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Abstract. In this paper we deal with quasilinear elliptic equations of the

form

−div
(
|∇u|p−2∇u+ a(εx)|∇u|q−2∇u

)
+ |u|p−2u+ a(εx)|u|q−2u = f(u)

in RN , where 0 ≤ a(·) ∈ C
(
RN

)
∩ L∞ (

RN
)
, 1 < p < N , p < q < p∗ = Np

N−p
,

ε > 0 is a parameter, and f : R → R is a continuous function that grows

superlinearly and subcritically which does not need to fulfill the Ambrosetti-
Rabinowitz condition. Based on the Lusternik-Schnirelmann category we prove

several existence results of constant-sign and sign-changing solutions to the
problem above provided the parameter ε > 0 is sufficiently small.

1. Introduction and main result

In this paper we study quasilinear elliptic equations with unbalanced growth in
the whole RN given by

Tε(u) + |u|p−2u+ a(εx)|u|q−2u = f(u) in RN ,

u ∈ W 1,Hε(RN ),
(1.1)

where Tε(u) is the double phase operator given by

Tε(u) = − div
(
|∇u|p−2∇u+ a(εx)|∇u|q−2∇u

)
(1.2)

with ε > 0 being a parameter, W 1,Hε(RN ) is the related Musielak-Orlicz Sobolev
space depending on ε and we suppose the following assumptions:

(H0) 0 ≤ a(·) ∈ C
(
RN
)
∩ L∞ (RN

)
, 1 < p < N and p < q < p∗ = Np

N−p with the

critical exponent p∗ of p.

(H1) The weight function a(·) satisfies the following conditions:
(i) inf

x∈RN
a(x) = 0;

(ii) there exists an open bounded set Ω ⊂ RN such that 0 < min
x∈∂Ω

a(x);

(iii) inf
x∈Ω

a(x) = 0 with Ω from (ii);

(iv) a(·) is radially symmetric, that is, a(x) = a(|x|) for a.a.x ∈ RN .

Remark 1.1. Let A = {x ∈ Ω: a(x) = 0} with Ω from (H1)(ii). Then (H1)(iii)
implies that A ̸= ∅.

(H2) f : R → R is a continuous and odd function satisfying the following condi-
tions:
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(i) there exist r ∈ (q, p∗) and a constant C > 0 such that

|f(s)| ≤ C
(
1 + |s|r−1

)
for all s > 0;

(ii) lim
s→0

f(s)

|s|p−2s
= 0;

(iii) lim
|s|→+∞

f(s)

|s|q−2s
= +∞;

(iv)
f(s)

|s|q−1
is strictly increasing on (−∞, 0) and on (0,∞).

The corresponding energy functional Eε : W
1,Hε(RN ) → R for problem (1.1) is

given by

Eε(u) =
1

p
∥u∥p1,p +

1

q

∫
RN

a(εx) (|∇u|q + |u|q) dx−
∫
Ω

F (u) dx,

where F (s) =
∫ s

0
f(t) dt. A function u ∈ W 1,Hε(RN ) is said to be a weak solution

of (1.1) if∫
Ω

(
|∇u|p−2∇u+ a(εx)|∇u|q−2∇u

)
· ∇v dx+

∫
Ω

(
|u|p−2u+ a(εx)|u|q−2u

)
v dx

−
∫
Ω

f(u)v dx = 0

is satisfied for all v ∈ W 1,Hε(RN ).
Our first result reads as follows. Note that γ stands for the genus, see its Defi-

nition in Section 2.

Theorem 1.2. Let hypotheses (H0), (H1) and (H2) be satisfied and let A be given
as in Remark 1.1. Then there exists ε̃ > 0 such that, for any 0 < ε ≤ ε̃, problem
(1.1) has at least

(i) γ(A \ {0}) pairs (u+, (−u)+) of positive weak solutions;
(ii) γ(A \ {0}) pairs (u−, (−u)−) of negative weak solutions;
(iii) γ(A\{0}) pairs (u+ + u−, (−u)+ + (−u)−) of odd weak solutions with pre-

cisely two nodal domains.

Furthermore, for εn → 0, if uεn is one of these solutions and p̃n ∈ RN is a global
maximum point of uεn , then we have

lim
εn→0

a (εnp̃n) = 0.

Next, we are interested in positive solutions of problem (1.1) under the following
hypotheses on the right-hand side:

(H3) f : R → R is a continuous function satisfying the following conditions:
(i) there exist r ∈ (q, p∗) and a constant C > 0 such that

|f(s)| ≤ C
(
1 + |s|r−1

)
for all s > 0;

(ii) lim
s→0

f(s)

|s|p−2s
= 0;

(iii) lim
s→+∞

f(s)

|s|q−2s
= +∞;

(iv)
f(s)

sq−1
is strictly increasing on (0,∞).

(v) f(s) = 0 for s ≤ 0.
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The second result in this paper is given as follows, whereby cat stands for the
category of a set, see its precise Definition in Section 2.

Theorem 1.3. Let hypotheses (H0), (H1)(i)–(iii) and (H3) be satisfied. Then there
exists ε̂ > 0 such that for every 0 < ε < ε̂ problem (1.1) has at least cat(A) positive
solutions. Furthermore, for εn → 0, if uεn is one of these solutions and p̂n ∈ RN

is a global maximum point of uεn , then we have

lim
εn→0

a (εnp̂n) = 0.

The proofs of Theorems 1.2 and 1.3 are mainly based on the Lusternik-Schnirel-
mann category theory along with appropriate subsets of the Nehari manifold. In
particular, the proof of Theorem 1.2 relies on the properties of the odd symmetry
invariant Nehari submanifold. To the best of our knowledge, the result of Theorem
1.2 is new in the literature and has not been published before. The main novelties
in our work is the combination of an elliptic equation with unbalanced growth on
the whole of RN and a parameter ε inside of the weight function in order to control
the number of solutions of problem (1.1).

The application of the Lusternik-Schnirelmann category to elliptic equations
began with the work of Benci-Cerami [11], who studied the existence of positive
solution of the problem

−∆u+ λu = up−1 in Ω, u = 0 on ∂Ω, p ∈ (2, 2∗). (1.3)

The authors proved that if p is close to 2∗, problem (1.3) has at least cat(Ω)
solutions, where cat(Ω) denotes the Lusternik-Schnirelmann category of Ω. In
2000, Bartsch-Wang [9] considered nonlinear Schrödinger equations defined by

−∆u+ (λa(x) + 1)u = up, u > 0 in RN , 1 < p < 2∗ − 1 (1.4)

and proved existence of at least cat(Ω) solutions of (1.4) provided λ > 0 is suffi-
ciently large. We also refer to the paper by Bartsch-Wang [8]. Note that Theorem
1.3 is motivated by the works of Figueiredo-Furtado [26] and Alves-Figueiredo-
Furtado [3]. Indeed, in [26] the authors studied the multiplicity of positive solutions
for the equation

−εp div(a(x)|∇u|p−2∇u) + up−1 = f(u) in RN , u ∈ W 1,p(RN ),

while in [26] the existence of nontrivial solutions of(ε
i
∇−A(z)

)2
u+ V (z)u = f(|u|2)u in RN

has been shown. In both papers the number of solutions depend on the Lusternik-
Schnirelmann category theory provided the parameter is sufficiently small. In gen-
eral, the Lusternik-Schnirelmann category became a very powerful tool over the
years and has been used in different models and equations to get multiplicity of
solutions. We refer, for example, to the papers of Alves [1], Alves-Ding [2], Benci-
Bonanno-Micheletti [10], Cingolani [15], Cingolani-Lazzo [16], Figueiredo-Pimenta-
Siciliano [27], Figueiredo-Siciliano [28], see also the references therein.

In all of the aforementioned works, the existence of constant sign solutions has
been demonstrated. In 2003, Castro-Clapp [14] studied the problem

∆u+ λu+ |u|2
∗−2u = 0 in Ω, u = 0 on ∂Ω, u(τx) = −u(x)
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for all x ∈ Ω with τ being a nontrivial orthogonal involution and proved the ex-
istence of pairs of sign-changing solutions provided λ > 0 is small enough. An
improvement of their results has been done in the work of Cano-Clapp [13]. Re-
cently, Liu-Dai-Winkert [37] obtained γ(Ωλ \ {0}) pairs (±u) of odd weak solutions
with precisely two nodal domains for the (p, q)-problem

−∆pu− µ∆qu = f(u)− |u|p−2u in Ωλ, u = 0 on ∂Ωλ, u(−x) = −u(x)

for a. a.x ∈ Ωλ provided λ > 0 is sufficiently small, where Ωλ := λΩ is an expanding
domain for Ω ⊆ RN to be bounded and symmetric.

In our paper we extend some of the results of [37] to parameter dependent weight
functions of double phase type as given in (1.1) and (1.2). It is worth noting that
the issue addressed in problem (1.1) arises in the context of the study of certain non-
Newtonian fluids, where |∇u|p−2 + a(x)|∇u|q−2 stands for the viscosity coefficient
of the fluid and f(u) − |u|p−2u − a|u|q−2u is the divergence of shear stress. Then
the solutions of (1.1) denote the speed of the fluid, see Liu-Dai [34]. Note that the
operator in (1.2) is related to the energy functional

R(u) =

∫
(|∇u|p + a(x)|∇u|q) dx, (1.5)

which was first introduced by Zhikov [48] in order to describe models for strongly
anisotropic materials in the context of homogenization and elasticity. In fact, the
hardening properties of strongly anisotropic materials change point by point and
the modulating coefficient a(·) helps to describe the mixture of two different materi-
als with hardening powers p and q. We point out that functionals of the form (1.5)
belong to the class of the integral functionals with nonstandard growth condition
according to Marcellini’s terminology [39, 40]. Over the past 10 years several reg-
ularity results for local minimizers of (1.5) have been developed, we mention just
the most famous ones by Baroni-Colombo-Mingione [5, 6, 7], De Filippis-Mingione
[22] and Colombo-Mingione [18, 19], see also the references therein. Concern-
ing existence and multiplicity results of double phase problems, lots of works for
bounded or unbounded domains with different right-hand sides and various tech-
niques have been published in the last decade. We mention the papers of Biagi-
Esposito-Vecchi [12], Colasuonno-Squassina [17], Crespo-Blanco-Gasiński-Winkert
[21], Farkas-Winkert [25], Gasiński-Papageorgiou [29], Gasiński-Winkert [30, 31],
Liu-Dai [33, 34, 35], Liu-Papageorgiou [36], Papageorgiou-Rădulescu-Repovš [41,
42] Perera-Squassina [43] and Zeng-Bai-Gasiński-Winkert [46], see also the refer-
ences therein.

As far as we know the only papers for double phase problems using the Lusternik-
Schnirelmann category have been published by Liu-Dai-Winkert-Zeng [38] and
Zhang-Zuo-Rădulescu [47]. In [38] the authors prove the existence of at least
cat(Ωλ)+1 positive solutions for problems as in (1.1) with ε = 1 where Ωλ := λΩ is
an expanding domain with λ to be positive. In [47] only the existence of nonnega-
tive solutions to problem (1.1) has been shown for small values of ε in the situation
of an unbounded potential V and under stronger assumptions as in our paper,
for example, their nonlinearity has to fulfill the Ambrosetti-Rabinowitz condition.
Since working on weighted Musielak-Orlicz-Sobolev spaces which are different from
ours, there is no need to suppose condition (H1)(iv). We emphasize that we obtain
the positive solutions of problem (1.1) as stated in Theorem 1.3 without relying
on the unbounded potential V and without assuming condition (H1)(iv). To the
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best of our knowledge, no papers exist which prove the existence of sign-changing
solutions for problem (1.1) depending on the weight function a(·).

The paper is organized as follows. In Section 2 we present the involved function
space, recall a penalization technique due to del Pino-Felmer and introduce two
auxiliary problems. Section 3 presents the mappings between the unit sphere and
related Nehari manifolds while Section 4 discussed the limit problem when ε goes
to zero. In Section 5 we give existence results for our auxiliary problems introduced
in Section 2 and finally, Section 6 gives the proofs of our main Theorems 1.2 and
1.3.

2. Preliminaries and the penalization method

In this section we first recall some facts about the underlying function spaces
and the properties of the operator. Then we introduce a penalization method due
to del Pino-Felmer [23].

To this end, for 1 ≤ r < ∞, by Lr(Ω) and Lr(RN ;RN ) we denote the usual
Lebesgue spaces endowed with the norm ∥ · ∥r and W 1,r(RN ) (1 < r < ∞) stands
for the usual Sobolev space equipped with the norm

∥u∥1,r =
(
∥∇u∥rr + ∥u∥rr

) 1
r .

Let hypothesis (H0) be satisfied, ε > 0 and letM(RN ) be the set of all measurable
functions u : RN → R. We define the nonlinear mapping Hε : RN × [0,∞) → [0,∞)
by

Hε(x, t) = tp + a(εx)tq.

Then, by LHε(RN ) we denote the Musielak-Orlicz Lebesgue space given by

LHε(RN ) =

{
u ∈ M(RN ) :

∫
Ω

Hε(x, |u|) dx < +∞
}
,

which is endowed with the Luxemburg norm

∥u∥Hε
= inf

{
τ > 0:

∫
Ω

Hε

(
x,

|u|
τ

)
dx ≤ 1

}
.

From Liu-Dai [34, Theorem 2.7 (i)] we know that the space LHε(RN ) is a reflexive
Banach space. The Musielak-Orlicz Sobolev space W 1,Hε(RN ) is defined by

W 1,Hε(RN ) =
{
u ∈ LHε(RN ) : |∇u| ∈ LHε(RN )

}
equipped with the norm

∥u∥ε = ∥∇u∥Hε
+ ∥u∥Hε

,

where ∥∇u∥Hε
= ∥ |∇u| ∥Hε

. As before, W 1,Hε(RN ) is a reflexive Banach space,
see Liu-Dai [34, Theorem 2.7 (ii)]. Write

Aε =
{
x ∈ RN : εx ∈ A

}
with A given in Remark 1.1. Note that if x ∈ Aε then a(εx) = 0. Consequently
W 1,Hε(Aε) coincides with W 1,p(Aε). If x ∈ RN \ Aε then a(εx) > 0. In this case,
we know that the embedding

W 1,Hε(RN \Aε) ↪→ W 1,p(RN \Aε)
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is continuous. Therefore, we have

W 1,Hε(RN ) ↪→ Ls(RN ) continuously for all s ∈ [p, p∗];

W 1,Hε(RN ) ↪→ Ls
loc(RN ) compactly for all s ∈ (p, p∗).

For more details on the spaces, we refer to the papers of Crespo-Blanco-Gasiński-
Harjulehto-Winkert [20], Liu-Dai [34] and Perera-Squassina [43].

Let

ϱε(u) =

∫
RN

(
|∇u|p + a(εx)|∇u|q + |u|p + a(εx)|u|q

)
dx. (2.1)

It is easy to see that

ϱε(u) = ∥u∥p1,p +
∫
RN

(
a(εx) (|∇u|q + |u|q)

)
dx ≥ ∥u∥p1,p.

The norm ∥ · ∥ε and the modular function ϱε are related as follows, see Crespo-
Blanco-Gasiński-Harjulehto-Winkert [20, Proposition 2.15] or Liu-Dai [33, Propo-
sition 2.1].

Proposition 2.1. Let (H0) be satisfied, let y ∈ W 1,Hε(RN ) and let ϱε be defined
by (2.1). Then the following hold:

(i) If y ̸= 0, then ∥y∥ε = λ if and only if ϱε(
y
λ ) = 1;

(ii) ∥y∥ε < 1 (resp.> 1, = 1) if and only if ϱε(y) < 1 (resp.> 1, = 1);
(iii) If ∥y∥ε < 1, then ∥y∥qε ≤ ϱε(y) ≤ ∥y∥pε;
(iv) If ∥y∥ε > 1, then ∥y∥pε ≤ ϱε(y) ≤ ∥y∥qε;
(v) ∥y∥ε → 0 if and only if ϱε(y) → 0;
(vi) ∥y∥ε → +∞ if and only if ϱε(y) → +∞.

