THE EFFECT OF THE WEIGHT FUNCTION ON THE NUMBER
OF SOLUTIONS FOR DOUBLE PHASE PROBLEMS IN R¥

WULONG LIU AND PATRICK WINKERT

ABSTRACT. In this paper we deal with quasilinear elliptic equations of the
form
—div (\Vu|p72Vu + a(a:c)\Vu|q72Vu) + [ulP~2u + a(em)|u|?%u = f(u)

in RN, where 0 < a(-) € C (RN) N L= (RV), 1<p < N,p<q<p* = &,
€ > 0 is a parameter, and f: R — R is a continuous function that grows
superlinearly and subcritically which does not need to fulfill the Ambrosetti-
Rabinowitz condition. Based on the Lusternik-Schnirelmann category we prove
several existence results of constant-sign and sign-changing solutions to the
problem above provided the parameter € > 0 is sufficiently small.

1. INTRODUCTION AND MAIN RESULT

In this paper we study quasilinear elliptic equations with unbalanced growth in
the whole R given by
T.(u) + |uP2u + a(ex)|u|”%u = f(u) in RY,
ue WhH(RY),
where T;(u) is the double phase operator given by
To(u) = —div (|VulP>Vu + a(ez)|Vu|!™*Vu) (1.2)

with € > 0 being a parameter, W< (R¥) is the related Musielak-Orlicz Sobolev
space depending on ¢ and we suppose the following assumptions:

(H0) 0<a(-) e C(RM)NL>® (RY),1<p<Nandp<g<p'= NN—_’; with the
critical exponent p* of p.

(1.1)

(H1) The weight function a(-) satisfies the following conditions:
(i) inf a(x)=0;
z€RN
(ii) there exists an open bounded set Q C RY such that 0 < rg(l{)% a(x);
(iii) inga(w) = 0 with Q from (ii);
zE
(iv) a(-) is radially symmetric, that is, a(x) = a(|z|) for a.a.z € RV,
Remark 1.1. Let A = {x € Q: a(z) = 0} with Q from (H1)(ii). Then (H1)(iii)
implies that A # (.

(H2) f: R — R is a continuous and odd function satisfying the following condi-
tions:
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(i) there exist r € (q,p*) and a constant C' > 0 such that
f(s)|<C(1+]|s[""") forall s> 0;

(111) |s|—1>HJ}oo ‘8“1_28

f(s)

(iv) o1 is strictly increasing on (—oo,0) and on (0, c0).
s

The corresponding energy functional E.: W17 (RY) — R for problem (1.1) is
given by

1 1
Bw) = 3 ol + ¢ [ alen) (Val” + ol do = [ Pl

where F(s) = [ f(t)dt. A function u € W'He(RY) is said to be a weak solution
of (1.1) if

/ (IVulP~2Vu + a(ez)|Vul|!*Vu) ~Vvd:r+/ (JulP~?u + a(ex)|u|?*u)vdx
Q Q

—/Qf(u)vdx:()

is satisfied for all v € W17 (RY).
Our first result reads as follows. Note that v stands for the genus, see its Defi-
nition in Section 2.

Theorem 1.2. Let hypotheses (HO), (H1) and (H2) be satisfied and let A be given
as in Remark 1.1. Then there exists € > 0 such that, for any 0 < ¢ < &, problem
(1.1) has at least

(i) v(A\{0}) pairs (u™, (—u)™) of positive weak solutions;

(ii) v(A\ {0}) pairs (u=, (—u)™) of negative weak solutions;

(iii) v(A\{0}) pairs (u™ +u™, (—u)™ + (—u)~) of odd weak solutions with pre-

cisely two nodal domains.

Furthermore, for e, — 0, if u., is one of these solutions and p, € RN is a global
mazimum point of u., , then we have

lim a (g,p,) = 0.

en—0
Next, we are interested in positive solutions of problem (1.1) under the following
hypotheses on the right-hand side:

(H3) f: R — R is a continuous function satisfying the following conditions:
(i) there exist r € (¢,p*) and a constant C' > 0 such that

|f(s)] <C(1+]s|"™") forall s> 0;

(111) slir-&{loo |8|q_28

f(s)

iv is strictly increasing on (0, c0).
sa—1
(v) f(s)=0for s <0.
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The second result in this paper is given as follows, whereby cat stands for the
category of a set, see its precise Definition in Section 2.

Theorem 1.3. Let hypotheses (HO), (H1)(i)—(iii) and (H3) be satisfied. Then there
exists € > 0 such that for every 0 < & < & problem (1.1) has at least cat(A) positive
solutions. Furthermore, for e, — 0, if uc, is one of these solutions and p, € RN
s a global mazimum point of u.,, then we have

li pn) = 0.
iy @ (Enn) =0

The proofs of Theorems 1.2 and 1.3 are mainly based on the Lusternik-Schnirel-
mann category theory along with appropriate subsets of the Nehari manifold. In
particular, the proof of Theorem 1.2 relies on the properties of the odd symmetry
invariant Nehari submanifold. To the best of our knowledge, the result of Theorem
1.2 is new in the literature and has not been published before. The main novelties
in our work is the combination of an elliptic equation with unbalanced growth on
the whole of RY and a parameter ¢ inside of the weight function in order to control
the number of solutions of problem (1.1).

The application of the Lusternik-Schnirelmann category to elliptic equations

began with the work of Benci-Cerami [11], who studied the existence of positive
solution of the problem
~Aut+du=u""t inQ u=0 ond?, pe(2,2). (1.3)

The authors proved that if p is close to 2*, problem (1.3) has at least cat(2)
solutions, where cat(€2) denotes the Lusternik-Schnirelmann category of Q. In
2000, Bartsch-Wang [9] considered nonlinear Schrédinger equations defined by

~Au+Na(z) +Du=vP, u>0 inRY, 1<p<2-—1 (1.4)
and proved existence of at least cat(f2) solutions of (1.4) provided A > 0 is suffi-
ciently large. We also refer to the paper by Bartsch-Wang [8]. Note that Theorem
1.3 is motivated by the works of Figueiredo-Furtado [26] and Alves-Figueiredo-

Furtado [3]. Indeed, in [26] the authors studied the multiplicity of positive solutions
for the equation

—e? div(a(z)|VuP72Vu) + uP~' = f(u) inRY, we WHP(RY),

while in [20] the existence of nontrivial solutions of
2
(%v - A(z)) wt V()= f(lu)u inRY

has been shown. In both papers the number of solutions depend on the Lusternik-
Schnirelmann category theory provided the parameter is sufficiently small. In gen-
eral, the Lusternik-Schnirelmann category became a very powerful tool over the
years and has been used in different models and equations to get multiplicity of

solutions. We refer, for example, to the papers of Alves [1], Alves-Ding [2], Benci-
Bonanno-Micheletti [10], Cingolani [15], Cingolani-Lazzo [16], Figueiredo-Pimenta-
Siciliano [27], Figueiredo-Siciliano [28], see also the references therein.

In all of the aforementioned works, the existence of constant sign solutions has
been demonstrated. In 2003, Castro-Clapp [14] studied the problem

Au4du+u? 2u=0 inQ, u=0 ondQ, ulrz)=—u(z)
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for all z € Q with 7 being a nontrivial orthogonal involution and proved the ex-
istence of pairs of sign-changing solutions provided A > 0 is small enough. An
improvement of their results has been done in the work of Cano-Clapp [13]. Re-
cently, Liu-Dai-Winkert [37] obtained v(Q \ {0}) pairs (+u) of odd weak solutions
with precisely two nodal domains for the (p, ¢)-problem

—Apu—pAgu = f(u) = [uff2u inQy, u=0 ondQy, u(-z)=—u(r)

for a.a.z € Q) provided A > 0 is sufficiently small, where 2 := A{Q is an expanding
domain for Q C RY to be bounded and symmetric.

In our paper we extend some of the results of [37] to parameter dependent weight
functions of double phase type as given in (1.1) and (1.2). It is worth noting that
the issue addressed in problem (1.1) arises in the context of the study of certain non-
Newtonian fluids, where |Vu|P~2 + a(x)|Vu|?~? stands for the viscosity coefficient
of the fluid and f(u) — |u|P~?u — a|u|9~2u is the divergence of shear stress. Then
the solutions of (1.1) denote the speed of the fluid, see Liu-Dai [34]. Note that the
operator in (1.2) is related to the energy functional

R(u) = /(|vu|p + a(@)|Vul?) dz, (1.5)

which was first introduced by Zhikov [48] in order to describe models for strongly
anisotropic materials in the context of homogenization and elasticity. In fact, the
hardening properties of strongly anisotropic materials change point by point and
the modulating coefficient a(-) helps to describe the mixture of two different materi-
als with hardening powers p and q. We point out that functionals of the form (1.5)
belong to the class of the integral functionals with nonstandard growth condition
according to Marcellini’s terminology [39, 40]. Over the past 10 years several reg-
ularity results for local minimizers of (1.5) have been developed, we mention just
the most famous ones by Baroni-Colombo-Mingione [5, 6, 7], De Filippis-Mingione
[22] and Colombo-Mingione [18, 19], see also the references therein. Concern-
ing existence and multiplicity results of double phase problems, lots of works for
bounded or unbounded domains with different right-hand sides and various tech-
niques have been published in the last decade. We mention the papers of Biagi-
Esposito-Vecchi [12], Colasuonno-Squassina [17], Crespo-Blanco-Gasinski-Winkert
[21], Farkas-Winkert [25], Gasiriski-Papageorgiou [29], Gasiniski-Winkert [30, 31],
Liu-Dai [33, 34, 35], Liu-Papageorgiou [36], Papageorgiou-Radulescu-Repovs [41,

| Perera-Squassina [13] and Zeng-Bai-Gasiriski-Winkert [16], see also the refer-
ences therein.

As far as we know the only papers for double phase problems using the Lusternik-
Schnirelmann category have been published by Liu-Dai-Winkert-Zeng [38] and
Zhang-Zuo-Radulescu [47]. In [38] the authors prove the existence of at least
cat(€2y) + 1 positive solutions for problems as in (1.1) with € = 1 where ) := A\Q is
an expanding domain with A to be positive. In [47] only the existence of nonnega-
tive solutions to problem (1.1) has been shown for small values of € in the situation
of an unbounded potential V' and under stronger assumptions as in our paper,
for example, their nonlinearity has to fulfill the Ambrosetti-Rabinowitz condition.
Since working on weighted Musielak-Orlicz-Sobolev spaces which are different from
ours, there is no need to suppose condition (H1)(iv). We emphasize that we obtain
the positive solutions of problem (1.1) as stated in Theorem 1.3 without relying
on the unbounded potential V' and without assuming condition (H1)(iv). To the
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best of our knowledge, no papers exist which prove the existence of sign-changing
solutions for problem (1.1) depending on the weight function a(-).

The paper is organized as follows. In Section 2 we present the involved function
space, recall a penalization technique due to del Pino-Felmer and introduce two
auxiliary problems. Section 3 presents the mappings between the unit sphere and
related Nehari manifolds while Section 4 discussed the limit problem when e goes
to zero. In Section 5 we give existence results for our auxiliary problems introduced
in Section 2 and finally, Section 6 gives the proofs of our main Theorems 1.2 and
1.3.

2. PRELIMINARIES AND THE PENALIZATION METHOD

In this section we first recall some facts about the underlying function spaces
and the properties of the operator. Then we introduce a penalization method due
to del Pino-Felmer [23].

