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Abstract. We consider a nonlinear elliptic Dirichlet equation driven by a non-

linear nonhomogeneous differential operator involving a Carathéodory function
which is (p − 1)-superlinear but does not satisfy the Ambrosetti-Rabinowitz

condition. First we prove a three-solutions-theorem extending an earlier clas-

sical result of Wang (Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), no.
1, 43–57). Subsequently, by imposing additional conditions on the nonlinearity

f(x, ·), we produce two more nontrivial constant sign solutions and a nodal

solution for a total of five nontrivial solutions. In the special case of (p, 2)-
equations we prove the existence of a second nodal solution for a total of six

nontrivial solutions given with complete sign information. Finally, we study a

nonlinear eigenvalue problem and we show that the problem has at least two
nontrivial positive solutions for all parameters λ > 0 sufficiently small where

one solution vanishes in the Sobolev norm as λ→ 0+ and the other one blows
up (again in the Sobolev norm) as λ→ 0+.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω and let 1 < p <∞.
In this paper, we study the following nonlinear nonhomogeneous Dirichlet problem

−div a(∇u) = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where a : RN → RN is a continuous, strictly monotone map which is C1 on RN \
{0}. The precise conditions on a(·) are given in hypotheses H(a) below. These
conditions are general enough to incorporate some differential operators of interest
in our framework like the p-Laplacian (1 < p < ∞), the (p, q)-Laplacian (1 < q <
p < ∞) and the generalized p-mean curvature differential operator (1 < p < ∞).
The nonlinearity f : Ω × R → R is assumed to be a Carathéodory function (i.e.,
x 7→ f(x, s) is measurable for all s ∈ R and s 7→ f(x, s) is continuous for a.a.
x ∈ Ω) which exhibits (p − 1)-superlinear growth near ±∞ but without satisfying
the usual in such cases Ambrosetti-Rabinowitz condition. Our goal is to prove
multiplicity theorems for such problems. For equations driven by the p-Laplacian,
such multiplicity results were proved by Bartsch-Liu [6], Bartsch-Liu-Weth [7], Liu
[28], Papageorgiou-Rocha-Staicu [35] and Sun [38].

Recall that, if f : Ω×R→ R is a Carathéodory function and F (x, s) =
∫ s

0
f(x, t)dt,

we say that f(x, ·) satisfies the Ambrosetti-Rabinowitz condition if there exist µ > p
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and M > 0 such that

0 < µF (x, s) ≤ f(x, s)s for a.a. x ∈ Ω and for all |s| ≥M, (1.2)

0 < essinf
Ω

F (·,±M), (1.3)

(see Ambrosetti-Rabinowitz [4]). Integrating (1.2) and using (1.3), we obtain the
following growth conditions for the primitive F (x, ·)

η̃|s|µ ≤ F (x, s) for a.a. x ∈ Ω, for all |s| ≥M , and some η̃ > 0. (1.4)

Thanks to (1.4) we have the much weaker condition

lim
s→±∞

F (x, s)

|s|µ
= +∞ uniformly for a.a. x ∈ Ω. (1.5)

This means that the primitive F (x, ·) is (p− 1)-superlinear for a.a. x ∈ Ω. In this
paper we employ (1.5) combined with another asymptotic condition (see H(f)1(iii)),
which together are weaker than the Ambrosetti-Rabinowitz condition (see (1.2),
(1.3)) and fit in our analysis superlinear nonlinearities with slower growth near
±∞.

The Ambrosetti-Rabinowitz condition, although very convenient in checking the
Palais-Smale condition for the energy functional, is rather restrictive as revealed
in the discussion above. So there have been efforts to relax it. For an overview of
the relevant literature we refer to the recent works of Liu [28], Li-Yang [29], and
Miyagaki-Souto [30].

Our tools come from critical point theory and from Morse theory (critical groups)
and involve also truncation and comparison techniques. In the next section, for the
reader’s convenience, we review the main definitions and facts which will employ in
this work. We also introduce the hypotheses on the map a(·) and establish some
useful consequences of these conditions.

2. Preliminaries and hypotheses

Let X be a Banach space and X∗ its topological dual while 〈·, ·〉 denotes the
duality brackets to the pair (X∗, X). We have the following definition.

Definition 2.1. The functional ϕ ∈ C1(X) fulfills the Cerami condition (the C-
condition for short) if the following holds: every sequence (un)n≥1 ⊆ X such that
(ϕ(un))n≥1 is bounded in R and (1 + ‖un‖X)ϕ′(un)→ 0 in X∗ as n→∞, admits
a strongly convergent subsequence.

This compactness type condition on ϕ is more general than the well-known
Palais-Smale condition which we encounter more often in the literature. Never-
theless, the C-condition suffices to have a deformation theorem from which one
derives the minimax theory of certain critical values of ϕ. One result of this theory
is the so-called mountain pass theorem.

Theorem 2.2. Let ϕ ∈ C1(X) be a functional satisfying the C-condition and let
u1, u2 ∈ X, ‖u2 − u1‖ > ρ > 0,

max{ϕ(u1), ϕ(u2)} < inf{ϕ(u) : ‖u− u1‖X = ρ} =: ηρ

and c = infγ∈Γ max0≤t≤1 ϕ(γ(t)) with Γ = {γ ∈ C ([0, 1], X) : γ(0) = u1, γ(1) =
u2}. Then c ≥ ηρ with c being a critical value of ϕ.



NONLINEAR NONHOMOGENEOUS DIRICHLET EQUATIONS 3

By Lp(Ω)
(
or Lp

(
Ω;RN

))
and W 1,p

0 (Ω) we denote the usual Lebesgue and
Sobolev spaces with their norms ‖ · ‖p and ‖ · ‖W 1,p

0 (Ω). Thanks to the Poincaré

inequality we have

‖u‖W 1,p
0 (Ω) = ‖∇u‖p for all u ∈W 1,p

0 (Ω).

The norm of RN is denoted by ‖ · ‖ and (·, ·)RN stands for the inner product in RN .

For s ∈ R, we set s± = max{±s, 0} and for u ∈ W 1,p
0 (Ω) we define u±(·) = u(·)±.

It is well known that

u± ∈W 1,p
0 (Ω), |u| = u+ + u−, u = u+ − u−.

The Lebesgue measure on RN is denoted by | · |N and for a measurable function
h : Ω × R → R (for example, a Carathéodory function), we define the Nemytskij
operator corresponding to the function h by

Nh(u)(·) = h(·, u(·)) for all u ∈W 1,p
0 (Ω).

Evidently, x 7→ Nh(u)(x) is measurable.

In the analysis of problem (1.1) in addition to the Sobolev space W 1,p
0 (Ω) we

will also use the ordered Banach space

C1
0 (Ω) =

{
u ∈ C1(Ω) : u

∣∣
∂Ω

= 0
}

and its positive cone

C1
0 (Ω)+ =

{
u ∈ C1

0 (Ω) : u(x) ≥ 0 for all x ∈ Ω
}
.

This cone has a nonempty interior given by

int
(
C1

0 (Ω)+

)
=

{
u ∈ C1

0 (Ω)+ : u(x) > 0 for all x ∈ Ω;
∂u

∂n
(x) < 0 for all x ∈ ∂Ω

}
,

where n(·) stands for the outward unit normal on ∂Ω.
Let ϑ ∈ C1(0,+∞) be a function satisfying

0 < ĉ ≤ tϑ′(t)

ϑ(t)
≤ c0 and c1t

p−1 ≤ ϑ(t) ≤ c2(1 + tp−1) (2.1)

for all t > 0 and with some constants ĉ, c0, c1, c2 > 0.
Then the hypotheses on a(·) are the following.

H(a): a(ξ) = a0(‖ξ‖)ξ for all ξ ∈ RN with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1(0,∞), t 7→ ta0(t) is strictly increasing, limt→0+ ta0(t) = 0,
and

lim
t→0+

ta′0(t)

a0(t)
> −1;

(ii) ‖∇a(ξ)‖ ≤ c3
ϑ (‖ξ‖)
‖ξ‖

for all ξ ∈ RN \ {0} and some c3 > 0;

(iii) (∇a(ξ)y, y)RN ≥
ϑ (‖ξ‖)
‖ξ‖

‖y‖2 for all ξ ∈ RN \ {0} and all y ∈ RN .

Remark 2.3. Owing to hypothesis H(a)(i) it follows that a ∈ C1
(
RN \ {0},RN

)
∩

C
(
RN ,RN

)
and hence, hypotheses H(a)(ii), (iii) make sense. Let G0(t) =

∫ t
0
sa0(s)ds
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and let G(ξ) = G0(‖ξ‖) for all ξ ∈ RN . Then

∇G(ξ) = G′0(‖ξ‖) ξ

‖ξ‖
= a0(‖ξ‖)ξ = a(ξ) for all ξ ∈ RN \ {0},

which means that G(·) is the primitive of a(·). Obviously, G(·) is convex and since
G(0) = 0 we have the estimate

G(ξ) ≤ (a(ξ), ξ)RN for all ξ ∈ RN . (2.2)

These hypotheses have some interesting consequences on the map a(·).

Lemma 2.4. Let the hypotheses H(a) be satisfied. Then there hold

(a) ξ → a(ξ) is maximal monotone and strictly monotone;
(b) ‖a(ξ)‖ ≤ c4(1 + ‖ξ‖p−1) for all ξ ∈ RN and some c4 > 0;
(c) (a(ξ), ξ)RN ≥ c1

p−1‖ξ‖
p for all ξ ∈ RN .

Taking into account Lemma 2.4 combined with (2.2) we infer the following growth
estimates for the primitive G(·).

Corollary 2.5. If hypotheses H(a) hold, then

c1
p(p− 1)

‖ξ‖p ≤ G(ξ) ≤ c5 (1 + ‖ξ‖p) for all ξ ∈ RN and some c5 > 0.

Example 2.6. The following maps satisfy hypotheses H(a):

(a) a(ξ) = ‖ξ‖p−2ξ with 1 < p <∞.
This map corresponds to the p-Laplacian defined by

∆pu = div(‖∇u‖p−2∇u) for all u ∈W 1,p
0 (Ω).

(b) a(ξ) = ‖ξ‖p−2ξ + ‖ξ‖q−2ξ with 1 < q < p <∞.
This map corresponds to the (p, q)-differential operator defined by

∆pu+ ∆qu for all u ∈W 1,p
0 (Ω).

Note that this operator arises in problems of mathematical physics such as
quantum physics (see Benci-D’Avenia-Fortunato-Pisani [8]) and in plasma
physics and biophysics (see Cherfils-Il′yasov [12]).

(c) a(ξ) =
(
1 + ‖ξ‖2

) p−2
2 ξ with 1 < p <∞.

This operator represents the generalized p-mean curvature differential operator
defined by

div
[
(1 + ‖∇u‖2)

p−2
2 ∇u

]
for all u ∈W 1,p

0 (Ω).

(d) a(ξ) = ‖ξ‖p−2ξ
(

1 + 1
1+‖ξ‖

)
with 1 < p <∞.

Now, let f0 : Ω× R→ R be a Carathéodory function with subcritical growth in
s ∈ R, that is

|f0(x, s)| ≤ a(x)
(
1 + |s|r−1

)
for a.a. x ∈ Ω, and all s ∈ R,

with a ∈ L∞(Ω), and 1 < r < p∗, where p∗ is the critical exponent of p given by

p∗ =

{
Np
N−p if p < N,

+∞ if p ≥ N.
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Let F0(x, s) =
∫ s

0
f0(x, t)dt and let ϕ0 : W 1,p

0 (Ω)→ R be the C1-functional defined
by

ϕ0(u) =

∫
Ω

G(∇u)dx−
∫

Ω

F0(x, u)dx.

The following result, originally due to Brezis-Nirenberg [10], can be found in Gasiński-
Papageorgiou [22]. We also refer to earlier results in this direction in Garćıa
Azorero-Manfredi-Peral-Alonso [19] and more recently, in Motreanu-Papageorgiou
[32] and Winkert [41].

Proposition 2.7. Let the assumptions in H(a) be satisfied. If u0 ∈ W 1,p
0 (Ω) is a

local C1
0 (Ω)-minimizer of ϕ0, i.e., there exists ρ0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1
0 (Ω) with ‖h‖C1

0 (Ω) ≤ ρ0,

then u0 ∈ C1,β
0 (Ω) for some β ∈ (0, 1) and u0 is also a local W 1,p

0 (Ω)-minimizer of
ϕ0, i.e., there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈W 1,p
0 (Ω) with ‖h‖W 1,p

0 (Ω) ≤ ρ1.

Now, let 1
p + 1

p′ = 1 and let A : W 1,p
0 (Ω) →

(
W 1,p

0 (Ω)
)∗

= W−1,p′(Ω) be the

nonlinear map defined by

〈A(u), v〉 =

∫
Ω

(a(∇u),∇v)RNdx for all u, v ∈W 1,p
0 (Ω). (2.3)

Thanks to the results of Gasiński-Papageorgiou [21]) the operator A has the
following properties.

Proposition 2.8. Under hypotheses H(a) the operator A : W 1,p
0 (Ω)→ W−1,p′(Ω)

defined by (2.3) is bounded, continuous, monotone (hence maximal monotone) and

of type (S)+, i.e., if un ⇀ u in W 1,p
0 (Ω) and lim supn→∞ 〈A(un), un − u〉 ≤ 0, then

un → u in W 1,p
0 (Ω).

Given 1 < r <∞, the r-Laplacian ∆r is a special case of A which is defined by

〈∆r(u), v〉 =

∫
Ω

‖∇u‖r−2(∇u,∇v)RNdx for all u, v ∈W 1,r
0 (Ω).

If r = 2, then ∆r = ∆ becomes the well-known Laplace operator.
Let us recall some basic facts about the spectrum of the r-Laplacian with Dirich-

let boundary condition. Consider the nonlinear eigenvalue problem

−∆ru = λ̂|u|r−2u in Ω,

u = 0 on ∂Ω,
(2.4)

we say that a number λ̂ ∈ R is an eigenvalue of
(
−∆r,W

1,r
0 (Ω)

)
if problem (2.4)

possesses a nontrivial solution û ∈ W 1,p
0 (Ω) which is said to be an eigenfunction

corresponding to the eigenvalue λ̂. The set of all eigenvalues of (2.4) is denoted by

σ̂(r) and it is known that σ̂(r) has a smallest element λ̂1(r) which has the following
properties:

• λ̂1(r) is positive;

• λ̂1(r) is isolated, that is, there exists ε > 0 such that
(
λ̂1(r), λ̂1(r) + ε

)
∩

σ̂(r) = ∅;
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• λ̂1(r) is simple, that is, if u, v are two eigenfunctions corresponding to λ̂1(r),
then u = kv for some k ∈ R \ {0};
•

λ̂1(r) = inf

[
‖∇u‖rr
‖u‖rr

: u ∈W 1,r
0 (Ω), u 6= 0

]
. (2.5)

The infimum in (2.5) is realized on the one dimensional eigenspace corresponding

to λ̂1(r) > 0. In what follows we denote by û1(r) the Lr-normalized eigenfunction

(i.e. ‖û1(r)‖r = 1) associated to λ̂1(r). From the representation in (2.5) we easily
see that û1(r) does not change sign in Ω and so we may assume that û1(r) ≥ 0. The
nonlinear regularity theory implies that û1(r) ∈ C1

0 (Ω) and the usage of Vazquez’s
strong maximum principle [39] provides that û1(r) ∈ int

(
C1

0 (Ω)+

)
.