Moreover, let Bε : W
1,Hε(RN ) → W 1,Hε(RN )∗ be the nonlinear operator given

by

⟨Bε(u), v⟩Hε
=

∫
Ω

(
|∇u|p−2∇u+ a(εx)|∇u|q−2∇u

)
· ∇v dx

+

∫
Ω

(
|u|p−2u+ a(εx)|u|q−2u

)
v dx

(2.2)

for all u, v ∈ W 1,Hε(RN ) where ⟨ · , · ⟩Hε
is the duality pairing between W 1,Hε(RN )

and its dual space W 1,Hε(RN )∗. The operator Bε : W
1,Hε(RN ) → W 1,Hε(RN )∗

has the following properties, see Crespo-Blanco-Gasiński-Harjulehto-Winkert [20,
Proposition 3.4].

Proposition 2.2. The operator Bε defined by (2.2) is bounded (that is, it maps
bounded sets into bounded sets), continuous, strictly monotone (hence maximal
monotone) and it is of type (S+).

Let X be a Banach space and let A be the class of all closed subsets B of X \{0}
which are symmetric, that is, u ∈ B implies −u ∈ B.

Definition 2.3. Let B ∈ A. The genus γ(B) of B is defined as the least integer n
such that there exists φ ∈ C(X,Rn) such that φ is odd and φ(x) ̸= 0 for all x ∈ B.
We set γ(B) = +∞ if there are no integers with the above property and γ(∅) = 0.

Remark 2.4. An equivalent way to define γ(B) is to take the minimal integer n
such that there exists an odd map φ ∈ C(B,Rn \ {0}).
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We denote by catB(A) the category of A with respect to B, namely the least
integer k such that A ⊆ A1 ∪ · · · ∪ Ak with Ai (i = 1, · · · , k) being closed and
contractible in B. We set catB(∅) = 0 and catB(A) = +∞ if there is no integer
with the above property. Furthermore, we set cat(B) := catB(B).

In the second part of this section we construct an auxiliary problem for which
we use the construction idea due to del Pino-Felmer [23], who found a positive
standing wave solution for the classical Schrödinger equation under local condition
of potential. The auxiliary problem is used to overcome the lack of compactness of
problem (1.1).

First, we suppose that f fulfills (H2). We set k > 0 with k > q and take τ > 0
such that f(τ)/τp−1 = 1/k. We define

f̃(s) =


f(s) if |s| ≤ τ,
1
ks

p−1 if s > τ,

− 1
k |s|p−1

if s < −τ,

and

g̃(x, s) = χΩ(x)f(s) + (1− χΩ(x)) f̃(s),

where Ω is given in the assumption (H1)(ii) and χΩ is its characteristic function,
that is

χΩ(x) =

{
1, x ∈ Ω,

0, x ∈ Ωc.

By hypothesis (H2), it is clear that g̃ has the following properties:

(H4) g̃ : RN×R → R is a continuous and odd function with respect to s, satisfying
the following conditions:
(i) there exist r ∈ (q, p∗) and a constant C > 0 such that

|g̃(x, s)| ≤ C
(
1 + |s|r−1

)
for all s > 0;

(ii) lim
s→0

g̃(x, s)

|s|p−2
s
= 0 uniformly in x ∈ RN ;

(iii) (a) lim
|s|→+∞

g̃(x, s)

|s|q−2
s
= +∞ uniformly in x ∈ Ω;

(b) 0 ≤
∣∣∣G̃(x, s)

∣∣∣ ≤ |s|p /k and 0 ≤ |g̃(x, s)| ≤ |s|p−1
/k for all |s| > 0

and x ∈ Ωc, where G̃(x, s) =
∫ s

0
g̃(x, t) dt.

(iv) (a)
g̃(x, s)

|s|q−1 is strictly increasing for all |s| > 0 and x ∈ Ω or |s| ≤ τ

and x ∈ Ωc;

(b)
g̃(x, s)

|s|p−2
s
=

1

k
for all |s| > τ and x ∈ Ωc.

Next, we suppose that hypothesis (H3) holds and define

f̂(s) =

{
f(s) if 0 < s ≤ τ,
1
ks

p−1 if s > τ,



8 W. LIU AND P. WINKERT

and

ĝ(x, s) = χΩ(x)f(s) + (1− χΩ(x)) f̂(s).

Then, due to (H3), the function ĝ fulfills the following conditions:

(H5) ĝ : RN × R → R is a Carathéodory function with primitive Ĝ(x, s) =∫ s

0
ĝ(x, t) dt satisfying the following assumptions:

(i) there exist r ∈ (q, p∗) and a constant C > 0 such that

|ĝ(x, s)| ≤ C
(
1 + |s|r−1

)
for all s > 0;

(ii) lim
s→0

ĝ(x, s)

|s|p−2
s
= 0 uniformly in x ∈ RN ;

(iii) (a) lim
s→+∞

ĝ(x, s)

|s|q−2
s
= +∞ uniformly in x ∈ Ω;

(b) 0 ≤ Ĝ(x, s) ≤ sp/k and 0 ≤ ĝ(x, s) ≤ sp−1/k for all s > 0 and
x ∈ Ωc.

(iv) (a)
ĝ(x, s)

|s|q−2
s
is strictly increasing for all s > 0 and x ∈ Ω or s ≤ τ

and x ∈ Ωc;

(b)
ĝ(x, s)

|s|p−2
s
=

1

k
for all s > τ and x ∈ Ωc.

(v) ĝ(x, s) = 0 for s ≤ 0.

By (H4)(i), (ii) and (H5)(i), (ii), we can find for any ξ > 0 a number Cξ > 0
such that ∣∣∣G̃(x, s)

∣∣∣ ≤ ξ |s|p + Cξ |s|r for all x ∈ RN and for all s ∈ R,∣∣∣Ĝ(x, s)
∣∣∣ ≤ ξ |s|p + Cξ |s|r for all x ∈ RN and for all s ∈ R.

(2.3)

Now we consider the auxiliary problems

Tε(u) + |u|p−2u+ a(εx)|u|q−2u = g̃(εx, u) in RN ,

u ∈ W 1,Hε(RN )
(2.4)

and
Tε(u) + |u|p−2u+ a(εx)|u|q−2u = ĝ(εx, u) in RN ,

u ∈ W 1,Hε(RN ).
(2.5)

It is easy to see that, if uε is a solution of the auxiliary problem (2.4) (resp. (2.5))
such that uε ≤ τ for x ∈ Ωc

ε :=
{
x ∈ RN : εx ∈ Ω

}
, then g̃(εx, uε) = f(uε)

(resp. ĝ(εx, uε) = f(uε) ) and consequently uε is also a solution of (1.1). Therefore,
we will look for solutions uε of the problems (2.4) and (2.5) satisfying

uε ≤ τ for all x ∈ Ωc
ε.

Finally, we denote the corresponding energy functional Ẽε : W
1,Hε(RN ) → R for

problem (2.4) by

Ẽε(u) =
1

p
∥u∥p1,p +

1

q

∫
RN

a(εx) (|∇u|q + |u|q) dx−
∫
RN

G̃(εx, u) dx



THE EFFECT OF THE WEIGHT FUNCTION FOR DOUBLE PHASE PROBLEMS 9

and the energy functional for (2.5) by Êε : W
1,Hε(RN ) → R defined by

Êε(u) =
1

p
∥u∥p1,p +

1

q

∫
RN

a(εx) (|∇u|q + |u|q) dx−
∫
RN

Ĝ(εx, u) dx.

3. The mapping between the unit sphere and the Nehari manifold

From now on, for a function u : RN → R, we denote by u+ and u− the positive
and negative part of u, respectively, that is

u+ = max (u, 0) , u− = min (u, 0) .

Let

W 1,Hε(RN )◦ :=
{
u ∈ W 1,Hε(RN ) : u(−x) = −u(x)

}
.

The Nehari manifold corresponding to (2.4) is defined by

Ñε :=
{
u ∈ W 1,Hε(RN ) \ {0} :

〈
Ẽ′

ε(u), u
〉
= 0
}

while the odd symmetry invariant Nehari submanifold is given by

Ñ ◦
ε :=

{
u ∈ Ñε : u(−x) = −u(x)

}
.

Note that

Ñ ◦
ε = Ñε ∩W 1,Hε(RN )◦.

We point out that Ẽε : W
1,Hε(RN )◦ → R is an even functional with (Ẽε(−u))′ = −

Ẽ′
ε(u). Hence, if Ẽε ∈ C2, then the nontrivial solutions of (2.4) are the critical

points of the restriction of the functional Ẽε to the odd symmetry invariant Nehari
submanifold Ñ ◦

ε . But we only suppose that g̃ is continuous and so we just have

Ẽε ∈ C1 which implies, in general, the nondifferentiability of Ñ ◦
ε . The same holds

for the auxiliary problem in (2.5) with ĝ instead of g̃, respectively. The next results
will overcome these difficulties.

We write

S◦ =
{
u ∈ W 1,Hε(RN )◦ : ∥u∥ε = 1

}
and

S◦
+ =

{
u+ : u ∈ S◦} , N ◦

+ =
{
u+ : u ∈ Ñ ◦

ε

}
.

In the next lemma we can define a one-to-one correspondence between S◦
+ and N ◦

+.

Proposition 3.1. Let hypotheses (H0), (H1)(i)–(iii) and (H4) be satisfied. Then
the following hold:

(i) For each w ∈ W 1,Hε(RN )◦ \ {0}, set φ̃w+(t) = Ẽε(tw
+) for t ≥ 0. Then

there exists a unique tw+ > 0 such that φ̃′
w+(t) > 0 if 0 < t < tw+ and

φ̃′
w+(t) < 0 if t > tw+ , that is, max

t∈[0,+∞)
φ̃w+(t) is achieved at t = tw+ and

tw+w+ ∈ N ◦
+.

(ii) There exists δ > 0 such that tw+ ≥ δ for w+ ∈ S◦
+ and for each compact

subset W◦
+ ⊆ S◦

+ there exists a constant CW◦
+
such that tw+ ≤ CW◦

+
for all

w ∈ W◦
+.
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(iii) Let us denote by

m̃◦
+ :
{
w+ : w ∈ W 1,Hε(RN )◦ \ {0}

}
→ N ◦

+,

w+ 7→ m̃◦
+(w

+) := tw+w+.

Then the mapping m̃◦
+ is continuous.

(iv) Let m◦
+ := m̃◦

+|S◦
+
. Then m◦

+ is a homeomorphism between S◦
+ and N ◦

+ and

the inverse of m◦
+ is given by(

m◦
+

)−1
(u+) =

u+

∥u+∥ε
for all u ∈ N ◦

+.

Proof. (i) It is clear that φ̃w+(0) = 0. We deduce from (2.3) that

φ̃w+(t) ≥ tp

p

∥∥w+
∥∥p
1,p

+
tq

q

∫
RN

a(εx)
(∣∣∇w+

∣∣q + ∣∣w+
∣∣q) dx

−
∫
RN

(
1

2p
tp
∣∣w+

∣∣p + C 1
2p
tr
∣∣w+

∣∣r)dx

≥ tp

2p

∥∥w+
∥∥p
1,p

+
tq

q

∫
RN

a(εx)
(∣∣∇w+

∣∣q + ∣∣w+
∣∣q) dx− C 1

2p
tr
∫
RN

∣∣w+
∣∣r dx

= C1t
p + C2t

q − C3t
r,

which implies that φ̃w+(t) > 0 for t small enough. It follows from (H4)(iii) that,

for any M > 0, there exists TM > 0 such that G̃(εx, t) ≥ M |t|q for |t| > TM and
x ∈ Ωε. Thus

φ̃w+(t) ≤ tp

p

∥∥w+
∥∥p
1,p

+
tq

q

∫
RN

a(εx)
(∣∣∇w+

∣∣q + ∣∣w+
∣∣q) dx

−Mtq
∫
Ωε

∣∣w+
∣∣q dx+

1

k
tp
∫
Ωc

ε

∣∣w+
∣∣p dx

= C1t
p + C2t

q − C3Mtq

≤ C1t
p − C2t

q when M ≥ 2C2

C3
,

which implies that φ̃w+(t) < 0 for t large enough. Hence there exists tw+ > 0 such
that φ̃′

w+(tw+) = 0. We also note that

0 = φ̃′
w+(t) =

∫
RN

(
tp−1

(∣∣∇w+
∣∣p + ∣∣w+

∣∣p)+ a(εx)tq−1
(∣∣∇w+

∣∣q + ∣∣w+
∣∣q)) dx

−
∫
RN

g̃(εx, tw+)w+ dx

implies tw+ ∈ N ◦
+.

We claim that E := {x ∈ Ωc
ε : tw

+ > τ for a.a.x ∈ RN} = ∅. Suppose E ̸=
∅. Then

〈
Ẽ′

ε(tw
+), tw+χE

〉
= 0, where χE is the characteristic function of E.

However, we have〈
Ẽ′

ε(tw
+), tw+χE

〉
=

∫
E

(
tp−1

(∣∣∇w+
∣∣p + ∣∣w+

∣∣p)+ a(εx)tq−1
(∣∣∇w+

∣∣q + ∣∣w+
∣∣q)) dx
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−
∫
E

g̃(εx, tw+)w+ dx

≥
∫
E

(
tp−1

(∣∣∇w+
∣∣p + ∣∣w+

∣∣p)+ a(εx)tq−1
(∣∣∇w+

∣∣q + ∣∣w+
∣∣q)) dx

− 1

k
tp−1

∫
E

∣∣w+
∣∣p dx

≥
(
1− 1

k

)
tp−1

∫
E

∣∣w+
∣∣p dx ≥ σ > 0,

for some positive constant σ which is a contradiction and so the claim holds true.
Consequently, we deduce from tw+ ∈ N ◦

+ that∫
RN

a(εx)
(∣∣∇w+

∣∣q + ∣∣w+
∣∣q)dx

=

∫
RN

g̃(εx, tw+)w+

tq−1
dx− 1

tq−p

∫
RN

(∣∣∇w+
∣∣p + ∣∣w+

∣∣p) dx
=

∫
Ωε

g̃(εx, tw+)w+

tq−1
dx+

∫
{Ωc

ε, tw
+≤τ}

g̃(εx, tw+)w+

tq−1
dx

− 1

tq−p

∫
RN

(∣∣∇w+
∣∣p + ∣∣w+

∣∣p) dx.
By (H4)(iv), the right-hand side of the last equality is strictly increasing in t.
It follows that φ̃w+(t) has a unique critical point. Therefore max

t∈[0,+∞)
φ̃w+(t) is

achieved at a unique t = tw+ > 0 so that h′
w+(tw+) = 0 and tw+w+ ∈ N ◦

+.
(ii) First, we prove that there exists δ > 0 such that tw+ > δ for w+ ∈ S◦

+. If
tw+ ≥ 1 we are done. If tw+ < 1, we deduce from tw+w+ ∈ N ◦

+ and (2.3) that∫
RN

(
tpw+

(∣∣∇w+
∣∣p + ∣∣w+

∣∣p)+ tqw+a(x)
(∣∣∇w+

∣∣q + ∣∣w+
∣∣q)) dx

≤ 1

2
tpw+

∫
RN

∣∣w+
∣∣p dx+ C 1

2
trw+

∫
RN

∣∣w+
∣∣r dx

or
1

2
tqw+ ≤ C 1

2
trw+ .

Clearly, we can take δ =
(

1
2C1/2

) 1
r−q

> 0 in this case.

