N,
1-6-~)p |
p >N-1 ifp>N.
Taking into account the Sobolev embedding theorem for fractional order Sobolev
spaces (see Adams [1, Theorem 7.57]) gives

W0Tr(99) — L9(09) (2.3)
for
(N-1)p _ (N=Dp VY B
q - N—l—(l—e—%)p ~ N-—p+0p if (1 0 p)p <N 17
<o if (1-0-1)p>N-1

Actually, in case (1 —60— %) p > N—1 we have the stronger embedding Wl_e_%7p(8§2) —
C(09).

Since W1P(Q) c W'=%P(Q) c LP(Q) are continuous embeddings we may apply
real interpolation (see Triebel [29, 1.6.2 and 1.6.7])

(LP(Q), W ()10, = W'OP(),
which implies the estimate

—(1-0
lullw-o(2) < Callulliy Ly llulfoley” for all u € WP (Q) (2.4)
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with a positive constant C,. Combining (2.2)-(2.4) and using Young’s inequality
with § > 0 results in

A 1-6 S 6
el gy < Cad" = llulliy s ey 8~ ull 2,

Whr(Q) )
~ ~ ~—1+46
< Co (Bl + 65 Il ) -
Setting 6= Cé with arbitrary € > 0 provides the desired estimate. Il
2

Finally, we conclude this section by fixing our notation. If s € R we write
sy = max(s,0) and s_ = min(s,0). For functions u,v : @ — R we use the
notation u A v = min(u,v),u Vv = max(u,v), K AK = {uAv:uv € K}, and
KVEK={uVwv:u,ve K} Iftheset K CV satisfies

KNKCK and KVKCK, (2.5)
we say that K has lattice structure. Note that V' has lattice structure, that means,
VAV CV and VVVCV

(see Heinonen-Kilpeldinen-Martio [17, Theorem 1.20] if V = WhP(Q) and Le [25,
Lemma 3.2] if V = W1()(Q)). Throughout the paper we will denote by M, and

M;, 4,7 =1,2,... positive constants depending on the given data and the Lebesgue
measure on RY is given by |- |n.

3. THE CASE V = WP(Q) viIA MOSER ITERATION

We start our treatment with the constant exponent case and use Moser’s iteration
to prove L>®-bounds for solutions of inequality (1.1). In this section we suppose
the following assumptions.

(H1) The mappings A : QxR xRY — RN and F: Q x R x RY — R are supposed
to satisfy a Carathéodory condition while x — ji(z,s),  — ja(z,s) are
measurable for all s € R and s — j1(x,s), s — ja2(x, s) are locally Lipschitz
for a.a. x € Q and for a.a. = € 99, respectively. In addition the subsequent
structure conditions are assumed:

(i) A(z,8,8) &> a1l€|P — azls|™ — a3 for a.a. x €

(i) |A(z,s,6)| < aal€P~ +as|s|"F +ag  for aa z € O;
(iii) |F(z,s,€)| < b1|§\pq£17;1 + ba|s|91 71 + bs for a.a. x €
(iv) |n] < ecils|7t + e for a.a. x € Q, for all n € 971 (x, s);
(v) || < dqs]®27t + do, for a.a. x € 9Q, for all T € 9ja(x, 5);

and for all s € R, and all ¢ € RY with positive constants ai, by, ci,d;
(ie{l,...,6}, je{l,...,3}, k1 €{1,2}) and fixed numbers p, ¢1, g2 such
that

l<p<oo, p<q<p’, p=<q<ps
with the critical exponents

L if p<N, e = if p< N,
p= 400 ifp>N, 400 if p> N.
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Recalling
Ajr(z,s) ={£ €R: jp(x,s;r) > Er,Vr € R}

for a.a. x € Q (k = 1), respectively, for a.a. © € 9N (k = 2) we easily derive the
estimates

175 (z, s;7)| < (c1|s|? 7! + e2)|r] for a.a. z € Q and for all s,r € R, (3.1)
175 (2, 857)| < (dy]s|®27F + do)|r] for a.a. x € 0Q and for all s,r € R, (3.2)

thanks to (H1)(iv) and (v). From the embeddings W1?(Q2) — L% (Q) and W1P(Q) —
L%2(0Q) (see Adams [1]) and the growth conditions in (H1)(ii), (iii), (3.1) as well
as (3.2) we see that the integrals in (1.1) are finite.