As a consequence of the properties above we have the following simple lemma
(see Papageorgiou-Kyritsi Yiallourou [34, p. 356]).

Lemma 2.9. Let η ∈ L∞(Ω)+ be such that η(x) ≤ λ̂1(p) a.e. in Ω and η 6= λ̂1(p).
Then there exists a positive number κ such that

‖∇u‖pp −
∫

Ω

η(x)|u|pdx ≥ κ‖∇u‖pp for all u ∈W 1,p
0 (Ω).

The Lusternik-Schnirelmann minimax scheme produces a strictly increasing se-

quence
(
λ̂k(r)

)
k≥1

of eigenvalues such that λ̂k(r) → +∞ as k → ∞. We do

not know if this sequence exhausts the whole spectrum of (−∆r,W
1,r
0 (Ω)) but if

N = 1 (ordinary differential equations) or if r = 2 (linear eigenvalue problem), then
the Lusternik-Schnirelmann sequence of eigenvalues is the whole spectrum. In the

case r = 2 we denote by E
(
λ̂k(2)

)
, k ≥ 1, the eigenspace corresponding to the

eigenvalue λ̂k(2) and we have a direct sum decomposition of the form

H1
0 (Ω) =

⊕
k≥1

E
(
λ̂k(2)

)
.

Next, let us recall some basic definitions and facts about Morse theory. Let X
be a Banach space and let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X.

For every integer k ≥ 0 the term Hk(Y1, Y2) stands for the k
th
=-relative singular

homology group with integer coefficients.
Recall that

Hk(Y1, Y2) = Zk(Y1, Y2)
/
Bk(Y1, Y2) for all k ∈ N0,

where Zk(Y1, Y2) is the group of relative singular k-cycles of Y1 mod Y2 (that is,
Zk(Y1, Y2) = ker ∂k with ∂k being the boundary homomorphism) and Bk(Y1, Y2)
is the group of relative singular k-boundaries of Y1 mod Y2 (that is, Bk(Y1, Y2) =
im ∂k+1). We know that ∂k−1 ◦ ∂k = 0 for all k ∈ N, hence Bk(Y1, Y2) ⊆ Zk(Y1, Y2)
and so the quotient

Zk(Y1, Y2)
/
Bk(Y1, Y2)
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makes sense. Note that Hk(Y1, Y2) = 0 for all k < 0. Given ϕ ∈ C1(X) and c ∈ R,
we introduce the following sets:

ϕc = {u ∈ X : ϕ(u) ≤ c} (the sublevel set of ϕ at c),

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ),

Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c} (the critical set of ϕ at the level c).

For every isolated critical point u ∈ Kc
ϕ the critical groups of ϕ at u ∈ Kc

ϕ are
defined by

Ck(ϕ, u) = Hk(ϕc ∩ U,ϕc ∩ U \ {u}) for all k ≥ 0,

where U is a neighborhood of u such that Kϕ∩ϕc∩U = {u}. The excision property
of singular homology theory implies that the definition of critical groups above is
independent of the particular choice of the neighborhood U .

Suppose that ϕ ∈ C1(X) satisfies the C-condition and that inf ϕ(Kϕ) > −∞.
Let c < inf ϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕc) for all k ≥ 0 (2.6)

(see Bartsch-Li [5]). This definition is independent of the choice of the level
c < inf ϕ(Kϕ) which is a consequence of the second deformation theorem (see,
for example, Gasiński-Papageorgiou [20, p. 628]).

We now assume that Kϕ is finite and introduce the following series in t ∈ R:

M(t, u) =
∑
k≥0

rankCk(ϕ, u)tk for all u ∈ Kϕ,

P (t,∞) =
∑
k≥0

rankCk(ϕ,∞)tk.

Then, the Morse relation (see [11, Theorem 5.1.29]) reads as follows:∑
u∈Kϕ

M(t, u) = P (t,∞) + (1 + t)Q(t) for all t ∈ R, (2.7)

with Q(t) being a formal series in t ∈ R with nonnegative integer coefficients.
Suppose next that X = H is a Hilbert space and let U be a neighborhood of a

given point x ∈ H. We further assume that ϕ ∈ C2(U), Kϕ is finite and u ∈ Kϕ.
The Morse index of u, denoted by µ = µ(u), is defined to be the supremum of
the dimensions of the vector subspaces of H on which ϕ′′(u) ∈ L(H) is negative
definite. The nullity of u, denoted by ν = ν(u), is defined to be the dimension of
kerϕ′′(U). We say that u ∈ Kϕ is nondegenerate if ϕ′′(u) is invertible, that is,
ν = ν(u) = 0. At a nondegenerate critical point u we have

Ck(ϕ, u) = δk,µZ for all k ≥ 0,

where δk,µ stands for the well-known Kronecker symbol.

3. Three nontrivial solutions

In this section, using a combination of variational and Morse theoretic methods,
we prove a multiplicity theorem producing three nontrivial solutions for problem
(1.1) when the nonlinearity f(x, ·) is (p − 1)-superlinear but does not necessarily
satisfies the Ambrosetti-Rabinowitz condition. Our result in this section improves
significantly the well-known multiplicity theorem of Wang [40]. We point out that
the results in this section are basically obtained by Gasiński-Papageorgiou in [23].
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We decided to add these results since we need some steps in later Sections and
in order to give a complete analysis of superlinear equations involving nonhomo-
geneous operators. Furthermore, we note that our assumptions on the differential
operator are slightly different than those in [23, see H(a)(i)].

First we slightly strengthen the assumptions on the map a(·).
H(a)1: a(ξ) = a0(‖ξ‖)ξ for all ξ ∈ RN with a0(t) > 0 for all t > 0, hypotheses

H(a)1(i)–(iii) are the same as the corresponding hypotheses H(a)(i)–(iii)
and
(iv) pG0(t)− t2a0(t) ≥ −c6 and t2a0(t)−G0(t) ≥ η̂tp for all t > 0 and for

some c6, η̂ > 0.

Remark 3.1. Note that the examples given in Example 2.6 satisfy this new condi-
tion stated in H(a)1(iv).

The hypotheses on the mapping f are the following:

H(f)1: f : Ω× R→ R is a Carathéodory function with f(x, 0) = 0 for a.a. x ∈ Ω
such that

(i) |f(x, s)| ≤ a(x)
(
1 + |s|r−1

)
for a.a. x ∈ Ω, for all s ∈ R, with a ∈

L∞(Ω)+ and p < r < p∗;
(ii) if F (x, s) =

∫ s
0
f(x, t)dt, then

lim
s→±∞

F (x, s)

|s|p
= +∞ uniformly for a.a. x ∈ Ω;

(iii) there exist τ ∈
(

(r − p) max
{
N
p , 1

}
, p∗
)

and β0 > 0 such that

lim inf
s→±∞

f(x, s)s− pF (x, s)

|s|τ
≥ β0 uniformly for a.a. x ∈ Ω;

(iv) there exists η ∈ L∞(Ω)+ with η(x) ≤ c1
p−1 λ̂1(p) a.e. in Ω and η 6=

c1
p−1 λ̂1(p) such that

lim sup
s→0

pF (x, s)

|s|p
≤ η(x) uniformly for a.a. x ∈ Ω;

(v) for every % > 0 there exists κ% > 0 such that

f(x, s)s+ κ%|s|p ≥ 0 for a.a. x ∈ Ω and all |s| ≤ %.

Remark 3.2. Hypothesis H(f)1(ii) amounts to the superlinearity of the primi-
tive F (x, ·). This condition together with H(f)1(iii) implies that f(x, ·) is (p − 1)-
superlinear. We point out that the assumptions in H(f)1(ii), (iii) are weaker than
the Ambrosetti-Rabinowitz condition (see (1.2), (1.3)) which is the usual hypothe-
sis when dealing with superlinear problems (see for example Wang [40]). Indeed,
assume that f(x, ·) satisfies the Ambrosetti-Rabinowitz condition and note that we

may suppose (r − p) max
{
N
p , 1

}
< µ. Hence, we have

f(x, s)− pF (x, s)

|s|µ
=
f(x, s)s− µF (x, s)

|s|µ
+

(µ− p)F (x, s)

|s|µ
≥ (µ− p)η for all x ∈ Ω and for all |s| ≥M

(see (1.2) and (1.4)).
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Example 3.3. For the sake of simplicity we drop the x-dependence and consider
the following two functions satisfying hypotheses H(f)1:

f1(s) =

{
ηsp if |s| ≤ 1,

ηsr if |s| > 1
with η ∈ (0, λ̂1(p)) and p < r < p∗;

f2(s) = |s|p−2s ln(1 + |s|).
Note that f1 satisfies the Ambrosetti-Rabinowitz condition but f2 does not.

Let ϕ : W 1,p
0 (Ω)→ R be the energy functional of problem (1.1) given by

ϕ(u) =

∫
Ω

G(∇u)dx−
∫

Ω

F (x, u)dx,

which is of class C1. Furthermore, we define the positive and negative trunca-
tions of f(x, ·), namely f±(x, s) = f(x,±s±), and consider the C1-functionals

ϕ± : W 1,p
0 (Ω)→ R defined by

ϕ±(u) =

∫
Ω

G(∇u)dx−
∫

Ω

F±(x, u)dx,

with F±(x, s) =
∫ s

0
f±(x, t)dt.

Proposition 3.4. If H(a)1 and H(f)1 are satisfied, then the functionals ϕ and ϕ±
fulfill the C-condition.

Proof. We start with the proof for ϕ+. To this end, let (un)n≥1 ⊆ W 1,p
0 (Ω) be a

sequence such that

|ϕ+(un)| ≤M1 for all n ≥ 1 (3.1)

with some M1 > 0 and(
1 + ‖un‖W 1,p

0 (Ω)

)
ϕ′+(un)→ 0 in W−1,p′(Ω). (3.2)

By means of (3.2) we obtain

|〈ϕ′+(un), v〉| ≤
εn‖v‖W 1,p

0 (Ω)

1 + ‖un‖W 1,p
0 (Ω)

for all v ∈W 1,p
0 (Ω) and εn ↘ 0 which means that∣∣∣∣∫

Ω

(a(∇un),∇v)RN dx−
∫

Ω

f+(x, un)vdx

∣∣∣∣ ≤ εn‖v‖W 1,p
0 (Ω)

1 + ‖un‖W 1,p
0 (Ω)

(3.3)

for all n ≥ 1. Acting on (3.3) with v = −u−n ∈W
1,p
0 (Ω) and applying Lemma 2.4(c)

yields
c1

p− 1
‖∇u−n ‖p ≤ εn,

for all n ≥ 1 which means that

u−n → 0 in W 1,p
0 (Ω) as n→ +∞. (3.4)

Then, from (3.1) and (3.4) we obtain∫
Ω

pG(∇u+
n )dx−

∫
Ω

pF (x, u+
n )dx ≤M2, (3.5)
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with some M2 > 0. Taking v = u+
n ∈W

1,p
0 (Ω) in (3.3) gives

−
∫

Ω

(
a(∇u+

n ),∇u+
n

)
RN dx+

∫
Ω

f(x, u+
n )u+

n dx ≤ εn, (3.6)

for all n ≥ 1. Now, adding (3.5) and (3.6), we get

M3 ≥
∫

Ω

[
pG(∇u+

n )−
(
a(∇u+

n ),∇u+
n

)
RN
]
dx

+

∫
Ω

[
f(x, u+

n )u+
n − pF (x, u+

n )
]
dx,

(3.7)

for all n ≥ 1 and some M3 > 0. By virtue of hypothesis H(a)1(iv) we derive from
(3.7) ∫

Ω

(
f(x, u+

n )u+
n − pF (x, u+

n )
)
dx ≤M4. (3.8)

Taking into account hypotheses H(f)1(i) and (iii), there is a number β1 ∈ (0, β0)
and a constant M5 > 0 such that

β1|s|τ −M5 ≤ f(x, s)s− pF (x, s) for a.a. x ∈ Ω and for all s ≥ 0. (3.9)

Combining (3.8) and (3.9) gives(
u+
n

)
n≥1

is bounded in Lτ (Ω). (3.10)

Let us first consider the case N > p. Without loss of generality we may suppose
that 1 < τ ≤ r < p∗ (cf. hypothesis H(f)1(iii)). Then, we find a number t ∈ [0, 1)
such that

1

r
=

1− t
τ

+
t

p∗
(3.11)

and the usage of the interpolation theory implies that∥∥u+
n

∥∥
r
≤
∥∥u+

n

∥∥1−t
τ

∥∥u+
n

∥∥t
p∗

(3.12)

(see Gasiński-Papageorgiou [20, p. 905]). Combining (3.10), (3.12), and the Sobolev
embedding theorem yields∥∥u+

n

∥∥r
r
≤M6

∥∥u+
n

∥∥tr
W 1,p

0 (Ω)
for all n ≥ 1 (3.13)

with some positive constant M6. Applying again v = u+
n in (3.3) one has∣∣∣∣∫

Ω

(
a
(
∇u+

n

)
,∇u+

n

)
RN dx−

∫
Ω

f(x, u+
n )u+

n dx

∣∣∣∣ ≤ εn for all n ≥ 1. (3.14)

Taking into account the growth condition of hypothesis H(f)1(i) we infer

f(x, s)s ≤ â(x) +M7|s|r for a.a. x ∈ Ω, for all s ∈ R, (3.15)

with â ∈ L∞(Ω) and M7 > 0. With the aid of Lemma 2.4(c) and (3.15) we obtain
from (3.14)

c1
p− 1

∥∥∇u+
n

∥∥p
p
≤M8

(
1 +

∥∥u+
n

∥∥r
r

)
for all n ≥ 1

with M8 > 0. This estimate in conjunction with (3.13) yields∥∥u+
n

∥∥p
W 1,p

0 (Ω)
≤M9

(
1 +

∥∥u+
n

∥∥tr
W 1,p

0 (Ω)

)
for all n ≥ 1 (3.16)



NONLINEAR NONHOMOGENEOUS DIRICHLET EQUATIONS 11

and for some M9 > 0. Taking into account the choice of τ (see hypothesis H(f)1(iii))

and relation (3.11) we see that tr < p which implies that (u+
n )n≥1 ⊆ W 1,p

0 (Ω) is

bounded (see (3.16)).
Now, let N ≤ p and note that in this case we have p∗ = ∞ and the Sobolev

embedding theorem gives W 1,p
0 (Ω) ⊆ Lq̃(Ω) for all q̃ ∈ [1,+∞). Let q̂ be a number

such that 1 < τ ≤ r < q̂. As before, we find t ∈ [0, 1) such that

1

r
=

1− t
τ

+
t

q̂
.

Hence

tr =
q̂(r − τ)

q̂ − τ
.

Moreover, we observe that

tr =
q̂(r − τ)

q̂ − τ
→ r − τ as q̂ → +∞ = p∗. (3.17)

By the choice of τ and since N ≤ p we have r − τ < p. Combining this fact with
(3.17) we see that tr < p if q̂ is chosen large enough. Now we may apply the same
arguments as in the case N > p where p∗ is replaced by q̂ > r sufficiently large.
This yields the boundedness of the sequence (u+

n )n≥1 in W 1,p
0 (Ω) in the case N ≤ p

as well. We have shown in both cases that (u+
n )n≥1 is bounded in W 1,p

0 (Ω) and due

to (3.4) we have that (un)n≥1 is bounded in W 1,p
0 (Ω) as well. Now we may suppose

that (for a subsequence if necessary)

un ⇀ u in W 1,p
0 (Ω) and un → u in Lp(Ω). (3.18)

Using again (3.3) with the special choice v = un − u and passing to the limit as n
goes to +∞, we derive, thanks to (3.18),

lim
n→∞

〈A(un), un − u〉 = 0.