To this end, for 1 < r < oo, by L"(Q) and L"(RY;R"™) we denote the usual
Lebesgue spaces endowed with the norm || - ||, and W1 (RY) (1 < r < 00) stands
for the usual Sobolev space equipped with the norm

ullr = (IVully + [lull)

Let hypothesis (H0) be satisfied, ¢ > 0 and let M (RY) be the set of all measurable
functions u: RY — R. We define the nonlinear mapping H.: R x [0, 00) — [0, c0)
by

1
™

He(z,t) =P + a(ex)t?.

Then, by L (R™) we denote the Musielak-Orlicz Lebesgue space given by
LM (RN) = {u € M(RN): / He(z, |ul) de < +oo} ,
Q

which is endowed with the Luxemburg norm

||u|H£:inf{r>o: /’HE ('“) dxgl}.
(9] T

From Liu-Dai [34, Theorem 2.7 (i)] we know that the space L*<(RY) is a reflexive
Banach space. The Musielak-Orlicz Sobolev space W1 %= (RY) is defined by

wiHe®Y) = fu e L RY): [Vul € L% RY)}
equipped with the norm
[ulle = Vullae. + [lull.

where ||Vuly, = |||Vu||lz,.. As before, W7 (RY) is a reflexive Banach space,
see Liu-Dai [34, Theorem 2.7 (ii)]. Write

Asz{xERstxeA}

with A given in Remark 1.1. Note that if © € A, then a(ex) = 0. Consequently
WhHe (A,) coincides with W1P(A,). If x € RN \ A, then a(ex) > 0. In this case,
we know that the embedding

WhHeRN\ A,) — WHP(RN \ A,)



6 W. LIU AND P. WINKERT

is continuous. Therefore, we have
WhHe(RN) — L¥(RY)  continuously for all s € [p, p*];
WhHe(RYN) — Li (RY)  compactly for all s € (p,p*).

For more details on the spaces, we refer to the papers of Crespo-Blanco-Gasiniski-
Harjulehto-Winkert [20], Liu-Dai [34] and Perera-Squassina [13].
Let

0c(u) = /RN (|vu|p + a(ex)|Val? + Jul? + a(ex)|u|q) da. (2.1)

It is easy to see that

oct) = [l + [ (alea) (Fuft+1ul) ) do > [l

The norm || - || and the modular function g, are related as follows, see Crespo-
Blanco-Gasiriski-Harjulehto-Winkert [20, Proposition 2.15] or Liu-Dai [33, Propo-
sition 2.1].

Proposition 2.1. Let (H0) be satisfied, let y € WHHe(RN) and let o. be defined
by (2.1). Then the following hold:

(i) If y # 0. then |lyll- = X if and only if o=(¥) = 1;

(ii) lylle <1 (resp.>1, =1) if and only if p-(y) <1 (resp.> 1, =1);

(iii) If [lylle <1, then ||yl < oc(y) < lylz;

(iv) If lylle > 1, then [[y|l? < o=(y) < |lyllZ;

(v) [lylle = 0 if and only if oc(y) — 0;
(vi) lylle = +oo if and only if o< (y) — +oo.

Moreover, let B.: W7 (RYN) — W1He(RN)* be the nonlinear operator given
by

(Be(u), v, :/ (IVul[P~2Vu + a(ex)|Vul|??*Vu) - Vo dz
@ (2.2)
—&—/Q(|u|p_2u—|—a(ax)|u|q_2u)vdx

for all u,v € Wb (RY) where (-, - )4, is the duality pairing between W1 (RY)
and its dual space W1 #e(R¥)*. The operator B.: WhHe(RY) — WhHe(RN)*
has the following properties, see Crespo-Blanco-Gasinski-Harjulehto-Winkert [20),
Proposition 3.4].

Proposition 2.2. The operator B, defined by (2.2) is bounded (that is, it maps
bounded sets into bounded sets), continuous, strictly monotone (hence mazimal
monotone) and it is of type (S).

Let X be a Banach space and let A be the class of all closed subsets B of X\ {0}
which are symmetric, that is, v € B implies —u € B.

Definition 2.3. Let B € A. The genus v(B) of B is defined as the least integer n
such that there exists p € C(X,R™) such that ¢ is odd and o(x) # 0 for all x € B.
We set v(B) = +o0 if there are no integers with the above property and (D) = 0.

Remark 2.4. An equivalent way to define v(B) is to take the minimal integer n
such that there exists an odd map ¢ € C(B,R™\ {0}).
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We denote by catp(A) the category of A with respect to B, namely the least
integer k such that A C Ay U--- U Ag with A; (i = 1,--- ,k) being closed and
contractible in B. We set catp(f) = 0 and catg(A4) = +oo if there is no integer
with the above property. Furthermore, we set cat(B) := catp(B).

In the second part of this section we construct an auxiliary problem for which
we use the construction idea due to del Pino-Felmer [23], who found a positive
standing wave solution for the classical Schrodinger equation under local condition
of potential. The auxiliary problem is used to overcome the lack of compactness of
problem (1.1).

First, we suppose that f fulfills (H2). We set k£ > 0 with k£ > ¢ and take 7 > 0
such that f(7)/77~" = 1/k. We define

f(s) if |s| <,
f(s) =< fsP71 if s>,
—%|s|p_1 if s < —,
and
glx,s) = xa(@)f(s) + (1 = xa(@)) f(s),

where Q is given in the assumption (H1)(ii) and ygq is its characteristic function,
that is

(2) 1, z€q,

€Tr) =

xe 0, xeQe.

By hypothesis (H2), it is clear that ¢ has the following properties:

(H4) g: RV xR — R is a continuous and odd function with respect to s, satisfying
the following conditions:
(i) there exist 7 € (¢, p*) and a constant C' > 0 such that

1§(z,5)] < C(1+]s["™") forall s >0;

(i) lim = 0 uniformly in x € RY;
s—0 |8|p s

(i) (a) lim gz, 5)

=——> = +oo uniformly in x € ©;
q
|s|=+00 |s] s

(b) 0 < ‘é(m,s)‘ < |s]” [k and 0 < |§(z, 5)| < |s[P~" /k for all |s| > 0
and z € Q°, where G(z,s) = [; gz, t)dt.
g(z,s)

(iv) (a) W is strictly increasing for all |s| > 0 and x € Q or |s| < T

and z € Q;

g(z,s) 1

b S

() IsP2s K

Next, we suppose that hypothesis (H3) holds and define
- {f(s) if0<s<m,

Fs) = %31’_1 if s > 7,

for all |s| > 7 and x € Q°.
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and
g(x,5) = xa(@)f(s) + (1 = xa(@)) f(s).
Then, due to (H3), the function § fulfills the following conditions:

(H5) §: RN x R — R is a Carathéodory function with primitive G(z,s) =
fo g(z, t) dt satisfying the following assumptions:
(i) there exist r € (q,p*) and a constant C' > 0 such that

|§(z,8)] <C(L+]s|"") forall s> 0;

= 0 uniformly in z € R¥;

(i) (a) i g(@,5)

im ——* = 400 uniformly in z € ;
s—+o00 |3|q s

(b) 0 < G(x,s) < s?/k and 0 < g(z,s) < sP~1/k for all s > 0 and
x € §°.
9(z,s)
5|77 % s
and x € Q¢

(iv)  (a)

is strictly increasing for all s > 0 and x € Q or s < 7

(o) 209

|sI" % s

(v) g(z,s) =0 for s <0.
),

1
:Eforalls>7'anda:€Qc.

By (H4)(i), (ii) and (H5)(i), (ii), we can find for any £ > 0 a number C¢ > 0
such that
‘é(m,s)’ <€|sfP 4+ Cels|”  for all z € RY and for all s € R,
A (2.3
‘G(m,s) < ¢|s|P + Cels|”  for all x € RY and for all s € R.
Now we consider the auxiliary problems
T.(u) + |uP2u + a(ex)|u|? *u = §lex,u) in RY,
N (2.4)
u e Wt (RY)
and
T.(u) + |uP2u + a(ex)|u| %u = §(ex,u) in RV, 25)

u € WhHe(RY).
It is easy to see that, if u. is a solution of the auxiliary problem (2.4) (resp. (2.5))
such that v < 7 for z € Q¢ := {z € RV:ex € Q}, then glew,uc) = f(ue)
(resp. §(ex,u:) = f(u.) ) and consequently w, is also a solution of (1.1). Therefore,
we will look for solutions w. of the problems (2.4) and (2.5) satisfying

u. <7 forall z € QF.

Finally, we denote the corresponding energy functional E.: WhHe(RN) — R for
problem (2.4) by

N 1 1 -
E.(u) = ’ Hu||f7p + p /RN a(ex) (|Vul? + Jul?) dz — /RN G(ex,u)dz
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and the energy functional for (2.5) by E.: WlHe(RN) — R defined by
R 1 1 .
E.(u)= = ||u||ﬁ)p + f/ a(ex) (|Vul? + Ju|?) dz — / G(ex,u) dx.
p ’ q JrN RN

3. THE MAPPING BETWEEN THE UNIT SPHERE AND THE NEHARI MANIFOLD

From now on, for a function u: RV — R, we denote by u™ and u~ the positive
and negative part of u, respectively, that is
vt =max (u,0), wu~ = min(u,0).
Let
WhHe(RN)° = {u e WHHe(RN): u(—2) = —u(2)}.
The Nehari manifold corresponding to (2.4) is defined by
N, = {u e WhHe(RM)\ {0} : <E;(u),u> - o}

while the odd symmetry invariant Nehari submanifold is given by

N2 = {u e No:u(—z) = —u(x)} .
Note that
NZ = NenwhH=(RV)e,

We point out that E,: W% (RN)° — R is an even functional with (E.(—u))’ = —
E!(u). Hence, if E. € C?, then the nontrivial solutions of (2.4) are the critical
points of the restriction of the functional E. to the odd symmetry invariant Nehari
submanifold N?. But we only suppose that § is continuous and so we just have
E. € C! which implies, in general, the nondifferentiability of A°. The same holds
for the auxiliary problem in (2.5) with ¢ instead of g, respectively. The next results

will overcome these difficulties.
We write

S°={ue whHe ®RN)O: ||ul|. = 1}
and
S8 ={ut:ues}, f;:{u*:uej\lo}.
In the next lemma we can define a one-to-one correspondence between S$ and N .

Proposition 3.1. Let hypotheses (H0), (H1)(i)-(iii) and (H4) be satisfied. Then

the following hold:
(i) For each w € WHH<(RN)°\ {0}, set @+ (t) = E-(twt) fort > 0. Then
there exists a unique t,+ > 0 such that ¢/ ,(t) > 0 if 0 < t < t,+ and

@ () <0 if t > ty+, that is, max @+ (t) is achieved at t = t,+ and
te[0,400)

tyrwT € ./\/—i

(ii) There exists & > 0 such that t,+« > 6 for w™ € 8 and for each compact
subset WS C 87 there exists a constant OWi such that t,+ < CWi for all
weWs.
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(iii) Let us denote by
ms {w+: w e WhHHts (RN)°\ {0}} — N7,

e ms (wh) =t wt.

w
Then the mapping S is continuous.