For u € WP(Q) and a, 8 > 0 we define the functions v, (z) := min(u (), @)
and vg(z) := max(u_(x),—3) which belong both to W*(Q2). We suppose the
following conditions on the set K.

(K1) For uw € K, a > 0, and s > 0 there exists ¢ > 0 such that
p=u—tvfu e K.
(K2) For u € K, 8> 0, and x > 0 there exists h > 0 such that
P =u— h(—vg)™®u € K.
Note that both ¢ and ¢ are elements of W1P(Q) and their gradients are given by
Vi = Vu — tkpuP ' Vuau — tviPVu = Vu — tkpv P Vo, — tviPVu
respectively,
Vip = Vu — hup(—vg)" P~V (~vg)u — h(—vp)"PVu
= Vu + hep(—vg)*PV(—vg) — h(—vg) P Vu.
We have the following result.

Theorem 3.1. Let hypothesis (H1) be satisfied and let u € K be a solution of
(1.1). Then there exists a constant Cy > 0 such that the following assertions hold.

(1) If condition (K1) is satisfied, then

ess supu(x) < Ch.
zEQ

(2) If condition (K2) is satisfied, then

inf > —C].
esxselél u(x) > i

Proof. We start with (1) and assume, without loss of generality, that p < ¢; and
p < g2. The cases p = ¢; and/or p = g2 work similarly. Thanks to (K1) we may
take v = p = u — tvPu € K in (1.1). This gives

tlip/ Az, u, Vu) - Vo, uiPde +t/ Az, u, Vu) - VuoiPdz

Q Q

< ft/ F(z,u, Vu)viPudr + / J1 (x,u; —toiPu) de (3.3)
Q Q

—|—/ Js (z,u; —tviPu) do.
9]

Since ji (k = 1,2) are positively homogeneous with respect to the third argument
(cf. [9, Proposition 2.1.1]), we can divide inequality (3.3) by ¢ > 0.
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Let us estimate the several terms in (3.3). We start with the left-hand side of
(3.3) by applying hypothesis (H1)(i) and Holder’s inequality. We obtain

kp | A(z,u,Vu)  VoauiPde + | A(z,u, Vu) - VuviPdx
Q Q

= lip/ A(x, v, VVg) - VoauiPde +/ A(z,us, Vuy) - VugoiPdx
Q Q
> ij/ (a1|Vva|P — ag|ve|™ — ag) viPdx
Q
+/ (a1|Vuy|P — aglus|® — az) viPdx
Q

> Kkp <a1 / |Vua|PoiPde — ag/ ufﬂ)pu?ﬁ*pd‘r - CL3/ uipdx>
Q Q Q

+a1/ \Vu+|pvgpdx—(ag+a3)/ (= +1)p uf "Pdr — a3|Q| N
Q Q

(3.4)

Zamp/ \Vva|pvgpdx—|—a1/ |Vuy [PoiPde
Q

= Mi(sp+ 1) ([0 o, ) — Mo

By means of (H1)(iii) combined with Hélder’s inequality and Young’s inequality
with €1 > 0 the first term on the right-hand side can be estimated through

—/F(m,u,Vu)vgpudm
Q

q1—1 a1 -1 -1 q1—1 1_L1 n
Sbl/Elql |VU+|‘D q1 u+p a1 £, a1 u'jf( q1 ) dx
) (3.5)
+(b2+b3)/ (0P =P g 4 by |Qy

Q
€1b1

S / |Vu"‘+1|pdx+M3< —(q1—-1) + 1) ||UK+1HL‘11(Q) + My.

Owing to (3.1) combined with Holder’s inequality the second integral on the right-
hand side of (3.3) gives

/jf (w,u;—vgpu)dxg/ (61\u|qr1+cz)uip+1dx
Q@ Q

< M;s

(3.6)

n+1Hqu @ + M.

In the same way, using (3.2) and again Holder’s inequality, we get for the last
integral

/ Js (z,u; —viPu) do < / (dilu|®™t + do) w/PHdo
00 e}

< My ||uff + M.

i ||L‘12 (092)
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Now, combining (3.3)—(3.7) we have
amp/ |Vva|pvgpda:+a1/ |Vug |PoiPde
Q
£1b1 / |Vu”+1|pdx + My (5 (@=1) 1) Hu““HLQl @

Ii+1

+ M ||uf* + M.