Since A satisfies the (S)+-property (see Proposition 2.8) we finally conclude

un → u in W 1,p
0 (Ω).

This proves that ϕ fulfills the C-condition. Analogously, applying similar argu-
ments, one can prove the same result for the functionals ϕ and ϕ−. That finishes
the proof. � �

Now we are going to show that the functionals ϕ and ϕ± satisfy the mountain
pass geometry.

Proposition 3.5. Assume H(a)1 and H(f)1, then u = 0 is a local minimizer of the
functionals ϕ and ϕ±.

Proof. We only show this proposition for ϕ+, the proofs for ϕ and ϕ− can be done
similarly. By means of hypothesis H(f)1(iv) we find for every ε > 0 a number
δ = δ(ε) > 0 such that

F (x, s) ≤ 1

p
(η(x) + ε)|s|p for a.a. x ∈ Ω and for all |s| ≤ δ. (3.19)
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Let u ∈ C1
0 (Ω) be such that ‖u‖C1

0 (Ω) ≤ δ. With regards to Corollary 2.5, (3.19),

Lemma 2.9, and (2.5) we obtain

ϕ+(u) =

∫
Ω

G(∇u)dx−
∫

Ω

F+(x, u)dx

≥ c1
p(p− 1)

‖∇u‖pp −
1

p

∫
Ω

η(x)
(
u+
)p
dx− ε

p

∥∥u+
∥∥p
p

≥ 1

p

(
c1

p− 1
‖∇u‖pp −

∫
Ω

η(x)|u|pdx
)
− ε

pλ̂1(p)
‖∇u‖pp

≥ 1

p

(
κ− ε

λ̂1(p)

)
‖∇u‖pp.

(3.20)

Choosing ε > 0 small enough such that ε ∈
(

0, κλ̂1(p)
)

we see from (3.20) that

ϕ+(u) ≥ 0 = ϕ+(0) for all u ∈ C1
0 (Ω) with 0 ≤ ‖u‖C1

0 (Ω) ≤ δ.

This implies that u = 0 is a local C1
0 (Ω)-minimizer of ϕ+. Invoking Proposition 2.7

yields that u = 0 is a local W 1,p
0 (Ω)-minimizer of ϕ+ as well. � �

It is easy to see that the critical points of ϕ+ (resp. of ϕ−) are positive (resp.
negative). Therefore, we may assume that u = 0 is an isolated critical point of the
functionals ϕ±, otherwise there would exist a sequence of distinct positive, resp.
negative, solutions of (1.1).

Consequently, we find small numbers %± ∈ (0, 1) such that

inf
{
ϕ±(u) : ‖u‖W 1,p

0 (Ω) = %±

}
=: m± > 0 = ϕ±(0) (3.21)

(see Aizicovici-Papageorgiou-Staicu [1, Proof of Proposition 29]).
Now we are going to prove the existence of two constant sign solutions of problem

(1.1).

Proposition 3.6. Under the assumptions H(a)1 and H(f)1 problem (1.1) possesses
at least two constant sign solutions u0 ∈ int

(
C1

0 (Ω)+

)
and v0 ∈ − int

(
C1

0 (Ω)+

)
.

Proof. We start with the proof of the existence of the positive solution. Recall that
û1(p) ∈ int

(
C1

0 (Ω)+

)
denotes the Lp-normalized (i.e. ‖û1(p)‖p = 1) eigenfunction

corresponding to the first eigenvalue λ̂1(p) of
(
−∆p,W

1,p
0 (Ω)

)
. First, we show that

ϕ+(tû1(p))→ −∞ as t→ +∞. (3.22)

By means of hypotheses H(f)1(i) and (ii), for every ε > 0 there exists a constant
M10 = M10(ε) > 0 such that

F (x, s) ≥ ε|s|p −M10 for a.a. x ∈ Ω and for all s ∈ R. (3.23)

From Corollary 2.5 and (3.23) we obtain for t > 0

ϕ+ (tû1(p)) ≤ c5|Ω|N + tp‖∇û1(p)‖pp − εtp +M10|Ω|N

= tp
(
λ̂1(p)− ε

)
+ (c5 +M10)|Ω|N .

(3.24)

Choosing ε > λ̂1(p) in (3.24) and letting t→ +∞ implies (3.22).
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Taking into account (3.22) and (3.21) we find a number t > 0 large enough such
that

ϕ+ (tû1(p)) ≤ ϕ+(0) = 0 < m+ and %+ < ‖tû1(p)‖W 1,p
0 (Ω) . (3.25)

Thanks to (3.21), (3.25) and Proposition 3.4 we may apply Theorem 2.2 (mountain

pass theorem) which provides the existence of an element u0 ∈W 1,p
0 (Ω) such that

ϕ+(0) = 0 < m+ ≤ ϕ+(u0) and ϕ′+(u0) = 0. (3.26)

The first relation in (3.26) ensures that u0 6= 0 and the second one results in

〈Au0, v〉 =
〈
Nf+(u0), v

〉
for all v ∈W 1,p

0 (Ω). (3.27)

Choosing v = −u−0 as test function in (3.27) gives∫
Ω

(
a(∇u0),−∇u−0

)
RN dx = 0. (3.28)

Combining (3.28) and Lemma 2.4(c) we have
c1

p− 1

∥∥∇u−0 ∥∥pp ≤ 0.

Hence,

u0 ≥ 0, u0 6= 0.

Then, (3.27) becomes

−div a(∇u0) = f(x, u0) in Ω,

u = 0 on ∂Ω.

From the nonlinear regularity theory we obtain u0 ∈ L∞(Ω) (see Ladyzhenskaya-
Ural′tseva [26, p. 286]) and then u0 ∈ C1

0 (Ω) (see Lieberman [27]). By means of
hypothesis H(f)1(v) we find, for % = ‖u0‖C(Ω), a constant κ% > 0 such that

−div a(∇u0(x)) + κ%u0(x)p−1 = f(x, u0(x)) + κ%u0(x)p−1 ≥ 0 for a.a. x ∈ Ω.

Hence,

div a(∇u0(x)) ≤ κ%u0(x)p−1 for a.a. x ∈ Ω. (3.29)

Let γ(t) = ta0(t) for t > 0. We have

tγ′(t) = t2a′0(t) + ta0(t). (3.30)

Integration by parts and applying H(a)1(iv) yields∫ t

0

sγ′(s)ds = tγ(t)−
∫ t

0

γ(s)ds = t2a0(t)−G0(t) ≥ η̂tp. (3.31)

Then, due to (3.29) and (3.31), we may apply the strong maximum principle of
Pucci-Serrin [37, p. 111] which implies that u0(x) > 0 for all x ∈ Ω. In addition,
the boundary point theorem of Pucci-Serrin [37, p. 120] yields u0 ∈ int

(
C1

0 (Ω)+

)
.

Using similar arguments one could easily verify the assertion for the existence
of the constant sign solution v0 ∈ − int

(
C1

0 (Ω)+

)
working with the functional ϕ−

instead of ϕ+. � �

Now, we are interested to find a third nontrivial solutions of (1.1) via Morse
theory. To this end, we will compute certain critical groups of the functionals ϕ
and ϕ±. We start with the computation of the critical groups of ϕ at infinity.
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Proposition 3.7. Assume H(a)1 and H(f)1, then Ck(ϕ,∞) = 0 for all k ≥ 0.

Proof. By means of H(f)1(i) and (ii), for every ε > 0, there exists a constant
M11 > 0 such that

F (x, s) ≥ ε|s|p −M11 for a.a. x ∈ Ω and for all s ∈ R. (3.32)

By virtue of Corollary 2.5 and (3.32) there holds for u ∈ W 1,p
0 (Ω) \ {0} and for

every t > 0

ϕ(tu) =

∫
Ω

G(t∇u)dx−
∫

Ω

F (x, tu)dx

≤ c5
(
|Ω|N + tp‖∇u‖pp

)
− εtp‖u‖pp +M11|Ω|N

= tp
(
c5‖∇u‖pp − ε‖u‖pp

)
+M12,

with M12 = (c5 +M11) |ΩN |. Choosing ε >
c5‖∇u‖pp
‖u‖pp implies that

ϕ(tu)→ −∞ as t→ +∞. (3.33)

Thanks to the hypotheses H(f)1(i) and (iii), there is a number β2 ∈ (0, β0) and a
constant M13 > 0 such that

pF (x, s)− f(x, s)s ≤M13 − β2|s|τ for a.a. x ∈ Ω and for all s ∈ R. (3.34)

Taking into account hypothesis H(a)1(iv) and (3.34) we obtain

d

dt
ϕ(tu) = 〈ϕ′(tu), u〉

=
1

t
〈ϕ′(tu), tu〉

=
1

t

[∫
Ω

(a(t∇u), t∇u)RNdx−
∫

Ω

f(x, tu)tudx

]
≤ 1

t

[∫
Ω

pG(t∇u)dx+ (c6 +M13)|Ω|N −
∫

Ω

pF (x, tu)dx

]
=

1

t
[pϕ(tu) +M14]

(3.35)

with M14 = (c6 +M13)|Ω|N . Combining (3.33) and (3.35) we conclude that

d

dt
ϕ(tu) < 0 for t > 0 sufficiently large.

Therefore, for every u ∈ ∂B1 =
{
y ∈W 1,p

0 (Ω) : ‖y‖W 1,p
0 (Ω) = 1

}
, there exists a

unique ψ(u) > 0 such that

ϕ(ψ(u)u) = %∗ < −
M14

p

(see (3.35)). Moreover, the implicit function theorem implies that ψ ∈ C(∂B1).

Now we extend ψ on W 1,p
0 (Ω) \ {0} by setting

ψ̃(u) =
1

‖u‖W 1,p
0 (Ω)

ψ

(
u

‖u‖W 1,p
0 (Ω)

)
for all u ∈W 1,p

0 (Ω) \ {0}.
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It is clear that ψ̃ ∈ C
(
W 1,p

0 (Ω) \ {0}
)

and ϕ
(
ψ̃(u)u

)
= %∗ for all u ∈ W 1,p

0 (Ω) \
{0}. Note that ϕ(u) = %∗ implies ψ(u) = 1. Then, putting

ψ̂(u) =

{
1 if ϕ(u) ≤ %∗,
ψ̃(u) if ϕ(u) > %∗,

(3.36)

we have ψ̂ ∈ C
(
W 1,p

0 (Ω) \ {0}
)

.

Next, we introduce the deformation h : [0, 1] ×W 1,p
0 (Ω) \ {0} → W 1,p

0 (Ω) \ {0}
defined by

h(t, u) = (1− t)u+ tψ̂(u)u.

It is easy to see that h(0, u) = u and h(1, u) ∈ ϕ%∗ for all u ∈ W 1,p
0 (Ω) \ {0}.

Moreover, thanks to (3.36) there holds

h(t, ·)
∣∣
ϕ%∗

= id
∣∣
ϕ%∗

for all t ∈ [0, 1].

This means that the sublevel set ϕ%∗ is a deformation retract of W 1,p
0 (Ω) \ {0}.

Because of the radial retraction u → u
‖u‖

W
1,p
0 (Ω)

for all u ∈ W 1,p
0 (Ω) \ {0} we see

that ∂B1 is a retract of W 1,p
0 (Ω) \ {0} while the deformation

h0(t, u) = (1− t)u+ t
u

‖u‖W 1,p
0 (Ω)

for all (t, u) ∈ [0, 1]×W 1,p
0 (Ω) \ {0},

points out that W 1,p
0 (Ω) \ {0} is deformable into ∂B1 over W 1,p

0 (Ω). Then, we may
apply Theorem 6.5 of Dugundji [16, p. 325] which implies that ∂B1 is a deformation

retract of W 1,p
0 (Ω) \ {0}. We conclude that ϕ%∗ and ∂B1 are homotopy equivalent.

Hence,

Hk

(
W 1,p

0 (Ω), ϕ%∗
)

= Hk

(
W 1,p

0 (Ω), ∂B1

)
for all k ≥ 0. (3.37)

Since the space W 1,p
0 (Ω) is infinite dimensional, it follows that ∂B1 is contractible

in itself. Then, from Granas-Dugundji [24, p. 389] we have

Hk

(
W 1,p

0 (Ω), ∂B1

)
= 0 for all k ≥ 0,

which in view of (3.37) gives

Hk

(
W 1,p

0 (Ω), ϕ%∗
)

= 0 for all k ≥ 0. (3.38)

Choosing %∗ < −M14

p even smaller if necessary, we conclude from (3.38) that

Ck(ϕ,∞) = 0 for all k ≥ 0

(see (2.6)). � �

A similar reasoning leads to the following result.

Proposition 3.8. Assume H(a)1 and H(f)1, then

Ck(ϕ±,∞) = 0 for all k ≥ 0.
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Proof. We do the proof only for the functional ϕ+, the assertion for ϕ− can be
done similarly. Let ∂B+

1 := {u ∈ ∂B1 : u+ 6= 0} and t > 0. As in the proof of
Proposition 3.7 we can show that for all u ∈ ∂B+

1 there holds

ϕ+(tu)→ −∞ as t→ +∞. (3.39)

Taking into account H(a)1(iv) and (3.34) yields, for all u ∈ ∂B+
1 ,

d

dt
ϕ+(tu) = 〈ϕ′+(tu), u〉

=
1

t
〈ϕ′+(tu), tu〉

=
1

t

[∫
Ω

(a(t∇u), t∇u)RNdx−
∫

Ω

f+(x, tu)tudx

]
≤ 1

t

[∫
Ω

pG(t∇u)dx+ (c6 +M15)|Ω|N −
∫

Ω

pF (x, tu+)dx

]
≤ 1

t
[pϕ+(tu) +M16]

(3.40)

where M16 = (c6 + M15)|Ω|N and M15 > 0. Regarding (3.39) and (3.40), we
conclude that

d

dt
ϕ+(tu) < 0 for all t > 0 sufficiently large.

As before, for every u ∈ ∂B+
1 , we find an unique ψ+(u) > 0 such that ϕ+(ψ+(u)u) =

%+
∗ < −M16

p and the implicit function theorem implies that ψ+ ∈ C(∂B+
1 ).

Let E+ = {u ∈W 1,p
0 (Ω) : u+ 6= 0} and set for all u ∈ E+

ψ̃+(u) =
1

‖u‖W 1,p
0 (Ω)

ψ+

(
u

‖u‖W 1,p
0 (Ω)

)
.

Obviously, ψ̃+ ∈ C (E+) and ϕ+

(
ψ̃+(u)u

)
= %+

∗ . Moreover, if ϕ+(u) = %+
∗ , then

ψ̃+(u) = 1. Hence,

ψ̂+(u) :=

{
1 if ϕ+(u) ≤ %+

∗ ,

ψ̃+(u) if ϕ+(u) > %+
∗ ,

(3.41)

belongs to C (E+).
Consider the deformation h+ : [0, 1]× E+ → E+ defined by

h+(t, u) = (1− t)u+ tψ̂+(u)u.

