POSITIVE SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS
DIRICHLET PROBLEMS WITH CONCAVE-CONVEX
NONLINEARITIES
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ABSTRACT. We consider a nonlinear parametric Dirichlet equation driven by
a nonhomogeneous differential operator involving a reaction exhibiting the
competing effects of concave and convex terms. Using variational methods
combined with truncation and comparison techniques we prove a bifurcation
near zero theorem describing the dependence of the positive solutions on the
parameter A > 0.

1. INTRODUCTION

Let © C RY be a bounded domain with a C*“-boundary 95, € (0,1). In this
paper, we study the existence, nonexistence, and multiplicity of positive solutions
to the following nonhomogeneous parametric Dirichlet problem

—diva(Vu) = f(z,u, \) in Q,

u=20 on 0}, (P2)

where a : RN — R is a continuous and strictly monotone mapping satisfying ap-
propriate regularity and growth conditions listed in hypotheses H(a) below. These
hypotheses are general enough to incorporate many differential operators of inter-
est in our framework such as the p-Laplacian (1 < p < o), the (p, ¢)-differential
operator (1 < ¢ < p < o) and the generalized p-mean curvature differential op-
erator (1 < p < 00). The reaction of the problem depends on a parameter A > 0
and is Carathéodory in the variables (z,s) € Q x R (that is, * — f(z,s,\) is
measurable for all s € R, for all A > 0 and s — f(z,s,A) is continuous for a.a.
x € Q, for all A > 0). We assume that f(x,-,\) is (p — 1)-superlinear near +oo
but without satisfying the usual in such cases Ambrosetti-Rabinowitz condition
(AR-condition for short). Near zero, the reaction f(z,-, A) exhibits a concave term
(that is, s — f(z,s,\) is (p — 1)-superlinear near 0%). So, we have in problem
(P) the competing effects of concave and convex terms. Such problems were stud-
ied by Ambrosetti-Brezis-Cerami [2], Li-Wu-Zhou [23] (semilinear equations driven
by the Laplace differential operator), and by Filippakis-Kristaly-Papageorgiou [10],
Gasinski-Papageorgiou [16], [17], Garcia Azorero-Peral Alonso-Manfredi [12], Guo-
Zhang [18], Hu-Papageorgiou [19], and Marano-Papageorgiou [24] (nonlinear prob-
lems driven by the p-Laplace differential operator). In the aforementioned works,
the reaction has the form \s?~1! + g(x,s) with g(x,-) being (p — 1)-superlinear.
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With the exception of Marano-Papageorgiou [24], in all the other works the (p—1)-
superlinearity of g(z,-) is expressed by employing the AR-condition. Moreover,

in the works of Garcia Azorero-Peral Alonso-Manfredi [12] and Guo-Zhang [18],
( )*()*Tlf 11 > 0 with <r<p*= J\J[V if <N( 1
ZT,S S S or all s 1 I see also

g g p p N <

[2], [23]). We mention that the p-Laplacian is a (p — 1)-homogeneous differential
operator and this fact is exploited in the methods used in the aforementioned works.
The differential operator here is not homogeneous and this is source of difficulties
in the analysis of problem (P,). To overcome these difficulties we need a different
approach and new techniques. We prove a bifurcation result for A > 0 near zero
which describes the variation of the set of positive solutions as the parameter A > 0
varies. Our theorem contains as special cases the main theorems of [12], [16], [17],
[19], and [241]. Recently, a similar bifurcation theorem was proved for Robin prob-
lems by Papageorgiou-Radulescu [26] under stronger conditions on the nonlinearity
f:OxRx(0,00) = R.

Our approach is variational based on critical point theory combined with suitable
truncation and comparison techniques. In the next section we develop the necessary
mathematical background material which will help to follow the arguments in this

paper.

2. MATHEMATICAL BACKGROUND

Let X be a Banach space and X* its topological dual while (-,-) denotes the
duality brackets to the pair (X*, X). We have the following definition.

Definition 2.1. The functional p € C*(X) fulfills the Cerami condition (the C-
condition for short) if the following holds: every sequence (un)n>1 € X such that
(p(un))n>1 is bounded in R and (1 + ||un|lx)¢ (un) = 0 in X* as n — oo, admits
a strongly convergent subsequence.

This is a compactness-type condition on the functional ¢ which compensates for
the fact that the ambient space X does not need to be locally compact (X is in
general infinite dimensional). The C-condition is one of the main tools in proving
a deformation theorem which in turn leads to the minimax theory of the critical
values of ¢. One of the basic results in this theory is the so-called mountain pass
theorem due to Ambrosetti-Rabinowitz [3] which we state here in a slightly more
general form (see, for example, Gasinski-Papageorgiou [13]).