1
Hqu (69)
Taking into account Fatou’s lemma yields

/‘ﬁp+1 /|V n+1’ du
/<;+1

Elbl k+1 —( 1) K .
r TP /|Vu Hpdz+ My (67070 4 1) [ g G

+M10 ||u +M11.

T ‘ ’ L2 (09)

Choosing €1 = 5i-(rp + 1) implies 57(‘”71) < Mj5. Then, (3.8) becomes
al f@p+1 / Vit dae
(k+ 1
r+1 r+1
< My [|u} HL‘H(Q) + Mo [[uf" Hqu(aQ) + M.

(3.9)

Now, we may apply Proposition 2.1 to the boundary term in (3.9) (with ¢ = go,
€ = €5) and Holder’s inequality as before to get

H“KHHqu(am

< 52/ \Vui Pd + 62/ WP 4 ayey / WP gy (3.10)
Q Q Q ’

<o [ 0P+ Mg (o0 5579 057

Combining (3.9) and (3.10) results in
ar kp+1 11
“DRMPT g KtL|P g
( 2 (k+ 1)p 1052) / [V do
< Mis (e2+25 + 1) [Juf]] @ + M.

The choice g5 = 1’\’/}10 (:T;)lp gives
ay kp+1 bl (k + 1P\ M kel
T (ht1)p /|v [ < Mo | s [Zos (o + M. (1)

Finally, we divide (3.11) by %4 & L > 0 and add on both sides the integral

(k+1)
Jo uf"_l)pdx which leads to

/|Vu“+1‘ dx—|—/ (Hﬂ)pda:
Q Q

(k+1) "
< Mg (/ierl) (HqulHih @ 1) ’

where Hoélder’s inequality was again taken into account on the right-hand side.

(3.12)
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Having regard to the continuous embedding WP (Q) — LP" (Q) with

ﬁ*:{]\],\/_pp if p <N,

we obtain
[t |l Losnee @) = H“+ 1HK+1 Q)
< Mg“ ||u”“||5;fp (3.13)

1
(r+1)p
= M{b“ (/ |Vu“+1|7”d3:—|—/Q (H—H)pda:) ,

where Myy > 0 denotes the embedding constant. Combining (3.12) and (3.13) we
derive

s |l posrnse ()

1
(==
< M;(;r1 (/ |Vt Pda +/ OQH)pdx)
Q (3.14)
ooty (DM T G2y
< Myt MgV <()Mlg> (H +1HL41(Q) + 1) "
(kp+1)7»

Observe that

1

((H)M) o <<+1>M>ﬁ L
( (

kp+1) 7 - =\ (p+ 1)
Hence, we find a constant Ms; > 1 such that
1
(,‘Q—f— 1)M19 k41 ’:
Kp »

Applying (3.15) to (3.14) gives the estimate

1
T 2 D g T (G
o lcerone oy < METMET M ([ [y gy +1) T 7 (316)
Now we can start with the typical bootstrap arguments. Choosing « such that

K1 (k1 +1)q = p,
Ko (k2 +1)q1 = (k1 + 1)p*
k3t (k3 + 1)q1 = (k2 + 1)p",

we see that
[t I stnee (@) < C(k)

for any finite number x, where C(k) is a positive constant depending on . Thus,
uy € L™(Q) for any r € (1, 00).
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In order to prove the uniform estimate with respect to x we argue as follows. If
there is a sequence k, — 0o such that

/ ufnﬂ)qldm <1,
Q

we directly obtain
[l ooy < 1.
In the opposite case there exists a number kg > 0 such that
(~+1)q1d f
uy T >1 or any Kk > Kg.
Q

Then we conclude from (3.16)

) . L .
AT\ (REDP g VRTT 1P (Hh
g || pesroe @ < Mg M1(8+1>p MQ\{T (2 ||ui+ ||Lq1 (Q)) ' (3.17)

1 1 1
ST ) f (R DR ) r VT
< Myp™ Moy Map™ g || posnan «)-

Applying again the bootstrap arguments we define a sequence (k) such that

K1 (k1 +1)q1 = (ko +1)p*,
Ky (K2 +1)q1 = (k1 +1)p",
k3t (k3 + 1)q1 = (k2 + 1)p, (3.18)