We see at once that h+(0, u) = u, h+(1, u) ∈ (ϕ+)
%+
∗ for all u ∈ E+, and

h+(t, ·)
∣∣
(ϕ+)%

+
∗

= id
∣∣
(ϕ+)%

+
∗

for all t ∈ [0, 1]

(cf. (3.41)). Consequently, (ϕ+)
%+
∗ is a strong deformation retract of E+.

Let us consider the deformation ĥ+ : [0, 1]× E+ → E+ defined by

ĥ+(t, u) = (1− t)u+ tu0,
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where u0 ∈ E+ is fixed. Then, ĥ+(0, u) = u and ĥ+(1, u) = u0 which means that
idE+ is homotopic to the constant map u 7→ u0. Thus, E+ is contractible to itself
(see Bredon [9, Proposition 14.5]) and from Granas-Dugundji [24, p. 389], it follows

Hk

(
W 1,p

0 (Ω), E+

)
= 0 for all k ≥ 0.

Then we infer

Hk

(
W 1,p

0 (Ω), (ϕ+)
%+
∗
)

= 0 for all k ≥ 0. (3.42)

As before, we choose %+
∗ < −M16

p sufficiently small. Thus, (3.42) implies

Ck (ϕ+,∞) = 0 for all k ≥ 0.

This yields the assertion of the proposition. � �

Recall that u0 ∈ int
(
C1

0 (Ω)+

)
and v0 ∈ − int

(
C1

0 (Ω)+

)
are the constant sign so-

lutions of (1.1) obtained in Proposition 2.7. We may assume that Kϕ = {0, u0, v0},
otherwise we would find another nontrivial solution of (1.1) which would belong
to C1

0 (Ω) as a consequence of the nonlinear regularity theory (see Ladyzhenskaya-
Ural′tseva [26]) and Lieberman [27]) and therefore we would have done.

Note that Kϕ = {0, u0, v0} ensures that Kϕ+
= {0, u0} and Kϕ− = {0, v0}.

Proposition 3.9. Assume H(a)1 and H(f)1, then

Ck(ϕ+, u0) = Ck(ϕ−, v0) = δk,1Z for all k ≥ 0.

Proof. We only compute Ck(ϕ+, u0), the computation of Ck(ϕ−, v0) is done in a
similar way. Let ς1, ς2 ∈ R be two numbers such that

ς1 < 0 = ϕ+(0) < ς2 < m+ ≤ ϕ+(u0) (3.43)

(see (3.21) and (3.26)) and consider the following triple of sets

(ϕ+)
ς1 ⊆ (ϕ+)

ς2 ⊆W 1,p
0 (Ω).

Concerning this triple of sets we study the corresponding long exact sequence of
homology groups which is given by

. . . −→ Hk

(
W 1,p

0 (Ω), (ϕ+)
ς1
)

i∗−→ Hk

(
W 1,p

0 (Ω), (ϕ+)
ς2
)

∂∗−→ Hk−1 ((ϕ+)
ς2 , (ϕ+)

ς1) −→ . . . ,
(3.44)

where i∗ denotes the group homomorphism induced by the inclusion mapping i :
(ϕ+)

ς1 → (ϕ+)
ς2 and ∂∗ stands for the boundary homomorphism. Recall that

Kϕ+
= {0, u0} and thanks to (3.43) as well as Proposition 3.8 it follows

Hk

(
W 1,p

0 (Ω), (ϕ+)
ς1
)

= Ck (ϕ+,∞) = 0 for all k ≥ 0. (3.45)

Furthermore, from Chang [11, p. 338], (3.43), and Proposition 3.5 we have

Hk

(
W 1,p

0 (Ω), (ϕ+)
ς2
)

= Ck (ϕ+, u0) for all k ≥ 0 (3.46)

and

Hk−1 ((ϕ+)
ς2 , (ϕ+)

ς1) = Ck−1 (ϕ+, 0) = δk,1Z for all k ≥ 0. (3.47)
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Taking into account (3.45) and (3.47) one observes that only the tail k = 1 in (3.44)
is nontrivial. Applying the rank theorem yields

rankH1

(
W 1,p

0 (Ω), (ϕ+)
ς2
)

= rank(ker ∂∗) + rank(im ∂∗).

Then from (3.44)–(3.47) it follows

rankC1 (ϕ+, u0) = rank (ker ∂∗) + rank (im ∂∗)

= rank (im i∗) + rank (im ∂∗)

≤ 0 + 1.

(3.48)

However, the proof of Proposition 3.6 has shown that u0 ∈ int
(
C1

0 (Ω)+

)
is a critical

point of ϕ+ of mountain pass type. Thus,

C1 (ϕ+, u0) 6= 0. (3.49)

Combining (3.48) and (3.49) yields

Ck (ϕ+, u0) = δk,1Z for all k ≥ 0.

� �

With the aid of Proposition 3.9 we are now in the position to compute the critical
groups of ϕ at u0 and v0.

Proposition 3.10. Assume H(a)1 and H(f)1, then

Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k ≥ 0.

Proof. As before, we only compute Ck(ϕ, u0), the other one works similarly. We

consider the homotopy h : [0, 1]×W 1,p
0 (Ω)→W 1,p

0 (Ω) defined by

h(t, u) = tϕ(u) + (1− t)ϕ+(u).

Recall that Kϕ = {0, u0, v0}. We are going to prove the existence of a number
ρ > 0 such that u0 is the only critical point of h(t, ·) in

Bρ =
{
u ∈W 1,p

0 (Ω) : ‖u− u0‖W 1,p
0 (Ω) < ρ

}
for all t ∈ [0, 1]. We proceed by contradiction. If we assume that this assertion is

not true, then we find a sequence (tn, un)n≥1 ⊆ [0, 1]×W 1,p
0 (Ω) such that

tn → t, in [0, 1], un → u0 in W 1,p
0 (Ω), and h′u(tn, un) = 0 for all n ≥ 1. (3.50)

Relation (3.50) gives

〈A(un), v〉 = tn

∫
Ω

f(x, un)vdx+ (1− tn)

∫
Ω

f+(x, un)vdx for all v ∈W 1,p
0 (Ω),

which means that un solves the problem

−div a(∇un(x)) = tnf(x, un(x)) + (1− tn)f+(x, un(x)) in Ω,

u = 0 on ∂Ω.
(3.51)

Because of (3.50), from Ladyzhenskaya-Ural′tseva [26, p. 286], there exists M17 > 0
such that ‖un‖L∞(Ω) ≤ M17 for all n ≥ 1 and due to Lieberman [27, p. 320] we
find β ∈ (0, 1) and M18 > 0 such that

‖un‖C1,α
0 (Ω) ≤M18 for all n ≥ 1.
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Due to the compact embedding C1,α
0 (Ω) ↪→ C1

0 (Ω), we may assume that un → u0

in C1
0 (Ω) for a subsequence if necessary. Recalling u0 ∈ int

(
C1

0 (Ω)+

)
there exists

a number n0 ≥ 1 such that (un)n≥n0
⊆ int

(
C1

0 (Ω)+

)
. Thus (3.51) reduces to

−div a(∇un) = f(x, un) in Ω,

u = 0 on ∂Ω.

Hence, (un)n≥n0
is a sequence of distinct solutions of (1.1) which contradicts the

fact that Kϕ = {0, u0, v0}.
Therefore, we find a number ρ > 0 such that h′u(t, u) 6= 0 for all t ∈ [0, 1] and

all u ∈ Bρ(u0) \ {u0}. Similar to the proof of Proposition 3.4 one could verify that
h(t, ·) fulfills the C-condition for every t ∈ [0, 1]. Thus, we can invoke the homotopy
invariance of critical groups to get

Ck(h(0, ·), u0) = Ck(h(1, ·), u0) for all k ≥ 0,

which is equivalent to

Ck(ϕ, u0) = Ck(ϕ+, u0) for all k ≥ 0.

Combining this with Proposition 3.9 implies that

Ck(ϕ, u0) = Ck(ϕ+, u0) = δk,1Z for all k ≥ 0.

Similarly, we show that

Ck(ϕ, v0) = δk,1Z for all k ≥ 0.

� �

Now we are ready to produce a third nontrivial solution of problem (1.1). We
have the following multiplicity theorem.

Theorem 3.11. Under hypotheses H(a)1 and H(f)1 problem (1.1) has at least three
nontrivial solutions

u0 ∈ int
(
C1

0 (Ω)+

)
, v0 ∈ − int

(
C1

0 (Ω)+

)
and y0 ∈ C1

0 (Ω).

Proof. The existence of the two constant-sign solutions of (1.1) follows directly from
Proposition 3.6, that is

u0 ∈ int
(
C1

0 (Ω)+

)
, v0 ∈ − int

(
C1

0 (Ω)+

)
.

Suppose that Kϕ = {0, u0, v0} and recall that

Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k ≥ 0 (3.52)

(see Proposition 3.10). Thanks to Proposition 3.5 we know that

Ck(ϕ, 0) = δk,0Z for all k ≥ 0. (3.53)

Finally, Proposition 3.7 implies

Ck(ϕ,∞) = 0 for all k ≥ 0. (3.54)

Combining (3.52)–(3.54) and the Morse relation with t = −1 (see (2.7)) yields

2(−1)1 + (−1)0 = 0,

which is a contradiction. Thus, we can find y0 ∈ Kϕ \ {0, u0, v0} which means
that y0 is a third nontrivial solution of (1.1) and as before, the nonlinear regularity
theory guarantees that y0 ∈ C1

0 (Ω). That finishes the proof. � �
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Remark 3.12. The first multiplicity result (three-solutions-theorem) for superlin-
ear elliptic equations has been proved by Wang [40]. In that work p = 2, a(ξ) = ξ for
all ξ ∈ RN (hence the differential operator is the Laplacian, semilinear equation)
and f(x, ·) = f(·) (i.e., the nonlinearity is x-independent), f ∈ C1(R), f ′(0) = 0
and it satisfies the Ambrosetti-Rabinowitz condition (see (1.2), (1.3)). We point
out that Theorem 3.11 extends significantly the multiplicity result of Wang [40].
Other multiplicity results for p-Laplacian equations with a superlinear nonlinear-
ity satisfying more restrictive conditions than H(f)1 were proved by Liu [28] and
Sun [38]. For Neumann problems driven by the p-Laplacian we refer to Aizicovici-
Papageorgiou-Staicu [2].

4. Five nontrivial solutions

In this section we produce additional nontrivial solutions for problem (1.1) by
changing the geometry of the problem near the origin. Roughly speaking we re-
quire that f(x, ·) exhibits an oscillatory behavior near zero. We also suppose some
stronger assumptions on the map a(·) which allows us to prove the existence of five
nontrivial solutions of (1.1) given with complete sign information. The results in
this section extend the recent work of Aizicovici-Papageorgiou-Staicu [3].

The new hypotheses on the map a(·) are the following.

H(a)2: a(ξ) = a0(‖ξ‖)ξ for all ξ ∈ RN with a0(t) > 0 for all t > 0, hypotheses
H(a)2(i)–(iii) are the same as the corresponding hypotheses H(a)1(i)–(iii)
and
(iv) pG0(t)− t2a0(t) ≥ −c6 for all t > 0 and some c6 > 0;

(v) there exists q ∈ (1, p) such that t 7→ G0

(
t

1
q

)
is convex in (0,+∞),

lim sup
t→0+

qG0(t)

tq
< +∞,

and t2a0(t)− qG0(t) ≥ η̂tp for all t > 0 and some η̂ > 0.

Remark 4.1. The examples given in Example 2.6 still satisfy the new hypotheses
H(a)2. Note that hypothesis H(a)2(v) implies

G(ξ) ≤ c7(‖ξ‖q + ‖ξ‖p) for all ξ ∈ RN , (4.1)

with some c7 > 0.

Furthermore, we suppose new hypotheses on the nonlinearity f : Ω× R→ R as
follows.

H(f)2: f : Ω × R → R is a Carathéodory function such that f(x, 0) = 0 for
a.a. x ∈ Ω, hypotheses H(f)2(i)-(iii) are the same as the corresponding
hypotheses H(f)1(i)–(iii) and
(iv) there exist ζ ∈ (1, q) (q as in hypothesis H(a)2(v)) and δ > 0 such that

ζF (x, s) ≥ f(x, s)s > 0 for a.a. x ∈ Ω and for all 0 < |s| ≤ δ
and

essinf
Ω

F (·,±δ) > 0;

(v) there exist real numbers ξ− < 0 < ξ+ such that

f(x, ξ+) ≤ η1 < 0 < η2 ≤ f(x, ξ−) for a.a. x ∈ Ω;
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(vi) for every % > 0, there exists ξ% > 0 such that

s 7→ f(x, s) + ξ%|s|p−2s

is nondecreasing on [−%, %] for a.a. x ∈ Ω.

Remark 4.2. Hypothesis H(f)2(iv) implies that F (x, s) ≥M19|s|ζ for a.a. x ∈ Ω,
for all |s| ≤ δ, and some M19 > 0. We also point out that f(x, ·) exhibits an
oscillatory behavior near zero which follows directly from hypothesis H(f)2(v).

Example 4.3. As before, we drop the x-dependence. The following function satis-
fies hypotheses H(f)2.

f(s) =

{
|s|τ−2s− 2|s|p−2s if |s| ≤ 1,

|s|p−2s ln |s| − |s|q−2s if |s| > 1
with 1 < q, τ < p.

Note that this f does not satisfy the Ambrosetti-Rabinowitz condition.

First we produce two nontrivial constant sign solutions.

Proposition 4.4. Let the hypotheses H(a)2 and H(f)2 be satisfied. Then problem
(1.1) has at least two nontrivial constant sign solutions u0 ∈ int

(
C1

0 (Ω)
)

and v0 ∈
− int

(
C1

0 (Ω)
)

such that

ξ− < v0(x) ≤ 0 ≤ u0(x) < ξ+ for all x ∈ Ω.

Moreover, both solutions are local minimizers of the energy functional ϕ.

Proof. Let f̂+ : Ω× R→ R be the truncation function defined by

f̂+(x, s) =


0 if s < 0

f(x, s) if 0 ≤ s ≤ ξ+
f(x, ξ+) if ξ+ < s

, (4.2)

which is known to be a Carathéodory function. We introduce the C1-functional
ϕ̂+ : W 1,p

0 (Ω)→ R through

ϕ̂+(u) =

∫
Ω

G(∇u)dx−
∫

Ω

F̂+(x, u)dx

with F̂+(x, s) =
∫ s

0
f̂+(x, t)dt. It is clear that ϕ̂+ : W 1,p

0 (Ω) → R is coercive
(see Corollary 2.5, (4.2)) and sequentially weakly lower semicontinuous. Hence, its

global minimizer u0 ∈W 1,p
0 (Ω) exists, that is

ϕ̂+(u0) = inf
{
ϕ̂+(u) : u ∈W 1,p

0 (Ω)
}

= m̂+.