Theorem 2.2. Let ¢ € CY(X) be a functional satisfying the C-condition and let
U, Uz € X, ||UQ — U1||X >p >0,

max{p(u1), p(uz)} < inf{p(u) : [lu —w|x = p} = m,
and ¢ = inf,er maxo<i<1 @(y(t)) with I' = {y € C([0,1], X) : v(0) = u1,v(1) =

ug}. Then ¢ > m, with ¢ being a critical value of ¢.

By LP(Q) (or L (;RY)) and Wy*(Q) we denote the usual Lebesgue and
Sobolev spaces with their norms || - ||, and || - ||W01’P(Q). Thanks to the Poincaré
inequality we have

lullyrr gy = [Vully for all w € Wi (9).
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The norm of RY is denoted by ||-||g~ and (-, -)g~ stands for the inner product in RV,
For s € R, we set s= = max{=s,0} and for u € Wy"*() we define u*(-) = u(-)*.
It is well known that

ut e WiP(Q), Jul=ut+uT, w=ut—u".

The Lebesgue measure on RY is denoted by |- |y and for a measurable function
h: QxR — R (for example, a Carathéodory function), we define the Nemytskij
operator corresponding to the function h by

Ni(u)(-) = h(-,u(-)) for all u € WyP().
Evidently, © — Np(u)(x) is measurable.
In addition to the Sobolev space WO1 P(Q) we will also use the ordered Banach
space
Cy(Q) ={ueC'(Q): u|aQ =0}
and its positive cone
Co(Q) 4 ={ueCy(Q) :u(z) >0 forall z € Q}.
This cone has a nonempty interior given by

int (Cy(Q)4) = {u € Cy(Q)4 s u(x) >0 for all z € Q, g—Z(x) <O0forall z € 6(2} ,

where n(-) stands for the outward unit normal on 0fQ.
Now let ¥ € C1(0, +00) be a function satisfying
' (t)
(1)
for all t > 0 and with some constants ¢, cg, c1, co > 0. The hypotheses on a : RY —
RY read as follows.
H(a): a(€) = ag (|[¢]|gn) € for all € € RY with ag(t) > 0 for all ¢ > 0 and

0<eé< <cp and PP <I(E) <ep(1+P7H) (2.1)

(i) ap € C1(0,00),t — tag(t) is strictly increasing in (0, 00), hm+ tao(t) =
t—0

!/
0, and lim tag(t)
t—0+ ag(t)

(ii) |[Va(®)|gr < 0319|(||§|”RN) for all £ € RV \ {0} and for some c3 > 0;
RN

(i) (Va(©)y. y)gw > LUNEY)
€Ty

(iv) if Go(t) = fg sap(s)ds for all t > 0, then there exists d,v € (1,p),1 <
u < min{d, v}, and £ > 0 such that

=c> -1
|y||2~ for all ¢ € RV \ {0} and all y € RY;

(1) t— Gy (té) is convex in (0, +00);

Go(t)
tV

(2) limsup < 4005

t—0t

(3) t2ap(t) — pGo(t) > ét? for all t > 0 and for some & > 0;
(4) pGo(t) — t2ag(t) > —£ for all t > 0 and for some & > 0.
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Remark 2.3. We point out that the assumption H(a) (i) is equivalent to ||Va(§)||gn2 >

I(1€llen)

e since a(€) = ag(||€]|rn )€ which gives that Va(§) is symmetric. Therefore,

one also could write conditions H(a)(ii), (i) together in the form

9 ([I¢]lz~) O (lI€llry)
1€l 1€l

Hypotheses H(a)(i), (ii), (iii) allow the usage of the nonlinear global regularity re-
sults of Lieberman [22]. Hypothesis H(a)(iv) is dictated by the needs of our problem.
However, as we will see in the examples that follow, it is satisfied in many cases
of interest. Note that the primitive Go(+) is strictly convex and strictly increasing.
Let G(€) = Go (||€||lrn) for all ¢ € RN. Then G(-) is convex and differentiable. We
have

<IVa(§)llpr> < cs

VG(&) = Go ([I]lr) = ao ([€llev) € = a(€) for all € € RY.

&
1€l

Hence, G(-) is the primitive of a(-) and the convezity of G(-) along with G(0) =
imply

G(©) < (a(€),O)pn  for all € € RY. (2.2)

Using hypotheses H(a) as well as (2.1) and (2.2) we have the following lemma
summarizing the main properties of the map a(-).