By induction, from (3.17) and (3.18), we obtain
1 1 1
sl pesnsnee @y < Mog ™ Mos™ ™7 Mo{™ ™ [Ju || pen1ya (@)

1 1 1
— AfFEnFI Af 5ntDPp A g VERTL ~
= Mg M5 M || oy (g

for any n € N, where the sequence (k) is chosen such that (k,+1) = (ko+1) (’Z—I) .
Then, we have

e wT T s g = Ve
[l posn s () < Mag ™™ " May™™ 77 My, o [t [l Lo+ 057 (0

i
with (K, +1)p* — 0o as n — co. Since %H = n01+1 (g%) and L <1 there is a
constant Msz > 0 such that

vt | Losn 0o (@) < Mol Lot () (3.19)

Since uy € L™(Q2) for any r € (1,00), the right-hand side of (3.19) is finite. By
means of (3.19) it follows that

ess sup u4(z) < Cy
z€Q

(see Drabek-Kufner-Nicolosi [12, proof of Lemma 3.2]).
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The second part can be proved similarly. We take v = ¢ = u — h(—vg)"Pu in
(1.1) which leads to

h/{p/ Az, u, Vu) - Vog(—vg)™Pdx + h/ Az, u, Vu) - Vu(—vg)™Pdx
Q Q

< —h/ F(x,u,Vu)(—vg)“pudx+/jf (@, u; —h(—vg)"Pu) dx (3.20)
Q Q

+/ Js (x,u; —h(—vg)"Pu) do.
a0

Applying again the structure conditions in (H1) combined with Hélder’s and Young’s
inequality to (3.20) the statement in (2) can be shown as in the first part. This
completes the proof. O

As a direct consequence of Theorem 3.1 we obtain the following corollary.

Corollary 3.2. Assume hypotheses (H1), (K1), (K2) and let uw € K be a solution
of (1.1). Then there holds

ess sup |u(x)| < Cq,
€N

where the constant Cy is the same as in Theorem 3.1.

Remark 3.3. Note that the constant Cy in Theorem 3.1 depends on the given data
and on the solution u € K, that is,

Cy = Ci(p, q1, g2, a1, a2,a3,b1, b2, b3, c1, c2, dv, da, 2, w).

The assumption (H1)(ii) is not needed in the proof of Theorem 3.1. It should be
noted that the finiteness of the integrals

/ |Vu’j_+1|pd:£, / uf+1)QIdm
Q Q

s shown in the end of the proof of Theorem 3.1 by a suitable choice of the parameter
k. This is a typical proceeding in the usage of the Moser iteration.

Remark 3.4. If V = Wol’p(Q) being the usual Sobolev space consisting of the
elements of WLP(Q) with zero traces on 952, problem (1.1) reduces to

ue K : / Az, u, Vu) - V(v — u)dx +/ F(z,u,Vu)(v — u)dzx

@ @ (3.21)

—i—/jf(m,u;v —u)dx > 0,
Q

forallve K C Wol’p(ﬂ). We observe that the results ensured by Theorem 5.1 still
hold for problems of type (3.21). In this case we do not need Proposition 2.1 and
the proof becomes more simple. In general, the assumptions in (K1) and (K2) are
satisfied if K = WyP(Q) and K = WhP(Q).

Remark 3.5. As already mentioned in the Introduction our assumptions on the
set of constraints are weaker than those in Kovalevsky-Nikolosi [20]. Precisely,
Hypothesis 2.6(i) in [20] is not necessary in our proof.

Let us consider some examples of suitable sets K. To this end, let 9,9;,w, :
Q—R,j=1,...,N, be given functions such that ¥ > 0,w < 0 < a.e. in .
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Example 3.6. Let O : Q x R — R be a function such that s — O(x, s) is convex
for a.a. x € Q and such that ©(x,0) <0 for a.a. x € Q. Then the set

K={ueW"(Q):0(z,u(z)) <0 ae inQ}
fulfills the conditions (K1), (K2) with t = =" and h = ~"P. In particular, ©
can be of the following form
O(z,s) = s — J(x), O(z,s) = —s — d(x), O(z,s) = (s —w(x))(s — ¥(x)).
From this choice we see that the subsequent sets satisfy our assumptions:
K={ueW"?(Q):u<9 ae inQ},
K={uecW"(Q):u>—-9 ae inQ},
K={ueW?(Q) :w<u<vy ae inQ}.