By virtue of hypothesis H(f)2(v) we know that we can find β > 0 and δ0 ∈
(0,min {δ, ξ+}) such that

G(ξ) ≤ β‖ξ‖q for all ‖ξ‖ ≤ δ0. (4.3)

Recall that hypothesis H(f)2(iv) implies

F (x, s) ≥M20|s|ζ for a.a. x ∈ Ω and for all |s| ≤ δ0, (4.4)
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with some M20 > 0. Since û1(q) ∈ int
(
C1

0 (Ω)+

)
we can choose t ∈ (0, 1) sufficiently

small such that tû1(q)(x) ∈ [0, δ0] for all x ∈ Ω. Taking into account (4.3), (4.4)
and ‖û1(q)‖q = 1, we obtain

ϕ̂+(tû1(q)) =

∫
Ω

G (∇tû1) dx−
∫

Ω

F̂+(x, tû1)dx

≤ βtq ‖∇(û1(q))‖qq −M20t
ζ ‖û1(q)‖ζζ

= βtqλ̂1(q)−M20t
ζ ‖û1(q)‖ζζ .

(4.5)

Since ζ < q, choosing t ∈ (0, 1) small enough, (4.5) gives

ϕ̂+(tû1(q)) < 0,

meaning

ϕ̂+(u0) = m̂+ < 0 = ϕ̂+(0).

We conclude

u0 6= 0. (4.6)

On the other hand, since u0 is a critical point of ϕ̂+ there holds

〈Au0, v〉 =
〈
Nf̂+

(u0), v
〉

for all v ∈W 1,p
0 (Ω). (4.7)

Choosing v = −u−0 as test function in (4.7) and applying Lemma 2.4(c) as well as
the definition of the truncation (see (4.2)) yields

c1
p− 1

∥∥∇u−0 ∥∥pp ≤ 0.

Hence,

u0 ≥ 0. (4.8)

Now, making use of hypothesis H(f)2(v) and taking (u0 − ξ+)+ ∈ W 1,p
0 (Ω) as test

function in (4.7) one gets∫
Ω

(
a(∇u0),∇ (u0 − ξ+)

+
)
RN

dx =

∫
Ω

f̂+(x, u0) (u0 − ξ+)
+
dx

=

∫
Ω

f(x, ξ+) (u0 − ξ+)
+
dx

≤ 0.

(4.9)

From (4.9) it follows∫
{u0>ξ+}

(a(∇u0)− a(∇ξ+),∇u0 −∇ξ+)RN dx ≤ 0,

and by virtue of Lemma 2.4(a),

|{u0 > ξ+}|N = 0.

Hence,

u0(x) ≤ ξ+ a.e. in Ω. (4.10)

Combining (4.6), (4.8) and (4.10) we have

0 ≤ u0(x) ≤ ξ+ a.e. in Ω and u0 6= 0.
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Then, (4.7) becomes

〈Au0, v〉 = 〈Nf (u0), v〉 for all v ∈W 1,p
0 (Ω),

meaning that

−div a(∇u0) = f(x, u0) in Ω,

u = 0 on ∂Ω.

The nonlinear regularity theory ensures that u0 ∈ C1
0 (Ω) (see Ladyzhenskaya-

Ural′tseva [26] and Lieberman [27, p. 320]).
Thanks to hypothesis H(f)2(vi) we find for % = ξ+ a constant ξ% > 0 such that

−div a(∇u0(x)) + ξ%u0(x)p−1 = f(x, u0(x)) + ξ%u0(x)p−1 ≥ 0 for a.a. x ∈ Ω.

Hence,

div a(∇u0(x)) ≤ ξ%u0(x)p−1 for a.a. x ∈ Ω.

Due to Hypothesis H(a)2(iv) the strong maximum principle implies that u0 ∈
int
(
C1

0 (Ω)+

)
(see Pucci-Serrin [37, pp. 111 and 120]).

Now, let δ > 0 and set uδ = u0 + δ ∈ C1(Ω). Recall that u0(x) ≤ ξ+ for all
x ∈ Ω, by means of hypotheses H(f)2(v), (vi), we have

−div a(∇uδ(x)) + ξ%uδ(x)p−1 ≤ −div a(∇u0(x)) + ξ%u0(x)p−1 + o(δ)

= f(x, u0(x)) + ξ%u0(x)p−1 + o(δ)

≤ f(x, ξ+) + ξ%ξ
p−1
+ + o(δ)

≤ η1 + ξ%ξ
p−1
+ + o(δ).

(4.11)

Recall that η1 < 0 (see H(f)2(v)) and o(δ) → 0+ as δ → 0+. Then, for δ > 0
sufficiently small there holds η1 + o(δ) ≤ 0. Hence, from (4.11) we obtain

− div a(∇uδ(x)) + ξ%uδ(x)p−1v ≤ −div a(∇ξ+) + ξ%ξ
p−1
+ .

Applying again Pucci-Serrin [37, p. 61] it follows

uδ(x) ≤ ξ+ for all x ∈ Ω,

consequently,

u(x) < ξ+ for all x ∈ Ω.

Therefore, we have

u0 ∈ int
C1

0 (Ω)
[0, ξ+].

Since ϕ
∣∣
[0,ξ+]

= ϕ̂+

∣∣
[0,ξ+]

we conclude that u0 is a local C1
0 (Ω)-minimizer of ϕ. So,

Proposition 2.7 implies that u0 is a local W 1,p
0 (Ω)-minimizer of ϕ.

For the nontrivial negative solution we introduce the following truncation of the
nonlinearity f(x, ·)

f̂−(x, s) =


f(x, ξ−) if s < ξ−

f(x, s) if ξ− ≤ s ≤ 0

0 if 0 < s

,
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which is a Carathéodory function. Setting F̂−(x, s) =
∫ s

0
f̂−(x, t)dt we consider the

C1-functional ϕ̂− : W 1,p
0 (Ω)→ R defined by

ϕ̂−(u) =

∫
Ω

G(∇u)dx−
∫

Ω

F̂−(x, u)dx.

Working as above via the direct method we produce a solution v0 ∈ − int
(
C1

0 (Ω)+

)
being a local minimizer of ϕ. � �

Remark 4.5. A careful inspection of the proof above reveals that we only needed
hypotheses H(f)2(iv), (v), (vi), i.e., the asymptotic conditions at ±∞ (see H(f)2(ii),
(iii)) are irrelevant. Moreover, the global growth condition H(f)2(i) can be replaced
by the following local one.

For every % > 0 there exists a% ∈ L∞(Ω)+ such that

|f(x, s)| ≤ a%(x) for a.a. x ∈ Ω and for all |s| ≤ %.

Using these two nontrivial constant sign solutions we can produce two more pre-
cisely localized with respect to u0 and v0. Now we need the asymptotic conditions
at ±∞.

Proposition 4.6. Under the hypotheses H(a)2 and H(f)2 problem (1.1) possesses
two more nontrivial constant sign solutions u1 ∈ int

(
C1

0 (Ω)+

)
and v1 ∈ − int

(
C1

0 (Ω)+

)
satisfying

u0(x) ≤ u1(x) and v1(x) ≤ v0(x) for all x ∈ Ω

with u1 6= u0 and v1 6= v0.

Proof. We begin with the proof for the existence of u1. For u0 ∈ int
(
C1

0 (Ω)+

)
being

the constant sign solution obtained in Proposition 4.4 we define the truncation
mapping e+ : Ω× R→ R through

e+(x, s) =

{
f(x, u0(x)) if s < u0(x),

f(x, s) if u0(x) ≤ s,
(4.12)

which is again a Carathéodory function. Setting E+(x, s) =
∫ s

0
e+(x, t)dt we intro-

duce the C1-functional σ+ : W 1,p
0 (Ω)→ R by

σ+(u) =

∫
Ω

G(∇u)dx−
∫

Ω

E+(x, u)dx.

First we note that σ+ fulfills the C-condition which can be shown as in the proof
of Proposition 3.4 with minor modifications by applying (4.12).

Claim: We may assume that u0 ∈ int
(
C1

0 (Ω)+

)
is a local minimizer of the

functional σ+.
Recalling u0(x) < ξ+ for all x ∈ Ω we introduce the subsequent Carathéodory

truncation function

ê+(x, s) =

{
e+(x, s) if s ≤ ξ+
e+(x, ξ+) if s > ξ+

(4.13)

and consider the C1-functional σ̂+ : W 1,p
0 (Ω)→ R

σ̂+(u) =

∫
Ω

G(∇u)dx−
∫

Ω

Ê+(x, u)dx
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with Ê+(x, s) =
∫ s

0
ê+(x, t)dt. Obviously, σ̂+ is coercive and sequentially weakly

lower semicontinuous which implies due to the Weierstrass theorem that there is a
global minimizer û0 ∈W 1,p

0 (Ω) meaning

σ̂+(û0) = inf
{
σ̂+(u) : u ∈W 1,p

0 (Ω)
}
.

In particular, this gives σ̂′+(û0) = 0 and hence,

〈A(û0), v〉 =
〈
Nê+(û0), v

〉
for all v ∈W 1,p

0 (Ω). (4.14)

Taking v = (u0 − û0)
+ ∈ W 1,p

0 (Ω) in the last equation and using (4.12), (4.13) we
obtain 〈

A(û0), (u0 − û0)
+
〉

=

∫
Ω

ê+(x, û0)) (u0 − û0)
+
dx

=

∫
Ω

f(x, u0) (u0 − û0)
+
dx

=
〈
A(u0), (u0 − û0)

+
〉
.

It follows that 〈
A(u0)−A(û0), (u0 − û0)

+
〉

= 0,

meaning ∫
{u0>û0}

(a(∇u0)− a(∇û0),∇u0 −∇û0)RN dx = 0.

Hence, |{u0 > û0}|N = 0, that is, u0 ≤ û0. Now, taking v = (û0 − ξ+)
+

in (4.14),
applying (4.12), (4.13), H(f)2(v), and recalling u0(x) < ξ+ for all x ∈ Ω, we get〈

A(û0), (û0 − ξ+)
+
〉

=

∫
Ω

ê+(x, û0)) (û0 − ξ+)
+
dx

=

∫
Ω

f(x, ξ+) (û0 − ξ+)
+
dx

≤ 0,

which implies ∫
{û0>ξ+}

‖∇û0‖p dx ≤ 0

(see Lemma 2.4(c)). As above we conclude that |{û0 > ξ+}|N = 0, i.e., û0 ≤ ξ+.
Then, û0 ∈ [u0, ξ+] and equation (4.14) becomes

〈A(û0), v〉 = 〈Nf (û0), v〉 for all v ∈W 1,p
0 (Ω),

which means that û0 solves our original problem (1.1). Applying again the nonlinear
regularity theory we obtain that û0 ∈ int

(
C1

0 (Ω)+

)
(see the proof of Proposition

4.4). If û0 6= u0, then the assertion of the proposition is proved and we are done.
Let us suppose that û0 = u0. By means of the truncations in (4.12),(4.13) we

have

σ+

∣∣
[0,ξ+]

= σ̂+

∣∣
[0,ξ+]

.
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Since û0 = u0 ∈ intC1
0 (Ω)[0, ξ+] we see that û0 = u0 is a local C1

0 (Ω)-minimizer of

σ+ and with regard to Proposition 2.7 it is also a local W 1,p
0 (Ω)-minimizer of σ+.

This proves the claim.
We may also assume that u0 is an isolated critical point of σ+, otherwise we

would find a sequence (un)n≥1 ⊆W 1,p
0 (Ω) such that

un → u0 in W 1,p
0 (Ω) and σ′+(un) = 0 for all n ≥ 1. (4.15)

It follows

A(un) = Ne+(un) for all n ≥ 1

meaning that

−div a(∇un(x)) = e+(x, un(x)) a.e. in Ω. (4.16)

Then, from (4.15), (4.16) and Ladyzhenskaya-Ural′tseva [26] we can find M21 > 0
such that ‖un‖L∞(Ω) ≤M21. Applying the regularity results of Lieberman [27] we
find γ ∈ (0, 1) and M22 > 0 such that

un ∈ C1,γ
0 (Ω) and ‖un‖C1,γ

0 (Ω) ≤M22 for all n ≥ 1.

Exploiting the compact embedding of C1,γ(Ω) into C1
0 (Ω) and by virtue of (4.15)

one gets

un → u0, un ≥ u0 for all n ≥ 1.

That means we have proved the existence of a whole sequence (un)n≥1 ⊆ int
(
C1

0 (Ω)+

)
of distinct nontrivial positive solutions of (1.1). Hence, we are done. Therefore, we
may consider u0 as an isolated critical point of σ+.

Because of the claim there exists a number % ∈ (0, 1) such that

σ+(u0) < inf
{
σ+(u) : ‖u− u0‖W 1,p

0 (Ω) = %
}

=: η+
% (4.17)

(see Aizicovici-Papageorgiou-Staicu [1, Proof of Proposition 29]). Recall that σ+

satisfies the C-condition. Thanks to hypothesis H(f)2(ii) we verify that if u ∈
int
(
C1

0 (Ω)+

)
, then σ+(tu) → −∞ as t → +∞. These facts combined with (4.17)

permit the usage of the mountain pass theorem stated in Theorem 2.2. This pro-
vides the existence of u1 ∈W 1,p

0 (Ω) such that

u1 ∈ Kσ+ and η+
% ≤ e+(u1). (4.18)

With a view to (4.17) and (4.18) we see that u0 ≤ u1, u0 6= u1 and u1 ∈ int
(
C1

0 (Ω)+

)
solves problem (1.1).

The case of a second nontrivial negative solution v1 ∈ − int
(
C1

0 (Ω)+

)
with v1 ≤

v0 and v1 6= v0 can be shown using similar arguments. � �

Now we are interested to find a fifth solution of (1.1) being a sign-changing one.
In order to produce the nodal solution we will use some tools from Morse theory.
For this purpose we start by computing the critical groups at the origin of the
C1-energy functional ϕ : W 1,p

0 (Ω)→ RN defined by

ϕ(u) =

∫
Ω

G(∇u)dx−
∫

Ω

F (x, u)dx.
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Our proof uses ideas from Moroz [31] in which G(ξ) = 1
2‖ξ‖

2 for all ξ ∈ RN
with more restrictive conditions on f : Ω × R → R and from Jiu-Su [25] where
G(ξ) = 1

p‖ξ‖
p for all ξ ∈ RN .

Proposition 4.7. Under the assumptions H(a)2 and H(f)2(i),(iv) there holds Ck(ϕ, 0) =
0 for all k ≥ 0.

Proof. Note that from H(f)2(i) and (iv) we have

F (x, s) ≥M23|s|ζ −M24|s|r for a.a. x ∈ Ω and for all s ∈ R (4.19)

with positive constants M23,M24. Recall that hypothesis H(a)2(v) implies

G(ξ) ≤ c7(‖ξ‖q + ‖ξ‖p) for all ξ ∈ RN (4.20)

(see also (4.1)). Let u ∈W 1,p
0 (Ω) and t > 0. Combining (4.19) and (4.20) gives

ϕ(tu) =

∫
Ω

G(∇(tu))dx−
∫

Ω

F (x, tu)dx

≤ c7tq‖∇u‖qq + c7t
p‖∇u‖pp −M23t

ζ‖u‖ζζ +M24t
r‖u‖rr.

Since ζ < q < p < r there exists a small number t0 > 0 such that

ϕ(tu) < 0 for all 0 < t < t0.