(iv) Let mS :=mS|se. Then mS is a homeomorphism between S5 and N3 and
the inverse of mS is given by

o\~ 1 + U+ (o]
(mS) (u):m for all u € N7

Proof. (i) It is clear that @,,+(0) = 0. We deduce from (2.3) that

- tP t4
Gt () > > Hw*”fp + 7 /RN a(ez) (|[Vwt | + |wt|?) da

[ (e ) as

RN \ 4D 2p

s +5/ a(sx)(|Vw+|q+{w+|q)dxfCltr/ | de
2 Lr g Jgw > gy

— C1t? 4 Cot? — Ot

which implies that ,,+(¢) > 0 for ¢ small enough. It follows from (H4)(iii) that,
for any M > 0, there exists Ths > 0 such that G(ex,t) > M [t|? for |t| > Ty and
z € Q.. Thus

- tP t4
G+ (1) < > ||w+H11)7p + " /RN a(ez) (|[Vwt | + Jwt|?) da

1
— Mtq/ ’w+|qu + ft”/ ‘w"”pdx
Q. k- Jae
= C1t? + Cot? — CsMt?
2C
< C1t? — Cot? when M > —2,
Cs
which implies that @+ () < 0 for ¢ large enough. Hence there exists t,,+ > 0 such
that @ , (t,+) = 0. We also note that

0=9.,+(t) = / (tfg*1 (|Vw+|p + |w+|p) + a(ex)tqfl (|Vw+|q + |w+|q)) dz
RN

f/ gez, twh)wt dz
RN

implies twt € N3.

We claim that E = {z € Q¢: tw" > 7 for a.a.z € RN} = (. Suppose E #
(). Then <Eé(tw+),tw+XE> = 0, where yg is the characteristic function of E.
However, we have

<Eé(tw+), tw*XE>

_ /E (=1 |Vt |” + |t P) + a(ex)tst (|Vut | + [wt]?)) dz
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— / gz, twh)w™t do
E

> [ (VP ) + oot (| ) da
E

71,;71 +|P

kt /E|w | dx

> (1—1) tp—l/ |wt|”dz > o >0,
k B

for some positive constant ¢ which is a contradiction and so the claim holds true.
Consequently, we deduce from tw € N that

/ afex) (Vo |* + [w*]?) dz
RN
glex,twHw™ 1
:/RN ot ) dac—tq_p/RN(Wwﬂp—Hwﬂp)dx

/ glex, twT)w™ q +/ glex, twT)w™ q
= =/ ——dx = dx
Q. ta=t {92, tw+ <7} ta=t

1
- tqu - (’Vwﬂp + ‘wﬂp) dz.

By (H4)(iv), the right-hand side of the last equality is strictly increasing in .

It follows that ¢+ (t) has a unique critical point. Therefore r[nax )<pw+( ) is
te 0,400

achieved at a unique t = t,,+ > 0 so that h/ , (t,+) =0 and t,+w’ € N3.
(ii) First, we prove that there exists § > 0 such that ¢,+ > § for w+ €Sy If
tw+ > 1 we are done. If t,,+ <1, we deduce from t,,+w™ € N and (2.3) that

[ (9 5 ) 4t aa) (9 )
71ti+/ |w+‘pdx+01t;+/ {w+|7‘dx

2 RN 2 RN
or

1
§tqw+ < C%t:ﬁ

1
Clearly, we can take § = (ﬁ) """ > 0 in this case.

Next, if W C S} is compact, and suppose by contradiction that there is
{wt}, ey C WS with t,, :=t,+ — +oo. By (i), we see that

E.(taw)) = max E.(tw})>0.

te[0,400)
On the other hand, by (H4)(iii) we deduce that
E tn 4
0< (tqw < / ng w>dx—>—oo as n — oo,

which yields a contradlctlon. Thus there exists CWi such that ¢,+ < C’Wgr.
(iii) Suppose that w;} — w® in WHH(RN) \ {0}. It follows from (ii) that
{twi}HEN is uniformly bounded. Therefore, there exist a subsequence of {twi}neN’
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which we still denote by {t,+}nen, converging to a limit to. It follows from the
uniqueness of t,,+ that ¢y = ¢,,+. But then ¢,,, — £,,+. Thus /m$ is continuous.
(iv) By (i), we can easily see that m3.(S%) is a bounded set in W= (RY) and
for any wt € m3(82), there exists 6 > 0 such that ||w*||. > d, that is, for any
wt € N3, we can find § > 0 such that|jw™|_ > 6. The argument is similar to the
proof of (ii). By the continuity of /S and its definition, we know that the map

mS : 8¢ — N7 is continuous and one-to-one. Clearly, the inverse function of m$

is (mﬁr)_l(ufr) = ﬁ for any wt € Ng. We only have to prove that (mﬂr)_l is

continuous. Indeed, it holds

[m) ™ = (m2) ™ )|

_ H w* CANNR | ‘ wh —vt o (ot — lwt]l,) 2 ||lw* — v,
lwtlle ot I, lw K0 | el PO | P (T
2
+ gt
< g HU} - Hs’
which shows that (m$)~! is Lipschitz continuous. O

Now we can define
J: {wt w e WhH(RN)°\ {0}} — RV,
wt i J () = B (S (), (3.1)

j+ = ijSi
A direct consequence of Proposition 3.1 and by Szulkin-Weth [15, Proposition 9
and Corollary 10] is the following proposition.
Proposition 3.2. Let hypotheses (H0), (H1)(i)-(iii) and (H4) be satisfied. Then
the following hold:
(i) J+ € C (S, R) and
(T (),2) = (BLmS (w ), 2lmS (w ). )
for all wt e 8§ and for all z € T,+(S%), where T,+(SS) denotes the
tangent space to SY at wt.
(i) If {wf }nen € 8% is a (PS)c-sequence for Ty, then {mS (w;)}nen C N
is a (PS)c-sequence for E-. If {u} }nen € NJ is a bounded (PS).-sequence
for Ex, then {(m%) ™" (un)}nen C S2 is a (PS).-sequence for J,.
(il) wt € 89 is a critical point of J; if and only if m.(w) € N is a nontrivial
critical point of E.. Moreover, infsgr j+ = il’lf/\/’i E..
(iv) If E. is even, then so is J.
Next, we write
S8 ={u:ues, Nfz{u_:ue./\lo}.
Then we can set up a one-to-one correspondence between S° and N° as follows.

Proposition 3.3. Let hypotheses (H0), (H1)(i)—(iii) and (H4) be satisfied. Then
the following hold:
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(i) For each w € WhHe(RN)°\ {0}, set g, (t) = E-(tw™) for t > 0. Then
there exists a unique t,,— > 0 such that ¢/ _(t) > 0 if 0 <t < t,- and
@l (t) <0 if t > t,—, that is, r[glax )gbw_ (t) is achieved at t = t,,— and

te|0,+00
ty-w— € NC.

(ii) There ezists 0 > 0 such that t,,— > § for w= € §° and for each compact
subset W° C S8° there exists a constant Cyye such that t,,—- < Cyye for all
w e We.

(iii) Let us denote by
me: {w”rwe WHH(RY)\ {0}} — N2,
w” = m(wT) = t,-w.
Then the mapping m° is continuous.
(iv) Let m® := m°|so. Then m° is a homeomorphism between S° and N°

and the inverse of m° is given by

—ﬁ fOT’ allufe./\/'f.
€

Proof. The proof can be done as the proof of Proposition 3.1. O

Now we can define
J° {UF: w e Wl’HE(RN)O \ {O}} — RV,

w™ = J° (w) = E.(m° (w™)), (3.2)
j_ = ji ‘53.
As before, as a consequence of Proposition 3.3 and of Szulkin-Weth [45, Proposition

9 and Corollary 10] we have the following proposition.
Proposition 3.4. Let hypotheses (HO), (H1)(i)-(iii)) and (H4) be satisfied. Then
the following hold:
(i) J- €C'(8°,R) and
(T (), 2) = (BLm? (™)), 2llm (w )]l
for all w= € 8° for all and z € T,,-(82), where T,,-(8°) stands for the
tangent space to S° at w.
(ii) If {w; Ynen C S° is a (PS)c-sequence for J_, then {m° (w;)}nen C N°
is a (PS).-sequence for E.. If {u; }nen € N° is a bounded (PS).-sequence
for E., then {(m®)~ (u;; ) }nen € S° is a (PS).-sequence for J_.
(iii) w™ € 8° is a critical point of J_ if and only if m® (w™) € N° is a nontrivial
critical point of E.. Moreover, infge J_ = infare E..
(iv) If E. is even, then so is J_.
Now, we write
N = {u e whHe@V)\ {0} (BL(u),u) =0}
S={ue WhHeRNY: ||u). = 1},
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S+={u+:u68},
N+ = {u+: UENE}.
Then we can set up a one-to-one correspondence between S, and N, in the fol-
lowing way.
Proposition 3.5. Let hypotheses (H0), (H1)(i)—(iii) and (H5) be satisfied. Then
the following hold:
(i) For each w € WhHe(RN)\ {0}, set ¢y+ (t) = E.(tw™) for t > 0. Then
there exists a unique t,+ > 0 such that ¢! (t) > 0 if 0 < t < t,+ and

@r () <0 if t > ty+, that is, max @+ (t) is achieved at t = t,+ and
te[0,400)

tw+w+ € N+.

(ii) There exists § > 0 such that t,+ > & for wt € Sy and for each compact
subset Wy C Sy there exists a constant Cyy, such that t,,+ < Cyy, for all
w e W+.

(iii) Let us denote by
iy {wtswe W RN)\ {03} - A,

wh = g (wh) =t w™.

Then the mapping M4 is continuous.

(iv) Let m := myl|s,. Then m is a homeomorphism between Sy and Ny and
the inverse of m is given by

Sy ut +
m~(ut) = o] for all u™ € N.
Now we can define
Jy: {wTw e WhH(RN)\ {0}} —» RV,
wh = Jyp (wh) = B (g (™)), (3.3)
j = j+|3+.
Proposition 3.6. Let hypotheses (H0), (H1)(i)-(iii) and (H5) be satisfied. Then
the following hold:
(i) J e C'(S4,R) and

(). z) = (ELlm(wh)). 2lm(w?).)

for all w* € 84 and for all z € T,y+(Sy), with T+ (S4) being the tangent
space to Sy at wT.

(i) If {w} }nen C St is a (PS).-sequence for J, then {m(w;} ) }nen C Ny is a
(PS).-sequence for E.. If {u} }nen C N5 is a bounded (PS).-sequence for
E., then {m~ Y (u)}pnen € Sy is a (PS)c-sequence for J.

(iii) wt € Sy is a critical point of J if and only if m(w™) € N is a nontrivial
critical point of E’E. Moreover, infs_ J= infar, E’E.

Remark 3.7.
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(i)

If we set
¢ = inf E.(u"),
* uteN? E( )
then it follows from Proposition 3.2 (iil) that
S = inf Jy(w™).
4T iese +(w?)

From Proposition 3.1 it is easy to see that c§ has the following minimazx
characterization:

¢ = inf max E.(tw?) = inf max E.(tw™).