Example 3.7. Let T : Q x RY — R be a function such that & — Y(x,&) is convex
for a.a. x € Q and such that Y(x,0) <0 for a.a. x € Q. Then the set

K={ueW"(Q):Y(z,Vu(z)) <0 a.e. inQ}
fulfills the conditions (K1), (K2) witht = (kp+1)"ta™"? and h = (kp+1)"137"P.
As before, we see that

N

Y(z,&) = ¢ =d(x), Y@, &)= V(@) —d), &= (6. En)

j=1
are suitable choices for Y. Hence, our results can be applied to the sets

K={uecW"(Q):|Vu| <9 ae inQ},

K = uer’p(Q):Zﬁﬂﬁgﬁ a.e. in )
J

4. THE case V = WHP()(Q) via DE GIORGI ITERATION

In this section we will provide a priori bounds for (1.1) by applying De Giorgi’s
iteration technique if p is a continuous function on 2. Our assumptions in that case
read as follows:

(H2) The mappings A : QxR xRN — RN and F : O x R x RN — R are supposed
to satisfy a Carathéodory condition while x — ji(z,s),  — ja(z,s) are
measurable for all s € R and s — j1(z, s), s — ja(z, s) are locally Lipschitz
for a.a. x € Q and for a.a. x € 02, respectively. Furthermore, it is assumed
the following;:

(1) A(z,s,€) - € > a1]é|P@) — ays|®) —ag for a.a. x € Q;

(ii) |A(z,s,&)| < aqéP@ =1 + a5|8\q1(1)% + ag for a.a. x €
(iii) |F(z,s,8)] < bﬂf\mw% + by|s|1 @)1 4 by for a.a. x €
(iv) |n] < ei]s|B@ =1 4y for a.a. x € Q, for all n € 971 (x, s);

(v) |7 < dy|s|22®) =1 4 dy, for a.a. x € 99, for all T € dja(x, 3);
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and for all s € R, and all £ € RN with positive constants a;, b, cx, d;
(i€ {l,...,6}, je€{1,...,3}, k1 €{1,2}) and fixed functions p,q; € C(Q),
q2 € C(09) such that 1 <inf_ _gp(x) and

p(z) < qix) <p'(z),2€Q, p(r) < ga(r) < psi(z), 2 € 0, (4.1)
with the critical exponents

Np(z) : (N-D1p(z)
() = 4 NP if p(x) < N, (2) = 1 Vo if p(x) < N,
~+o0 if p(z) > N, ~+00 if p(x) > N.

As in the case of constant exponents we obtain a certain growth rate of the gener-
alized directional derivatives of the form

172 (x, 5;7)| < (e1]s|" @~ 4 eo)|r|  for a.a. x € Q and for all 5,7 € R, (4.2)
17 (x, s:7)| < (dy|s]|2® 1 4 dy)|r|  for a.a. € O and for all s,r € R.  (4.3)

Then, the finiteness of the left-hand side in (1.1) is a consequence of the compact

embedding WP() () — L9()(Q) and the fact that the trace operator is a bounded

operator from W'P()(Q) into L2()(99) (see Fan-Shen-Zhao [I4, Theorem 1.3]

and Fan [13, Corollary 2.4]). Notice that we do not need log-Holder continuity

conditions, the variable exponents p, q1, and ¢ are only supposed to be continuous.
We assume the following hypotheses on the set K.

(K3) For u € K and x > 0 there exists ¢ > 0 such that
p=u—tlu—r)y € K.

(K4) For w € K and x > 0 there exists h > 0 such that
Yv=u—h(u+k)_ € K.

Since W1P()(Q) has lattice structure we notice that both function ¢ and 1 belong
to WP0)(Q).

We start with the result on truncated energy estimates.
Proposition 4.1. Assume hypothesis (H2) and let u € K be a solution of (1.1).