Next, if W◦
+ ⊆ S◦

+ is compact, and suppose by contradiction that there is
{w+

n }n∈N ⊂ W◦
+ with tn := tw+

n
→ +∞. By (i), we see that

Ẽε(tnw
+
n ) = max

t∈[0,+∞)
Ẽε(tw

+
n ) ≥ 0.

On the other hand, by (H4)(iii), we deduce that

0 ≤ Ẽε(tnw
+
n )

tqn
≤ 1

p
+

1

k
−
∫
Ωε

G̃(εx, tnw
+
n )

tqn
dx → −∞ as n → ∞,

which yields a contradiction. Thus there exists CW◦
+
such that tw+ ≤ CW◦

+
.

(iii) Suppose that w+
n → w+ in W 1,Hε(RN ) \ {0}. It follows from (ii) that

{tw+
n
}n∈N is uniformly bounded. Therefore, there exist a subsequence of {tw+

n
}n∈N,
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which we still denote by {tw+
n
}n∈N, converging to a limit t0. It follows from the

uniqueness of tw+ that t0 = tw+ . But then twn
→ tw+ . Thus m̃◦

+ is continuous.

(iv) By (i), we can easily see that m◦
+(S◦

+) is a bounded set in W 1,Hε(RN ) and
for any w+ ∈ m◦

+(S◦
+), there exists δ > 0 such that ∥w+∥ε ≥ δ, that is, for any

w+ ∈ N ◦
+, we can find δ > 0 such that∥w+∥ε ≥ δ. The argument is similar to the

proof of (ii). By the continuity of m̃◦
+ and its definition, we know that the map

m◦
+ : S◦

+ → N ◦
+ is continuous and one-to-one. Clearly, the inverse function of m◦

+

is (m◦
+)

−1(w+) = w+

∥w+∥ε
for any w+ ∈ N ◦

+. We only have to prove that
(
m◦

+

)−1
is

continuous. Indeed, it holds∥∥∥(m◦
+

)−1
(w+)−

(
m◦

+

)−1
(v+)

∥∥∥
ε

=

∥∥∥∥ w+

∥w+∥ε
− v+

∥v+∥ε

∥∥∥∥
ε

=

∥∥∥∥w+ − v+

∥w+∥ε
+

v+ (∥v+∥ε − ∥w+∥ε)
∥w+∥ε ∥v+∥ε

∥∥∥∥
ε

≤
2 ∥w+ − v+∥ε

∥w+∥ε

≤ 2

δ

∥∥w+ − v+
∥∥
ε
,

which shows that (m◦
+)

−1 is Lipschitz continuous. □

Now we can define

J̃◦
+ :
{
w+ : w ∈ W 1,Hε(RN )◦ \ {0}

}
→ RN ,

w+ 7→ J̃◦
+(w

+) = Ẽε(m̃
◦
+(w

+)),

J̃+ := J̃◦
+|S◦

+
.

(3.1)

A direct consequence of Proposition 3.1 and by Szulkin-Weth [45, Proposition 9
and Corollary 10] is the following proposition.

Proposition 3.2. Let hypotheses (H0), (H1)(i)–(iii) and (H4) be satisfied. Then
the following hold:

(i) J̃+ ∈ C1
(
S◦
+,R

)
and〈

J̃ ′
+(w

+), z
〉
=
〈
Ẽ′

ε(m
◦
+(w

+)), z∥m◦
+(w

+)∥ε
〉

for all w+ ∈ S◦
+ and for all z ∈ Tw+(S◦

+), where Tw+(S◦
+) denotes the

tangent space to S◦
+ at w+.

(ii) If {w+
n }n∈N ⊆ S◦

+ is a (PS)c-sequence for J̃+, then {m◦
+(w

+
n )}n∈N ⊆ N ◦

+

is a (PS)c-sequence for Ẽε. If {u+
n }n∈N ⊆ N ◦

+ is a bounded (PS)c-sequence

for Ẽε, then {(m◦
+)

−1(un)}n∈N ⊆ S◦
+ is a (PS)c-sequence for J̃+.

(iii) w+ ∈ S◦
+ is a critical point of J̃+ if and only if m◦

+(w
+) ∈ N ◦

+ is a nontrivial

critical point of Ẽε. Moreover, infS◦
+
J̃+ = infN◦

+
Ẽε.

(iv) If Ẽε is even, then so is J̃+.

Next, we write

S◦
− =

{
u− : u ∈ S◦} , N ◦

− =
{
u− : u ∈ Ñ ◦

ε

}
.

Then we can set up a one-to-one correspondence between S◦
− and N ◦

− as follows.

Proposition 3.3. Let hypotheses (H0), (H1)(i)–(iii) and (H4) be satisfied. Then
the following hold:
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(i) For each w ∈ W 1,Hε(RN )◦ \ {0}, set φ̃w−(t) = Ẽε(tw
−) for t ≥ 0. Then

there exists a unique tw− > 0 such that φ̃′
w−(t) > 0 if 0 < t < tw− and

φ̃′
w−(t) < 0 if t > tw− , that is, max

t∈[0,+∞)
φ̃w−(t) is achieved at t = tw− and

tw−w− ∈ N ◦
−.

(ii) There exists δ > 0 such that tw− ≥ δ for w− ∈ S◦
− and for each compact

subset W◦
− ⊆ S◦

− there exists a constant CW◦
−
such that tw− ≤ CW◦

−
for all

w ∈ W◦
−.

(iii) Let us denote by

m̃◦
− :
{
w− : w ∈ W 1,Hε(RN )◦ \ {0}

}
→ N ◦

−,

w− 7→ m̃◦
−(w

−) := tw−w−.

Then the mapping m̃◦
− is continuous.

(iv) Let m◦
− := m̃◦

−|S◦
−
. Then m◦

− is a homeomorphism between S◦
− and N ◦

−
and the inverse of m◦

− is given by(
m◦

−
)−1

(u−) =
u−

∥u−∥ε
for all u− ∈ N ◦

−.

Proof. The proof can be done as the proof of Proposition 3.1. □

Now we can define

J̃◦
− :
{
w− : w ∈ W 1,Hε(RN )◦ \ {0}

}
→ RN ,

w− 7→ J̃◦
−(w

−) = Eε(m̃
◦
−(w

−)),

J̃− := J̃◦
−|S◦

−
.

(3.2)

As before, as a consequence of Proposition 3.3 and of Szulkin-Weth [45, Proposition
9 and Corollary 10] we have the following proposition.

Proposition 3.4. Let hypotheses (H0), (H1)(i)–(iii) and (H4) be satisfied. Then
the following hold:

(i) J̃− ∈ C1
(
S◦
−,R

)
and〈

J̃ ′
−(w

−), z
〉
=
〈
Ẽ′

ε(m
◦
−(w

−)), z∥m◦
−(w

−)∥ε
〉

for all w− ∈ S◦
− for all and z ∈ Tw−(S◦

−), where Tw−(S◦
−) stands for the

tangent space to S◦
− at w−.

(ii) If {w−
n }n∈N ⊆ S◦

− is a (PS)c-sequence for J̃−, then {m◦
−(w

−
n )}n∈N ⊆ N ◦

−
is a (PS)c-sequence for Ẽε. If {u−

n }n∈N ⊆ N ◦
− is a bounded (PS)c-sequence

for Ẽε, then {(m◦
−)

−1(u−
n )}n∈N ⊆ S◦

− is a (PS)c-sequence for J̃−.

(iii) w− ∈ S◦
− is a critical point of J̃− if and only if m◦

−(w
−) ∈ N ◦

− is a nontrivial

critical point of Ẽε. Moreover, infS◦
−
J̃− = infN◦

−
Ẽε.

(iv) If Ẽε is even, then so is J̃−.

Now, we write

N̂ε : =
{
u ∈ W 1,Hε(RN ) \ {0} :

〈
Ê′

ε(u), u
〉
= 0
}

S =
{
u ∈ W 1,Hε(RN ) : ∥u∥ε = 1

}
,
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S+ =
{
u+ : u ∈ S

}
,

N+ =
{
u+ : u ∈ N̂ε

}
.

Then we can set up a one-to-one correspondence between S+ and N+ in the fol-
lowing way.

Proposition 3.5. Let hypotheses (H0), (H1)(i)–(iii) and (H5) be satisfied. Then
the following hold:

(i) For each w ∈ W 1,Hε(RN ) \ {0}, set φ̂w+(t) = Êε(tw
+) for t ≥ 0. Then

there exists a unique tw+ > 0 such that φ̂′
w+(t) > 0 if 0 < t < tw+ and

φ̂′
w+(t) < 0 if t > tw+ , that is, max

t∈[0,+∞)
φ̂w+(t) is achieved at t = tw+ and

tw+w+ ∈ N+.

(ii) There exists δ > 0 such that tw+ ≥ δ for w+ ∈ S+ and for each compact
subset W+ ⊆ S+ there exists a constant CW+

such that tw+ ≤ CW+
for all

w ∈ W+.

(iii) Let us denote by

m̂+ :
{
w+ : w ∈ W 1,Hε(RN ) \ {0}

}
→ N+,

w+ 7→ m̂+(w
+) := tw+w+.

Then the mapping m̂+ is continuous.

(iv) Let m := m̂+|S+
. Then m is a homeomorphism between S+ and N+ and

the inverse of m is given by

m−1(u+) =
u+

∥u+∥ε
for all u+ ∈ N+.

Now we can define

Ĵ+ :
{
w+ : w ∈ W 1,Hε(RN ) \ {0}

}
→ RN ,

w+ 7→ Ĵ+(w
+) = Êε(m̂+(w

+)),

Ĵ = Ĵ+|S+
.

(3.3)

Proposition 3.6. Let hypotheses (H0), (H1)(i)–(iii) and (H5) be satisfied. Then
the following hold:

(i) Ĵ ∈ C1 (S+,R) and〈
Ĵ ′(w+), z

〉
=
〈
Ê′

ε(m(w+)), z∥m(w+)∥ε
〉

for all w+ ∈ S+ and for all z ∈ Tw+(S+), with Tw+(S+) being the tangent
space to S+ at w+.

(ii) If {w+
n }n∈N ⊆ S+ is a (PS)c-sequence for Ĵ , then {m(w+

n )}n∈N ⊆ N+ is a

(PS)c-sequence for Êε. If {u+
n }n∈N ⊆ N+ is a bounded (PS)c-sequence for

Êε, then {m−1(u+
n )}n∈N ⊆ S+ is a (PS)c-sequence for Ĵ .

(iii) w+ ∈ S+ is a critical point of Ĵ if and only if m(w+) ∈ N+ is a nontrivial

critical point of Êε. Moreover, infS+
Ĵ = infN+

Êε.

Remark 3.7.
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(i) If we set

c◦+ = inf
u+∈N◦

+

Ẽε(u
+),

then it follows from Proposition 3.2 (iii) that

c◦+ = inf
w+∈S◦

+

J̃+(w
+).

From Proposition 3.1 it is easy to see that c◦+ has the following minimax
characterization:

c◦+ = inf
w∈W 1,p

0 (Ω)◦\{0}
max
t>0

Ẽε(tw
+) = inf

w+∈S◦
+

max
t>0

Ẽε(tw
+).

We know from the proof of Proposition 3.1 that there exists a unique tw+ >
0 such that max

t>0
Ẽε(tw

+) = Ẽε

(
tw+w+

)
for w+ ∈ S◦

+. Proposition 3.1 (ii)

implies that there exists δ > 0 such that tw+ ≥ δ uniformly for w+ ∈ S◦
+.

Thus, for any w+ ∈ S◦
+, we have

Ẽε

(
tw+w+

)
= max

t>0
Ẽε(tw

+) ≥ σ,

for some σ > 0 independent of w+ and consequently

inf
w+∈S◦

+

max
t>0

Ẽε(tw
+) ≥ σ,

that is

c◦+ ≥ σ > 0.

If we set

c◦− = inf
u−∈N◦

−

Ẽε(u
−),

then, similarly, From Proposition 3.3, It can show that

c◦− > 0.

We also note that Ẽε(u) = Ẽε(u
+) + Ẽε(u

−). If we set

c◦ = inf
u∈Ñ◦

ε

Ẽε(u),

then it is clear that c◦ ≥ c◦+ + c◦−. In our case, c◦+ = c◦− since u is an odd
function.

(ii) Set

c = inf
u+∈N+

Êε(u
+).

By an argument similar to that of (i), we can show that c > 0 and c◦ ≥ 2c.
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4. Limiting problem

We consider the limiting problem associated to (1.1), that is, the following p-
Laplacian problem:

−∆pu+ |u|p−2u = f(u) in RN ,

u ∈ W 1,p(RN ).
(4.1)

Since we are interested in the existence of positive solutions, we consider the func-
tional

E0(u) =
1

p
∥u∥p1,p −

∫
RN

F (u+) dx.

First, we consider the radially symmetric ground state solutions of (4.1). It is
similar to the proof of Liu-Dai [34, Theorem 1.9] and we can show that there exists
a positive radially symmetric ground state solution ω of (4.1). Moreover, we define

N r
0 :=

{
u ∈ W 1,p

r (RN ) \ {0} : ⟨E′
0(u), u⟩ = 0

}
and cr0 = inf

u∈N r
0

E0(u),

where W 1,p
r (RN ) :=

{
u ∈ W 1,p(RN ) : u is radially symmetric

}
. Then, we have

E0(ω) = cr0.

Next, we consider positive ground state solutions of (4.1), not necessarily radially
symmetric. For this purpose, as in Section 3, we define:

N0 =
{
u ∈ W 1,p(RN ) \ {0} : ⟨E′

0(u), u⟩ = 0, u+ ̸= 0
}
,

S0 =
{
u ∈ W 1,p(RN ) \ {0} : ∥u∥1,p = 1, u+ ̸= 0

}
,

m0 : S0 → N0, ω0 7→ m0(ω0),

J0(ω0) = E0 (m0(ω0)) , 0 < c0 = inf
u∈N0

E0(u).

Similarly, we also know that for each w0 ∈ W 1,p(RN ) \ {0} there exists a unique
t0 := tw0

such that t0w0 ∈ N0.

Lemma 4.1. Let {ωn}n∈N ⊂ S0 be such that J0(ωn) → c0 and ωn ⇀ ω0 in
W 1,p(RN ). Then there exists a sequence {yn}n∈N ⊂ RN such that vn := ωn(· +
yn) → v0 ∈ S0 with J0(v0) = c0. Moreover, if ω0 ̸= 0, then {yn}n∈N can be taken
identically zero and thus ωn → ω0 in W 1,p(RN ).

Proof. If ω0 = 0, then there exist R, σ > 0 and {yn}n∈N ⊂ RN such that

lim sup
n→∞

∫
BR(yn)

|ωn|p dx ≥ σ.

Suppose by contradiction that

lim sup
n→∞

sup
y∈RN

∫
BR(y)

|ωn|p dx = 0.

Then it follows from Lemma I.1 of Lions [32] that

lim
n→∞

∫
RN

|ωn|α dx = 0 for all α ∈ (p, p∗).

Consequently

lim
n→∞

∫
RN

|m0(ωn)|α dx = 0 for all α ∈ (p, p∗).
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By (H3) (i) and (H3) (ii), we have

|f (m0(ωn))| ≤ ξ |m0(ωn)|p−1
+ Cξ |m0(ωn)|r−1

and

|F (m0(ωn))| ≤ ξ |m0(ωn)|p + Cξ |m0(ωn)|r .
Thus

lim
n→∞

∫
RN

f (m0(ωn))m0(ωn) dx = 0

and

lim
n→∞

∫
RN

F (m0(ωn)) dx = 0.