Lemma 2.4. Under the hypotheses H(a)(i)—(iii) there holds
(i) € = a(§) is mazimal monotone and strictly monotone;

(ii) ||a(§)||gn < ca (1 + ||£||pj_vl) for all ¢ € RN and for some c4 > 0;
(iii) (a(§), &) 20T o [[€llRn for all € € RY.

From this lemma we easily deduce the following growth restrictions for the prim-
itive G(-).

Corollary 2.5. If hypotheses H(a)(i)-(iii) hold, then

p(p )||§HRN <G <es (L+€]8x)  for all ¢ € RN and for some cs5 > 0.

Example 2.6. The following maps satisfy hypotheses H(a).

(i) Let 1 < p < oo and let a(&) = HﬁH%;zf. Then a(-) represents the well-known
p-Laplace differential operator defined by

Ayu = div (||Vu||§;2vu) for all u € W2P(Q).

(ii) Let 1 < q <p < oo and let a(§) = ||€]lhxn 2+ €]l g~ ¢, Then a(-) becomes the
(p, q)-differential operator defined by

Apu+ Agu = div (||Vu||p QVU) + div (||Vu||q 2Vu)

for allu € Wol’p(Q). Such differential operators arise in many physical appli-
cations (see Cherfils-Il yasov [5] and the references therein).
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(iti) Let 1 < p < oo and let a(§) = (1+ ”5”%@1\’)% &. In this case a(-) represents
the generalized p-mean curvature differential operator which is defined by

div {(1 + ”qu%N)p% Vu} for all u € Wy (Q).

2

(iv) Let1 < p < oo and let a(€) = ||€]|P~2&+ Hlilﬁ;”f. In this case the corresponding
differential operator is

C A IVul|2YVu
Apu + div (% for allu € Wl’p(Q),

which arises in plasticity theory (see Fuchs-Gongbao [11]).

Now, let A : WiP(Q) = W17/ (Q) = (W(}*p(Q))* (1+ 2 =1) be the nonlin-

ear map defined by
(A(u),v) = / (a(Vu), Vo)gn dz for all u,v € WyP(Q). (2.3)
Q

The next proposition gives the main properties of A (see, for example, Gasiriski-
Papageorgiou [11]).
Proposition 2.7. Let hypotheses H(a)(i)-(iii) be satisfied. Then A : WyP(€) —
W=L2'(Q) defined by (2.3) is bounded (that is, it maps bounded sets to bounded
sets), demicontinuous, strictly monotone (hence maximal monotone), and of type
(S)y, that is, if u, — u in WyP() and limsup,,_,. (A(up),u, —u) < 0, then
U, — u in WyP(2).

Now, let fo : 2 x R — R be a Carathéodory function satisfying the subsequent
growth condition

|fo(z,s)| < ao(z) (1+|s|""")  for a.a. z € Q and for all s € R,

with ag € L>(Q)4 and 1 < r < p*. Setting Fy(z,s) = [ fo(x,t)dt we define the
C'-functional @o : Wy (Q) — R through

wo(u) = / G(Vu)dz — / Fo(z,u)d.
Q Q
From Gasiriski-Papageorgiou [15] we have the following result.

Proposition 2.8. Let the assumptions in H(a)(i)-(iii) be satisfied. Ifug € WyP(Q)
is a local C}(Q)-minimizer of @o, that is, there exists pg > 0 such that

QO()(’U,()) < QOO(’LL() + h) fOT‘ all h € C& (ﬁ) with Hh”c&(ﬁ) < Po,

then ug € Cy*(Q) for some a € (0,1) and ug is also a local Wy (Q)-minimizer of
o, that is, there exists p1 > 0 such that

wo(uo) < ¢oluo +h)  for all h € Wy(Q) with [k ey < p1-

Let g,h € L*>(£2). We write g < h if for every compact set K C  there exists
e = e(K) > 0 such that g(z) + & < h(z) for a.a. © € K. Clearly, if g,h € C(Q) and
g(x) < h(z) for all z € Q, then g < h.

Using this order < we can have the following strong comparison result which
extends Proposition 2.6 of Arcoya-Ruiz [4] where the case of the p-Laplacian is
considered.