T wew (@) foy >0 e(tw?) whess >0 e(tw™)
We know from the proof of Proposition 5.1 that there exists a unique t,+ >
0 such that I%1>ag<E5(tw+) = E. (ty+w™) for wt € 85. Proposition 3.1 (ii)

implies that there exists 6 > 0 such that t,+ > & uniformly for wt € S3.
Thus, for any wt € 8%, we have

E. (tyrw™) = max E.(tw") > o,

for some o > 0 independent of w™ and consequently

inf max E.(tw) > o,

wtess >0
that is
. >0>0
If we set
¢ = inf E.(u),
u—eN?° E( )

then, similarly, From Proposition 3.3, It can show that
2 > 0.
We also note that E.(u) = E.(ut) + E.(u™). If we set
¢ = inf E.(u),

ueN?
then it is clear that c® > c§ + 2. In our case, ¢ = c2 since u is an odd
Sfunction.
Set

c= inf E.(u").
uteNL

By an argument similar to that of (i), we can show that ¢ > 0 and c® > 2c.
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4. LIMITING PROBLEM

We consider the limiting problem associated to (1.1), that is, the following p-
Laplacian problem:
—Apu+ |[ulP2u = f(u) inRY,
u € WHP(RN),
Since we are interested in the existence of positive solutions, we consider the func-
tional

(4.1)

1
Eo(u) = , ||u||11’7p — /RN F(ut)da.

First, we consider the radially symmetric ground state solutions of (4.1). It is
similar to the proof of Liu-Dai [34, Theorem 1.9] and we can show that there exists
a positive radially symmetric ground state solution w of (4.1). Moreover, we define

5= {w e WP EN)\ (0} (By(u).w) =0} and = inf Eo(u),

where WHP(RY) := {u € W'P(RY): u is radially symmetric}. Then, we have
Ey(w) = ¢

Next, we consider positive ground state solutions of (4.1), not necessarily radially
symmetric. For this purpose, as in Section 3, we define:

No = {ue WHPRN)\ {0} : (Ej(u),u) = 0, ut #0},

So = {ue WHPRN)\ {0} : [lulh,p = 1, u™ # 0},

mo: S() —>N0, wo »—>m0(w0),

Jo(tdo) = Fy (mo(wo)), 0<cyp= inf Eo(u)

uGNg

Similarly, we also know that for each wy € WP(RY) \ {0} there exists a unique
to := tu, such that towy € Np.

Lemma 4.1. Let {wplnen C So be such that Jo(wn) — ¢o and w, — wy in
WLP(RN). Then there exists a sequence {U, }nen C RY such that v, = w,(- +
Y,) — vo € So with Jo(vg) = co. Moreover, if wg # 0, then {¥,, }nen can be taken
identically zero and thus w, — wy in WHP(RN).

Proof. If wy = 0, then there exist R, o > 0 and {7, }nen € RY such that
limsup/ lwn|P dx > 0.
n=o0 JBR(Y,)
Suppose by contradiction that
limsup sup / |wy |P dz = 0.
n—oo yeRN JBr(y)

Then it follows from Lemma I.1 of Lions [32] that

lim |wn|*dz =0 for all « € (p,p*).
n—00 JpN
Consequently
lim |mo(wn)|“dx =0 for all « € (p,p*).

n—oo RN
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By (H3) (i) and (H3) (ii), we have
|f (mo(wa))] < € lmo(wn)P~" + Ce Imo(wn)|" ™"

and
|[F' (mo(wn))| < & mo(wn)|” + C¢ [mo(wn)|" -
Thus
lim f (mo(wn)) mo(wn) dz =0
n—oo RN
and
lim F (mo(wy,))dx = 0.
n—oo RN
Therefore,

Tim o), =0
and consequently
lim Jo(wn) = O7
n—r oo
which is a contradiction to Jo(wy,) — ¢p > 0 as n — co.

Now we define v, (z) = wy(x + 7,), then Jo(v,) — co and there exists 0 # vy €
WLP(RN) such that v,(z) — vo. By the Sobolev embedding theorem, we have
that |y,,| — co. Note that mq(v,) — mo(vg) in WHP(RY). For any s € [p,p*) and
R > 0, we have that

lim mo(vy)|"dz = lim |mo(vy,)|” dz
R—+o00 B%(0)| (o)l R—+oc0 JrN\BR(0)
:/ imovn)* de — lim Imo(vn)* da
RN R—+o00 Br(0)

=0.
Thus there exists R; > 0 large enough such that

/ Imo(v,)|” dz = 0, (1).
B, (0)
By (H3) (i) and (H3) (ii), we know that

< on(1). (4.2)

/ £ (mo(a)) mo(va) dz
Bj, (0)

From the compact embedding WP (Bpg, (0)) < L*(Bg,(0)) and the subcritical
growth of f, we deduce that

/ £ (mo(vy)) mo(vy,) de — £ (mo(vo)) mo(vo) do (4.3)
BRI (0) BRl (O)
as n — +oo. Combining (4.2) with (4.3) yields

£ (mo(vy)) mo(vy,) de — £ (mo(vo)) mo(vo) da (4.4)
RN RN
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as n — +oco. By definition of mg and (4.4), we conclude that ||mo(v,)|,, —
[mo(vo)ll; ,- And consequently [|mq(vy) — mo(vo)ll; , — 0 since WLP(RY) is uni-
formly convex. Therefore, v,, — vy in WHP(RY) and vy € Sy with Jy(vo) = co-

If wg # 0, the proof is similar to the proof of v, — vy. We omit it here. O

Theorem 4.2. Problem (4.1) has a positive ground state solution.

Proof. Let {wp tnen C Sp be a minimizing sequence for Jy, that is, Jo(w,) — co. By
Ekeland’s variational principle (see Ekeland [24]), we may assume that J}(w,) — 0.
Then {u, = mgy(wn)}nen C Ny is a (PS).-sequence for Fy. First we claim that
{tn }nen is bounded. Suppose not, then there exists a subsequence (still denoted
by {un}tnen) such that |[u,ll1,, — +o0. Set vy, = upn/||unll1,p, then {v,}nen is
bounded. Thus, after passing to a subsequence if necessary, we may assume that
Up, — Vp in Wl’p(RN) as n — +o0o. If vy = 0, then, by an argument similar to that
of Proposition 3.5 and Remark 3.7, for any ¢ > 0, we have

co + o(1) > Eo(un) = Eo(ty,vn) > Eo(tv,)

and

1 1
Eo(tvy) > 7 —/ Fltvy)dz > 1.
p RN p

This yields a contradiction by choosing ¢ > max {1, 2 (pco)% } If vy # 0, then we
know from (H3) (iii) that

Ey(uy 1 F(||lun||vn
o< Do) 1 [ Fllalin) g,
Funly = 2 Jaox Tl

as n — 0o, again a contradiction. Hence {u, }nen is bounded and so {wy, }nen is
bounded as well. Therefore, we may assume that w,, — wq for some wy € WHP(RY).
From Lemma 4.1 it follows that there exists w € Sy such that Jy(w) = ¢o and
Ji(w) = 0. Consequently u := mg(w) satisfies Eo(u) = ¢ and E{j(u) = 0, which
is our desired ground state solution. It is standard to prove that u is positive, we
omit it. O

5. MULTIPLE SOLUTIONS OF THE AUXILIARY PROBLEM

In this section we are going to solve our auxiliary problems (2.4) and (2.5),
respectively. We start with some important lemmas in order to get the desired
results.

Lemma 5.1. Let hypotheses (HO0), (H1)(i)-(iii) and (H4) be satisfied and let J,
be given in (3.1). Then the following hold:
(i) If {w}},cn C S is a sequence such that dist (w;}, 8S%) — 0 asn — +o0,
then |mS. (w,})]|. = +oo and Jy (wi) = +oo as n — +00.
(ii) Jy4 satisfies the (PS)-condition on S3., i.e. every sequence {w;}}, o in SS
such that, for any ¢ > 0, Jy(w;i) — ¢ and J\(w}) — 0 as n — +oo

contains a subsequence which converges strongly to some wt € S and
dist (w*, 881) > 0.
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Proof. (i) Let {w; }nen € S$ be a sequence such that dist(w;,08%) — 0 as

n — +oo. Then, for any v € 83 and n € N, it holds w;} < |w} — v| a.e.in RV,
From the embedding theorem, for any v € [p, p*], it follows

il < int st = vlly < Oy in it vl = C; dist(w), 087)

for all n € N. Moreover, for every ¢t > 0, by (2.3), we have

/ G(ex, tw)) dz| < ftp/ |w; [P dz + Cet” / |w;t|" dx
< C (tPdist? (wyt, 085) + t" dist” (w;t, 085)) =0

as n — +o00. Note that for any ¢ > 1, we have

1 .
—|ltw, || + ‘/ G(ez, tw)) dz
p RN

. 1 .
> E.(tw}) > = |[tw,||? — ‘/ G(ex, tw)) dz
q RN

Therefore, we obtain
lim inf1||mO (w)||2 > liminf J, (w}) > liminf E. (tw)) > Git?
n—+o0o p + n Ein—)-{-oo + n T n—+oo € n/s = q ’

for every t > 1, and hence ||mS (w;")||. — 400 and Jy(w;}) — +00 as n — +oo.

(ii) For any ¢ > 0, let {w;},en € S2 be a (PS).-sequence for J,. Tt follows
from Proposition 3.2 that {u} := m$ (w;)}nen € NP is a (PS).-sequence for
E.. First we will prove that {u;},en is a bounded sequence. Assuming not, we
can find a subsequence of {u}},en, not relabeled, such that ||u}|. — +o00. Set
vl = ul/||luf]le, then {v7 }nen is bounded. Thus, after passing to a subsequence
if necessary, we may assume that v;¥ — v* in Wh#e(RY) as n — +oo. If v =0,
from Proposition 3.1, we get

c+o(1) > E.(uf) = E-(t,+v}) > Ec(tv,}) for all t > 0.

In case t > 1, we have

= 1 ~ 1 ~ .
E.(tv}) > —tP — G(ex,tv) ) do = —tP —/ G(ex,tv)) dz — G(ez,tv}) dz
q RN q Q. Q¢

Y

1 ~ 1
—tP —/ G(ez, tv})dr — ftp/ |v;’[|p dz
q Q. k Q

c
€

1 1 ~ 1 1
>(-—= t”—/ Gl(ex,tv) dx—><—>t”,
(q k) Q. ( ) q k

which is a contradiction if we take ¢ > max {1, 2 (;L_’Z) v } If vT # 0, then by
(H4) (iii), one has
_ B _C / Gler, s lov)
RN

= TedlZ = [
_C_ [ Glenluilo) , [ Slenluilen)y, ,
P Jo. ] o Iuile

as n — oo. This is again a contradiction. Thus, the sequence {u,} },en is bounded
and so we can find a subsequence of {u, },,en, not relabeled, such that u;} — u* in
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WLHe (RY). Note that there exists Ry > 0 such that Q. C Bg,(0). Then, applying
hypothesis (H4) (iii), for any R > Ry, we obtain that

/ g (ex,uf)ut do < 1 / ‘uﬂpdx. (5.1)
B5,(0) kB0

Obviously, we have that

lim ‘u;’{ }p dr = lim }u: ’p dx
7——+00 Bﬁ(O) 7—~+00 RN\BT(O)
:/ |u7ﬂpdx7 lim |uz|pdx
RN r=+o /B (0)
=0.
So there exists Ry > Ry such that for any R > R;
/ |u,ﬂpdx = 0,(1), (5.2)
B%(0)

that is,
/ g (ez,ul) ut da < o, (1).
B (0)

From the compact embedding W< (Bg(0)) < LP (Br(0)) and (H4) (i), we de-
duce that
/ g (ez,ub) uf do — glez,ut)ut dx (5.3)
Br(0) Br(0)
as n — +o00. Combining (5.3) with (5.1) and (5.2) yields

/ g (ex,uf) ) do = <I§'§(uj{),u,’1"> — <I~(;(u+),u+> = / glez,ut)ut dx
RN RN

as n — 4oo. Similarly, we can obtain that K’(u}) — K’(u%t). Since E(u}) =
B.(uf) — K.(u}) — 0, one has that B.(uj) — K'(ut) as n — oo, where
Be is given in (2.2). Therefore, we conclude that u} — u® in WhH(RY) as
n — 400, since Be is a mapping of type (Sy) (see Proposition 2.2). Consequently
(m3) " (u;f) — (m3)~!(uT) by Proposition 3.2, that is, w;t — w*. Therefore, E.

satisfies the (PS)-condition on S%. O
The next lemmas can be shown in a similar way as Lemma 5.1.