(1) If condition (K3) is satisfied, then

/ |VulP®dz < M, / uh (@) dg 4 M, / u@ do,
A, Ay 0Ax
where

A, ={z € Q:u(z) > K}, 0A, ={x € d:u(x) >k}, K=>1,
and with positive constants M, = M1(q1,a1,a2,a3, b1,ba, b3, c1,c2) and
My = Ms(a1,dy, dz).
(2) If condition (K4) is satisfied, then
/~ |Vu|p(m)dz < M /~ (fu)ql(””)da: + MQ/ (7u)qz(m)dg’
Ak

0A,

K

where
Ac={reQ:—ulx)>r}, 04, ={zecdQ:—ulz)>r}, r>1,

with the same constants My and My as in part (1).
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Proof. Let k > 1 be fixed and let u € K be a solution of (1.1). Due to (K3) we
may choose v =9 =u—t(u — k)4 € K in (1.1) to get

/ A(z,u, Vu) - V(t(u — K))dx
Ag

< /AK F(z,u, Vu)(—t(u — k))dzx + /A Ji(z,u; —t(u — k))dz (4.4)

K

+ / Jo (z,u; —t(u — K))do.
9A,

Since 7 — jp(x, s;7) is positively homogeneous (see [9, Proposition 2.1.1]) we may
divide inequality (4.4) by ¢ > 0. By virtue of condition (H2)(i) we obtain for the
left-hand side of (4.4)

/ Az, u, Vu) - V(u — k)dz

Ay

:/ A(z,u, Vu) - Vudz
Ay

> / <a1|Vu|p(z) — ag|u|@ — ag) dx
A

K

Z al/ VulP? da — (az + a3)/ |u| 9@ d,
A A

K K

where u9(*) > 4 > 1 in A, was taken into account. The first term on the right-
hand side can be estimated via Young’s inequality with ¢ € (0,1] and condition
(H2)(iii). This leads to

/ F(z,u, Vu)(—(u — k))dx
Ay

q1(z)—1
< / [bllvm”(”?m + bafu| )7 4 b?l (u — r)da
Ak

a1(z)—1 a1 (z)—1 gy (x)—1
= bl/ [E e |[VufO e e nw u] dz + (be +b3)/ w1 (@) g
- A (4.6)
< b1/ €|Vu|p(w)dx+b1/ (@ (@) =)0 (2) g

K K

+ (b2 + bg)/ uql(“:)dx

K

< sbl/ V[P dz + (b157(qj—71) by + bg) / ut @) .,
Ay Ay

where ¢ = maxgq;. By means of hypothesis (H2)(iv) (see also (4.2)) the second
term on the right-hand side of (4.4) gives

/ J1 (@, u; —(u — K))dz < / <01|U|ql($)71 + 02) (u — k)dw
A A,
(4.7)
<(c1 + 02)/ u®®) dy.
A

K
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Finally, due to (H2)(v) (see also (4.3)), we arrive

[ s~ wyio < [ (aul® + &) (- n)do
0A, A,

(4.8)
< (dy + dy) / u®® g,
dA,
Combining (4.4)—(4.8) and choosing € = min (1, 2"711) yields
a |VulP@ da
2 Ja,
< (a2 +ag+ b1 4by by + ¢ + cQ> / u® (@ dy (4.9)
A

+ (dy + dg)/ u?®) do,
OA.

Now we may divide (4.9) by % > 0 which yields claim (1).
In order to prove part (2) we take v = ¢ =u — h(u+ k)_ € K as test function
n (1.1). This leads to

h/~ Az, u, Vu) - V(u + k)dz

K

< fh/~ F(a:,u,Vu)(u+;-@)da:Jrh/~ Ji(z,u; —(u+ K))dx
A, A

+h | jo(x,u;—(u+k))do.
0A,
Dividing again by h > 0 and applying the structure conditions in (H2)(i), (iii)—(v)
we obtain the estimate in (2). O

Now we can state our main result on upper and lower bounds for solutions of

(1.1).
Theorem 4.2. Assume hypothesis (H2) and let w € K be a solution of (1.1). Then
there exists a constant Cy > 0 such that the following assertions hold.

(1) If condition (K3) is satisfied, then

ess sup u(x) < Cs.
zEQ
(2) If condition (K4) is satisfied, then

inf > —Cs.
ess In u(x) > —Cs

Proof. The proof can exactly be done as in [32, Theorem 1.1] where Lemma 3.1
and 3.2 in [32] have to be replaced by Proposition 4.1. O

Analogous to Section 3 we have the corresponding result on the boundedness of
solutions of (1.1).