Therefore,

lim
n→∞

∥m0(ωn)∥1,p = 0

and consequently

lim
n→∞

J0(ωn) = 0,

which is a contradiction to J0(ωn) → c0 > 0 as n → ∞.
Now we define vn(x) = ωn(x+ yn), then J0(vn) → c0 and there exists 0 ̸= v0 ∈

W 1,p(RN ) such that vn(x) ⇀ v0. By the Sobolev embedding theorem, we have
that |yn| → ∞. Note that m0(vn) ⇀ m0(v0) in W 1,p(RN ). For any s ∈ [p, p∗) and
R > 0, we have that

lim
R→+∞

∫
Bc

R(0)

|m0(vn)|s dx = lim
R→+∞

∫
RN\BR(0)

|m0(vn)|s dx

=

∫
RN

|m0(vn)|s dx− lim
R→+∞

∫
BR(0)

|m0(vn)|s dx

= 0.

Thus there exists R1 > 0 large enough such that∫
Bc

R1
(0)

|m0(vn)|s dx = on(1).

By (H3) (i) and (H3) (ii), we know that∣∣∣∣∣
∫
Bc

R1
(0)

f (m0(vn))m0(vn) dx

∣∣∣∣∣ ≤ on(1). (4.2)

From the compact embedding W 1,p (BR1
(0)) ↪→ Ls (BR1

(0)) and the subcritical
growth of f , we deduce that∫

BR1
(0)

f (m0(vn))m0(vn) dx →
∫
BR1

(0)

f (m0(v0))m0(v0) dx (4.3)

as n → +∞. Combining (4.2) with (4.3) yields∫
RN

f (m0(vn))m0(vn) dx →
∫
RN

f (m0(v0))m0(v0) dx (4.4)
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as n → +∞. By definition of m0 and (4.4), we conclude that ∥m0(vn)∥1,p →
∥m0(v0)∥1,p. And consequently ∥m0(vn)−m0(v0)∥1,p → 0 since W 1,p(RN ) is uni-

formly convex. Therefore, vn → v0 in W 1,p(RN ) and v0 ∈ S0 with J0(v0) = c0.
If ω0 ̸= 0, the proof is similar to the proof of vn → v0. We omit it here. □

Theorem 4.2. Problem (4.1) has a positive ground state solution.

Proof. Let {ωn}n∈N ⊂ S0 be a minimizing sequence for J0, that is, J0(ωn) → c0. By
Ekeland’s variational principle (see Ekeland [24]), we may assume that J ′

0(ωn) → 0.
Then {un := m0(ωn)}n∈N ⊂ N0 is a (PS)c-sequence for E0. First we claim that
{un}n∈N is bounded. Suppose not, then there exists a subsequence (still denoted
by {un}n∈N) such that ∥un∥1,p → +∞. Set vn = un/∥un∥1,p, then {vn}n∈N is
bounded. Thus, after passing to a subsequence if necessary, we may assume that
vn ⇀ v0 in W 1,p(RN ) as n → +∞. If v0 = 0, then, by an argument similar to that
of Proposition 3.5 and Remark 3.7, for any t > 0, we have

c0 + o(1) ≥ E0(un) = E0(tvnvn) ≥ E0(tvn)

and

E0(tvn) ≥
1

p
tp −

∫
RN

F (tvn) dx ≥ 1

p
tp.

This yields a contradiction by choosing t > max
{
1, 2 (pc0)

1
p

}
. If v0 ̸= 0, then we

know from (H3) (iii) that

0 ≤ E0(un)

∥un∥p1,p
≤ 1

p
−
∫
RN

F (∥un∥vn)
∥un∥p1,p

dx → −∞

as n → ∞, again a contradiction. Hence {un}n∈N is bounded and so {ωn}n∈N is
bounded as well. Therefore, we may assume that ωn ⇀ ω0 for some ω0 ∈ W 1,p(RN ).
From Lemma 4.1 it follows that there exists ω ∈ S0 such that J0(ω) = c0 and
J ′
0(ω) = 0. Consequently u := m0(ω) satisfies E0(u) = c0 and E′

0(u) = 0, which
is our desired ground state solution. It is standard to prove that u is positive, we
omit it. □

5. Multiple solutions of the auxiliary problem

In this section we are going to solve our auxiliary problems (2.4) and (2.5),
respectively. We start with some important lemmas in order to get the desired
results.

Lemma 5.1. Let hypotheses (H0), (H1)(i)–(iii) and (H4) be satisfied and let J̃+
be given in (3.1). Then the following hold:

(i) If {w+
n }n∈N ⊂ S◦

+ is a sequence such that dist
(
w+

n , ∂S◦
+

)
→ 0 as n → +∞,

then
∥∥m◦

+ (w+
n )
∥∥
ε
→ +∞ and J̃+ (w+

n ) → +∞ as n → +∞.

(ii) J̃+ satisfies the (PS)-condition on S◦
+, i.e. every sequence {w+

n }n∈N in S◦
+

such that, for any c > 0, J̃+(w
+
n ) → c and J̃ ′

+(w
+
n ) → 0 as n → +∞

contains a subsequence which converges strongly to some w+ ∈ S◦
+ and

dist
(
w+, ∂S◦

+

)
> 0.
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Proof. (i) Let {w+
n }n∈N ⊆ S◦

+ be a sequence such that dist(w+
n , ∂S◦

+) → 0 as

n → +∞. Then, for any v ∈ ∂S◦
+ and n ∈ N, it holds w+

n ≤ |w+
n − v| a.e. in RN .

From the embedding theorem, for any γ ∈ [p, p∗], it follows

∥w+
n ∥γ ≤ inf

v∈∂S◦
+

∥w+
n − v∥γ ≤ Cγ inf

v∈∂S◦
+

∥w+
n − v∥ε = Cγ dist(w

+
n , ∂S◦

+)

for all n ∈ N. Moreover, for every t > 0, by (2.3), we have∣∣∣∣∫
RN

G̃(εx, tw+
n ) dx

∣∣∣∣ ≤ ξtp
∫
RN

|w+
n |p dx+ Cξt

r

∫
RN

|w+
n |r dx

≤ C
(
tp distp(w+

n , ∂S◦
+) + tr distr(w+

n , ∂S◦
+)
)
→ 0

as n → +∞. Note that for any t > 1, we have

1

p
∥twn∥qε +

∣∣∣∣∫
RN

G̃(εx, tw+
n ) dx

∣∣∣∣ ≥ Ẽε(tw
+
n ) ≥

1

q
∥twn∥pε −

∣∣∣∣∫
RN

G̃(εx, tw+
n ) dx

∣∣∣∣ .
Therefore, we obtain

lim inf
n→+∞

1

p
∥m◦

+(w
+
n )∥qε ≥ lim inf

n→+∞
J̃+(w

+
n ) ≥ lim inf

n→+∞
Ẽε(tw

+
n ) ≥

C1t
p

q
,

for every t > 1, and hence ∥m◦
+(w

+
n )∥ε → +∞ and J̃+(w

+
n ) → +∞ as n → +∞.

(ii) For any c > 0, let {w+
n }n∈N ⊆ S◦

+ be a (PS)c-sequence for J̃+. It follows
from Proposition 3.2 that {u+

n := m◦
+(w

+
n )}n∈N ⊆ N ◦

+ is a (PS)c-sequence for

Ẽε. First we will prove that {u+
n }n∈N is a bounded sequence. Assuming not, we

can find a subsequence of {u+
n }n∈N, not relabeled, such that ∥u+

n ∥ε → +∞. Set
v+n = u+

n /∥u+
n ∥ε, then {v+n }n∈N is bounded. Thus, after passing to a subsequence

if necessary, we may assume that v+n ⇀ v+ in W 1,Hε(RN ) as n → +∞. If v+ = 0,
from Proposition 3.1, we get

c+ o(1) ≥ Ẽε(u
+
n ) = Ẽε(tv+

n
v+n ) ≥ Ẽε(tv

+
n ) for all t > 0.

In case t > 1, we have

Ẽε(tv
+
n ) ≥

1

q
tp −

∫
RN

G̃(εx, tv+n ) dx =
1

q
tp −

∫
Ωε

G̃(εx, tv+n ) dx−
∫
Ωc

ε

G̃(εx, tv+n ) dx

≥ 1

q
tp −

∫
Ωε

G̃(εx, tv+n ) dx− 1

k
tp
∫
Ωc

ε

∣∣v+n ∣∣p dx
≥
(
1

q
− 1

k

)
tp −

∫
Ωε

G̃(εx, tv+n ) dx →
(
1

q
− 1

k

)
tp,

which is a contradiction if we take t > max

{
1, 2

(
cqk
k−q

) 1
p

}
. If v+ ̸= 0, then by

(H4) (iii), one has

0 ≤ Ẽε(u
+
n )

∥u+
n ∥qε

≤ C

p
−
∫
RN

G̃(εx, ∥u+
n ∥εv+n )

∥u+
n ∥qε

dx

=
C

p
−
∫
Ωε

G̃(εx, ∥u+
n ∥εv+n )

∥u+
n ∥qε

dx−
∫
Ωc

ε

G̃(εx, ∥u+
n ∥εv+n )

∥u+
n ∥qε

dx → −∞

as n → ∞. This is again a contradiction. Thus, the sequence {u+
n }n∈N is bounded

and so we can find a subsequence of {u+
n }n∈N, not relabeled, such that u+

n ⇀ u+ in
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W 1,Hε(RN ). Note that there exists R0 > 0 such that Ωε ⊂ BR0
(0). Then, applying

hypothesis (H4) (iii), for any R ≥ R0, we obtain that∫
Bc

R(0)

g̃
(
εx, u+

n

)
u+
n dx ≤ 1

k

∫
Bc

R(0)

∣∣u+
n

∣∣p dx. (5.1)

Obviously, we have that

lim
r→+∞

∫
Bc

r(0)

∣∣u+
n

∣∣p dx = lim
r→+∞

∫
RN\Br(0)

∣∣u+
n

∣∣p dx
=

∫
RN

∣∣u+
n

∣∣p dx− lim
r→+∞

∫
Br(0)

∣∣u+
n

∣∣p dx
= 0.

So there exists R1 ≥ R0 such that for any R ≥ R1∫
Bc

R(0)

∣∣u+
n

∣∣p dx = on(1), (5.2)

that is, ∫
Bc

R(0)

g̃
(
εx, u+

n

)
u+
n dx ≤ on(1).

From the compact embedding W 1,Hε (BR(0)) ↪→ Lp (BR(0)) and (H4) (i), we de-
duce that ∫

BR(0)

g̃
(
εx, u+

n

)
u+
n dx →

∫
BR(0)

g̃(εx, u+)u+ dx (5.3)

as n → +∞. Combining (5.3) with (5.1) and (5.2) yields∫
RN

g̃
(
εx, u+

n

)
u+
n dx =:

〈
K̃ ′

ε(u
+
n ), u

+
n

〉
→
〈
K̃ ′

ε(u
+), u+

〉
:=

∫
RN

g̃(εx, u+)u+ dx

as n → +∞. Similarly, we can obtain that K̃ ′
ε(u

+
n ) → K̃ ′

ε(u
+). Since Ẽ′

ε(u
+
n ) =

Bε(u
+
n ) − K̃ ′

ε(u
+
n ) → 0, one has that Bε(u

+
n ) → K̃ ′

ε(u
+) as n → +∞, where

Bε is given in (2.2). Therefore, we conclude that u+
n → u+ in W 1,Hε(RN ) as

n → +∞, since Bε is a mapping of type (S+) (see Proposition 2.2). Consequently

(m◦
+)

−1(u+
n ) → (m◦

+)
−1(u+) by Proposition 3.2, that is, w+

n → w+. Therefore, Ẽε

satisfies the (PS)-condition on S◦
+. □

The next lemmas can be shown in a similar way as Lemma 5.1.

Lemma 5.2. Let hypotheses (H0), (H1)(i)–(iii) and (H4) be satisfied and let J̃−
be given in (3.2). Then the following hold:

(i) If {w−
n }n∈N ⊂ S◦

− is a sequence such that dist
(
w−

n , ∂S◦
−
)
→ 0 as n → +∞.

Then ∥m− (w−
n )∥ε → +∞ and J̃− (w−

n ) → +∞ as n → +∞.

(ii) J̃− satisfies the (PS)-condition on S◦
−, i.e. every sequence {w−

n }n∈N in S◦
−

such that, for any c > 0, J̃−(w
−
n ) → c and J̃ ′

−(w
−
n ) → 0 as n → +∞

contains a subsequence which converges strongly to some w− ∈ S◦
− and

dist
(
w−, ∂S◦

−
)
> 0.

Lemma 5.3. Let hypotheses (H0), (H1)(i)–(iii) and (H5) be satisfied and let Ĵ be
given in (3.3). Then the following hold:
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(i) If {wn}n∈N ⊆ S+ is a sequence such that dist(wn, ∂S+) → 0 as n → +∞.

Then ∥m(wn)∥ε → +∞ and Ĵ(wn) → +∞ as n → +∞.

(ii) Ĵ satisfies the (PS)-condition on S+, that is, every sequence {wn}n∈N in S+

such that, for any c > 0, Ĵ(wn) → c and Ĵ ′(wn) → 0 as n → +∞ contains
a subsequence which converges strongly to some w ∈ S+ and dist(w, ∂S+) >
0.

In what follows, without any loss of generality, we shall assume that 0 ∈ A,
where A is given in Remark 1.1. Moreover, we choose δ > 0 such that the set

A−
δ := {x ∈ A : dist (x, ∂A ∪ {0}) ≥ δ}

is homotopically equivalent to A. Next, we choose a function ζ ∈ C∞
c (R+) such

that 0 ≤ ζ ≤ 1 and

ζ(s) =

{
1, if 0 ≤ s ≤ δ/2,

0, if s ≥ δ.

For each y ∈ A−
δ and ε > 0, we define the function

[Ψε(y)] (x) = ζ (|εx− y|)ω
(
|εx− y|

ε

)
,

where ω is the positive radially symmetric ground state solution of equation (4.1).
It can be proved that [Ψε(y)] (·) ∈ W 1,p(RN ). By definition of ζ and A−

δ , we also

know that [Ψε(y)] (·) ∈ W 1,Hε(RN ). We define Φε : A
−
δ → Ñ ◦

ε by

[Φε(y)] (x) = tε {[Ψε(y)] (x)− [Ψε(−y)] (x)} ,

where tε > 0 is such that Φε(y) ∈ Ñ ◦
ε . Propositions 3.1 and 3.3 show that Φε(y) is

well defined. Note that

[Φε(y)] (−x) = − [Φε(y)] (x) and Φε(−y) = −Φε(y).

Hence Φε(y)
+ ∈ N ◦

+ and Φε(y)
− ∈ N ◦

−.
Then we have the following lemmas:

Lemma 5.4. Let hypotheses (H0), (H1) and (H4) be satisfied. Then we have

lim
ε→0+

Ẽε

(
Φε(y)

+
)
= cr0 uniformly in y ∈ A−

δ .

Proof. First, we note that Φε(y)
+ = tεΨε(y). We argue by contradiction and

assume that there exist σ > 0, {yn}n∈N ⊂ A−
δ and εn → 0+ such that∣∣∣Ẽεn

(
Φεn(y)

+
)
− cr0

∣∣∣ ≥ σ > 0. (5.4)
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By changing the variables z = (εnx−y)/εn, we deduce from Lebesgue’s dominated
convergence theorem that

∥Ψεn(y)∥
p
1,p

=

∫
RN

(|∇Ψεn(y)|
p
+ |Ψεn(y)|

p
) dx

=

∫
RN

(∣∣∣∣∇(ζ (|εnx− y|)ω
(
|εnx− y|

εn

))∣∣∣∣p)dx

+

∫
RN

(∣∣∣∣ζ (|εnx− y|)ω
(
|εnx− y|

εn

)∣∣∣∣p)dx

=

∫
RN

(∣∣εnω (|z|)∇ζ (|εnz|) + ζ (|εnz|)∇ω (|z|)
∣∣p + ∣∣ζ (|εnz|)ω (|z|)

∣∣p) dz
→ ∥ω(|z|)∥p1,p .