Lemma 5.2. Let hypotheses (H0), (H1)(i)-(iii) and (H4) be satisfied and let J_
be given in (3.2). Then the following hold:
(i) If {wy }en C S2 is a sequence such that dist (w,;, dS°) — 0 as n — +o0.
Then ||m_ (w;)||. — +oo and J_ (w;;) — 400 as n — +oo.
(ii) J_ satisfies the (PS)-condition on S°, i.e. every sequence {wy, }en in S8
such that, for any ¢ > 0, J_(w;) — ¢ and J' (w;) — 0 as n — +oo
contains a subsequence which converges strongly to some w~ € S° and

dist (w™, 95°) > 0.

Lemma 5.3. Let hypotheses (HO0), (H1)(i)~(iii) and (H5) be satisfied and let J be
given in (3.3). Then the following hold:
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(i) If {wn}nen C Sy is a sequence such that dist(w,,dS+) — 0 as n — +oo.
Then |[m(wy)||le = 400 and J(w,) = +0o0 as n — +oco.

(ii) J satisfies the (PS)-condition on Sy, that is, every sequence {wy, }nen @ Sy
such that, for any ¢ > 0, J(wy) — ¢ and J'(w,) — 0 as n — 400 contains

a subsequence which converges strongly to some w € Sy and dist(w, 0S4.) >
0.

In what follows, without any loss of generality, we shall assume that 0 € A,
where A is given in Remark 1.1. Moreover, we choose ¢ > 0 such that the set

A ={xec A: dist (x,0AU{0}) > 0}

is homotopically equivalent to A. Next, we choose a function ¢ € C° (RT) such
that 0 < (<1 and

1, if0<s<6/2,
o) = {o, if s> 6.

For each y € A5 and € > 0, we define the function

)] (2) = ¢ (o - sl (222

where w is the positive radially symmetric ground state solution of equation (4.1).
It can be proved that [U.(y)] (-) € WHP(RY). By definition of ¢ and Ay, we also

know that [P (y)] (-) € WhHe(RN). We define ®.: Ay — N2 by
[@:(y)] (z) =t {[Ve(y)] (x) — [Ye(—y)] ()},

where t. > 0 is such that ®_(y) € N°. Propositions 3.1 and 3.3 show that ®.(y) is
well defined. Note that

[(bs(y)] (_x) = [(I)s(y)] (:L’) and (I)s(_y) = _(I)s(y)'

Hence ®.(y)" € N3 and ®.(y)~ € N°.
Then we have the following lemmas:

Lemma 5.4. Let hypotheses (HO), (H1) and (H4) be satisfied. Then we have
lim E. (@E(y)+) =cp uniformly iny € Ay .
e—0t

Proof. First, we note that ®.(y)* = t.V.(y). We argue by contradiction and

assume that there exist o > 0, {yn}nen C Ay and €, — 07 such that

E., (®,(y)T) -

(5.4)
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By changing the variables z = (e, — y)/en, we deduce from Lebesgue’s dominated
convergence theorem that

e, I,

- / (VL. () + 0., (3)]") do

- /RN (‘v (C(Iw —uhw <w«i-ny|>) ”) dx
. (\caenm—yl)w (Fe=) ) o

= /RN (lenw (121) V€ (len2]) + ¢ (lenzl) Voo (12D)]” + [¢ (lenzl) w ([21)]") d=

= llw(IzDIIT, -

Similarly, we can check that

[ e (99, @)1 + 19, (") da

= [ a) (e (=] + | (D] dz = 0
since y € Ay C A and so a(y) = 0. Consequently
0, (Ve ()

=¥, W, + /RN a(en®) Ve, )| + [Ye, (1)|7) dz = Jlw (|27, -
By the definition of t. and the change of variables z = (e,@ — y)/en, we get

0= <E’ (te, Ve, (y)) te, Ve, (y)>

= 0, (te, Ve, (y) — /N g (enz,te, Ve, (y)) te, Ve, (y) do
R

(5.6)

= 0c, (t, e, () — /RN 9(Enz+y,te, C(lenz]) w(I2]) te, C (lenz]) w (|2]) dz.

Note that if €,z € Bs(0) then e,z +y € Bs(y) C A C Q. If t., — 400, it follows
from the above expression that

0 o [ BEaztutel(enzhw (2D) ;
e, W, 2 [ TRl I (ol D 0=

since

0, (te, Ve, (y)) <L, Ve, (y)||§n = tgn v, (Q)HZTL .

Then from (H4)(iii) we deduce that ||¥, (y)||Z — 400 and so ., (¥, (y)) = 400
by Proposition 2.1 (vi), which contradicts (5.6). Thus, we conclude that {t. }nen
is bounded. Then there exists a subsequence {tEnk tren such that te,, = to > 0.
We claim that to > 0. Indeed, if ¢ = 0, then we can use (2.3) and

<E§nk, (tsnk‘l’enk (y)) e, Ve, (y)> _0
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to get that, for any & > 0,

p
te, Ve, 0| < e, (P Ve, )

= /]RN g (Enkx7 tenk \IIEnk (y)) tsnk \Ilenk (y) dz

P
< f/ le,, \Denk (y)‘ dz + C /
RN RN

p p
ol <6 e 05 567 [ 9

Similar to the above proof, we can deduce that H\I'Enk (y)H — 0, contradicting
1.p

T

tﬁnk \ijnk. (y) dS(},

that is,

T

dzx.

(5.5). Thus ty > 0. Letting ,, — 07 in the following equality

vy (1 Ver, ) = [ 3 (Briten, 9o, ) 1, Ve, (),

similar to above again, we can obtain that

ltow(l2DIE /  (tow (121)) tow (|2]) d=

from which we conclude that tow € M. Therefore, it follows from the uniqueness
of tg and w € N that ty = 1. Finally, letting ¢,, — 07 in

E.,, (2., 0)")
tg"k p
= [Pe, (W, +

q
En

q
- o oo (P 0+ e )

- /RN G (E"’cx’ ten, Ven, (y)) de,

together with

/RN G <5nkx,tsnk v, (y)) dz — - F(w)dz,

we obtain that

B, (P 0)) = ol = [ Pz = Bow) = 6,

which contradicts (5.4). This shows the assertion of the lemma. (]
Lemma 5.5. Let hypotheses (HO), (H1) and (H4) be satisfied.

al—i>%1+ E. (@E(y)_) =cy  uniformly iny € Ay .

Proof. By the definition of ®.(y), we know that ®.(y)~ = —t.V.(—y). Suppose
there exist o > 0, {yn}tnen C A5 and €, — 07 such that

|E., (@, (5)7) — cb| = (5.7)
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Applying Lebesgue’s dominated convergence theorem along with changing the vari-
ables with z = (epz + y) /ey, yields

H\IJEH (_y) ||]1)7p

= [ 19 o)l + 10, () da

= [ (7 (<t s (2220
+ [ (Jeteneape (F222) )

= /RN (lenw (121) V¢ (lenzl) + ¢ (lenz]) Ve (121) |” + [¢ (lenzD w (12]) |*) dz

= llw(l=DIIT

(5.8)

Since a(-) is radially symmetric (see (H1)(iv)), that is, a(z) = a(|z|) for a.a.x € RY,
the set Ay is invariant to rotation. In particular, A is symmetric with respect to
the origin, that is, Ay = —Ajy. Hence, if y € Ay, then —y € Ay as well. Similar
o (5.8), we can check that

/ a(ent) (IVTe, (—9)|" + [ Te, (—y)|") de
a/ ) (Ve (J2)] + w (|2])|) dz = 0

since —y € Ay and so a(—y) = 0. Consequently
e, (Ye,(—Y))
= e ()l + [ aenn) (V0 (<) + Ve, () e (59)

= llw(IzDIIT,

Changing again the variables z = (epx + y) /e, together with the definition of ¢,
it follows that

0= <E;n (77557,,\1/571(71/)) s 7t€nqjsn(*y)>
= O¢, (_ten\Ian(_y)) - [RN g (Enl', —ten\llsn(—y)) (_tsn‘l’en(—y)) de

=0, (—te, Ve, (-y) — /RN 9 (enz = y,te, C(lenz]) w (|2]) e, € (|en2]) w (I2]) dz

As before, if €,z € Bs(0) then ¢,z —y € Bs(—y) C A C Q. Letting t., — 400
gives

Ve, (—y)

¢ (lenzl) w (J2))|* dz,

¢ o [ 9(enz—yite, ((enz)) w(I2])
E"_/N (tn ¢ (lenzl) w (J21)"

because

0, (—te, Ve, (=) < [[—te, Ve, (—y) Z" =1t P, (y)llgn .

From (H4)(iii) it follows that || ¥, (—y)[|Z — 400 and so ¢, (¥c,(—y)) = +o0
due to Proposition 2.1 (vi), this contradicts (5.9). Hence, we see that the sequence
{te, tnen is bounded and so there exists a subsequence {t, }tren of {tc, tnen such
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that te,, —to > 0. Let us show that to > 0 and suppose that ¢, = 0. Using (2.3)
and

<Eénk (_tenk e, (_y>> s —te,, Ve, (_y)> =0
yield that, for any £ > 0,

p
ool

< Qe (_tenk e, (_?J))

- /R G (emr =t Ve, (<)) (—tey, Ve, (<)) do

p
<6 |teve, o derce [ |-, v, (-0
RN RN

T

dz.

Hence

p p
e, ol <ef Juo, o wwrcany [ v, v
RN RN

Lp

T

dx.

— 0 which contradicts (5.8).

p

In the same way, we can prove that H‘IIE"k (—y)‘
1,p

Then we have ty > 0. Next, letting £,, — 0% in the equality

QEnk (7t8nk \I’é‘nk (7y)) = /]RN g <€nk~x7 7t€nk \II&Lk (7y)) (7t€nk \Ilgﬂk (7y)) dxa

gives

[tow(|=DIIT, = /RN [ (tow (|2])) tow (J2[) dz.

This implies that tow € M and so, from the uniqueness of ¢ty and w € N, we
obtain ¢ty = 1. Then, for ¢,, — 0T in

EEnk (¢Enk (y)_)
P q

174 td q q
== e )l =2 [ alena) (90, o]+ [, () ao

- /]RN é <€"kx’ —ten, Ve, (—y)) de,

along with

/]RN G (5nkx, —te,, Ve, (—y)) dz — F(w)dz,

we arrive at

1
Bep (e, 0)7) > - 2”f/F dz = Ey(w) = ¢,
e (20 @)7) 5 S Ml — [ Fl@)dz = Eo(w) =
contradicting (5.7). O
Now we can prove our existence result for problem (2.4).

Theorem 5.6. Let hypotheses (HO), (H1) and (H4) be satisfied. Then there exists
€ > 0 such that, for any 0 < & < &, problem (2.4) has at least v(A\ {0}) pairs
(ut, (—u)*) of positive weak solutions.
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Proof. Taking Lemma 5.4 and Proposition 3.1 into account we have
lim j+ ((mj-)il (q)s(y)+)) = sli»%l+ Es (‘I)s(y)+) = CS

e—0t

uniformly in y € Ay . For each y € Ay, we set
he) = | B (2e()) — 5]
Then h(e) — 0 as ¢ — 07. Now we write
82 = {u+ €8 J(ut) <ch+ h(s)} .