6 N. S. PAPAGEORGIOU AND P. WINKERT

Proposition 2.9. Let hypotheses H(a)(i)—(iii) be satisfied, £ > 0,g,h € L>®(R),
g < h, and let u,v € Wol’p(Q) be solutions of the following Dirichlet problems

—div(Vu) +&ufP2u=g inQ, =0

—div(Vo) + Pt =h  in Q, =0

with v € int (C§(Q)1). Then v —u € int (C(Q)4).
Proof. From Ladyzhenskaya-Ural'tseva [20, p. 286] we know that u € L*(Q).
Invoking the regularity results of Lieberman [22, p. 320] we have that u € C}(Q).
Note that

U‘BQ

”’aﬂ

Aw) + Euf2u=g < h=A@) + &P in WP (Q).

Acting with (u — v)* € W, "*(€2) we obtain
(A(u) — A(v), (u—v)*) + f/ (Ju[P~?u —vP™") (u—v)Tdz <0,
Q

which gives

/ (a(Vu) —a(Vv),Vu — Vo)pn dz + ¢ (uP=t =P (u— v)dz < 0.
{u>v} {u>v}

Therefore, [{u > v}|, = 0 and consequently, u < v.
First, we are going to show that u(z) < v(z) for all z € Q. For this purpose, we
introduce the following two sets

Ey={z€Q:ulx)=v(x)}, E ={ze:Vulx)=Vu(zx)=0}.

Claim: Fy C E;
Letting z¢ € Ey, the function z — y(z) = (v —v)(z) attains its maximum at xo.
Hence, Vu(zg) = Vo(xg). If Vu(zg) # 0, then we can find B,(z¢) C 2 such that

Vu(z)] >0, [Vo(@)|] >0, (Vu(z),Vo(z))gy >0 forallze B,(zo),

where B,(z¢) is the closed ball with center zo and radius p > 0. Setting w =
v—u € C}(Q)\ {0}, we point out that this function satisfies the following linear
elliptic equation

N
- Z : (ﬁij <w>§Z) =W = ufPu) +h—yg (2.4)

8xi
)=

whereby the coefficients §;;(-) of the differential operator are given by

! 8ai

Bis(z) = o 0yj

(see Arcoya-Ruiz [1], Cuesta-Takéc [0]). Therefore, 8;; € CP (B,(x)) for some
B € (0,1) and they form a uniformly elliptic differential operator in (2.4). Moreover,
by taking p > 0 even smaller if necessary we can show, using g < h, that the right-
hand side in (2.4) is positive on B,(z). Invoking the strong maximum principle
(see, for example, Pucci-Serrin [27, p.111]) there holds

(1 =t)Vu(z) + tVo(z)) dex

w(z) >0 forall x € B,(zo),
or equivalently

u(z) <v(z) forall x € B,(zo),
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which contradicts the fact that xg € Ey. This proves the claim.

Owing to v € int (C’é (§)+), we have F; C Q and F is closed, that is, By CC Q.
Now, because of Ey C E; and the closedness of Fq, it follows that Fy is compact
as well. Hence, we can find a smooth open set €2, such that

EgC CQ CQ.
Then, we can find a number € € (0, 1) such that
u(z)+e<wv(r) forallzeddy and g(x)+e <h(z) foraa ze€ Q.
Now, let 0 € (0,¢) such that
¢lslP2s = |7[P727| <e forall s,7 € [—n,n],|s — 7| < 20,
where 7 = max {||]|oo, ||V]|oo }- We get
—diva(V(u+6)) +&lu+ 0P % (u+6) = —diva(Vu) + &u + 6P (u + 6)

=& fJu+ 8772 (u+68) — [ufu] + g
<g+e
<h
= —diva(Vv) + &P~ for a.a. x € Q.

Then, due to Damascelli [7, p. 495] it follows that u 4+ 6 < v in Q4. Since Ey C Oy
we infer that Ey = () and

u(z) <wv(z) forall x € Q.

Moreover, by virtue of Proposition 2.4 of Cuesta-Taka¢ [6], we obtain
ov  Ou
— < — o0
on “on MO
which implies v — u € int (C§(Q)4). O
From Filippakis-Kristaly-Papageorgiou [10, Lemma 3.3] we borrow the following
lemma.

Lemma 2.10. Let X be an ordered Banach space, K is an order cone of X,
int Ky # 0, and e € int K. Then, for every u € K, there exists t = t(u) > 0
such that

te—u€int K.