Corollary 4.3. Let the conditions in (H2), (K3), and (K4) be satisfied and let
u € K be a solution of (1.1). Then there holds

ess sup |u(x)| < Cy,
e

with the same constant Cy stated in Theorem /.2.
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Remark 4.4. As proved in [32] the constant Cy given in Theorem 4.2 and Corollary
4.3 can be characterized through

M,
Cy = 2max 1,M3 {/ u?ﬁ(aj)dx—l—/ u?ﬁ(w)do]
Q oQ

with positive constants M = Mg(p, 41, q2, a1, a2, a3, by, ba, b3, c1, ca,dy,do, N, Q) and
M, = M4(p, q1,q2). As already mentioned in the constant exponent case the growth
condition for A : Q x R x RN — RN (see (H2)(ii)) is not needed in the proof of
Theorem /.2.

Remark 4.5. The proof of Theorem 1.1 in [32] is mainly based on the localization
method combined with an appropriate choice of the partition of unity. Since Q
is compact we find, for any R > 0, a finite open cover {B;(R)}i=1,....m of balls
B; := B;(R) with radius R such that Q C |J]~, B;(R). Because of the continuity of
D,q1,q2 and due to (4.1) we may take R > 0 small enough such that

i <dql, <) P <a; <) i=1,...,m,
where
pi = max_p(x), ¢f,= max_q (),
zeB; N2 zeB; N2
pr = min p), 4= max e (@),

and (p; )*, (p; )« denote the usual critical exponents of p; . Then, we can choose a
partition of unity {&}™, C C5°(RYN) with respect to the open cover { Bi(R)}iz1,...m-
That means, we have

m
suppé& C By, 0<&<1, i=1,....,m, and Zfizl on .
i=1

In fact, the idea is to treat problems involving nonstandard growth conditions as
problems with constant exponent growth rates. It arises the open question what
happens if p is not continuous, but essentially bounded. In this case the ideas above
cannot be applied.

Remark 4.6. In contrast to De Giorgi’s iteration it seems that Moser’s iteration is
less suitable for problems with variable exponents concerning global a priori bounds.
With view to the assumptions in (K1) and (K2), we see that p occurs as exponent
in the test function. This makes the corresponding gradient more complicated and
it is not clear for the author if this method works in the variable exponent case even
if K =Wbh()\(Q) and j, (k= 1,2) smooth.

Now we give sufficient conditions for the set K satisfying the conditions in (K3)
and (K4).

Lemma 4.7.

(1) If K contains the positive constant functions and if K satisfies the condition
K ANK C K, then the hypothesis (K3) is satisfied with t = 1.

(2) If K contains the negative constant functions and if K satisfies the condition
KV K C K, then the hypothesis (K}) is satisfied with h = 1.

(3) If K contains the constant functions and if K has lattice structure, then the
hypotheses (K3) and (K/) are satisfied with t = h = 1.
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Proof. Let u € K. Since K is closed under “A” we obtain, for k € K with x > 0,
min(u, k) =u— (u— k)4 € K.

Hence, condition (K3) is satisfied for ¢ = 1. This proves (1). Similarly, we have, for
u € K and —k € K with k > 0,

max(u, —k) =u— (u+K)_ € K,

as K is closed under “v”. Then, condition (K4) is fulfilled for A = 1 which yields
the assertion in (2). The last part follows directly from (1) and (2). O

Let us consider some examples.

Example 4.8. Let 9 : Q — R be a given function with9 > 0 a.e. in Q and consider
the sets

K={veW'O(Q):v <9 a.e inQ},
K={veWwO(@Q):v>—-9 ae inQ},
K={veW'O(Q): |Vo| <9 a.e. inQ}.

We observe that these sets have lattice structure, that means, they fulfill (2.5).
Moreover, the first set contains the negative constant functions, the second set the
positive constant functions and the last one the constant functions. Hence, the
assumptions of Lemma /.7 are satisfied and Theorem 4.2 can be applied to these
sets.

As a special case of the second set we have the cone of nonnegative elements of

WLrO)(Q), that is
Kso={ve WLP(')(Q) v >0 ae in Q}.

1t is clear that K>q has lattice structure and contains the positive constant functions.
Hence, Lemma 4.7(1) implies that K>o satisfies (K3) and from Theorem /.2(1) we
infer that every solution u € Ko of (1.1) is bounded from above. Since Kxq is
bounded from below by zero, we have that u € L ().
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