Now let u ∈W 1,p
0 (Ω) be such that ϕ(u) = 0. Taking into account H(a)2(v), H(f)2(i),

(iv), and the Sobolev embedding theorem it follows

d

dt
ϕ(tu)

∣∣∣∣
t=1

= 〈ϕ′(tu), u〉
∣∣∣∣
t=1

=

∫
Ω

(a(∇u),∇u)RN dx−
∫

Ω

f(x, u)udx

− ζ
∫

Ω

G(∇u)dx+

∫
Ω

ζF (x, u)dx

≥ η̂‖∇u‖pp +

∫
Ω

[ζF (x, u)− f(x, u)u] dx

≥ η̂‖u‖p
W 1,p

0 (Ω)
−M25‖u‖rW 1,p

0 (Ω)

(4.21)

with some M25 > 0. Since p < r we can find % ∈ (0, 1) small enough such that

d

dt
ϕ(tu)

∣∣∣∣
t=1

> 0 ∀u ∈W 1,p
0 (Ω) with ϕ(u) = 0 and 0 < ‖u‖W 1,p

0 (Ω) ≤ %. (4.22)

Now, let u ∈ W 1,p
0 (Ω) with 0 < ‖u‖W 1,p

0 (Ω) ≤ % and ϕ(u) = 0. In the following we

are going to show that

ϕ(tu) ≤ 0 for all t ∈ [0, 1]. (4.23)

Arguing by contradiction, suppose that we can find a number t0 ∈ (0, 1) such that
ϕ(t0u) > 0. Since ϕ is continuous and ϕ(u) = 0 there exists t1 ∈ (t0, 1] such that
ϕ(t1u) = 0. Let t∗ = min {t ∈ [t0, 1] : ϕ(tu) = 0}. It is clear that t∗ > t0 > 0 and

ϕ(tu) > 0 for all t ∈ [t0, t∗). (4.24)
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Setting v = t∗u we have 0 < ‖v‖W 1,p
0 (Ω) ≤ ‖u‖W 1,p

0 (Ω) ≤ % and ϕ(v) = 0. Then,

(4.22) gives

d

dt
ϕ(tv)

∣∣∣∣
t=1

> 0. (4.25)

Moreover, from (4.24) we obtain

ϕ(v) = ϕ(t∗u) = 0 < ϕ(tu) for all t ∈ [t0, t∗).

Hence,

d

dt
ϕ(tv)

∣∣∣∣
t=1

= t∗
d

dt
ϕ(tu)

∣∣∣∣
t=t∗

= t∗ lim
t→t−∗

ϕ(tu)

t− t∗
≤ 0. (4.26)

Comparing (4.25) and (4.26) we reach a contradiction. This proves (4.23).
By taking % ∈ (0, 1) even smaller if necessary we may assume that Kϕ∩B% = {0}

where B% =
{
u ∈W 1,p

0 (Ω) : ‖u‖W 1,p
0 (Ω) ≤ %

}
. Let h : [0, 1]×

(
ϕ0 ∩B%

)
→ ϕ0 ∩B%

be the deformation defined by

h(t, u) = (1− t)u.

Thanks to (4.23) we verify that this deformation is well-defined and it implies that
ϕ0 ∩B% is contractible in itself.

Fix u ∈ B% with ϕ(u) > 0. We show that there exists an unique t(u) ∈ (0, 1)
such that

ϕ(t(u)u) = 0.

Since ϕ(u) > 0 and the continuity of t 7→ ϕ(tu), (4.22) ensures the existence of
such a t(u) ∈ (0, 1). It remains to show its uniqueness. Arguing by contradiction,
suppose that for 0 < t∗1 = t(u)1 < t∗2 = t(u)2 < 1 we have ϕ(t∗1u) = ϕ(t∗2u) = 0.
Then, (4.23) implies

γ(t) = ϕ(tt∗2u) ≤ 0 for all t ∈ [0, 1].

Therefore
t∗1
t∗2
∈ (0, 1) is a maximizer of γ and thus,

d

dt
γ(t)

∣∣∣∣
t=

t∗1
t∗2

= 0,

which implies that

t∗1
t∗2

d

dt
ϕ(tt∗2u)

∣∣∣∣
t=

t∗1
t∗2

=
d

dt
ϕ(tt∗1u)

∣∣∣∣
t=1

= 0.

But this is a contradiction to (4.22) and the uniqueness of t(u) ∈ (0, 1) is proved.
This uniqueness implies that

ϕ(tu) < 0 if t ∈ (0, t(u)) and ϕ(tu) > 0 for all t ∈ (t(u), 1].

Let T1 : B% \ {0} → (0, 1] be defined by

T1(u) =

{
1 if ϕ(u) ≤ 0,

t(u) if ϕ(u) > 0.
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It is easy to check that T1 is continuous. Next, we consider a map T2 : B% \ {0} →(
ϕ0 ∩B%

)
\ {0} defined by

T2(u) =

{
u if ϕ(u) ≤ 0,

T1(u)u if ϕ(u) > 0.

Obviously, T2 is a continuous function. We observe that

T2

∣∣∣∣
(ϕ0∩B%)\{0}

= id

∣∣∣∣
(ϕ0∩B%)\{0}

,

which proves that
(
ϕ0 ∩B%

)
\ {0} is a retract of B% \ {0}. Note that B% \ {0} is

contractible in itself. Therefore, the same is true for
(
ϕ0 ∩B%

)
\ {0}. Previously,

we proved that ϕ0∩B% is contractible in itself. From Granas-Dugundji [24, p. 389]
it follows that

Hk

(
ϕ0 ∩B%,

(
ϕ0 ∩B%

)
\ {0}

)
= 0 for all k ≥ 0.

Hence,

Ck(ϕ, 0) = 0 for all k ≥ 0.

(see Section 2). This completes the proof. � �

Thanks to Proposition 4.7 we can now establish the existence of extremal non-
trivial constant sign solutions, that means, we will produce the smallest nontrivial
positive solution and the greatest nontrivial negative solution of (1.1).

To this end, let S+ (resp. S−) be the set of all nontrivial positive (resp. negative)
solutions of problem (1.1). As in Filippakis-Kristály-Papageorgiou [18] we can show
that

• S+ is downward directed, that means, if u1, u2 ∈ S+, then there exists
u ∈ S+ such that u ≤ u1 and u ≤ u2.
• S− is upward directed, that means, if v1, v2 ∈ S−, then there exists v ∈ S−

such that v1 ≤ v and v2 ≤ v.

By virtue of these lattice properties of S+ and S− we see that for the pur-
pose of producing extremal nontrivial constant sign solutions and since S+ ⊆
int
(
C1

0 (Ω)+

)
,S− ⊆ − int

(
C1

0 (Ω)+

)
, without any loss of generality, we may assume

that there exists M26 > 0 such that

‖u‖C(Ω) ≤M26 for all u ∈ S+ and ‖v‖C(Ω) ≤M26 for all v ∈ S−. (4.27)

Note that from hypotheses H(f)2(i) and (iv) we find positive constants a1, a2

such that

f(x, s)s ≥ a1|s|ζ − a2|s|r for a.a. x ∈ Ω and for all s ∈ R. (4.28)

This unilateral growth estimate leads to the following auxiliary Dirichlet problem

−div a(∇u(x)) = a1|u|ζ−2u− a2|u|r−2u in Ω,

u = 0 on ∂Ω.
(4.29)

We are going to prove the uniqueness of constant sign solutions of (4.29).

Proposition 4.8. If hypotheses H(a)2 hold, then problem (4.29) admits a unique
nontrivial positive solution u∗ ∈ int

(
C1

0 (Ω)+

)
and since (4.29) is odd, v∗ = −u∗ ∈

int
(
C1

0 (Ω)+

)
is the unique nontrivial negative solution of (4.29).



30 N. S. PAPAGEORGIOU AND P. WINKERT

Proof. Let ψ+ : W 1,p
0 (Ω)→ R be the C1-functional defined by

ψ+(u) =

∫
Ω

G(∇u)dx− a1

ζ

∥∥u+
∥∥ζ
ζ

+
a2

r̂

∥∥u+
∥∥r
r
.

Because of Corollary 2.5 and due to ζ < p < r we observe that ψ+ is coercive and

in addition sequentially weakly lower semicontinuous. Then we find u∗ ∈ W 1,p
0 (Ω)

such that

ψ+(u∗) = inf
[
ψ+(u) : u ∈W 1,p

0 (Ω)
]
< 0 = ψ+(0),

since ζ < p < r (see the proof of Proposition 4.4). Hence, u∗ 6= 0. Moreover, as u∗
is the global minimizer of ψ+ it holds (ψ+)

′
(u∗) = 0 which means

A(u∗) = a1

(
u+
∗
)ζ−1 − a2

(
u+
∗
)r−1

. (4.30)

Acting on (4.30) with −u−∗ ∈W
1,p
0 (Ω) and using Lemma 2.4(c), we see that u∗ ≥ 0

and as before u∗ 6= 0. Then, equation (4.30) becomes

A(u∗) = a1u
ζ−1
∗ − a2u

r−1
∗

and u∗ turns out to be a nontrivial positive solution of (4.29). As before, the nonlin-
ear regularity theory (see [26], [27]) implies that u∗ ∈ C1

0 (Ω) and the nonlinear max-
imum principle of Pucci-Serrin [37, pp. 111 and 120] yields that u∗ ∈ int

(
C1

0 (Ω)+

)
.

We will complete the proof of the proposition if we prove the uniqueness of this
solution u∗. To this end, let Ψ+ : L1(Ω) → R ∪ {∞} be the integral functional
defined by

Ψ+(u) =


∫

Ω

G
(
∇u

1
q

)
dx if u ≥ 0, u

1
q ∈W 1,p

0 (Ω),

+∞ otherwise.

Take u1, u2 ∈ dom Ψ+ and let u = (tu1 +(1−t)u2)
1
q for t ∈ [0, 1]. Applying Lemma

1 of Dı́az-Saá [15] results in

‖∇u(x)‖ ≤
(
t
∥∥∥∇u1(x)

1
q

∥∥∥q + (1− t)
∥∥∥∇u2(x)

1
q

∥∥∥q) 1
q

a.e. in Ω.

As G0 is increasing and by means of H(a)2(v) we conclude

G0 (‖∇u(x)‖)

≤ G0

((
t
∥∥∥∇u1(x)

1
q

∥∥∥q + (1− t)
∥∥∥∇u2(x)

1
q

∥∥∥q) 1
q

)
≤ tG0

(∥∥∥∇u1(x)
1
q

∥∥∥)+ (1− t)G0

(∥∥∥∇u2(x)
1
q

∥∥∥) a.e. in Ω.

Note that by definition G(ξ) = G0(‖ξ‖) for all ξ ∈ RN . Hence

G(∇u(x)) ≤ tG
(
∇u1(x)

1
q

)
+ (1− t)G

(
∇u2(x)

1
q

)
a.e. in Ω,

which proves that Ψ+ is convex.

Now we take two nontrivial positive solutions v, w ∈ W 1,p
0 (Ω) of (4.29). As

mentioned before we know that v, w belong to int
(
C1

0 (Ω)+

)
. Therefore, v, w ∈

dom Ψ+. For t ∈ (0, 1) sufficiently small and h ∈ C1
0 (Ω) we have v + th, w +
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th ∈ dom Ψ+. Hence, Ψ+ is Gateaux differentiable at v and w in the direction h.
Furthermore, the chain rule yields

Ψ′+ (vq) (h) =
1

q

∫
Ω

−div a(∇v)

vq−1
hdx, (4.31)

Ψ′+ (wq) (h) =
1

q

∫
Ω

−div a(∇w)

wq−1
hdx. (4.32)

Note that Ψ′+ is monotone since Ψ+ is convex. Then, from (4.31) and (4.32), we
derive

0 ≤
〈
Ψ′+ (vq)−Ψ′+ (wq) , vq − wq

〉
L1(Ω)

=
1

q

∫
Ω

(
−div a(∇v)

vq−1
+

div a(∇w)

wq−1

)
(vq − wq) dx

=
1

q

∫
Ω

(
a1v

ζ−1 − a2v
r−1

vq−1
− a1w

ζ−1 − a2w
r−1

wq−1

)
(vq − wq) dx

=
a1

q

∫
Ω

(
1

vq−ζ
− 1

wq−ζ

)
(vq − wq) dx+

a2

q

∫
Ω

(
wr−q − vr−q

)
(vq − wq) dx.

Since s 7→ 1
sq−ζ

− sr−q is strictly decreasing in (0,∞) we conclude that v = w

and thus, u∗ ∈ int
(
C1

0 (Ω)+

)
is the unique nontrivial positive solution of (4.29).

Obviously, v∗ = −u∗ ∈ − int
(
C1

0 (Ω)+

)
is the unique nontrivial negative solution of

(4.29). � �

Proposition 4.9. If hypotheses H(a)2 and H(f)2 hold, then u∗ ≤ u for all u ∈ S+

and v ≤ v∗ for all v ∈ S− with u∗, v∗ being the nontrivial unique constant sign
solutions of problem (4.29) obtained in Proposition 4.8.

Proof. Let u ∈ S+ and consider the Carathéodory function

ϑ+(x, s) =


0 if s < 0,

a1s
ζ−1 − a2s

r−1 if 0 ≤ s ≤ u(x),

a1u(x)ζ−1 − a2u(x)r−1 if u(x) < s.

(4.33)

We consider the C1-functional Φ+ : W 1,p
0 (Ω)→ R defined by

Φ+(u) =

∫
Ω

G(∇u)dx−
∫

Ω

Θ+(x, u)dx

with Θ+(x, s) =
∫ s

0
ϑ+(x, t)dt. By means of the truncation it is clear that Φ+ is

coercive and since it is also sequentially weakly lower semicontinuous there exists
an element û∗ ∈W 1,p

0 (Ω) such that

Φ+(û∗) = inf
[
Φ+(u) : u ∈W 1,p

0 (Ω)
]
< 0 = Φ+(0).

As before since ζ < p < r (see the proof of Proposition 4.4). Hence, û∗ 6= 0. Since
û∗ is a critical point of Φ+, we have

A (û∗) = Nϑ+ (û∗) . (4.34)

Acting in (4.34) with −û−∗ ∈ W
1,p
0 (Ω) we derive by applying Lemma 2.4(c) that

û ≥ 0. On the other hand, acting with (û∗ − u)
+ ∈ W 1,p

0 (Ω) in (4.34), there holds
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thanks to (4.33), (4.28) and u ∈ S+,〈
A (û∗) , (û∗ − u)

+
〉

=

∫
Ω

ϑ+ (x, û∗) (û∗ − u)
+
dx

=

∫
Ω

(
a1u

ζ−1 − a2u
r−1
)

(û∗ − u)
+
dx

≤
∫

Ω

f(x, u) (û∗ − u)
+
dx

=
〈
A (u) , (û∗ − u)

+
〉
.

This gives ∫
{û∗>u}

(a (∇û∗)− a (∇u) ,∇û∗ −∇u)RN dx ≤ 0.

Since a is strictly monotone (see Lemma 2.4(a)) we obtain |{û∗ > u}|N = 0. To
sum up, we have

0 6= û∗ ∈ [0, u] =
{
v ∈W 1,p

0 (Ω) : 0 ≤ v(x) ≤ u(x) a.e. in Ω
}
.

By definition of the truncation in (4.33) it follows ϑ+(x, û∗) = a1û
ζ−1
∗ − a2û

r−1
∗ .

Therefore, û∗ solves the auxiliary problem (4.29) but Proposition 4.8 proved the
uniqueness of constant sign solutions of (4.29). We deduce that û∗ = u∗ ∈
int
(
C1

0 (Ω)+

)
and u∗ ≤ u. Since u ∈ S+ was arbitrary we deduce that

u∗ ≤ u for all u ∈ S+.