It is clear that gf_ # 0 since (m%) "1 (®:(y)") € gf_ Then, by Lemma 5.1 and Kras-
nosel’skii’s genus theory (see Ambrosetti-Malchiodi [4, Theorem 10.9]), we know
that J, has at least 7(3’3) pairs (ut, (—u)1) of critical points on gf_
Claim: 7(S%) > 'yﬁfl \ {0}).

Assume that 7(S$) = n and note that for a set A we write A* = {(z, —x) : v €
A}. We deduce that

v(89) = cat S,
()= e @ gone &
see Rabinowitz [11, Theorem 3.9]. Hence, we can find a smallest positive integer n

such that
S CcDiuDsU---UDE,
where D, i =1,2,--- ,n are closed and contractible in (W1*=(RN)\ {0})*, which
means that there are
hiecC ([0, 1] x D, (WhH=(RY) \ {0})*) fori=1,2-,n

such that

R¥(0,ut) = (ut, (—u)T) for all (ut,(—u)") € D,

hi(Lut) = (w;, —w;) € (WHH(RV) \ {O})* for all (u™, (—u)") € D}.

Let
D; = {u+ e Wl (RN) st (—u)t) e Df}
Then there exists a homotopy
hi € C ([0,1] x Dy, (WHH=(RY)\ {0}))

such that h;(0,-) = id, hi(1,-) = w; or —w; and h;(t,u™) = —h;(t, (—u)™t).
We define

oL = (0F, (~0.)")s (A7) = (WD),
@2y, ~y)] (@) = (1] (@), [@e(-)]" (@)

Now we choose R > diam(A), where diam(A) denotes the diameter of A. For
u € WhHe(RY) with compact support in Br(0), we define the barycenter map

/RN xlut(z) P do
[ s

Bi: WHH@RM)\ {0} = RY, By (u) =
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We observe that for any (y, —y) € (A5 )" we have
Br (@-(t) =y and By (P(—y)T) =—y.
Next, we write 5*(,-) = (8+(:), B+(-)) and obtain
8 (2™, [=2)]") = (B+ (@)1 Bx [0~ ) = (v, —).
Let
Ki = (@) (m"(D})),
where m*(-,-) = ( %(-),mS.(-)). Obviously the sets ICj are closed subsets of (Ag)*
and (Ay )* - --UK. Defining the deformation b;: [0,1] x K7 — (RY '\ {O})*
by
bi(tx) = (8" 0 h) (1. (m") " (@2(y =)
we see that K7 is contractible in (RY '\ {O})* Indeed, we have
b; € C (10,1] x K7, (RN \ {0})"),
Bi(0,2) = (8" o 1) (0. (m*) ™ (@20, ~))) = (y.—9) for all (3. —) € K7,
bi(L,) = (8" b) (1, (m*) " (@2(y, )
=" (wi —wi) = (), —37) € RV \{0})" for all (y,—y) € K],
Thus

A\{0}) = cat A\{0})" = cat AT) <,
TANDD = et (AVO) = e (47)" <

which implies that gf_ contains at least y(A \ {0}) pairs of critical points of J,.
Thus we conclude from Proposition 3.2 that there exist at least v(A \ {0}) pairs
(ut, (—u)™) of critical points of E., that is, problem (2.4) has at least (A \ {0})
pairs of positive weak solutions. ([

Next, we are going to prove the existence of negative solutions for problem (2.4).

Theorem 5.7. Let hypotheses (H0), (H1) and (H4) be satisfied. Then there exists
€ > 0 such that, for any 0 < e < &, problem (2.4) has at least v(A \ {0}) pairs
(u™, (—u)™) of negative weak solutions.

Proof. As before, using Lemma 5.5 and Proposition 3.3, we know that

lim J ((m2)™" (®e(y)7)) = lim Bz (®e(y)7) =

e—0

uniformly in y € Ay . For each y € Ay, we set
) i= |Be (@a0)7) — i
This gives h(e) — 0 as € — 0. Setting
S° = {u— €8 J (u) <+ h(e)} .
We casily see that S° # () because (m°)~YH®.(y)7) € S°. Then, from Lemma 5.2
and Ambrosetti-Malchiodi [, Theorem 10.9], it follows that J_ has at least v(S°)

pairs (u~, (—u)™) of critical points on Se.
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Claim: v(S%) > y(A\ {0}).

Suppose that v(S°) = n and recall that we write A* = {(z,—x) : € A} for a
set A. From [44, Theorem 3.9] it follows that

(82) =
which guarantees the existence of a smallest positive integer n such that
S CDIUDLU---UDE,

with D}, i =1,2,--- ,n being closed and contractible in (W7(RY)\ {0})*, e.g.,
there exist

ni e 0 (100 % D, (W @)\ {0)") fori =12,

o]

cat
(Wt He (RN)\{0})"

such that
Ri(0,u”) = (u",(—u)") forall (u=,(—u)") €D,
hi(Lu™) = (wi, —w;) € (WHH(RN)\ {O})* for all (uv™, (—uw)™) € D;.
We define
D;={u" € WhHe@RN) : (u™, (—u)7) € D;}.
Then we can find a homotopy
hi € C ([0,1] x Dy, (WhH=(RV)\ {0}))

satisfying h;(0,-) = id, h;(1,-) = w; or —w; and h;(¢t,u”) = —h;(t,(—u)"). Next
we define

B2 = (B2, (—)7): (47)" = (V)
[y, ~y)] (2) = ([2-()] ™ (@), [@-(~p)] " (=) -

Taking R > diam(A), we define the barycenter map, for v € Wh*<(RY) with
compact support in Br(0), by

/ z|u” (x)P da

RN

[ @prds
Clearly, for any (y, —y) € (Ag)*, we have
B- (q)a<y)_) =y and B ((I)e(_y)_) =Y
As before, we write 5*(-,-) = (B-(-), 8=(-)) and get
5 (2:(9)7, [0 ()]7) = (8- (2-(9)7) 8- [0=(=9)) ") = (v, ).

Note that the sets

B W RM)\ {0} = RY, B_(u) =

Ki = (207" (m" (D)),

are closed subsets of (A5 )" and it holds (A3)" C KU --- UK, where m*(-,-) =
(m (-),m?(+)). Also, the sets K}, i =1,...,n, are contractible in (RV \ {O})* due
to the deformation b;: [0,1] x KF — (RV\ {0})* defined by

b(t ) = (87 o h7) (1 (m*) " (@2, —)))
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Indeed, we have
b: € € ([0,1) x K7, (RY\ {0))7)
(0, ) = (8" oh*)( ()™ @2y —y)) = (5, —y) for all (y,—y) € K,
hi(L.2) = (8" o by) (1, (m*) ™ (@(y, )
— 5" (wi, —wi) = (37, —9?) € (RY\{0})" for all (y,~y) € K,

which implies

YAV = et (AN{0]) = ﬁ%DJAE\WD*Sn

Hence, S° contains at least v(A\ {0}) pairs of critical points of J_. From Propo-
sition 3.4 we deduce that there are at least v(A\ {0}) pairs (v, (—u)™) of critical
points of F.. This means that problem (2.4) has at least y(A\{0}) pairs of negative
weak solutions. (]

Finally we give the existence result for odd weak solutions with precisely two
nodal domains for (2.4).

Theorem 5.8. Let hypotheses (HO), (H1) and (H4) be satisfied. Then there exists
€ > 0 such that, for any 0 < & < &, problem (2.4) has at least v(A \ {0}) pairs
(ut +u™, (—u)T + (—u)") of odd weak solutions with precisely two nodal domains.

Proof. Note that E. (u) = E. (ut +u~) = E. (u™) + E. (u™). Hence if ut and u~
are the critical points of E., then is so u = u™ +u~ as well. Consequently, Theorem
5.8 follows from Theorems 5.6 and 5 (]

Now we will prove an existence result for problem (2.5). We choose § > 0 such
that A5 = {J; € RV dist (z,A) < (5} is homotopically equivalent to A and A5 C .
Define a function ¢ € C2° (R™) such that 0 < ¢ <1 and

1, ifo<t<é/2,
t) =
¢t) {Q if t > 4.

For each y € A and € > 0, we define the function

Ex —y
o) = ¢ =) ().
with w being the positive ground state solution of equation (4.1). We define
D.: AN, P(y) =tV.y,
where t. is the unique positive number such that
rax E. (tWey(z)) = E. (teVey(2)),

that is,
tg\Ifgé S ./\[5

It follows from Proposition 3.5 that ®.(y) is well defined since ¢ (lex —y|) = 1 for
all z € Bsjo- (y/e) and y/e € Ao = {x e RN : ex € A}.
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Lemma 5.9. Let hypotheses (HO), (H1)(i)—(iii) and (H5) be satisfied. Then we
have

lim E. (®.(y)) = co uniformly in y € A.

e—0t

Proof. We argue by contradiction and assume that there exist ¢ > 0, {y, }neny C A
and ¢, — 07 such that

E., (¥, (y)—co| >0>0. (5.10)

Using Lebesgue’s dominated convergence theorem with a change of variables via
z = (epx — y)/en, it follows that

19e, I,

B /RN (Ve ) + e, (y)") do

_ /RN (‘v (C(Ianw—y”“ (T’)) ”) dx
+/RN (‘alenwy)w (giy> p> o

= [ o ()T (02 + € lnsl) Vs (I + [ sl oo (2)])

= w7, -

(5.11)

In a similar way, we can obtain that

/RN a(en) (IVTe, ()" + [T, ()|") dz — o a(y) ([Vw (2)|" + |w (2)[") dz = 0

as y € A and so a(y) = 0. Therefore,
0, (Ve, (y))

=T, W7, + /RN a(en®) (IVe, )" + [¥e, ()| dz = [lw(2)II7, -

Again by changing the variables by z = (e,2 —y) /e, and the definition of ¢, leads
to

(5.12)

0= (Bl (te, Ve, (1)) 1o, Ve, (9))

= e (Vo) = [0t Ve, ()1, Ve ()

= 00 (12, ¥e, ) = [ 3(n 4t Cna)w (D) e, s (2)

If £,2 € B5(0) then €,z +y € Bs(y) C As C . Letting t., — 400 gives
g (enz + 7t n EnR|l)W (2
9., ()] >/ §(enz +y,te, S (lEn2)) w (2))

- (te, C (Jenz) w (2)77
due to the fact that

0, (te, Ve, (y)) <L, Ve, (y)llgn = tgn [P, (y)HZn .

From (H5)(iii) we deduce that || W., (y)[|Z — 400 and so ¢, (¥, (y)) = +o0 by
Proposition 2.1 (vi), which contradicts (5.12). Hence, {t., }nen is bounded and so

¢ (lenz) w (2)|" dz,
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we can find a subsequence {tank }ren such that te,, — to > 0. Suppose that to = 0,
then we get from (2.3) and

<E‘énk <tsnk v, (y)) e, e, (y)> —0,

for any & > 0,
P

< Ocr,,, (tsnk \Ilsnk (y)>

= /]RN g (Enkx7 tenk \IjEnk (y)) tsnk \Psnk (y) dz

p
S 6/ tEnk \IIEnk (y)‘ dz + CE /
RN RN

which results in

p P
ool < [ o o] ae iz oo

ten, Ve, W)

T

tfnk \ijnk. (y) dLL',

T

dx.