(5.5)

Similarly, we can check that∫
RN

a(εnx) (|∇Ψεn(y)|
q
+ |Ψεn(y)|

q
) dx

→
∫
RN

a(y)
(∣∣∇ω (|z|)

∣∣q + ∣∣ω (|z|)
∣∣q) dz = 0

since y ∈ A−
δ ⊂ A and so a(y) = 0. Consequently

ϱεn (Ψεn(y))

= ∥Ψεn(y)∥
p
1,p +

∫
RN

a(εnx) (|∇Ψεn(y)|
q
+ |Ψεn(y)|

q
) dx → ∥ω(|z|)∥p1,p .

(5.6)

By the definition of tεn and the change of variables z = (εnx− y)/εn, we get

0 =
〈
Ẽ′

εn (tεnΨεn(y)) , tεnΨεn(y)
〉

= ϱεn (tεnΨεn(y))−
∫
RN

g̃ (εnx, tεnΨεn(y)) tεnΨεn(y) dx

= ϱεn (tεnΨεn(y))−
∫
RN

g̃ (εnz + y, tεnζ (|εnz|)ω (|z|)) tεnζ (|εnz|)ω (|z|) dz.

Note that if εnz ∈ Bδ(0) then εnz + y ∈ Bδ(y) ⊂ A ⊂ Ω. If tεn → +∞, it follows
from the above expression that

∥Ψεn(y)∥
q
εn

≥
∫
RN

g̃ (εnz + y, tεnζ (|εnz|)ω (|z|))
(tεnζ (|εnz|)ω (|z|))q−1 |ζ (|εnz|)ω (|z|)|q dz

since

ϱεn (tεnΨεn(y)) ≤ ∥tεnΨεn(y)∥
q
εn

= tqεn ∥Ψεn(y)∥
q
εn

.

Then from (H4)(iii) we deduce that ∥Ψεn(y)∥
q
εn

→ +∞ and so ϱεn (Ψεn(y)) → +∞
by Proposition 2.1 (vi), which contradicts (5.6). Thus, we conclude that {tεn}n∈N
is bounded. Then there exists a subsequence {tεnk

}k∈N such that tεnk
→ t0 ≥ 0.

We claim that t0 > 0. Indeed, if t0 = 0, then we can use (2.3) and〈
Ẽ′

εnk

(
tεnk

Ψεnk
(y)
)
, tεnk

Ψεnk
(y)
〉
= 0
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to get that, for any ξ > 0,∥∥∥tεnk
Ψεnk

(y)
∥∥∥p
1,p

≤ ϱεnk

(
tεnk

Ψεnk
(y)
)

=

∫
RN

g̃
(
εnk

x, tεnk
Ψεnk

(y)
)
tεnk

Ψεnk
(y) dx

≤ ξ

∫
RN

∣∣∣tεnk
Ψεnk

(y)
∣∣∣p dx+ Cξ

∫
RN

∣∣∣tεnk
Ψεnk

(y)
∣∣∣r dx,

that is, ∥∥∥Ψεnk
(y)
∥∥∥p
1,p

≤ ξ

∫
RN

∣∣∣Ψεnk
(y)
∣∣∣p dx+ Cξt

r−p
εnk

∫
RN

∣∣∣Ψεnk
(y)
∣∣∣r dx.

Similar to the above proof, we can deduce that
∥∥∥Ψεnk

(y)
∥∥∥p
1,p

→ 0, contradicting

(5.5). Thus t0 > 0. Letting εnk
→ 0+ in the following equality

ϱεnk

(
tεnk

Ψεnk
(y)
)
=

∫
RN

g̃
(
εnk

x, tεnk
Ψεnk

(y)
)
tεnk

Ψεnk
(y) dx,

similar to above again, we can obtain that

∥t0ω(|z|)∥p1,p =

∫
RN

f (t0ω (|z|)) t0ω (|z|) dz,

from which we conclude that t0ω ∈ N r
0 . Therefore, it follows from the uniqueness

of t0 and ω ∈ N r
0 that t0 = 1. Finally, letting εnk

→ 0+ in

Ẽεnk

(
Φεnk

(y)+
)

=
tpεnk

p
∥Ψεn(y)∥

p
1,p +

tqεnk

q

∫
RN

a(εnk
x)
(∣∣∣∇Ψεnk

(y)
∣∣∣q + ∣∣∣Ψεnk

(y)
∣∣∣q) dx

−
∫
RN

G̃
(
εnk

x, tεnk
Ψεnk

(y)
)
dx,

together with ∫
RN

G̃
(
εnk

x, tεnk
Ψεnk

(y)
)
dx →

∫
RN

F (ω) dz,

we obtain that

Ẽεnk

(
Φεnk

(y)+
)
→ 1

p
∥ω∥p1,p −

∫
RN

F (ω) dz = E0(ω) = cr0,

which contradicts (5.4). This shows the assertion of the lemma. □

Lemma 5.5. Let hypotheses (H0), (H1) and (H4) be satisfied.

lim
ε→0+

Ẽε

(
Φε(y)

−) = cr0 uniformly in y ∈ A−
δ .

Proof. By the definition of Φε(y), we know that Φε(y)
− = −tεΨε(−y). Suppose

there exist σ > 0, {yn}n∈N ⊂ A−
δ and εn → 0+ such that∣∣∣Ẽεn

(
Φεn(y)

−)− cr0

∣∣∣ ≥ σ > 0. (5.7)
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Applying Lebesgue’s dominated convergence theorem along with changing the vari-
ables with z = (εnx+ y)/εn yields

∥Ψεn(−y)∥p1,p

=

∫
RN

(|∇Ψεn(−y)|p + |Ψεn(−y)|p) dx

=

∫
RN

(∣∣∣∣∇(ζ (|εnx+ y|)ω
(
|εnx+ y|

εn

))∣∣∣∣p)dx

+

∫
RN

(∣∣∣∣ζ (|εnx+ y|)ω
(
|εnx+ y|

εn

)∣∣∣∣p) dx

=

∫
RN

(∣∣εnω (|z|)∇ζ (|εnz|) + ζ (|εnz|)∇ω (|z|)
∣∣p + ∣∣ζ (|εnz|)ω (|z|)

∣∣q)dz
→ ∥ω(|z|)∥p1,p .

(5.8)

Since a(·) is radially symmetric (see (H1)(iv)), that is, a(x) = a(|x|) for a.a.x ∈ RN ,
the set A−

δ is invariant to rotation. In particular, A is symmetric with respect to

the origin, that is, A−
δ = −A−

δ . Hence, if y ∈ A−
δ , then −y ∈ A−

δ as well. Similar
to (5.8), we can check that∫

RN

a(εnx) (|∇Ψεn(−y)|q + |Ψεn(−y)|q) dx

→
∫
RN

a(−y) (|∇ω (|z|)|q + |ω (|z|)|q) dz = 0

since −y ∈ A−
δ and so a(−y) = 0. Consequently

ϱεn (Ψεn(−y))

= ∥Ψεn(−y)∥p1,p +
∫
RN

a(εnx) (|∇Ψεn(−y)|q + |Ψεn(−y)|q) dx

→ ∥ω(|z|)∥p1,p .

(5.9)

Changing again the variables z = (εnx + y)/εn together with the definition of tεn
it follows that

0 =
〈
Ẽ′

εn (−tεnΨεn(−y)) ,−tεnΨεn(−y)
〉

= ϱεn (−tεnΨεn(−y))−
∫
RN

g̃ (εnx,−tεnΨεn(−y)) (−tεnΨεn(−y)) dx

= ϱεn (−tεnΨεn(−y))−
∫
RN

g̃ (εnz − y, tεnζ (|εnz|)ω (|z|)) tεnζ (|εnz|)ω (|z|) dz.

As before, if εnz ∈ Bδ(0) then εnz − y ∈ Bδ(−y) ⊂ A ⊂ Ω. Letting tεn → +∞
gives

∥Ψεn(−y)∥qεn ≥
∫
RN

g̃ (εnz − y, tεnζ (|εnz|)ω (|z|))
(tεnζ (|εnz|)ω (|z|))q−1 |ζ (|εnz|)ω (|z|)|q dz,

because

ϱεn (−tεnΨεn(−y)) ≤ ∥−tεnΨεn(−y)∥qεn = tqεn ∥Ψεn(y)∥
q
εn

.

From (H4)(iii) it follows that ∥Ψεn(−y)∥qεn → +∞ and so ϱεn (Ψεn(−y)) → +∞
due to Proposition 2.1 (vi), this contradicts (5.9). Hence, we see that the sequence
{tεn}n∈N is bounded and so there exists a subsequence {tεnk

}k∈N of {tεn}n∈N such



THE EFFECT OF THE WEIGHT FUNCTION FOR DOUBLE PHASE PROBLEMS 25

that tεnk
→ t0 ≥ 0. Let us show that t0 > 0 and suppose that t0 = 0. Using (2.3)

and 〈
Ẽ′

εnk

(
−tεnk

Ψεnk
(−y)

)
,−tεnk

Ψεnk
(−y)

〉
= 0

yield that, for any ξ > 0,∥∥∥−tεnk
Ψεnk

(−y)
∥∥∥p
1,p

≤ ϱεnk

(
−tεnk

Ψεnk
(−y)

)
=

∫
RN

g̃
(
εnk

x,−tεnk
Ψεnk

(−y)
)(

−tεnk
Ψεnk

(−y)
)
dx

≤ ξ

∫
RN

∣∣∣−tεnk
Ψεnk

(−y)
∣∣∣p dx+ Cξ

∫
RN

∣∣∣−tεnk
Ψεnk

(−y)
∣∣∣r dx.

Hence ∥∥∥Ψεnk
(−y)

∥∥∥p
1,p

≤ ξ

∫
RN

∣∣∣Ψεnk
(−y)

∣∣∣p dx+ Cξt
r−p
εnk

∫
RN

∣∣∣Ψεnk
(−y)

∣∣∣r dx.
In the same way, we can prove that

∥∥∥Ψεnk
(−y)

∥∥∥p
1,p

→ 0 which contradicts (5.8).

Then we have t0 > 0. Next, letting εnk
→ 0+ in the equality

ϱεnk

(
−tεnk

Ψεnk
(−y)

)
=

∫
RN

g̃
(
εnk

x,−tεnk
Ψεnk

(−y)
)(

−tεnk
Ψεnk

(−y)
)
dx,

gives

∥t0ω(|z|)∥p1,p =

∫
RN

f (t0ω (|z|)) t0ω (|z|) dz.

This implies that t0ω ∈ N r
0 and so, from the uniqueness of t0 and ω ∈ N r

0 , we
obtain t0 = 1. Then, for εnk

→ 0+ in

Ẽεnk

(
Φεnk

(y)−
)

=
tpεnk

p
∥Ψεn(−y)∥p1,p +

tqεnk

q

∫
RN

a(εnk
x)
(∣∣∣∇Ψεnk

(−y)
∣∣∣q + ∣∣∣Ψεnk

(−y)
∣∣∣q)dx

−
∫
RN

G̃
(
εnk

x,−tεnk
Ψεnk

(−y)
)
dx,

along with ∫
RN

G̃
(
εnk

x,−tεnk
Ψεnk

(−y)
)
dx →

∫
RN

F (ω) dz,

we arrive at

Ẽεnk

(
Φεnk

(y)−
)
→ 1

p
∥ω∥p1,p −

∫
RN

F (ω) dz = E0(ω) = cr0,

contradicting (5.7). □

Now we can prove our existence result for problem (2.4).

Theorem 5.6. Let hypotheses (H0), (H1) and (H4) be satisfied. Then there exists
ε̃ > 0 such that, for any 0 < ε ≤ ε̃, problem (2.4) has at least γ(A \ {0}) pairs
(u+, (−u)+) of positive weak solutions.
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Proof. Taking Lemma 5.4 and Proposition 3.1 into account we have

lim
ε→0+

J̃+
(
(m◦

+)
−1
(
Φε(y)

+
))

= lim
ε→0+

Ẽε

(
Φε(y)

+
)
= cr0

uniformly in y ∈ A−
δ . For each y ∈ A−

δ , we set

h(ε) :=
∣∣∣Ẽε

(
Φε(y)

+
)
− cr0

∣∣∣ .
Then h(ε) → 0 as ε → 0+. Now we write

S̃◦
+ :=

{
u+ ∈ S◦

+ : J̃+(u
+) ≤ cr0 + h(ε)

}
.

It is clear that S̃◦
+ ̸= ∅ since (m◦

+)
−1(Φε(y)

+) ∈ S̃◦
+. Then, by Lemma 5.1 and Kras-

nosel’skii’s genus theory (see Ambrosetti-Malchiodi [4, Theorem 10.9]), we know

that J̃+ has at least γ(S̃◦
+) pairs (u

+, (−u)+) of critical points on S̃◦
+.

Claim: γ(S̃◦
+) ≥ γ(A \ {0}).

Assume that γ(S̃◦
+) = n and note that for a set A we write A∗ = {(x,−x) : x ∈

A}. We deduce that

γ(S̃◦
+) = cat

(W 1,Hε (RN )\{0})∗
S̃◦
+

∗
,

see Rabinowitz [44, Theorem 3.9]. Hence, we can find a smallest positive integer n
such that

S̃◦
+

∗
⊆ D∗

1 ∪ D∗
2 ∪ · · · ∪ D∗

n,

where D∗
i , i = 1, 2, · · · , n are closed and contractible in (W 1,Hε(RN ) \ {0})∗, which

means that there are

h∗
i ∈ C

(
[0, 1]×D∗

i ,
(
W 1,Hε(RN ) \ {0}

)∗)
for i = 1, 2, · · · , n

such that

h∗
i (0, u

+) = (u+, (−u)+) for all (u+, (−u)+) ∈ D∗
i ,

h∗
i (1, u

+) = (ωi,−ωi) ∈
(
W 1,Hε(RN ) \ {0}

)∗
for all (u+, (−u)+) ∈ D∗

i .

Let

Di =
{
u+ ∈ W 1,Hε(RN ) : (u+, (−u)+) ∈ D∗

i

}
.

Then there exists a homotopy

hi ∈ C
(
[0, 1]×Di,

(
W 1,Hε(RN ) \ {0}

))
such that hi(0, ·) = id, hi(1, ·) = ωi or −ωi and hi(t, u

+) = −hi(t, (−u)+).
We define

Φ∗
ε = (Φ+

ε , (−Φε)
+
) :
(
A−

δ

)∗ →
(
N ◦

+

)∗
,

[Φ∗
ε(y,−y)] (x) =

(
[Φε(y)]

+
(x), [Φε(−y)]

+
(x)
)
.

Now we choose R ≥ diam(A), where diam(A) denotes the diameter of A. For
u ∈ W 1,Hε(RN ) with compact support in BR(0), we define the barycenter map

β+ : W 1,Hε(RN ) \ {0} → RN , β+(u) =

∫
RN

x|u+(x)|p dx∫
RN

|u+(x)|p dx
.
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We observe that for any (y,−y) ∈
(
A−

δ

)∗
we have

β+

(
Φε(y)

+
)
= y and β+

(
Φε(−y)+

)
= −y.

Next, we write β∗(·, ·) = (β+(·), β+(·)) and obtain

β∗
(
Φε(y)

+, [−Φε(y)]
+
)
=
(
β+

(
Φε(y)

+
)
, β+ [Φε(−y)]

+
)
= (y,−y).