3. BIFURCATION THEOREM

Our hypotheses on the nonlinearity f: Q x R x (0,00) — R are the following.
H: f: QxRx(0,00) = R is a function such that (z,s) — f(z,s,\) is
a Carathéodory mapping for all A > 0, A — f(x,s, \) is nondecreasing,
f(z,0,A) =0 for a.a. z € Q, for all A > 0, and

(i) for every p > 0 and every A > 0, there exists a,(\) € L>(2)4 such
that

(1) A= flap(Mll
(2) |f(z,s,A)] < ap,(N)(z) for a.a. € Q and for all s € [0, p;

is bounded on bounded sets;
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(i) if F(z,s,A) = [ f(x,t,A)dt, then, for all A > 0,

by Fls))

= 400 uniformly for a.a. x € Q)
s——+00 spP

and there exist 7(A) € (p,p*) with A — r(A\) nondecreasing, r(\) —
ro € (p,p*) as A — 01, and functions 7o (), 7o (A) € L(£2) such
that

(1) XA = |[Nec(N)]|o, and A = [|100(N)|| o, are bounded on bounded
sets;

f(z,8, )

(2) Mo N)(x) < hm_&nfm < limsupw < Moo (M) ()

o &Y s——400
uniformly for a.a. x € Q;

(iii) for every A > 0, there exist 7(\) € (max{(r()\) —p)%, 1} 7p*) and
Bo(A) > 0 such that
(1) A= 7(A) and A — Bp(\) are nondecreasing;
s f(l’,S,A)S—pF(l',S,A)
(2) Bo(A) < lim inf Y
&
(iv) for every A > 0 there exist g(A),0 € (1,u) (see hypothesis H(a)(iv))
with g(A) < 6 and do(A) € (0,1), é(A) > 0 such that
(1) ¢(A) = qo0 € (1,p) as A = 07;

uniformly for a.a. x €

(2) A = ¢o(N) is strictly increasing and ég(A) — 400 as A — +00;
(3) eo(N)s? < f(x,5,\)s < q(\)F(x,s,A) for a.a. z € Q and for all
s €[0,00(N)];
and there exists a function ny(-, A) € L>(€Q)4 such that
(4) [Ino(; Ml — 0 as A — 0%;

F(z,s,))

(5) limsup ey

s—0t

< no(z, \) uniformly for a.a. x € Q;

(v) there exist r* € (p, p*] and ¢f > 0 such that
flx,s,A) > —ca‘sr*_1 for a.a. z € Q, for all s > 0, and for all A > 0.

Remark 3.1. Since we are looking for positive solutions and the above hypotheses
concern the positive semiaxis Ry = [0,400), we may assume, without loss of gen-
erality, that f(x,s,\) =0 for a.a. x € Q, for all s <0, and for all A\ > 0. Note
that hypotheses H(ii),(iii) imply that, for all A > 0,

lim 7}”(1‘, 5, A)

I T = T uniformly for a.a. x € €.
s—+400 sE—

This means that f(x,-, ) is (p—1)-superlinear near +00. Such problems are usually
treated using the AR-condition (unilateral version) which says that there exist T =



POSITIVE SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS PROBLEMS 9

7(A) >0 and M = M()\) > 0 such that
0<7F(x,8,A) < f(z,8,\)s for a.a. x € Q and for all s > M; (3.1)
0< essQian(-,M, A),

(see Ambrosetti-Rabinowitz [3] and Mugnai [25]). Integrating (3.1) and using (3.2)
we reach a weaker condition, namely that

cgs” < F(z,8,\) for a.a. x € Q, for all s > M, with c¢ = c6(A) >0.  (3.3)
From (3.3) follows the much weaker condition (recall that T > p)

F A
lim (96’78’) =400 uniformly for a.a. x € . (3.4)
s——+oo spP

In the present work we employ (3.4) together with condition H(iii) which are weaker
than the AR-condition and permit the consideration of superlinear reactions with
slower growth near +o0o which fail to satisfy the AR-condition. If the AR-condition
is satisfied, then we may assume that T = T7(A) > max{(’r()\) fp)%, 1}, Hence,
(3.1) and (3.3) imply

f(xv S, )‘)S - pF(fE7 S, >\)

ST
flx,8,\)s — TF(x,8, A F(x,s, A
YTV CTR Y YL
> (1t —p)cg for a.a. x € Q and for all s > M.

In consequence, hypotheses H(iii)(2) is fulfilled.