Lp
P
Using similar arguments, we are able to show that H\IJE% (y) H — 0, contradicting
Lp

(5.11). We conclude that to > 0. Letting ,, — 07 in
vy (1 Wer, ) = [ 3 (Bt 9o, ) 1, Ve, (),
it follows that
oI, = [ 1 (o () o (2)

This yields tow € Ny and so from the uniqueness of ty as well as w € Ny we arrive
at to = 1. Finally, letting €,, — 0T in

E., ((I%M (y))

tgnk Enk q
= Ve, (y )” a(en,® (‘V‘I'Enk Y ‘ + “Ilenk Y ‘ )dx
p RN

- /]RN G (E"’Cx’ ben, \Ilenk (y)) dz,

by using

/ G (Enkm,tgn v, (y)) dz — F(w)dz,
RN kTR RN

this leads to
. 1 »
By (90 0)) = Sl = [ P} dz = Bofw) = co
which contradicts (5.10). O
Now, we choose R > 0 such that As C Br(0) and let x: RY — RY be defined

by
(z) = xz, if|z| <R,
A RN P
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Next, we define .: N. — RY by
Jon E(ex)|u(z)[P dz
Bl = R
Since A C As C Br(0) we have that
Jan K(ez) [0 (y)[" dz
Be (Pe(y)) = T 12 da
_ fRN k(ex) |t5( (lex —y|)w (%) |pdx
S [t (e =yl (272)[" da
_ Jrv ez +y) [C(lez)) w (2)" dz
Jan [C (Jez)) w (2)]7 dz
Jan (5 (e2+y) —y) ¢ (Jez)) w (2)[" dz
Jan [€(lez)w (2) P dz

=y+o(l),
as € — 0, uniformly for y € A.

Lemma 5.10. Let hypotheses (HO0), (H1)(i)—(iii) and (H4) be satisfied and let
en — 0 asn — +00 and {un}, ey C N, be such that E., (u,) — ¢ as n — +oco.
Then there exists a subsequence {fn}, o C RY such that epfjp =: yn — y € A as
n — +o0o. Moreover, up to a subsequence, vy, (+) := un (- + §n) converges strongly
in WhH(RN).

The proof of Lemma 5.10 is similar to the proof of the following lemma.

Lemma 5.11. Let hypotheses (H0), (H1)(i)—(iii) and (H5) be satisfied and let
en — 0 asn — +00 and {un},cn C N, be such that E. (un) — co as n — +oc0.
Then there exists a subsequence {in}, oy C RY such that ep,Gp =: yn — y € A as
n — +oo. Moreover, up to a subsequence, v, (+) := up (- + §n) converges strongly
in WhHe (RN,

Proof. As in the proof of Lemma 5.1 we can show that {uy }nen is bounded. We
first claim that there is a sequence {gn}, cny C RYM and constants R, ¢ > 0 such
that

liminf/ lu, | dz > o > 0. (5.13)

Br(in)

n—oo

Suppose this is not true. Then the boundedness of {uy}, .y together with Lemma
L1 of Lions [32] imply that u, — 0 in L¥(RY) for all p < s < p*. Since {un}, ey C

N, and due to (2.3) we have

unll?, < /RN (IVun|” + alen)|Vun|? + |un|” + alenz)|un|?) dz
:/ g(x, up)uy, de
RN

gg/ |un|pdx+05/ | da.
RN RN
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We conclude that [[u, | — 0 due to the arbitrariness of £ and u, — 0in L" (RM).
We also know that [ G(x, un)dz — 0. Therefore, Een (urn) — 0, which contra-
dicts ¢p > 0, and (5.13) is proved.

Let v, = uy, (- + ¥n). Up to a subsequence, we can assume that v,, — v # 0 in
WhHe(RN). Since WhH=(RY) — W7 (RY), we can choose t,, > 0 to be such
that w,, := t,, v, € Np.

Note that max;>q E’En (tuy,) is obtained at ¢t = 1. Using the translation invariance
of the Lebesgue integral and u,, € Mn» we have

Co S EO (wn)

1
= Lt - / Flw,) dz
]RN

p
P
=B o, - [ Pt ds
p ’ RN
woo (5.14)
=B, — [ Pt o
t p th q q A
< B, + B [ aen) Vol + 1 do— [ Glentaun) de
p P q JrN RN
< E. (thuy) < max E., (tun) = E- (un) = co + o(1),

which implies that lim Ey(w,) = ¢o. As in the proof of Theorem 4.2 we can show
n—00

that {wy nen is bounded. This together with the boundedness of {vy, }nen yields
that {t,, }nen is bounded as well. Thus, up to a subsequence, we can assume that
ty, = to > 0 as n — 4o0.

If tg = 0, then [jwy, , — 0, and consequently Eq (w,) — 0, which contradicts
that co > 0. Therefore to > 0, and {wy, },, oy satisfies

Eo(wn) — o, Wy — w:=tov Z 0.

Similar to the argument in the proof of Lemma 4.1 we can show that w, — w as
n — +o0o which implies v, — v as n — +o0.

We claim now that {y, := €x¥n},cy is bounded. Suppose this is not the case,
then there is a subsequence of {y,}, oy, not relabeled, such that [y,| — 4oo as
n — +00. We take R > 0 such that Q@ C Br(0). Suppose |y,| > 2R. Then, for any
r € Bgye, (0), we have

len® + yn| = |yn| — lenz| > R.

Because of {un},,cn C N.,, (H1) (i), the definition of g, after the change of variable
r =z + 9y, we get that

fonlly < [ 0wz +pmr0)

= / Q(Enz+yn,vn)vndz+/ G (nz + Yn, Upn) Up dz
Bprye,, (0) 2/en (0)

< / f(vn) v, dz + / I (vn) v, dz.
Brye, (0) B 0)

R/en
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From v,, — v and the definition of f we conclude that
1
(1= )bty < [ fwvadz =0,
Ben (0)

Letting n — 400 we deduce that v = 0, which contradicts v # 0. Therefore
{Yn }nen is bounded. Up to a subsequence, we may assume that y, — y € RV
asn — +oo. If y ¢ Q, then we can apply the above argument again to obtain a
contradiction. Hence we have y € (2.

It remains to check that y € A, that is, we should prove a(y) = 0. Suppose by
contradiction that a(y) > 0. Then we have

COZE()(’UJ)
<l 4y [ a) Vel
— ||w - a(y) |[Vw|” dz
p" P g e
1
+*/a(y)|w\qdac—/ F(w)dx
qJa RN
<Timinf |2 wl? + 2 [ a(enz + ya) [Vawn|d
_T%g}rgo » wnlly, . RNaenz UYn wy|* dx

1
+*/ alenz + yn) |wn|qu—/ F(wn)dx}
q JrN RN

< liminf E., (t,, v,) < liminf E., (u,) = co,

n—-+oo n—oo

a contradiction, and thus a(y) = 0. The condition (H1)(ii) implies y ¢ 0€Q. Hence
y € A. O

For each y € A, we set
he) = | B (@:(y)) - co|.
Then we deduce from Lemma 5.9 that h(g) — 0 as e — 07. We define the sublevel
set

N. = {u eN.: E.(u) < Co+h(5)}.

Note that &.(y) € J\/Z, and so j\//\€ = () for any € > 0.

Lemma 5.12. Let hypotheses (HO0), (H1)(i)—(iii) and (H5) be satisfied. Then we
have

lim sup dist (8 (u), As) = 0.

e—0t wEN,
Proof. Let €, — 0 as n — 4o00. By the definition of the supremum, there exists
u, € Ng,, such that

dist (Be, (un), As) = sup dist (5, (u), As) + on(1),
uej\//’g\n

where we denote by 0, (1) the quantity that tends to 0 as n — co. Therefore, it is
sufficient to prove that there exists a sequence {yn}, .y C As such that

lim |Be, (un) —yn| =0. (5.15)

n—-+00
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Since {un},cn C N-. € N, we note that

co < max Eo(tun,) < max E., (tun) = E., (un) < co + h(en),

which implies that Egn (un) — co. Then, from Lemma 5.11, it follows that there
exists a sequence {7y}, C RY such that £,9, =: yn — y € A as n — +oo. Hence
B () = Jan B (En) un (x) [P dz
o Jen lun(2)" dz
= f]RN K (€n2 + yYn) [un (2 + §n)|” dz
Jan Jtn (2 + 9|7 dz
fRN (k (enz + Yn) = Yn) |Vn (Z)|p dz
=Yn + 7
Jan lva (2)[F dz

Note that e,z +y, — y € A, and so B¢, (un) = yn +0n(1), that is, {yn}, oy satisfies
(5.15) and the lemma is proved. O

Now we can state and prove our existence result for problem (2.5).

Theorem 5.13. Let hypotheses (H0), (H1)(i)—(iii) and (H5) be satisfied. Then
there exists a small positive number € such that for every 0 < € < & problem (2.5)
has at least cat(A) positive solutions.

Proof. From Lemma 5.9 and Proposition 3.5 we conclude that
Jim J(m ™ (@e(y))) = lim Ee(@e(y)) = ¢
uniformly in y € A. For each y € A, we set
he) i= B2 (@-(9) — co|.
Then h(e) — 0 as € — 07. Now we write
3_7_ = {u+ €S, Jut) < e —|—h(6)}.

It is clear that S, # 0, since m ™! (P(y)) € S, . From Lemma 5.3 and the Lusternik-
Schnirelmann theory (see Szulkin-Weth [15, Theorem 27]), it follows that J has at
least cat (gjr) critical points on g:r Lemmas 5.9 and 5.12 imply that there exists
€ > 0 such that, for any 0 < € < &, the diagram
— mfl — m —~ .
A2 N FLLINY VAL
is well defined and 8. om om™! o ®, is homotopic to the inclusion id: A — As.
We claim that

cat (gjr) > cata, (A4). (5.16)

We assume that cat(g:_) = n, that is, there exists a smallest positive integer n such
that

S, CDiUD,U---UD,,
where D;, 1 =1,2,--- ,n are closed and contractible in 34:, that is, there exist

hi € C(10,1] x D;,81), i=1,2-.n
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such that
h;(0,u) =u for all u € D,
hi(l,u) =w; € §; for all u € D;.
We set
Ki = @71 (m(Dy)).

As before, IC; are closed subsets of A and A C K U---UK,,. Furthermore, K;,
i=1,---,n are contractible in A using the deformation b;: [0, 1] x K; — A; defined
by

bi(t, ) = (B omohy)(t,m *(®(z))).

Indeed, we conclude from Lemmas 5.9 and 5.12 that

hi € C([0,1] x Ky, As),

h:(0,2) = (Bomohy)(0,m Y (®.(z))) = forall x € K;,

hi(1,2) = (Bomoh)(1,m Y (@x(x))) = B(m(w;)) = 2; € As  for all x € ;.
Hence

cata;(A) <n,
that is, (5.16) holds. We also note that
cata;(A) = cat(A),

since As isAhomotopically equivalent to A. Thus, 5; contains at least cat(A) critical
points of J. Proposition 3.6 implies that these critical points are also the critical

points of the functional E.. Thus we show that the problem (2.5) has cat(A)
positive solutions. O

6. PROOF OF THE MAIN RESULTS

In this section we are going to proof our main results in this paper. A key lemma
in our proofs is the following one.

Lemma 6.1. Let hypotheses (H0), (H1) and (H4) be satisfied and e, — 07 and
un, € N, be a positive weak solution of (2.4). Then E. (u,) — c¢f and for any
o >0, there exist R > 0 and ng € N such that

unll Lo (Br(gnyey <o for alln = ng,

where y, s giwen by Lemma 5.10.

Remark 6.2. The results of Lemma 0.1 holds true for negative solutions of the
auziliary problem (2.4) since E., () is even under our hypotheses.

Remark 6.3. The results of Lemma 6.1 holds true for positive solution of the
auziliary problem (2.5) under the hypothesis (HO), (H1)(i)—(iii) and (H5). The
proof is similar.