Let

K∗
i = (Φ∗

ε)
−1

(m∗ (D∗
i )) ,

where m∗(·, ·) = (m◦
+(·),m◦

+(·)). Obviously the sets K∗
i are closed subsets of

(
A−

δ

)∗
and

(
A−

δ

)∗ ⊆ K∗
1∪· · ·∪K∗

n. Defining the deformation hi : [0, 1]×K∗
i →

(
RN \ {0}

)∗
by

hi(t, x) = (β∗ ◦ h∗
i )
(
t, (m∗)

−1
(Φ∗

ε(y,−y))
)
,

we see that K∗
i is contractible in

(
RN \ {0}

)∗
. Indeed, we have

hi ∈ C
(
[0, 1]×K∗

i ,
(
RN \ {0}

)∗)
,

hi(0, x) = (β∗ ◦ h∗
i )
(
0, (m∗)

−1
(Φ∗

ε(y,−y))
)
= (y,−y) for all (y,−y) ∈ K∗

i ,

hi(1, x) = (β∗ ◦ h∗
i )
(
1, (m∗)

−1
(Φ∗

ε(y,−y))
)

= β∗ (ωi,−ωi) =
(
y0i ,−y0i

)
∈
(
RN \ {0}

)∗
for all (y,−y) ∈ K∗

i .

Thus

γ (A \ {0}) = cat
(RN\{0})∗

(A \ {0})∗ = cat
(RN\{0})∗

(
A−

δ

)∗ ≤ n,

which implies that S̃◦
+ contains at least γ(A \ {0}) pairs of critical points of J̃+.

Thus we conclude from Proposition 3.2 that there exist at least γ(A \ {0}) pairs

(u+, (−u)+) of critical points of Ẽε, that is, problem (2.4) has at least γ(A \ {0})
pairs of positive weak solutions. □

Next, we are going to prove the existence of negative solutions for problem (2.4).

Theorem 5.7. Let hypotheses (H0), (H1) and (H4) be satisfied. Then there exists
ε̃ > 0 such that, for any 0 < ε ≤ ε̃, problem (2.4) has at least γ(A \ {0}) pairs
(u−, (−u)−) of negative weak solutions.

Proof. As before, using Lemma 5.5 and Proposition 3.3, we know that

lim
ε→0+

J̃−
(
(m◦

−)
−1
(
Φε(y)

−)) = lim
ε→0+

Ẽε

(
Φε(y)

−) = cr0

uniformly in y ∈ A−
δ . For each y ∈ A−

δ , we set

h(ε) :=
∣∣∣Ẽε

(
Φε(y)

−)− cr0

∣∣∣ .
This gives h(ε) → 0 as ε → 0+. Setting

S̃◦
− :=

{
u− ∈ S◦

− : J̃−(u
−) ≤ cr0 + h(ε)

}
.

We easily see that S̃◦
− ̸= ∅ because (m◦

−)
−1(Φε(y)

−) ∈ S̃◦
−. Then, from Lemma 5.2

and Ambrosetti-Malchiodi [4, Theorem 10.9], it follows that J̃− has at least γ(S̃◦
−)

pairs (u−, (−u)−) of critical points on S̃◦
−.
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Claim: γ(S̃◦
−) ≥ γ(A \ {0}).

Suppose that γ(S̃◦
−) = n and recall that we write A∗ = {(x,−x) : x ∈ A} for a

set A. From [44, Theorem 3.9] it follows that

γ(S̃◦
−) = cat

(W 1,Hε (RN )\{0})∗
S̃◦
−
∗
,

which guarantees the existence of a smallest positive integer n such that

S̃◦
−
∗
⊆ D∗

1 ∪ D∗
2 ∪ · · · ∪ D∗

n,

with D∗
i , i = 1, 2, · · · , n being closed and contractible in (W 1,Hε(RN ) \ {0})∗, e.g.,

there exist

h∗
i ∈ C

(
[0, 1]×D∗

i ,
(
W 1,Hε(RN ) \ {0}

)∗)
for i = 1, 2, · · · , n

such that

h∗
i (0, u

−) = (u−, (−u)−) for all (u−, (−u)−) ∈ D∗
i ,

h∗
i (1, u

−) = (ωi,−ωi) ∈
(
W 1,Hε(RN ) \ {0}

)∗
for all (u−, (−u)−) ∈ D∗

i .

We define

Di =
{
u− ∈ W 1,Hε(RN ) : (u−, (−u)−) ∈ D∗

i

}
.

Then we can find a homotopy

hi ∈ C
(
[0, 1]×Di,

(
W 1,Hε(RN ) \ {0}

))
satisfying hi(0, ·) = id, hi(1, ·) = ωi or −ωi and hi(t, u

−) = −hi(t, (−u)−). Next
we define

Φ∗
ε = (Φ−

ε , (−Φε)
−
) :
(
A−

δ

)∗ →
(
N ◦

−
)∗

,

[Φ∗
ε(y,−y)] (x) =

(
[Φε(y)]

−
(x), [Φε(−y)]

−
(x)
)
.

Taking R ≥ diam(A), we define the barycenter map, for u ∈ W 1,Hε(RN ) with
compact support in BR(0), by

β− : W 1,Hε(RN ) \ {0} → RN , β−(u) =

∫
RN

x|u−(x)|p dx∫
RN

|u−(x)|p dx
.

Clearly, for any (y,−y) ∈
(
A−

δ

)∗
, we have

β−
(
Φε(y)

−) = y and β−
(
Φε(−y)−

)
= −y.

As before, we write β∗(·, ·) = (β−(·), β−(·)) and get

β∗
(
Φε(y)

−, [−Φε(y)]
−
)
=
(
β−
(
Φε(y)

−) , β− [Φε(−y)]
−
)
= (y,−y).

Note that the sets

K∗
i = (Φ∗

ε)
−1

(m∗ (D∗
i )) ,

are closed subsets of
(
A−

δ

)∗
and it holds

(
A−

δ

)∗ ⊆ K∗
1 ∪ · · · ∪ K∗

n, where m∗(·, ·) =
(m◦

−(·),m◦
−(·)). Also, the sets K∗

i , i = 1, . . . , n, are contractible in
(
RN \ {0}

)∗
due

to the deformation hi : [0, 1]×K∗
i →

(
RN \ {0}

)∗
defined by

hi(t, x) = (β∗ ◦ h∗
i )
(
t, (m∗)

−1
(Φ∗

ε(y,−y))
)
.
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Indeed, we have

hi ∈ C
(
[0, 1]×K∗

i ,
(
RN \ {0}

)∗)
,

hi(0, x) = (β∗ ◦ h∗
i )
(
0, (m∗)

−1
(Φ∗

ε(y,−y))
)
= (y,−y) for all (y,−y) ∈ K∗

i ,

hi(1, x) = (β∗ ◦ h∗
i )
(
1, (m∗)

−1
(Φ∗

ε(y,−y))
)

= β∗ (ωi,−ωi) =
(
y0i ,−y0i

)
∈
(
RN \ {0}

)∗
for all (y,−y) ∈ K∗

i ,

which implies

γ (A \ {0}) = cat
(RN\{0})∗

(A \ {0})∗ = cat
(RN\{0})∗

(
A−

δ \ {0}
)∗ ≤ n.

Hence, S̃◦
− contains at least γ(A \ {0}) pairs of critical points of J̃−. From Propo-

sition 3.4 we deduce that there are at least γ(A \ {0}) pairs (u−, (−u)−) of critical

points of Ẽε. This means that problem (2.4) has at least γ(A\{0}) pairs of negative
weak solutions. □

Finally we give the existence result for odd weak solutions with precisely two
nodal domains for (2.4).

Theorem 5.8. Let hypotheses (H0), (H1) and (H4) be satisfied. Then there exists
ε̃ > 0 such that, for any 0 < ε ≤ ε̃, problem (2.4) has at least γ(A \ {0}) pairs
(u+ + u−, (−u)+ + (−u)−) of odd weak solutions with precisely two nodal domains.

Proof. Note that Ẽε (u) = Ẽε (u
+ + u−) = Ẽε (u

+) + Ẽε (u
−). Hence if u+ and u−

are the critical points of Ẽε, then is so u = u++u− as well. Consequently, Theorem
5.8 follows from Theorems 5.6 and 5.7. □

Now we will prove an existence result for problem (2.5). We choose δ > 0 such
that Aδ =

{
x ∈ RN : dist (x,A) < δ

}
is homotopically equivalent to A and Aδ ⊂ Ω.

Define a function ζ ∈ C∞
c (R+) such that 0 ≤ ζ ≤ 1 and

ζ(t) =

{
1, if 0 ≤ t ≤ δ/2,

0, if t ≥ δ.

For each y ∈ A and ε > 0, we define the function

Ψε,y(x) = ζ (|εx− y|)ω
(
εx− y

ε

)
,

with ω being the positive ground state solution of equation (4.1). We define

Φε : A → Nε, Φε(y) = tεΨε,y,

where tε is the unique positive number such that

max
t≥0

Êε (tΨε,y(x)) = Êε (tεΨε,y(x)) ,

that is,

tεΨε,ξ ∈ Nε.

It follows from Proposition 3.5 that Φε(y) is well defined since ζ (|εx− y|) = 1 for
all x ∈ Bδ/2ε (y/ε) and y/ε ∈ Aε :=

{
x ∈ RN : εx ∈ A

}
.
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Lemma 5.9. Let hypotheses (H0), (H1)(i)–(iii) and (H5) be satisfied. Then we
have

lim
ε→0+

Êε (Φε(y)) = c0 uniformly in y ∈ A.

Proof. We argue by contradiction and assume that there exist σ > 0, {yn}n∈N ⊂ A
and εn → 0+ such that ∣∣∣Êεn (Φεn(y))− c0

∣∣∣ ≥ σ > 0. (5.10)

Using Lebesgue’s dominated convergence theorem with a change of variables via
z = (εnx− y)/εn, it follows that

∥Ψεn(y)∥
p
1,p

=

∫
RN

(|∇Ψεn(y)|
p
+ |Ψεn(y)|

p
) dx

=

∫
RN

(∣∣∣∣∇(ζ (|εnx− y|)ω
(
εnx− y

εn

))∣∣∣∣p)dx

+

∫
RN

(∣∣∣∣ζ (|εnx− y|)ω
(
εnx− y

εn

)∣∣∣∣p)dx

=

∫
RN

(∣∣εnω (z)∇ζ (|εnz|) + ζ (|εnz|)∇ω (z)
∣∣p + ∣∣ζ (|εnz|)ω (z)

∣∣q) dz
→ ∥ω(z)∥p1,p .

(5.11)

In a similar way, we can obtain that∫
RN

a(εnx) (|∇Ψεn(y)|
q
+ |Ψεn(y)|

q
) dx →

∫
RN

a(y) (|∇ω (z)|q + |ω (z)|q) dz = 0

as y ∈ A and so a(y) = 0. Therefore,

ϱεn (Ψεn(y))

= ∥Ψεn(y)∥
p
1,p +

∫
RN

a(εnx) (|∇Ψεn(y)|
q
+ |Ψεn(y)|

q
) dx → ∥ω(z)∥p1,p .

(5.12)

Again by changing the variables by z = (εnx− y)/εn and the definition of tεn leads
to

0 =
〈
Ê′

εn (tεnΨεn(y)) , tεnΨεn(y)
〉

= ϱεn (tεnΨεn(y))−
∫
RN

ĝ (εnx, tεnΨεn(y)) tεnΨεn(y) dx

= ϱεn (tεnΨεn(y))−
∫
RN

ĝ (εnz + y, tεnζ (|εnz|)ω (z)) tεnζ (|εnz|)ω (z) dz.

If εnz ∈ Bδ(0) then εnz + y ∈ Bδ(y) ⊂ Aδ ⊂ Ω. Letting tεn → +∞ gives

∥Ψεn(y)∥
q
εn

≥
∫
RN

ĝ (εnz + y, tεnζ (|εnz|)ω (z))

(tεnζ (|εnz|)ω (z))
q−1 |ζ (|εnz|)ω (z)|q dz,

due to the fact that

ϱεn (tεnΨεn(y)) ≤ ∥tεnΨεn(y)∥
q
εn

= tqεn ∥Ψεn(y)∥
q
εn

.

From (H5)(iii) we deduce that ∥Ψεn(y)∥
q
εn

→ +∞ and so ϱεn (Ψεn(y)) → +∞ by

Proposition 2.1 (vi), which contradicts (5.12). Hence, {tεn}n∈N is bounded and so
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we can find a subsequence {tεnk
}k∈N such that tεnk

→ t0 ≥ 0. Suppose that t0 = 0,

then we get from (2.3) and〈
Ê′

εnk

(
tεnk

Ψεnk
(y)
)
, tεnk

Ψεnk
(y)
〉
= 0,

for any ξ > 0, ∥∥∥tεnk
Ψεnk

(y)
∥∥∥p
1,p

≤ ϱεnk

(
tεnk

Ψεnk
(y)
)

=

∫
RN

ĝ
(
εnk

x, tεnk
Ψεnk

(y)
)
tεnk

Ψεnk
(y) dx

≤ ξ

∫
RN

∣∣∣tεnk
Ψεnk

(y)
∣∣∣p dx+ Cξ

∫
RN

∣∣∣tεnk
Ψεnk

(y)
∣∣∣r dx,

which results in∥∥∥Ψεnk
(y)
∥∥∥p
1,p

≤ ξ

∫
RN

∣∣∣Ψεnk
(y)
∣∣∣p dx+ Cξt

r−p
εnk

∫
RN

∣∣∣Ψεnk
(y)
∣∣∣r dx.

Using similar arguments, we are able to show that
∥∥∥Ψεnk

(y)
∥∥∥p
1,p

→ 0, contradicting

(5.11). We conclude that t0 > 0. Letting εnk
→ 0+ in

ϱεnk

(
tεnk

Ψεnk
(y)
)
=

∫
RN

ĝ
(
εnk

x, tεnk
Ψεnk

(y)
)
tεnk

Ψεnk
(y) dx,

it follows that

∥t0ω(z)∥p1,p =

∫
RN

f (t0ω (z)) t0ω (z) dz.

This yields t0ω ∈ N0 and so from the uniqueness of t0 as well as ω ∈ N0 we arrive
at t0 = 1. Finally, letting εnk

→ 0+ in

Êεnk

(
Φεnk

(y)
)

=
tpεnk

p
∥Ψεn(y)∥

p
1,p +

tqεnk

q

∫
RN

a(εnk
x)
(∣∣∣∇Ψεnk

(y)
∣∣∣q + ∣∣∣Ψεnk

(y)
∣∣∣q) dx

−
∫
RN

Ĝ
(
εnk

x, tεnk
Ψεnk

(y)
)
dx,

by using ∫
RN

Ĝ
(
εnk

x, tεnk
Ψεnk

(y)
)
dx →

∫
RN

F (ω) dz,

this leads to

Êεnk

(
Φεnk

(y)
)
→ 1

p
∥ω∥p1,p −

∫
RN

F (ω) dz = E0(ω) = c0,

which contradicts (5.10). □

Now, we choose R > 0 such that Aδ ⊂ BR(0) and let κ : RN → RN be defined
by

κ(x) =

{
x, if |x| < R,
Rx
|x| , if |x| ≥ R.
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Next, we define βε : Nε → RN by

βε(u) =

∫
RN κ(εx)|u(x)|p dx∫

RN |u(x)|p dx
.

Since A ⊂ Aδ ⊂ BR(0) we have that

βε (Φε(y)) =

∫
RN κ(εx) |Φε(y)|p dx∫

RN |Φε(y)|p dx

=

∫
RN κ(εx)

∣∣tεζ (|εx− y|)ω
(
εx−y

ε

)∣∣p dx∫
RN

∣∣tεζ (|εx− y|)ω
(
εx−y

ε

)∣∣p dx
=

∫
RN κ (εz + y) |ζ (|εz|)ω (z)|p dz∫

RN |ζ (|εz|)ω (z)|p dz

= y +

∫
RN (κ (εz + y)− y) |ζ (|εz|)ω (z)|p dz∫

RN |ζ (|εz|)ω (z) |p dz
= y + o(1),

as ε → 0, uniformly for y ∈ A.