Similarly, we prove that v ≤ v∗ for all v ∈ S−. � �

Now we are ready to produce extremal nontrivial constant sign solutions of our
original problem (1.1).

Proposition 4.10. Under the assumption H(a)2 and H(f)2 problem (1.1) possesses
a smallest positive solution u+ ∈ int

(
C1

0 (Ω)+

)
and a greatest negative solution

v− ∈ − int
(
C1

0 (Ω)+

)
.

Proof. Let C ⊆ S+ be a chain, i.e., a totally ordered subset of S+. Then there is a
sequence (un)n≥1 ⊆ S+ such that

inf C = inf
n≥1

un.

(see Dunford-Schwartz [17, p. 336]). Since un ∈ S+ we have

A(un) = Nf (un) for all n ≥ 1. (4.35)

Therefore, thanks to (4.27), H(f)2(i) and Lemma 2.4, we observe that (un)n≥1 ⊆
W 1,p

0 (Ω) is bounded and we may assume that

un ⇀ u in W 1,p
0 (Ω) and un → u in Lp(Ω). (4.36)

Acting on (4.35) with un − u ∈W 1,p
0 (Ω) and making use of (4.36) yields

lim
n→∞

〈A(un), un − u〉 = 0.

Therefore, the (S+)-property of A (see Proposition 2.8) gives un → u in W 1,p
0 (Ω).

Passing to the limit in (4.35) we get

A(u) = Nf (u). (4.37)
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Taking into account Proposition 4.9 provides u∗ ≤ un for all n ≥ 1 which implies
u∗ ≤ u and with regard to (4.37) u ∈ S+. Furthermore, we have u = inf C. Since
C was arbitrarily chosen in S+ the Kuratowski-Zorn Lemma ensures that S+ has
a minimal element u+ ∈ S+. Since S+ is downward directed we conclude that
u+ ∈ int

(
C1

0 (Ω)+

)
is the smallest nontrivial positive solution of (1.1).

Working with S− instead of S+ and applying again the Kuratowski-Zorn Lemma,
we can show that v− ∈ − int

(
C1

0 (Ω)+

)
is the greatest nontrivial negative solution

of (1.1). Recall that S− is upward directed. � �

Having these extremal nontrivial constant sign solutions, we are now in the
position to produce a nodal (sign changing) solution of problem (1.1).

Proposition 4.11. Let H(a)2 and H(f)2 be satisfied. Then problem (1.1) has a
nodal solution y0 ∈ [v−, u+] ∩ C1

0 (Ω).

Proof. By reason of Proposition 4.10 we know that u+ ∈ int
(
C1

0 (Ω)+

)
and v− ∈

− int
(
C1

0 (Ω)+

)
are the extremal nontrivial constant sign solutions of (1.1). With

the aid of these extremal solutions we introduce the cut-off function f0 : Ω×R→ R

f0(x, s) =


f (x, v−(x)) if s < v−(x)

f (x, s) if v−(x) ≤ s ≤ u+(x)

f (x, u+(x)) if u+(x) < s

, (4.38)

which is clearly a Carathéodory function. For F0(x, s) =
∫ s

0
f0(x, t)dt we define the

C1-functional ϕ0 : W 1,p
0 (Ω)→ R by

ϕ0(u) =

∫
Ω

G (∇u) dx−
∫

Ω

F0(x, u)dx.

For f±0 (x, s) = f0 (x,±s±) we also consider the functionals ϕ±0 : W 1,p
0 (Ω)→ R

ϕ±0 (u) =

∫
Ω

G (∇u) dx−
∫

Ω

F±0 (x, u)dx

with F±0 (x, s) =
∫ s

0
f±0 (x, t)dt.

As in the proof of Proposition 4.9 it can be easily shown that

Kϕ0 ⊆ [v−, u+], Kϕ+
0
⊆ [0, u+] , Kϕ−0

⊆ [v−, 0] .

Then, the extremality properties of u+ ∈ int
(
C1

0 (Ω)+

)
and v− ∈ − int

(
C1

0 (Ω)+

)
imply that

Kϕ0 ⊆ [v−, u+], Kϕ+
0

= {0, u+} , Kϕ−0
= {v−, 0} . (4.39)

Claim: u+ ∈ int
(
C1

0 (Ω)+

)
and v− ∈ − int

(
C1

0 (Ω)+

)
are local minimizers of ϕ0.

First note that ϕ+
0 is coercive (see (4.38)) and sequentially weakly lower semi-

continuous. Then there exists û ∈W 1,p
0 (Ω) such that

ϕ+
0 (û) = inf

{
ϕ+

0 (u) : u ∈W 1,p
0 (Ω)

}
.

Similar to the proof of Proposition 4.4 (see (4.5)) we have ϕ+
0 (û) < 0 = ϕ+

0 (0),

hence û 6= 0. Then, (4.39) implies û = u+ ∈ int
(
C1

0 (Ω)+

)
. Since ϕ0

∣∣
C1

0 (Ω)+
=

ϕ+
0

∣∣
C1

0 (Ω)+
we deduce that u+ ∈ int

(
C1

0 (Ω)+

)
is a local C1

0 (Ω)-minimizer of ϕ0 and

thanks to Proposition 2.7 it follows that u+ is a local W 1,p
0 (Ω)-minimizer of ϕ0.
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The assertion for v− ∈ − int
(
C1

0 (Ω)+

)
can be shown similarly, using ϕ−0 instead of

ϕ+
0 . This proves the claim.
We may assume, without loss of generality, that ϕ0(v−) ≤ ϕ0(u+). By virtue of

the claim, we find a number ρ ∈ (0, 1) such that ‖v− − u+‖W 1,p
0 (Ω) > ρ and

ϕ0 (v−) ≤ ϕ0 (u+) < inf
[
ϕ0(u) : ‖u− u+‖W 1,p

0 (Ω) = ρ
]

= η0. (4.40)

(see Aizicovici-Papageorgiou-Staicu [1, proof of Proposition 29]). Because of the
definition of the truncation in (4.38) it is clear that ϕ0 is coercive and so it satisfies
the C-condition. This fact in conjunction with (4.40) permits the usage of the

mountain pass theorem stated in Theorem 2.2. Therefore, we find y0 ∈ W 1,p
0 (Ω)

such that

y0 ∈ Kϕ0 ⊆ [v−, u+] and η0 ≤ ϕ0(y0) (4.41)

(see also (4.39)). From (4.41), (4.38), and (4.40) it follows that y0 is a solution of
(1.1) and y0 6∈ {v−, u+}. The nonlinear regularity theory implies that y0 ∈ C1

0 (Ω).
Since y0 is a critical point of ϕ0 of mountain pass type, we have

C1(ϕ0, y0) 6= 0. (4.42)

On the other side Proposition 4.7 amounts

Ck(ϕ, 0) = 0 for all k ≥ 0.

Moreover, (4.38) implies ϕ
∣∣
[v−,u+]

= ϕ0

∣∣
[v−,u+]

and since u+ ∈ int
(
C1

0 (Ω)+

)
, v− ∈

− int
(
C1

0 (Ω)+

)
combined with the homotopy invariance of critical groups (cf. the

proof of Proposition 3.10) we infer that

Ck(ϕ0, 0) = Ck(ϕ, 0) = 0 for all k ≥ 0. (4.43)

Comparing (4.42) and (4.43) we obtain that y0 ∈ [v−, u+] ∩ C1
0 (Ω) \ {0}. Due to

the extremality of u+ and v− the solution y0 must be nodal. � �

Summarizing this section we can state the following multiplicity theorem for
problem (1.1).

Theorem 4.12. If hypotheses H(a)2 and H(f)2 hold, then problem (1.1) has at
least four constant sign solutions

• u0, u1 ∈ int
(
C1

0 (Ω)+

)
, u0 ≤ u1, u0 6= u1

• v0, v1 ∈ − int
(
C1

0 (Ω)+

)
, v1 ≤ v0, v1 6= v0

and at least one sign-changing (nodal) solution

y0 ∈ [v0, u0] ∩ C1
0 (Ω).

Proof. The result follows from the Propositions 4.4, 4.6, and 4.11. � �

In the next section we will improve Theorem 4.12 for a particular case of problem
(1.1) and with stronger regularity conditions on the nonlinearity f(x, ·). It will be
shown the existence of a second nodal solution for a total of six nontrivial solutions
given with complete sign information.
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5. (p, 2)-equation

In this section we deal with a particular case of problem (1.1). Namely, we
assume that

a(ξ) = ‖ξ‖p−2ξ + ξ for all ξ ∈ RN with 2 ≤ p <∞.

In this case the differential operator becomes the (p, 2)-Laplacian, that is

div a(∇u) = ∆pu+ ∆u for all u ∈W 1,p
0 (Ω).

This differential operator arises in problems of quantum physics in connection
with Derick’s model [14] for the existence of solitons (see Benci-D’Avenia-Fortunato-
Pisani [8]).

Therfore, the problem under consideration is the following:

−∆pu−∆u = f(x, u) in Ω,

u = 0 on ∂Ω.
(5.1)

Under stronger regularity conditions on the nonlinearity f(x, ·) we will show that
problem (5.1) has a second nodal solution for a total of six nontrivial solutions (two
positive, two negative, and two nodal).

We need to strengthen our hypotheses on the mapping f : Ω × R → R in the
following way.

H(f)3 f : Ω × R → R is a measurable function such that f(x, 0) = 0, f(x, ·) ∈
C1(R) for a.a. x ∈ Ω, hypotheses H(f)3(ii), (iii), (v), (vi) are the same as
the corresponding hypotheses H(f)2(ii), (iii), (v), (vi) and

(i) |f ′s(x, s)| ≤ a(x)
(
1 + |s|r−2

)
for a.a. x ∈ Ω, for all s ∈ R, with a ∈

L∞(Ω)+, and 2 < r < p∗;

(iv) f ′s(x, 0) = lims→0
f(x,s)
s uniformly for a.a. x ∈ Ω,

f ′s(x, 0) ∈
[
λ̂m(2), λ̂m+1(2)

]
a.e. in Ω with m ≥ 2,

and f ′s(·, 0) 6= λ̂m(2), f ′s(·, 0) 6= λ̂m+1(2).

Remark 5.1. Note that the asymptotic behavior of f(x, ·) at ±∞ remains the
same. The situation has changed near zero (see H(f)3(iv)) since the concave term
has power equal to q = 2 (i.e. ζ = q = 2). This changes the computation of the
critical groups of the energy functional ϕ at the origin.

Example 5.2. The following function satisfies hypotheses H(f)3 (the x-dependence
is dropped again):

f(x) =

{
λs− cs2 if |s| ≤ 1

βs ln |s| − (λ− c)|s| 12 if |s| > 1

with λ ∈
(
λ̂m(2), λ̂m+1(2)

)
for some m ≥ 2, β > 4λ, and c = 2β−λ

5 > 0.

We start with the computation of the critical groups at the origin.

Proposition 5.3. Let hypotheses H(f)3 be satisfied. Then

Ck(ϕ, 0) = δk,dmZ for all k ≥ 0

with dm = dim⊕mi=1E
(
λ̂i(2)

)
≥ 2.
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Proof. Consider the C2-functional γ : W 1,p
0 (Ω)→ R defined by

γ(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖22 −

1

2

∫
Ω

f ′u(x, 0)u2dx.

By virtue of hypothesis H(f)3(iv), given ε > 0, there exists δ = δ(ε) ∈ (0, 1) such
that ∣∣∣∣f(x, s)

s
− f ′s(x, 0)

∣∣∣∣ ≤ ε for a.a. x ∈ Ω and for all 0 < |s| ≤ δ,

which implies that∣∣∣∣F (x, s)− 1

2
f ′s(x, 0)s2

∣∣∣∣ ≤ ε for a.a. x ∈ Ω and for all 0 < |s| ≤ δ.

Therefore, we find % ∈ (0, 1) such that

‖ϕ− γ‖
C1

0

(
B
C
%

) ≤ ε,
where B

C

% =
{
u ∈ C1

0 (Ω) : ‖u‖C1
0 (Ω) ≤ %

}
.

Choosing ε > 0 sufficiently small gives

Ck

(
ϕ
∣∣
C1

0 (Ω)
, 0
)

= Ck

(
γ
∣∣
C1

0 (Ω)
, 0
)

for all k ≥ 0

(see Chang [11, p. 336]) and since C1
0 (Ω) is dense in W 1,p

0 (Ω) it follows

Ck(ϕ, 0) = Ck(γ, 0) for all k ≥ 0 (5.2)

(see Palais [33]). Moreover, due to Cingolani-Vannella [13, Theorem 1], one has

Ck(γ, 0) = δk,dmZ for all k ≥ 0,

which, because of (5.2), results in

Ck(ϕ, 0) = δk,dmZ for all k ≥ 0.

� �

A careful inspection of the proofs in the previous section reveals that the results
remain valid although we have a different geometry near zero (since ζ = q = 2 in
the notation of Section 4). In this case, by means of hypotheses H(f)3(i), (iv), we
know that for given ε > 0 there is a number M27 = M27(ε) > 0 such that

f(x, s)s ≥ (f ′s(x, 0)− ε) s2 −M27|s|r for a.a. x ∈ Ω and for all s ∈ R.

This unilateral growth estimate leads to the following auxiliary Dirichlet problem

−∆pu−∆u = (f ′u(x, 0)− ε)u2 −M27|u|r−2u(x) in Ω,

u = 0 on ∂Ω.
(5.3)

Choosing ε ∈
(

0, λ̂m(2)− λ̂m+1(2)
)

we can show that problem (5.3) admits a

unique nontrivial positive solution u∗ ∈ int
(
C1

0 (Ω)+

)
and, by the oddness of (5.3),

we have that v∗ = −u∗ ∈ − int
(
C1

0 (Ω)+

)
is the unique nontrivial negative solution
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of (5.3). The proof can be done as the proof of Proposition 4.8. Therefore, the
arguments of Section 4 apply and we produce five nontrivial solutions

• u0, u1 ∈ int
(
C1

0 (Ω)+

)
, u0 ≤ u1, u0 6= u1;

• v0, v1 ∈ − int
(
C1

0 (Ω)+

)
, v1 ≤ v0, v1 6= v0;

• y0 ∈ [v0, u0] ∩ C1
0 (Ω) nodal.

Using these five solutions and Morse theory, we can produce a sixth nontrivial
solution being nodal.

Theorem 5.4. Let hypotheses H(f)3 be satisfied. Then problem (5.1) has at least
six nontrivial solutions

• u0, u1 ∈ int
(
C1

0 (Ω)+

)
, u0 ≤ u1, u0 6= u1;

• v0, v1 ∈ − int
(
C1

0 (Ω)+

)
, v1 ≤ v0, v1 6= v0;

• y0, y1 ∈ int
C1

0 (Ω)
[v0, u0] nodal.

Proof. As we already remarked the conclusion of Theorem 4.12 remains valid in
the present setting and thus we already have five nontrivial solutions

• u0, u1 ∈ int
(
C1

0 (Ω)+

)
, u0 ≤ u1, u0 6= u1;

• v0, v1 ∈ − int
(
C1

0 (Ω)+

)
, v1 ≤ v0, v1 6= v0;

• y0 ∈ [v0, u0] ∩ C1
0 (Ω) nodal.