Proof of Lemma 6.1. By an argument similar to that of (5.14), we can show that
E., (uy) — ch. Let R > 1,mzr € C°(RY) such that 0 < nr < 1,7r =0 in Bpr/2(0),

n

nr = 1 in Br(0)¢ and |Vng| < C/R. We set n,(x) = nr(x — gn). Let h > 0 and
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define uy, ;, := min{u,, h}. Choose v, = ngunuff’h as test function in (2.4) with
k > 0 to be determined later. A direct calculation yields

/ a(enw) (\Vun|q_2 Vg, - Vo, + \un\q_2 unvmh) dx
]RN
- / a(en) (|VUn\q Vi - Vupily  ununty, + V| nbur?,
. \ \
+ED |Vun|q Vg, - Vi pijhunt, o Ty | NP h) dz

:/ a(Enx)|vun|q Vu’ﬂ vn’ﬂpnp 1unu’nphd
BRr(Yn)\Br/2(9n)

+ [ aten) (1Vual s + ) da
RN

+ /@p/ a(en) [Vu,|? nﬁunufbph_l dz.
{un<h} ’

Applying Young’s inequality, we have

1 _ _
p g|vun‘q 2vun : Vﬁn’]ﬁ lun§

11 —1, 4 gqp=t
<p'<ngunqwnnq+ gty |Vun|q)

p1 plg=1), 2 at=
g g el [Vl + (q)quln?ﬂ " V|
and so
/ a(en) V| "% Vu, - Viupnh  upul?, dz
Br(i)\Bra(in) ’

10 1 (
q & Br(§n)\Brs(iin)
pla—1)

) [un | V| uhy, da

+ e alena) [Vun|* uf, da.

Br(§n)\Br/2(9n)
Substituting this expression into the formula (6.1) yields

/ a(enz) (‘vun|q72 Vuy - Vupp + ‘u"|q72 unvn’h> dz
RN
>C [ alews) Vo ity do+ [ alena) lun it do
RN
—C [ alen) |un|? |V, |? ulP, dz
RN 7

e / a(en) [Vin|? 78, dz — C / a(ent) | |V, i,
RN

since

np/ a(enz) |Vun|" nhunurty Ydz >0
{u,<h}
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and

/]RN a(en) |un|" nhunh, dz > 0.

Next, we calculate

/ \Vun|p72 Vy, - Vg, p de
RN

—92 —
= [ (190l T Vi i 4 Vg,
R

4D |Vt [P Vg, - Vg i tin ity 1) dz

> / (|Vun|’F2 Yy, - Vnnpnﬁflunuffh + |V, |? nﬁuff,’h> dz,
RN

since

p—2 kp—1
/ 5P Vg™ " Vg - Vup pihupuyh, do
RN

= np/ nLul? |Vu,|” de > 0.
{un<h}
Holder’s and Young’s inequalities yield

p/ [Vun|P 2 Vu, - Vnnnﬁ_lunuffh dz
RN

<o [ VP (O
RN

1
2 1—p P
< <p€ / IVunpnfLUthdI) <p§ v / IVnnIPUfLUZ?thJ)
RN RN

e [Vl doe 5[ aad, da
R

nn.h

and so

/ |Vun|p_2 Vg, - Vo, p da

RN
> C’/ V" bk, da — C/ (V| uburh), da.
RN RN
We have < Nén (un),vn,h> =0, that is,
/ <|Vun|p_2 Vu, Vo, + |un|p_2 unvmh) dz
]RN

+/ a(enx) (|Vun|q_2 VYV, Vg, p + |un|q_2 unvmh) dx
RN

= / g(enx, Up )vp b de.
RN

This together with (2.3) yields

/ [V, |2 Vu,Vu, j do
RN
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q—2 q—2
+ a(en®) ([ Vug|" " Vu, Vo i + |un]?™ " upvy ) de
RN
:/ 9(enx, Up )y b, dz f/ nE |un|” u'::’h dx
RN RN
p—1 r—1 KD P, Kp
< /]RN (§|un| + C¢ |ug] )nﬁunun,hdxf/ﬂw P Jun| u,, dx

< C'/ nhup ", da.
RN

Then, from (6.2) and (6.3), we conclude that

/RN |V, | nPu nhdx+/ a(enz) |[Vun| nPu nhdx
SC(/ 7777, nl nhdx+/ |vnn‘pu£ thdm
RN

—|—/ a(en) [un|? V| ul?, dm) )
RN ’

On the other hand, denoting by wy, ; = nnunufb,h, we have

fo<C [ Wl de=C [ |V )| ds
RN RN

P
:C/ ‘(Vnnunufl,thnnVunu;fm+/~innunufl_hqun7h>‘ dz
RN ’
SC/ V1 |P ulu nhdm+0/ nfL|Vun\pqu’hdx
RN
+C/<;p/ nPubu Z(; )\Vun,h|pdm
_C/ [NV |P ul) nhdx+C’ nﬁ|Vun\puffhdx
+Cl€p/ nhu nh|Vun|pdx
{un<h
<crvy ([ 1omP s et [V g, ao)
<C(k+1)P </ V0| vt u nhdl’+/ |V, |” nPu oy dz
RN RN
= [ olews) [V g, d
]RN

< Clr+ 1) ( L9l i dat [ aleno) unl (9" da

+ / nnu;uzph d.’l?)
RN

where we have used (6.4). Then we estimate

P, T P — r—p K p
/N M U Uy, dx = /N U, (nnunun,h) dx
R R

39

(6.4)
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" 71);*1) . pp*
< / ub dx / (Mnunul )77 dz
RN RN '

< C lwp,p

p**(l‘fp)

p
a*

£3

=C (/ (unufl,h)a* d:c) ,
BR/2(?JH)C

where p < o* = pp*/(p* — (r — p)) < p*. Further, we have

/RN [V, |? ufluffh dz

V1|” uburhy, da

\/BR(:Z]n)\BR/Q(gn)

BR(:&TL)\BR/Q(@R) BR(ﬂ’IL)\BR/Q(ﬂn)

Since r < p*, we have % > N. Therefore,

pp*
[V |7 da <

/ — v =0
Br(§n)\Br/2(jn) RN

and

/RN a(en) [un|? | Vn,|? uffh dx

- / a(n) [un|* [V | uf, da
Br(9n)\Br/2(Jn)
r—gq a—p

< lal~ | il ) ([ a2 do
BR(ﬂn)\BR/2(ﬂn) BR(gn)\BR/Q(gn)
X / (unu’;,h)a* dx
BR(Z[/TL)\BR/Z(@H)

Moreover, as ¢ < r < p*, it holds % > % > N and so

ap*
[V | 77 da <

/ v SC
Br(§n)\Bry2(iin) Rr=a N

Substituting the above estimations into (6.5) yields

P

E3

(/ (unu27h)p* da:) < || wn,
Br(gn)°
_pP_
<C(k+1)P (/ (unuz)h)a* dx)
Bry2(9n)°

<C(k+1)P / ulrre’ d:r)
BR/Z(gn)C

p
p*
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Using Fatou’s lemma in the variable h gives
P

P
(/ ug{c-‘rl)p* dl’) < C(H+ 1);0 (/ ug@-‘rl)a* dx)
Br(9n)° Br/2(in)¢

_1 1
[tnll Lo (B (gayey < CTT (K4 1) HunHL(mW(BR/Q(%)C) )

y
aF
or

Set v:=k+1=p"/a* > 1. We rewrite

i1
et ll o (B (gayey < €TV ”“n”Lw*(BR/z(yn)c)'
Then we iterate, beginning with v, v2, 43, ..., ™, to obtain

ST s iy
lnll o By < CT 7 A= flunll e

BR/Z(gn)C) :
Letting m — oo, we get
lnllzo 3@y < C2lnll Lo (Bro(ga)e) -

By the change of variables z = = — 7,,, we obtain

N
o
||un||L°o(BR(gn)C) <G ”un”Lp* (BR/Q(z]n)c) = Co </B |un (Z + gn)lp dz) .

It follows from Lemma 5.10 that v, (2) = u, (2 + §,) strongly converges in L?" (R
Thus, for R > 0 and n large enough, we have

R/2(Zgn)c
N).

||U7LHL°°(BR(1]")“) S0

Now, we are able to give the proofs of Theorems 1.2-1.3.

Proof of Theorems 1.2 and 1.3. We choose § > 0 small enough such that Ay C
and the sets Ay, As are homotopically equivalent to A. We claim that there exists
€ > 0 such that, for any 0 < ¢ < € and any solution v € A of the problem (2.4),
there holds

[ull oo 0oy < 7 (6.6)

Indeed, suppose by contradiction that for €, — 0 as n — 400 and u, € /\~/en such
that E. (u,) =0 and
||un||Loo(an) > T. (6.7)

From Lemma 6.1 it follows that Egn (uy) — . Then we can use Lemma 5.10 to
get a sequence {Jn},cy C RY such that £,3, — y € A as n — 400. We choose
Ry > 0 such that Bg,(y) C Bag,(y) C Q. Then we have

1
Brose,(y/en) = —~Bro(y) € e,
Furthermore, for any « € Bg, /., (9), when n is large enough, we have
- R, 1 2R
yn—g <4 o, (1) < 28

n|  €n En En

x*&_i S‘fﬂ*gn|+

n




42 W. LIU AND P. WINKERT

which implies that Bg, /., (4n) C Qc,. Consequently Bg, /e, (§n)¢ D QF, . Then by
Lemma 6.1 with o = 7 and n > ng large enough such that Ry/e, > R, we have

lunll o 0z, ) < lnllpo (B, ., 1) < Ml (Baaye) <7

which contradicts (6.7) and our claim is true. The same holds for solutions of (2.5),
see Remark 6.3.

By (6.6) and the definition of g (resp.§) we conclude that g(ez,u) = f(u)
(resp. §(ex,u) = f(u)). Thus solutions of the auxiliary problems (2.4) and (2.5)
are also solutions of (1.1). Hence the existence results in Theorems 1.2 and 1.3
follow from Theorems 5.6-5.8 and 5.13.

In the last part, we want to study the concentration behavior of the solutions of
the equation (1.1). Let &, — 0 as n — 400 and u,, € W< (RY) be a solution of
equation (2.4). As in the beginning of this proof, we can see that u, (x 4+ g,) — 0
as n — +oo and |z| — +oo. Thus, for any 7 > 0 and some large fixed R > 0, there
exists IV, such that

H“nHLoc(B};(gn)) <71 foralln> N,. (6.8)
We claim that
lunll oo (B = o' for some ¢’ > 0, (6.9)
where R is given in (6.8). Indeed, suppose not, for any 7 > 0, by (6.8) we have that
||un||L°°(RN) < 7 for n large enough.

From E‘;n (un) — 0 (resp. E;n (upn) — 0) as n — 400 and (H4)(ii) (resp. (H5)(ii)),
we have

nunm;,snunnip+1/'(usmw|VunPdw—+j/ a(en) fun|? da
RN RN

:/ g(x, up)u, dz (resp./ Q(x,un)undx>
RN RN

1
g—/qmm,
k ]RN

which implies u,, = 0, but this does not occur.
From (6.8) and (6.9) we conclude that the maximum point 5, € R of u,, belongs
to Bg (§n). Write p,, = §n + ¢» for some ¢, € Br(0). We now apply Lemma 5.10
again to obtain €,7, — y € A as n — +0o. We note that g, is bounded. Hence we
conclude
lim a(enppn) =aly) =0.

n—-+oo

The same holds for solutions of (2.5) by Lemma 5.11 and Remark 6.3. O
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