Example 3.2. The following functions satisfy hypotheses H (for the sake of sim-
plicity we drop the x-dependence).
(i) f1(s) = Xs9"t + 5771 for all s > 0 and with 1 < ¢ <p <r < p*.
This is the nonlinearity considered in Ambrosetti-Brezis-Cerami [2] where
p = 2 (semilinear equations driven by the Laplacian) and in Garcia Azorero-
Peral Alonso-Manfredi [12], Guo-Zhang [18] where 1 < p < oo (nonlinear
equations driven by the p-Laplacian).
(ii) A reaction which does not satisfy the AR-condition can be given by
fa(s) = As? 1 4 sP71 {ln(s) + ﬂ forall s >0 with 1 < g < p.
(i1i) Other admissable reactions are the following.
(1) f3(s) = EN) (s47+s"71) forall s > 0 with 1 < g < p <r < p*,
E(N) >0, X = &(N) is increasing, £(A) = 0T as A — 0T, and £(\) —
400 as A — +o0.

As?71 if s €10, p(N)],
@) fils) =4 Ly Teeln e

sTTH A Ap(A) T = p(A) if p(A) <s
with 1 < g <p <r <p* p(A) € [0,1], A = p(A) is nondecreasing,
p(A) = 0" as A = 0T, and p(\) = 17 as X — +o0.

First, we introduce the following sets

L={A>0: problem (P,) admits a positive solution},
S(A) = the set of positive solutions of problem (P ).
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We define, for every A > 0, the corresponding C''-energy functional @) : VVO1 P(Q) —
R to problem (P,) by

oa(u) = / G(Vu)dz — / F(z,u,A\)dz.
Q Q
We start with an observation concerning the solution set S(A).

Proposition 3.3. If hypotheses H(a)(i)-(iii) and H(i),(iv) hold, then S()\) C
int (C§(Q)+) for every XA > 0.

Proof. We may assume that A € £, otherwise S(\) = §). Therefore, there exists
u e WyP(Q),u > 0,u # 0 such that

—diva(Vu) = f(z,u,\) for a.a. z € Q. (3.5)

From Ladyzhenskaya-Ural’tseva [20, p. 286] it follows that u € L°° () and the
regularity results of Lieberman [22, p. 320] imply u € C}(Q)+ \ {0}.
Owing to hypotheses H(i),(iv), for a given p > 0, we can find f;‘ > 0 such that

f(z, s, ) +§;‘sp*1 >0 fora.a. x€Qandforall 0<s<p. (3.6)

Let p = [ulloc > 0 and let £} > 0 be as in (3.6). Combining (3.5) and (3.6) gives
—diva(Vu) +£2up_1 >0 foraa. x€q,
equivalently
diva(Vu) < {;\upfl for a.a. x € Q. (3.7
Letting x(t) = tag(t) for all ¢ > 0, hypothesis H(a)(iii) and (2.1) ensure that
tx'(t) = t2ay(t) + tag(t) > e tP~t.

Integrating by parts leads to

/O sx'(s)ds = t(t) — /0 X(s)ds = Pao(t) = Ga(t) = 27 (3.9)

We set H(t) = t2ag(t) — Go(t) and Ho(t) = StP for all t > 0. Let 6 € (0,1) and
s > 0. We introduce the sets

4 :{tE (0,1):H(f) 28} and ng{te (0,1)2H0(t) ZS}

It is easy to see that Cy C C (see (3.8)) and so inf C; < inf Cy. Therefore, due to
Leoni [21, p. 6],

Hence

s 5 A 6
1 1 d
| —Fais= [ ds:gp/ ®_ i
0 £ 0 A €1 Jo S
H-1[22gp H(;l 2P gp
p
Then, because of (3.7), we may apply the strong maximum principle of Pucci-Serrin
[27, p. 111] which ensures that u(z) > 0 for all z € Q. The boundary point lemma
of Pucci-Serrin [27, p. 120] implies then u € int (C§(Q)4). We conclude that

S(A) Cint (CF(Q)4). O
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Proposition 3.4. If hypotheses H(a) and H(i)-(iv) hold, then the energy functional
wx satisfies the C-condition for every X > 0.

Proof. Let (un)n>1 C WOI’p(Q) be a sequence such that
loa(un)| < My for some My >0, for all n > 1, (3.9)

(1 + ||un||W01,p(Q)> oh\(up) =0 in WL (Q) as n — oco. (3.10)
Thanks to (3.10) there holds

enllhllyrq)

(P (un)s I)] < for all h € WP() with e, — 0%,

+ ||“n||w(}vp(9)

that is

(A(un),h>—/ F (@, 1, \)hdz
Q

En h 1,p
< | ”WO @ foralln > 1. (3.11)