Lemma 5.10. Let hypotheses (H0), (H1)(i)–(iii) and (H4) be satisfied and let

εn → 0 as n → +∞ and {un}n∈N ⊂ Ñεn be such that Ẽεn (un) → cr0 as n → +∞.

Then there exists a subsequence {ỹn}n∈N ⊂ RN such that εnỹn =: yn → y ∈ A as
n → +∞. Moreover, up to a subsequence, vn (·) := un (·+ ỹn) converges strongly
in W 1,Hε(RN ).

The proof of Lemma 5.10 is similar to the proof of the following lemma.

Lemma 5.11. Let hypotheses (H0), (H1)(i)–(iii) and (H5) be satisfied and let

εn → 0 as n → +∞ and {un}n∈N ⊂ N̂εn be such that Êεn (un) → c0 as n → +∞.

Then there exists a subsequence {ŷn}n∈N ⊂ RN such that εnŷn =: yn → y ∈ A as
n → +∞. Moreover, up to a subsequence, vn (·) := un (·+ ŷn) converges strongly
in W 1,Hε(RN ).

Proof. As in the proof of Lemma 5.1 we can show that {un}n∈N is bounded. We
first claim that there is a sequence {ŷn}n∈N ⊂ RN and constants R, σ > 0 such
that

lim inf
n→∞

∫
BR(ŷn)

|un|p dx ≥ σ > 0. (5.13)

Suppose this is not true. Then the boundedness of {un}n∈N together with Lemma

I.1 of Lions [32] imply that un → 0 in Ls(RN ) for all p < s < p∗. Since {un}n∈N ⊂
N̂εn and due to (2.3) we have

∥un∥qεn ≤
∫
RN

(|∇un|p + a(εnx)|∇un|q + |un|p + a(εnx)|un|q) dx

=

∫
RN

ĝ(x, un)un dx

≤ ξ

∫
RN

|un|p dx+ Cξ

∫
RN

|un|r dx.
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We conclude that ∥un∥εn → 0 due to the arbitrariness of ξ and un → 0 in Lr(RN ).

We also know that
∫
RN Ĝ(x, un) dx → 0. Therefore, Êεn (un) → 0, which contra-

dicts c0 > 0, and (5.13) is proved.
Let vn = un (·+ ŷn). Up to a subsequence, we can assume that vn ⇀ v ̸= 0 in

W 1,Hε(RN ). Since W 1,Hε(RN ) ↪→ W 1,p
(
RN
)
, we can choose tvn > 0 to be such

that wn := tvnvn ∈ N0.

Note that maxt≥0 Êεn (tun) is obtained at t = 1. Using the translation invariance

of the Lebesgue integral and un ∈ N̂εn , we have

c0 ≤ Ê0 (wn)

=
1

p
∥wn∥p1,p −

∫
RN

F (wn) dx

=
tpn
p
∥vn∥p1,p −

∫
RN

F (tnvn) dx

=
tpn
p
∥un∥p1,p −

∫
RN

F (tnun) dx

≤ tpn
p
∥un∥p1,p +

tqn
q

∫
RN

a (εx) (|∇u|q + |u|q) dx−
∫
RN

Ĝ(εx, tnun) dx

≤ Êεn (tnun) ≤ max
t≥0

Êεn (tun) = Êεn (un) = c0 + o(1),

(5.14)

which implies that lim
n→∞

Ê0(wn) = c0. As in the proof of Theorem 4.2 we can show

that {wn}n∈N is bounded. This together with the boundedness of {vn}n∈N yields
that {tvn}n∈N is bounded as well. Thus, up to a subsequence, we can assume that
tvn → t0 ≥ 0 as n → +∞.

If t0 = 0, then ∥wn∥1,p → 0, and consequently Ê0 (wn) → 0, which contradicts

that c0 > 0. Therefore t0 > 0, and {wn}n∈N satisfies

Ê0(wn) → c0, wn ⇀ w := t0v ̸≡ 0.

Similar to the argument in the proof of Lemma 4.1 we can show that wn → w as
n → +∞ which implies vn → v as n → +∞.

We claim now that {yn := εnŷn}n∈N is bounded. Suppose this is not the case,
then there is a subsequence of {yn}n∈N, not relabeled, such that |yn| → +∞ as
n → +∞. We take R > 0 such that Ω ⊂ BR(0). Suppose |yn| > 2R. Then, for any
x ∈ BR/εn(0), we have

|εnx+ yn| ≥ |yn| − |εnx| > R.

Because of {un}n∈N ⊂ N̂εn , (H1) (i), the definition of ĝ, after the change of variable
x = z + ŷn we get that

∥vn∥p1,p ≤
∫
RN

ĝ (εnz + yn, vn) vn dz

=

∫
BR/εn (0)

ĝ (εnz + yn, vn) vn dz +

∫
Bc

R/εn
(0)

ĝ (εnz + yn, vn) vn dz

≤
∫
BR/εn (0)

f̂ (vn) vn dz +

∫
Bc

R/εn
(0)

f (vn) vn dz.
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From vn → v and the definition of f̂ we conclude that(
1− 1

k

)
∥vn∥p1,p ≤

∫
Bc

R/εn
(0)

f (vn) vn dz = on(1).

Letting n → +∞ we deduce that v ≡ 0, which contradicts v ̸≡ 0. Therefore
{yn}n∈N is bounded. Up to a subsequence, we may assume that yn → y ∈ RN

as n → +∞. If y /∈ Ω, then we can apply the above argument again to obtain a
contradiction. Hence we have y ∈ Ω.

It remains to check that y ∈ A, that is, we should prove a(y) = 0. Suppose by
contradiction that a(y) > 0. Then we have

c0 = E0(w)

<
1

p
∥w∥p1,p +

1

q

∫
RN

a(y) |∇w|q dx

+
1

q

∫
Ω

a(y) |w|q dx−
∫
RN

F (w) dx

≤ lim inf
n→+∞

[
1

p
∥wn∥p1,p +

1

q

∫
RN

a(εnz + yn) |∇wn|q dx

+
1

q

∫
RN

a(εnz + yn) |wn|q dx−
∫
RN

F (wn) dx

]
≤ lim inf

n→+∞
Êεn (tvnvn) ≤ lim inf

n→∞
Êεn (un) = c0,

a contradiction, and thus a(y) = 0. The condition (H1)(ii) implies y ̸∈ ∂Ω. Hence
y ∈ A. □

For each y ∈ A, we set

h(ε) :=
∣∣∣Êε (Φε(y))− c0

∣∣∣ .
Then we deduce from Lemma 5.9 that h(ε) → 0 as ε → 0+. We define the sublevel
set

N̂ε =
{
u ∈ N̂ε : Êε(u) ≤ c0 + h(ε)

}
.

Note that Φε(y) ∈ N̂ε, and so N̂ε ̸= ∅ for any ε > 0.

Lemma 5.12. Let hypotheses (H0), (H1)(i)–(iii) and (H5) be satisfied. Then we
have

lim
ε→0+

sup
u∈N̂ε

dist (βε(u), Aδ) = 0.

Proof. Let εn → 0 as n → +∞. By the definition of the supremum, there exists

un ∈ N̂εn such that

dist (βεn(un), Aδ) = sup
u∈N̂εn

dist (βεn(u), Aδ) + on(1),

where we denote by on(1) the quantity that tends to 0 as n → ∞. Therefore, it is
sufficient to prove that there exists a sequence {yn}n∈N ⊂ Aδ such that

lim
n→+∞

|βεn (un)− yn| = 0. (5.15)
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Since {un}n∈N ⊂ N̂εn ⊂ N̂εn , we note that

c0 ≤ max
t≥0

Ê0(tun) ≤ max
t≥0

Êεn(tun) = Êεn(un) ≤ c0 + h(εn),

which implies that Êεn(un) → c0. Then, from Lemma 5.11, it follows that there
exists a sequence {ŷn}n∈N ⊂ RN such that εnŷn =: yn → y ∈ A as n → +∞. Hence

βεn (un) =

∫
RN κ (εnx) |un(x)|p dx∫

RN |un(x)|p dx

=

∫
RN κ (εnz + yn) |un (z + ŷn)|p dz∫

RN |un (z + ŷn)|p dz

= yn +

∫
RN (κ (εnz + yn)− yn) |vn (z)|p dz∫

RN |vn (z)|p dz
.

Note that εnz+yn → y ∈ A, and so βεn (un) = yn+on(1), that is, {yn}n∈N satisfies
(5.15) and the lemma is proved. □

Now we can state and prove our existence result for problem (2.5).

Theorem 5.13. Let hypotheses (H0), (H1)(i)–(iii) and (H5) be satisfied. Then
there exists a small positive number ε̂ such that for every 0 < ε < ε̂ problem (2.5)
has at least cat(A) positive solutions.

Proof. From Lemma 5.9 and Proposition 3.5 we conclude that

lim
ε→0+

Ĵ(m−1(Φε(y))) = lim
ε→0+

Êε(Φε(y)) = c0

uniformly in y ∈ A. For each y ∈ A, we set

h(ε) :=
∣∣∣Êε (Φε(y))− c0

∣∣∣ .
Then h(ε) → 0 as ε → 0+. Now we write

Ŝ+ =
{
u+ ∈ S+ : Ĵ(u+) ≤ c0 + h(ε)

}
.

It is clear that Ŝ+ ̸= ∅, sincem−1(Φε(y)) ∈ Ŝ+. From Lemma 5.3 and the Lusternik-

Schnirelmann theory (see Szulkin-Weth [45, Theorem 27]), it follows that Ĵ has at

least cat
(
Ŝ+

)
critical points on Ŝ+. Lemmas 5.9 and 5.12 imply that there exists

ε̂ > 0 such that, for any 0 < ε < ε̂, the diagram

A
Φε−−−→ N̂ε

m−1

−−−−→ Ŝ+
m−−→ N̂ε

βε−−−→ Aδ

is well defined and βε ◦m ◦m−1 ◦ Φε is homotopic to the inclusion id: A → Aδ.
We claim that

cat
(
Ŝ+

)
≥ catAδ

(A). (5.16)

We assume that cat(Ŝ+) = n, that is, there exists a smallest positive integer n such
that

Ŝ+ ⊆ D1 ∪ D2 ∪ · · · ∪ Dn,

where Di, i = 1, 2, · · · , n are closed and contractible in Ŝ+, that is, there exist

hi ∈ C([0, 1]×Di, Ŝ+), i = 1, 2, · · · , n
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such that

hi(0, u) = u for all u ∈ Di,

hi(1, u) = ωi ∈ Ŝ+ for all u ∈ Di.

We set

Ki = Φ−1
ε (m(Di)).

As before, Ki are closed subsets of A and A ⊆ K1 ∪ · · · ∪ Kn. Furthermore, Ki,
i = 1, · · · , n are contractible in A using the deformation hi : [0, 1]×Ki → Aδ defined
by

hi(t, x) = (β ◦m ◦ hi)(t,m
−1(Φε(x))).

Indeed, we conclude from Lemmas 5.9 and 5.12 that

hi ∈ C([0, 1]×Ki, Aδ),

hi(0, x) = (β ◦m ◦ hi)(0,m
−1(Φε(x))) = x for all x ∈ Ki,

hi(1, x) = (β ◦m ◦ hi)(1,m
−1(Φλ(x))) = β(m(ωi)) = xi ∈ Aδ for all x ∈ Ki.

Hence

catAδ
(A) ≤ n,

that is, (5.16) holds. We also note that

catAδ
(A) = cat(A),

since Aδ is homotopically equivalent to A. Thus, Ŝ+ contains at least cat(A) critical

points of Ĵ . Proposition 3.6 implies that these critical points are also the critical
points of the functional Êε. Thus we show that the problem (2.5) has cat(A)
positive solutions. □

6. Proof of the main results

In this section we are going to proof our main results in this paper. A key lemma
in our proofs is the following one.

Lemma 6.1. Let hypotheses (H0), (H1) and (H4) be satisfied and εn → 0+ and

un ∈ Ñεn be a positive weak solution of (2.4). Then Ẽεn(un) → cr0 and for any
σ > 0, there exist R > 0 and n0 ∈ N such that

∥un∥L∞(BR(ỹn)c)
< σ for all n ≥ n0,

where ỹn is given by Lemma 5.10.

Remark 6.2. The results of Lemma 6.1 holds true for negative solutions of the
auxiliary problem (2.4) since Ẽεn(·) is even under our hypotheses.

Remark 6.3. The results of Lemma 6.1 holds true for positive solution of the
auxiliary problem (2.5) under the hypothesis (H0), (H1)(i)–(iii) and (H5). The
proof is similar.

Proof of Lemma 6.1. By an argument similar to that of (5.14), we can show that

Ẽεn(un) → cr0. Let R > 1, ηR ∈ C∞(RN ) such that 0 ≤ ηR ≤ 1, ηR ≡ 0 in BR/2(0),
ηR ≡ 1 in BR(0)

c and |∇ηR| ≤ C/R. We set ηn(x) = ηR(x − ỹn). Let h > 0 and
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define un,h := min{un, h}. Choose vn,h = ηpnunu
κp
n,h as test function in (2.4) with

κ > 0 to be determined later. A direct calculation yields∫
RN

a(εnx)
(
|∇un|q−2 ∇un · ∇vn,h + |un|q−2

unvn,h

)
dx

=

∫
RN

a(εnx)
(
|∇un|q−2 ∇un · ∇ηnpη

p−1
n unu

κp
n,h + |∇un|q ηpnu

κp
n,h

+κp |∇un|q−2 ∇un · ∇un,hη
p
nunu

κp−1
n,h + |un|q ηpnu

κp
n,h

)
dx

=

∫
BR(ỹn)\BR/2(ỹn)

a(εnx) |∇un|q−2 ∇un · ∇ηnpη
p−1
n unu

κp
n,h dx

+

∫
RN

a(εnx)
(
|∇un|q ηpnu

κp
n,h + |un|q ηpnu

κp
n,h

)
dx

+ κp

∫
{un≤h}

a(εnx) |∇un|q ηpnunu
κp−1
n,h dx.

(6.1)

Applying Young’s inequality, we have

p

∣∣∣∣1ξ |∇un|q−2 ∇un · ∇ηnη
p−1
n unξ

∣∣∣∣
≤ p ·

(
1

q

1

ξq
|un|q |∇ηn|q +

q − 1

q
ξ

q
q−1 η

q· p−1
q−1

n |∇un|q
)

=
p

q

1

ξq
|un|q |∇ηn|q +

p(q − 1)

q
ξ

q
q−1 η

q· p−1
q−1

n |∇un|q

and so ∫
BR(ỹn)\BR/2(ỹn)

a(εnx) |∇un|q−2 ∇un · ∇ηnpη
p−1
n unu

κp
n,h dx

≤ p

q

1

ξq

∫
BR(ỹn)\BR/2(ỹn)

a(εnx) |un|q |∇ηn|q uκp
n,h dx

+
p(q − 1)

q
ξ

q
q−1C

∫
BR(ỹn)\BR/2(ỹn)

a(εnx)η
p
n |∇un|q uκp

n,h dx.

Substituting this expression into the formula (6.1) yields∫
RN

a(εnx)
(
|∇un|q−2 ∇un · ∇vn,h + |un|q−2

unvn,h

)
dx

≥ C

∫
RN

a(εnx) |∇un|q ηpnu
κp
n,h dx+

∫
RN

a(εnx) |un|q ηpnu
κp
n,h dx

− C

∫
RN

a(εnx) |un|q |∇ηn|q uκp
n,h dx

≥ C

∫
RN

a(εnx) |∇un|q ηpnu
κp
n,h dx− C

∫
RN

a(εnx) |un|q |∇ηn|q uκp
n,h dx,

(6.2)

since

κp

∫
{un≤h}

a(εnx) |∇un|q ηpnunu
κp−1
n,h dx ≥ 0
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and ∫
RN

a(εnx) |un|q ηpnu
κp
n,h dx ≥ 0.