Without loss of generality we may assume that both, u0 and v0, are extremal
nontrivial constant sign solutions, i.e., u0 = u+ and v0 = v− in the notation of
Proposition 4.10. We have

−∆pu0 −∆u0 − f(x, u0) = 0 = −∆py0 −∆y0 − f(x, y0) for a.a. x ∈ Ω,

and y0 ≤ u0. As a(ξ) = ‖ξ‖p−2ξ + ξ for all ξ ∈ RN we see that a ∈ C1(RN ,RN ).
Hence,

∇a(ξ) = ‖ξ‖p−2

(
I + (p− 2)

ξ ⊗ ξ
‖ξ‖2

)
+ I for all ξ ∈ RN \ {0},

implying

(∇a(ξ)y, y)RN ≥ ‖y‖
2 for all ξ, y ∈ RN .

This fact along with hypothesis H(f)3(iv) permits the usage of the tangency prin-
ciple of Pucci-Serrin [37, p. 35] to obtain y0(x) < u0(x) for all x ∈ Ω. Similarly,
one can prove v0(x) < y0(x) for all x ∈ Ω.

Let % = max
{
‖u0‖C(Ω), ‖v0‖C(Ω)

}
and let ξ% be as postulated in hypothesis

H(f)3(vi). For ξ > ξ% we infer

−∆pu0(x)−∆u0(x) + ξu0(x)p−1

= f(x, u0(x)) + ξu0(x)p−1

= f(x, u0(x)) + ξ%u0(x)p−1 + (ξ − ξ%)u0(x)p−1

≥ f(x, y0(x)) + ξ%|y0(x)|p−2y0(x) + (ξ − ξ%)u0(x)p−1

> f(x, y0(x)) + ξ%|y0(x)|p−2y0(x) + (ξ − ξ%) |y0(x)|p−2y0(x)

= −∆py0(x)−∆y0(x) + ξ|y0(x)|p−2y0(x) a.e. in Ω.
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Since u0 ∈ int
(
C1

0 (Ω)+

)
and y0 ∈ C1

0 (Ω) we may apply the strong comparison
principle of Papageorgiou-Smyrlis [36, Proposition 3] and deduce that u0 − y0 ∈
int
(
C1

0 (Ω)+

)
. In a similar fashion we show that y0−v0 ∈ int

(
C1

0 (Ω)+

)
. Therefore,

we have proved that

y0 ∈ int
C1

0 (Ω)
[v0, u0]. (5.4)

Let ϕ0 ∈ C2−0
(
W 1,p

0 (Ω)
)

be the functional introduced in the proof of Proposi-

tion 4.11 by truncating the nonlinearity f(x, ·) at {v0(x), u0(x)}. Recall that

C1(ϕ0, y0) 6= 0 (5.5)

(see (4.42)). The homotopy invariance of critical groups along with (5.4) gives

Ck(ϕ0, y0) = Ck(ϕ, y0) for all k ≥ 0, (5.6)

(see the proof of Proposition 3.10) which implies, due to (5.5),

C1(ϕ, y0) 6= 0.

Since ϕ ∈ C2
(
W 1,p

0 (Ω)
)

, from Papageorgiou-Smyrlis [36, the proof of Proposition

12, Claim 2], we infer that

Ck(ϕ, y0) = δk,1Z for all k ≥ 0,

which implies, because of (5.6),

Ck(ϕ0, y0) = δk,1Z for all k ≥ 0. (5.7)

Recall that u0 ∈ int
(
C1

0 (Ω)+

)
and v0 ∈ − int

(
C1

0 (Ω)+

)
are local minimizers of ϕ0

(see the claim in the proof of Proposition 4.11). Hence, we get

Ck(ϕ0, u0) = Ck(ϕ0, v0) = δk,0Z for all k ≥ 0. (5.8)

Since ϕ0

∣∣
[v0,u0]

= ϕ
∣∣
[v0,u0]

, u0 ∈ int
(
C1

0 (Ω)+

)
, v0 ∈ − int

(
C1

0 (Ω)+

)
, Proposition

5.3, and the homotopy invariance of critical groups we see that

Ck(ϕ0, 0) = δk,dmZ for all k ≥ 0. (5.9)

Finally, by means of the truncation defined in (4.38), it is easy to see that ϕ0 is
coercive. Therefore

Ck (ϕ0,∞) = δk,0Z for all k ≥ 0. (5.10)

Now suppose that Kϕ0
= {0, u0, v0, y0}. Taking into account the Morse relation

given in (2.7) by setting t = −1 combined with (5.7)–(5.10) results in

(−1)dm + 2(−1)0 + (−1)1 = (−1)0,

which gives the contradiction (−1)dm = 0. Hence, we can find another y1 ∈ Kϕ0

satisfying y1 6∈ {0, u0, v0, y0}. Due to (4.39) we know that Kϕ0 ⊆ [u0, v0] and as we
supposed that u0, v0 are the extremal solutions of (5.1), it follows that y1 is a nodal
solution of (5.1) distinct from y0. Finally, the usage of the nonlinear regularity
theory implies that y1 ∈ C1

0 (Ω). Moreover, similar to y0 (see (5.4)), we can show
that

y1 ∈ int
C1

0 (Ω)
[v0, u0].

The proof is complete. � �
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6. Nonlinear eigenvalue problem

In this section we deal with the following nonlinear eigenvalue problem

−div a(∇u) = λf(x, u) in Ω,

u = 0 on ∂Ω.
(Pλ)

As before, the nonlinearity f : Ω × R → R is supposed to be a Carathéodory
function which exhibits (p− 1)-superlinear growth near ±∞ without satisfying the
Ambrosetti-Rabinowitz condition. Our aim is to prove that problem (Pλ) admits
at least two nontrivial solutions provided λ > 0 is sufficiently small. Moreover, one
of these solutions vanishes as λ→ 0+ and the other one blows up as λ→ 0+, both
in the Sobolev norm ‖ · ‖W 1,p

0 (Ω).

We suppose the following conditions on the nonlinearity f : Ω× R→ R.

H(f)4: f : Ω×R→ R is a Carathéodory function satisfying f(x, 0) = 0, f(x, s) ≥ 0
for a.a. x ∈ Ω and for all s ≥ 0 such that

(i) |f(x, s)| ≤ a(x)
(
1 + |s|r−1

)
for a.a. x ∈ Ω, for all s ≥ 0, with a ∈

L∞(Ω)+, and p < r < p∗;
(ii) if F (x, s) =

∫ s
0
f(x, t)dt, then

lim
s→+∞

F (x, s)

sp
= +∞ uniformly for a.a. x ∈ Ω;

(iii) there exist τ ∈
(

(r − p) max
{
N
p , 1

}
, p∗
)

and β0 > 0 such that

lim inf
s→+∞

f(x, s)s− pF (x, s)

sτ
≥ β0 uniformly for a.a. x ∈ Ω;

(iv) there exist ζ ∈ (1, q) (q as in hypothesis H(a)2(v)) and δ > 0 such that

ζF (x, s) ≥ f(x, s)s > 0 for a.a. x ∈ Ω, for all 0 < s ≤ δ,
and

essinf
Ω

F (·, δ) > 0;

(v) for every % > 0 there exists ξ% > 0 such that

s 7→ f(x, s) + ξ%s
p−1

is nondecreasing on [0, %] for a.a. x ∈ Ω.

Remark 6.1. Since we are looking for positive solutions and as the hypotheses
above concern the positive semiaxis R+ = [0,∞), without loss of generality, we may
assume that f(x, s) = 0 for a.a. x ∈ Ω and for all s ≤ 0.

We have the following existence theorem for problem (Pλ).

Theorem 6.2. Assume H(a)2 and H(f)4. Then there exists λ∗ > 0 such that
problem (Pλ) possesses at least two solutions uλ, vλ ∈ int

(
C1

0 (Ω)+

)
for all λ ∈

(0, λ∗) satisfying

‖uλ‖W 1,p
0 (Ω) →∞ and ‖vλ‖W 1,p

0 (Ω) → 0 as λ→ 0+.

Proof. Let ϕλ : W 1,p
0 (Ω)→ R be the C1-energy functional of problem (Pλ) defined

by

ϕλ(u) =

∫
Ω

G(∇u)dx− λ
∫

Ω

F (x, u)dx
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with F (x, s) =
∫ s

0
f(x, t)dt. By means of H(f)4(i) and (iv) we obtain the estimate

|F (x, s)| ≤ M28

q

(
s+
)q

+
M29

r

(
s+
)r

for a.a. x ∈ Ω and for all s ∈ R (6.1)

with positive constants M28 and M29. Taking into account Corollary 2.5, (6.1), and
the Sobolev embedding theorem gives

ϕλ(u) =

∫
Ω

G(∇u)dx− λ
∫

Ω

F (x, u)dx

≥ c1
p(p− 1)

‖u‖p
W 1,p

0 (Ω)
− λ

[
M28

q
‖u‖qq +

M29

r
‖u‖rr

]
≥ c1
p(p− 1)

‖u‖p
W 1,p

0 (Ω)
− λ

[
M30‖u‖qW 1,p

0 (Ω)
+M31‖u‖rW 1,p

0 (Ω)

] (6.2)

for all u ∈ W 1,p
0 (Ω) and with positive constants M30,M31 both independent of

λ > 0. Now let α ∈
(

0, 1
r−p

)
and suppose that ‖u‖W 1,p

0 (Ω) = λ−α. Then, (6.2)

reads as

ϕλ(u) ≥ c1
p(p− 1)

λ−αp −M30λ
1−αq −M31λ

1−αr =: ξ(λ). (6.3)

Since α < 1
r−p there holds −αp < 1− αr and recall q < p < r. Therefore,

ξ(λ)→ +∞ as λ→ 0+. (6.4)

Hence, there exists a number λ∗1 > 0 such that ξ(λ) > 0 for all λ ∈ (0, λ∗1). Then,
from (6.3) one has

ϕλ(u) ≥ ξ(λ) > 0 = ϕλ(0) (6.5)

for all u ∈W 1,p
0 (Ω) with ‖u‖W 1,p

0 (Ω) = λ−α and λ ∈ (0, λ∗1).

As before, thanks to hypotheses H(f)4(i),(ii), we derive

ϕλ(tû1(p))→ −∞ as t→ +∞ for all λ > 0. (6.6)

Finally, Proposition 3.4 ensures that ϕλ satisfies the C-condition. This fact along
with (6.5) and (6.6) allow us to apply the mountain pass theorem stated in Theorem

2.2. This yields an element uλ ∈W 1,p
0 (Ω) such that

uλ ∈ Kϕλ \ {0} and ξ(λ) ≤ ϕλ(uλ). (6.7)

Hence, uλ is a nontrivial solution of (Pλ). As before, the nonlinear regularity
theory (see [26], [27]) and the nonlinear maximum principle (see [37] and hypothesis
H(f)4(v)) imply that uλ ∈ int

(
C1

0 (Ω)+

)
. Now, by applying (6.7), Corollary 2.5 and

hypothesis H(f)4(i), it follows

ξ(λ) ≤ ϕλ(uλ) ≤M32

(
1 + ‖uλ‖rW 1,p

0 (Ω)

)
(6.8)

for some M32 > 0. The statement in (6.8) along with (6.4) yields that

‖uλ‖W 1,p
0 (Ω) →∞ as λ→ 0+.

Now let us prove the second assertion of the theorem. To this end, recall that
we have again

ϕλ(u) ≥ c1
p(p− 1)

‖u‖p
W 1,p

0 (Ω)
− λ

[
M30‖u‖qW 1,p

0 (Ω)
+M31‖u‖rW 1,p

0 (Ω)

]
(6.9)
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for all u ∈ W 1,p
0 (Ω) (see (6.2)). Let β ∈

(
0, 1

p

)
and set ‖u‖W 1,p

0 (Ω) = λβ . Then,

(6.9) becomes

ϕλ(u) ≥ c1
p(p− 1)

λβp −M30λ
1+βq −M31λ

1+βr =: ω(λ).

Since

ω(λ) = λ

[
c1

p(p− 1)
λβp−1 −M24λ

βq −M25λ
βr

]
and βp− 1 < 0, we see that

ω(λ)→ +∞ as λ→ 0+.

Therefore we find a number λ∗2 > 0 such that

ϕλ(u) ≥ ω(λ) > 0 = ϕλ(0) (6.10)

for all u ∈W 1,p
0 (Ω) with ‖u‖W 1,p

0 (Ω) = λβ and λ ∈ (0, λ∗2).

Let Bλ =
{
u ∈W 1,p

0 (Ω) : ‖u‖W 1,p
0 (Ω) ≤ λβ

}
. By means of hypotheses H(a)2(v)

and H(f)4(iv) we obtain, for t ∈ (0, 1) sufficiently small, that

ϕλ (tû1(q)) < 0

(cf. the proof of Proposition 4.4). Therefore

inf
∂Bλ

ϕλ ≥ ω(λ) > 0 and inf
Bλ

ϕλ < 0.

Set dλ := inf∂Bλ ϕλ− infBλ ϕλ and let ε ∈ (0, dλ). Taking into account the Ekeland

variational principle (see, for example, Gasiński-Papageorgiou [20, p. 579]) there
exists uε ∈ Bλ such that

ϕλ (uε) ≤ inf
Bλ

ϕλ + ε (6.11)

and

ϕλ (uε) ≤ ϕλ(y) + ε ‖y − uε‖W 1,p
0 (Ω) for all y ∈ Bλ. (6.12)

Since ε < dλ, we infer from (6.11) that

ϕλ (uε) < inf
∂Bλ

ϕλ,

thus uε ∈ Bλ =
{
u ∈W 1,p

0 (Ω) : ‖u‖W 1,p
0 (Ω) < λβ

}
. This ensures that uε + th ∈ Bλ

for every h ∈ W 1,p
0 (Ω) and for all t > 0 sufficiently small. Taking y = uε + th in

(6.12) for h ∈ W 1,p
0 (Ω) with such a small t > 0, then dividing by t > 0 and letting

t→ 0+, we obtain

−ε‖h‖W 1,p
0 (Ω) ≤ 〈ϕ

′
λ (uε) , h〉 .

Since h ∈W 1,p
0 (Ω) is arbitrary the last inequality gives ‖ϕ′λ (uε)‖∗ ≤ ε.

Now, let εn → 0+ and let un = uεn . Hence,(
1 + ‖un‖W 1,p

0 (Ω)

)
ϕ′λ (un)→ 0

which in view of Proposition 3.4 implies that un → vλ in W 1,p
0 (Ω) for some vλ ∈

W 1,p
0 (Ω).
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Passing to the limit in (6.11) as n→∞ we have

ϕλ (vλ) = inf
Bλ

ϕλ < 0 = ϕλ(0)

which means that vλ 6= 0 being a local minimizer of ϕλ. Therefore, vλ is a solution
of (Pλ) and vλ ∈ int

(
C1

0 (Ω)+

)
(as before). Moreover, since uλ is a critical point of

ϕλ of mountain pass type, it follows that vλ 6= uλ. Finally, note that

‖vλ‖W 1,p
0 (Ω) < λβ .

Thus, ‖vλ‖W 1,p
0 (Ω) → 0 as λ→ 0+. Letting λ∗ = min {λ∗1, λ∗2} we have the conclu-

sion of our theorem. � �
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[19] J. P. Garćıa Azorero, I. Peral Alonso, J. J. Manfredi, Sobolev versus Hölder local minimizers
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