T It flunllwrr g

Taking h = —u;; € W, P(Q) in (3.11) gives
/ (a (—Vu;) ,—Vu;)RN dr <eg, foraln>1,
Q

which results in, due to Lemma 2.4(iii),
a1

1 <eg, foralln>1.
p—

HVu

ol
nilp
Hence,
u; — 0 in Wy (Q) as n — oco. (3.12)
Moreover, combining (3.9) and (3.12), yields
/pG (Vuz) dr — / pF (337uj;,)\) der < My forallm>1, (3.13)
Q Q
for some My > 0. In (3.11) we choose h = u; € Wy(€2) to obtain
—/ (a(Vuy) ,VUZ)RN dx +/ f(zuf AN utde <e, foralln>1. (3.14)
Q Q
Adding (3.13) and (3.14) gives
[ 106 (V) = (a(Vaf) V)] da
Q
—|—/ [f (x,u:{,/\) uf —pF (x,u;f,)\)] dex < Mz forallm >1,
Q
for some M3 > 0. Taking into account hypothesis H(a)(iv)(4) we get
/ [f (zoul N ulb = pF (2w}, N)] de < My for all n > 1, (3.15)
Q

for some My > 0. By virtue of hypotheses H(i)—(iii) we can find 51 € (0, Bo(N))
and ¢y = ¢7(A) > 0 such that

flx,8,\)s — pF(z,s,\) > B1s™™ —¢; for a.a. x € Q and for all s > 0. (3.16)
Using (3.16) in (3.15) we infer that
(uf{)nzl C LT()‘)(Q) is bounded. (3.17)
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First we assume that N # p. Having regard to hypothesis H(iii), without loss of
generality, we may assume that 7(\) < r(\) < p*. Therefore, there exists t € (0,1)
such that

1 1—t t

+ —. 3.18
T (15
Invoking the interpolation theory (see, for example, Gasiriski-Papageorgiou [13, p.
905]) in combination with (3 17) and the Sobolev embedding theorem we have
[|lwt|| Ny < HquH || ) e S8 ||u+HW1 v foralln=>1 (3.19)
and for some cg > 0.
Hypotheses H(i),(ii) imply that
f(z,8,A) < e (1 + sro‘)> for a.a. x € Q, for all s >0, (3.20)
and for some ¢y > 0. Now we choose h = u;i € Wy**(€2) in (3.11) to get
/(a(Vu;t) /f x,uw)\ +d$§€n for all n > 1.
Q
From this, by applying Lemma 2.4(iii), (3.20), and (3.19) we conclude that
+|P +1|r(N) 4t
il < e (14 [t 1) < e (1t 525 ) (3.21)

for all n > 1 and for some ¢, c11 > 0.
The hypotheses on 7(\) (see H(iii)) and (3.18) imply that ¢r(A) < p. Hence,
from (3.21) it follows that
(uf ) n>1 € Wy (Q) is bounded. (3.22)

If N = p, then by definition p* = oo while from the Sobolev embedding theorem
we know that Wy (Q) is compactly embedded in L"(£2) for all 5 € [1,0). So, for
the previous argument to work, we need to replace p* by n > r()) large enough
such that

Then we reach again (3.22).
From (3.12) and (3.22) we know that (u,)n>1 € Wy () is bounded and so by
passing to a suitable subsequence if necessary we may assume that

Up — u in Wol’p(Q) and  u, — u in L'M(Q). (3.23)
In (3.11) we choose h = u, —u € Wol’p(Q)7 pass to the limit as n — oo, and apply
(3.23). This gives

nh_)rrgo (A(u), un —u) =0,
which by the (S)-property of A (see Proposition 2.7) results in
Uy — u in WyP(Q).
This proves that the functional ¢, satisfies the C-condition for every A > 0. O
Next we prove the nonemptiness and a structural property of L.

Proposition 3.5. If hypotheses H(a) and H hold, then L # 0 and for every A € L
we have (0,\] C L.
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Proof. We are going to show that the functional ¢, satisfies the mountain pass
geometry (see Theorem 2.2) for A > 0 small enough. This fact in conjunction with
Proposition 3.4 will permit the usage of the mountain pass theorem (see Theorem
2.2) which will show that, for A > 0 small enough, the solution set S(A) is nonempty
and so L # (.

Claim: There exists A > 0 such that, for all A € (0, 5\), we can find py > 0 such
that

inf [oa(u) : [ully o) = 03] = ma > 0= @2(0).