Next, we calculate∫
RN

|∇un|p−2 ∇un · ∇vn,h dx

=

∫
RN

(
|∇un|p−2 ∇un · ∇ηnpη

p−1
n unu

κp
n,h + |∇un|p ηpnu

κp
n,h

+κp |∇un|p−2 ∇un · ∇un,hη
p
nunu

κp−1
n,h

)
dx

≥
∫
RN

(
|∇un|p−2 ∇un · ∇ηnpη

p−1
n unu

κp
n,h + |∇un|p ηpnu

κp
n,h

)
dx,

since ∫
RN

κp |∇un|p−2 ∇un · ∇un,hη
p
nunu

κp−1
n,h dx

= κp

∫
{un≤h}

ηpnu
κp
n |∇un|p dx ≥ 0.

Hölder’s and Young’s inequalities yield

p

∫
RN

|∇un|p−2 ∇un · ∇ηnη
p−1
n unu

κp
n,h dx

≤ p

∫
RN

|∇un|p−1
ηp−1
n u

(p−1)κ
n,h un |∇ηn|uκ

n,h dx

≤
(
pξ

∫
RN

|∇un|p ηpnu
κp
n,h dx

) p−1
p
(
pξ

1−p
p

∫
RN

|∇ηn|p up
nu

κp
n,h dx

) 1
p

≤ ξ(p− 1)

∫
RN

|∇un|p ηpnu
κp
n,h dx+ ξ

1−p
p

∫
RN

|∇ηn|p up
nu

κp
n,h dx

and so ∫
RN

|∇un|p−2 ∇un · ∇vn,h dx

≥ C

∫
RN

|∇un|p ηpnu
κp
n,h dx− C

∫
RN

|∇ηn|p up
nu

κp
n,h dx.

(6.3)

We have
〈
Ẽ′

εn(un), vn,h

〉
= 0, that is,∫

RN

(
|∇un|p−2 ∇un∇vn,h + |un|p−2

unvn,h

)
dx

+

∫
RN

a(εnx)
(
|∇un|q−2 ∇un∇vn,h + |un|q−2

unvn,h

)
dx

=

∫
RN

g̃(εnx, un)vn,h dx.

This together with (2.3) yields∫
RN

|∇un|p−2 ∇un∇vn,h dx
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+

∫
RN

a(εnx)
(
|∇un|q−2 ∇un∇vn,h + |un|q−2

unvn,h

)
dx

=

∫
RN

g(εnx, un)vn,h dx−
∫
RN

ηpn |un|p uκp
n,h dx

≤
∫
RN

(
ξ |un|p−1

+ Cξ |un|r−1
)
ηpnunu

κp
n,h dx−

∫
RN

ηpn |un|p uκp
n,h dx

≤ C

∫
RN

ηpnu
r
nu

κp
n,h dx.

Then, from (6.2) and (6.3), we conclude that∫
RN

|∇un|p ηpnu
κp
n,h dx+

∫
RN

a(εnx) |∇un|q ηpnu
κp
n,h dx

≤ C

(∫
RN

ηpnu
r
nu

κp
n,h dx+

∫
RN

|∇ηn|p up
nu

κp
n,h dx

+

∫
RN

a(εnx) |un|q |∇ηn|q uκp
n,h dx

)
.

(6.4)

On the other hand, denoting by wn,h = ηnunu
κ
n,h, we have

∥wn,h∥pp∗ ≤ C

∫
RN

|∇wn,h|p dx = C

∫
RN

∣∣∇ (ηnunu
κ
n,h

)∣∣p dx
= C

∫
RN

∣∣∣(∇ηnunu
κ
n,h + ηn∇unu

κ
n,h + κηnunu

κ−1
n,h ∇un,h

)∣∣∣p dx
≤ C

∫
RN

|∇ηn|p up
nu

κp
n,h dx+ C

∫
RN

ηpn |∇un|p uκp
n,h dx

+ Cκp

∫
RN

ηpnu
p
nu

p(κ−1)
n,h |∇un,h|p dx

= C

∫
RN

|∇ηn|p up
nu

κp
n,h dx+ C

∫
RN

ηpn |∇un|p uκp
n,h dx

+ Cκp

∫
{un≤h}

ηpnu
κp
n,h |∇un|p dx

≤ C(κ+ 1)p
(∫

RN

|∇ηn|p up
nu

κp
n,h dx+

∫
RN

|∇un|p ηpnu
κp
n,h dx

)
≤ C(κ+ 1)p

(∫
RN

|∇ηn|p up
nu

κp
n,h dx+

∫
RN

|∇un|p ηpnu
κp
n,h dx

+

∫
RN

a(εnx) |∇un|q ηpnu
κp
n,h dx

)
≤ C(κ+ 1)p

(∫
RN

|∇ηn|p up
nu

κp
n,h dx+

∫
RN

a(εnx) |un|q |∇ηn|q uκp
n,h dx

+

∫
RN

ηpnu
r
nu

κp
n,h dx

)
,

(6.5)

where we have used (6.4). Then we estimate∫
RN

ηpnu
r
nu

κp
n,h dx =

∫
RN

ur−p
n

(
ηnunu

κ
n,h

)p
dx
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≤
(∫

RN

up∗

n dx

) r−p
p∗
(∫

RN

(
ηnunu

κ
n,h

) pp∗
p∗−(r−p) dx

) p∗−(r−p)
p∗

≤ C ∥wn,h∥pα∗

= C

(∫
BR/2(ỹn)c

(
unu

κ
n,h

)α∗

dx

) p
α∗

,

where p < α∗ = pp∗/(p∗ − (r − p)) < p∗. Further, we have∫
RN

|∇ηn|p up
nu

κp
n,h dx

=

∫
BR(ỹn)\BR/2(ỹn)

|∇ηn|p up
nu

κp
n,h dx

≤

(∫
BR(ỹn)\BR/2(ỹn)

|∇ηn|
pp∗
r−p dx

) r−p
p∗
(∫

BR(ỹn)\BR/2(ỹn)

(
unu

κ
n,h

)α∗

dx

) p
α∗

.

Since r < p∗, we have pp∗

r−p > N . Therefore,∫
BR(ỹn)\BR/2(ỹn)

|∇ηn|
pp∗
r−p dx ≤ C

R
pp∗
r−p−N

≤ C.

and∫
RN

a(εnx) |un|q |∇ηn|q uκp
n,h dx

=

∫
BR(ỹn)\BR/2(ỹn)

a(εnx) |un|q |∇ηn|q uκp
n,h dx

≤ ∥a∥L∞

(∫
BR(ỹn)\BR/2(ỹn)

|∇ηn|
qp∗
r−q dx

) r−q
p∗
(∫

BR(ỹn)\BR/2(ỹn)

up∗

n dx

) q−p
p∗

×

(∫
BR(ỹn)\BR/2(ỹn)

(
unu

κ
n,h

)α∗

dx

) p
α∗

.

Moreover, as q < r < p∗, it holds qp∗

r−q > pp∗

r−p > N and so∫
BR(ỹn)\BR/2(ỹn)

|∇ηn|
qp∗
r−q dx ≤ C

R
qp∗
r−q−N

≤ C.

Substituting the above estimations into (6.5) yields(∫
BR(ỹn)c

(
unu

κ
n,h

)p∗

dx

) p
p∗

≤ ∥wn,h∥pp∗

≤ C(κ+ 1)p

(∫
BR/2(ỹn)c

(
unu

κ
n,h

)α∗

dx

) p
α∗

≤ C(κ+ 1)p

(∫
BR/2(ỹn)c

u(κ+1)α∗

n dx

) p
α∗

.
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Using Fatou’s lemma in the variable h gives(∫
BR(ỹn)c

u(κ+1)p∗

n dx

) p
p∗

≤ C(κ+ 1)p

(∫
BR/2(ỹn)c

u(κ+1)α∗

n dx

) p
α∗

or

∥un∥L(κ+1)p∗ (BR(ỹn)c)
≤ C

1
κ+1

1 (κ+ 1)
1

κ+1 ∥un∥L(κ+1)α∗(BR/2(ỹn)c) .

Set γ := κ+ 1 = p∗/α∗ > 1. We rewrite

∥un∥Lγp∗ (BR(ỹn)c)
≤ C

1
γ

1 γ
1
γ ∥un∥Lγα∗(BR/2(ỹn)c) .

Then we iterate, beginning with γ, γ2, γ3, . . ., γm, to obtain

∥un∥Lγmp∗ (BR(ỹn)c)
≤ C

∑m
i=1 γ−i

1 γ
∑m

i=1 iγ−i

∥un∥Lp∗(BR/2(ỹn)c) .

Letting m → ∞, we get

∥un∥L∞(BR(ỹn)c)
≤ C2 ∥un∥Lp∗(BR/2(ỹn)c) .

By the change of variables z = x− ỹn, we obtain

∥un∥L∞(BR(ỹn)c)
≤ C2 ∥un∥Lp∗(BR/2(ỹn)c) = C2

(∫
BR/2(ỹn)c

|un (z + ỹn)|p
∗
dz

) 1
p∗

.

It follows from Lemma 5.10 that vn(z) = un (z + ỹn) strongly converges in Lp∗
(RN ).

Thus, for R > 0 and n large enough, we have

∥un∥L∞(BR(ỹn)c)
≤ σ.

□

Now, we are able to give the proofs of Theorems 1.2–1.3.

Proof of Theorems 1.2 and 1.3. We choose δ > 0 small enough such that Aδ ⊂ Ω
and the sets A−

δ , Aδ are homotopically equivalent to A. We claim that there exists

ε̃ > 0 such that, for any 0 < ε < ε̃ and any solution u ∈ Ñε of the problem (2.4),
there holds

∥u∥L∞(Ωc
ε)

≤ τ. (6.6)

Indeed, suppose by contradiction that for εn → 0 as n → +∞ and un ∈ Ñεn such

that Ẽ′
εn (un) = 0 and

∥un∥L∞(Ωc
εn)

> τ. (6.7)

From Lemma 6.1 it follows that Ẽεn(un) → cr0. Then we can use Lemma 5.10 to
get a sequence {ỹn}n∈N ⊂ RN such that εnỹn → y ∈ A as n → +∞. We choose
R0 > 0 such that BR0

(y) ⊂ B2R0
(y) ⊂ Ω. Then we have

BR0/εn(y/εn) =
1

εn
BR0

(y) ⊂ Ωεn .

Furthermore, for any x ∈ BR0/εn(ỹn), when n is large enough, we have∣∣∣∣x− y

εn

∣∣∣∣ ≤ |x− ỹn|+
∣∣∣∣ỹn − y

εn

∣∣∣∣ ≤ R0

εn
+

1

εn
on(1) <

2R0

εn
,
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which implies that BR0/εn(ỹn) ⊂ Ωεn . Consequently BR0/εn(ỹn)
c ⊃ Ωc

εn . Then by
Lemma 6.1 with σ = τ and n ≥ n0 large enough such that R0/εn > R, we have

∥un∥L∞(Ωc
εn)

≤ ∥un∥L∞(BR0/εn (ỹn)c) ≤ ∥un∥L∞(BR(ỹn)c)
< τ,

which contradicts (6.7) and our claim is true. The same holds for solutions of (2.5),
see Remark 6.3.

By (6.6) and the definition of g̃ (resp. ĝ) we conclude that g̃(εx, u) = f(u)
(resp. ĝ(εx, u) = f(u)). Thus solutions of the auxiliary problems (2.4) and (2.5)
are also solutions of (1.1). Hence the existence results in Theorems 1.2 and 1.3
follow from Theorems 5.6–5.8 and 5.13.

In the last part, we want to study the concentration behavior of the solutions of
the equation (1.1). Let εn → 0 as n → +∞ and un ∈ W 1,Hε(RN ) be a solution of
equation (2.4). As in the beginning of this proof, we can see that un (x+ ỹn) → 0
as n → +∞ and |x| → +∞. Thus, for any τ > 0 and some large fixed R > 0, there
exists Nτ such that

∥un∥L∞(Bc
R(ỹn)) < τ for all n > Nτ . (6.8)

We claim that

∥un∥L∞(BR(ỹn))
⩾ σ′ for some σ′ > 0, (6.9)

where R is given in (6.8). Indeed, suppose not, for any τ > 0, by (6.8) we have that

∥un∥L∞(RN ) < τ for n large enough.

From Ẽ′
εn (un) → 0 (resp. Ê′

εn (un) → 0) as n → +∞ and (H4)(ii) (resp. (H5)(ii)),
we have

∥un∥p1,p ≤ ∥un∥p1,p +
∫
RN

a(εnx) |∇un|q dx+

∫
RN

a(εnx) |un|q dx

=

∫
RN

g̃(x, un)un dx

(
resp.

∫
RN

ĝ(x, un)un dx

)
≤ 1

k

∫
RN

up
n dx,

which implies un = 0, but this does not occur.
From (6.8) and (6.9) we conclude that the maximum point p̃n ∈ RN of un belongs

to BR (ỹn). Write p̃n = ỹn + qn for some qn ∈ BR(0). We now apply Lemma 5.10
again to obtain εnỹn → y ∈ A as n → +∞. We note that qn is bounded. Hence we
conclude

lim
n→+∞

a (εnp̃n) = a(y) = 0.

The same holds for solutions of (2.5) by Lemma 5.11 and Remark 6.3. □
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compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223–283.

[33] W. Liu, G. Dai, Existence and multiplicity results for double phase problem, J. Differential
Equations 265 (2018), no. 9, 4311–4334.

[34] W. Liu, G. Dai, Multiplicity results for double phase problems in RN , J. Math. Phys. 61
(2020), no. 9, 091508, 20 pp.

[35] W. Liu, G. Dai, Three ground state solutions for double phase problem, J. Math. Phys. 59

(2018), no. 12, 121503, 7 pp.
[36] Z. Liu, N.S. Papageorgiou, Double phase Dirichlet problems with unilateral constraints, J.

Differential Equations 316 (2022), 249–269.

[37] W. Liu, G. Dai, P. Winkert, Multiple sign-changing solutions for superlinear (p, q)-equations
in symmetrical expanding domains, Bull. Sci. Math. 191 (2024), Paper No. 103393, 21 pp.

[38] W. Liu, G. Dai, P. Winkert, S. Zeng, Multiple positive solutions for quasilinear elliptic

problems in expanding domains, Appl. Math. Optim. 90 (2024), no. 1, Paper No. 13, 23 pp.
[39] P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth con-

ditions, J. Differential Equations 90 (1991), no. 1, 1–30.

[40] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non-
standard growth conditions, Arch. Rational Mech. Anal. 105 (1989), no. 3, 267–284.
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[47] W. Zhang, J. Zuo, V.D. Rădulescu, Concentration of solutions for non-autonomous double-
phase problems with lack of compactness, Z. Angew. Math. Phys. 75 (2024), no. 4, Paper No.

148, 30 pp.

[48] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv.
Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675–710.

(W. Liu) School of Mathematics and Information Sciences, Yantai University, Yantai

264005, Shandong, P.R. China

Email address: liuwulmath@ytu.edu.cn

(P. Winkert) Technische Universität Berlin, Institut für Mathematik, Straße des

17. Juni 136, 10623 Berlin, Germany
Email address: winkert@math.tu-berlin.de


	1. Introduction and main result
	2. Preliminaries and the penalization method
	3. The mapping between the unit sphere and the Nehari manifold
	4. Limiting problem
	5. Multiple solutions of the auxiliary problem 
	6. Proof of the main results
	Acknowledgment
	References