For every A > 0, by virtue of hypotheses H(i),(ii), and (iv), we can find c12(X) >
0, c13(A) > 0 such that

c12(A) = 0T as A = 07, X — c13()\) is bounded on bounded sets,
and
F(z,5,)) < c12(A)s?™ + ¢13(\)s™™  for a.a. 2 € Q and for all s > 0. (3.24)
Taking into account Corollary 2.5, (3.24), and the Sobolev embedding theorem we

derive
:/G(Vu)dx—/F(x,u, A)dz
Q Q

HV’LLHZ—/F({L',U,)\)d:L‘

pp—1)
> exallullys iy~ s, o) = sl g

with ciq = p(lfl 1),015()\) > 0 satisfying ci15(\) — 0" as A — 0T, and c16(\) > 0

with A = ¢16(A) being bounded on bounded sets. Therefore,

qg(N)—p ()\)”u”?"(/\) P

C14 — Cl5 ||u||W01’P(Q) — Ci6 WC}YP(Q i| Hu”Wl P(Q) (325)

Now, let &x(t) = c15(MN) NP pe16(N) "N =P for all t > 0. Clearly, &5 € C(0, 00)
and since ¢(A) < p < r(A) for all A > 0, we see that
Ex(t) = +oc ast — 07 and as t — +oo.
Thus, we can find a number ty € (0,+00) such that &,(to) = %r;(f)@(t), that is,
&\ (to) = 0. This gives
(0= aN)esN> " = () = PN

respectively

(p — gN)ers() | 7T
(r(A) = p)ers(A) '

The hypotheses on A — ¢(A) and on A — r(\) (see H(iii),(iv)) and the properties
of A = ¢15(N) as well as A — ¢16()) imply that

Ex(to) =0T as A — 0T,

to =1to(A) =

So, we can find a number A > 0 small enough such that

Ex(to) < cra for all A e (0, N).
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Then, from (3.25) we see that
oa(u) = mx > 0=px(0) forall [lully1sq) = to(A) = ox.
This proves the Claim.
Hypothesis H(ii) implies that, for all u € int (C§ () ), there holds
ox(tu) = —oo as t = 400 and for all A > 0. (3.26)

Then, the Claim, (3.26), and Proposition 3.4 permit the usage of the mountain pass

theorem (see Theorem 2.2) to find an element uy € Wy (Q) (for A € (0,1)) such
that

Oh(upy) =0 and ©x(0) =0 <my < oy (uy). (3.27)
The second assertion in (3.27) gives uy # 0 and the first one reads as
A(U)\) :NfA (UA), (328)

where fi(z,s) = f(z,s,A). Acting on (3.28) with —u, € WyP(Q) we directly
obtain, using Lemma 2.4(iii), that
C1
p—1
implying uy > 0,uy # 0. Therefore, uy € S(\) C int (C&(ﬁp) (see Proposi-
tion 3.3) and so (O, ;\> C L, hence £ # (. This proves the first assertion of the
proposition.
Next, let A € £ and take v € (0,)). Since A € L there exists uy € S(\) C
int (C§(9)+). Thus,
—diva (Vuy) = f(x,ux,A) > f(z,ur,y) fora.a. ze€Q, (3.29)
because v < A and the fact that A — f(z, s, \) is nondecreasing (see H).
We introduce the following Carathéodory function

fv(x,s)z {f(z,s,’y) if s <wuy(x),

IV, <0

3.30
P us()y) i uale) < s (330
Setting F.(z,s) = IN fy(x,t)dt we define the C'-functional @Zv CWeP(Q) = R
through

dn0) = [ Gy~ [ B e

From Corollary 2.5 and the truncation defined in (3.30) it is clear that 1&7 is coercive.
Moreover, the convex integral u — [, G(Vu)dz is sequentially weakly lower semi-
continuous (follows from Mazur’s lemma) while, by applying the Sobolev embedding
theorem, the same property can be shown for the functional u — fQ Fw(x, u)dx. It
follows that the functional u — ﬁy(u) is sequentially weakly lower semicontinuous
on W, *(€2). Then, by the Weierstrass theorem, we find Uy € W, P (€2) such that

Wy (us) = inf [1/;7(11) ue W()l’p(Q)] . (3.31)

Owing to hypothesis H(a)(iv)(2) we find numbers 7 > 0 and d; € (0, do(y)] such
that

Go(t) <nt” for all ¢t € (0,01]. (3.32)
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C3(9)+) and recall that uy € int (C§(Q)4). By Lemma 2.10 there
t € (0,1) small enough such that

tu(x),t|Vu(x)| € [0,0,] for all z € Q and tu < uy. (3.33)
Applying (3.32) and (3.33) as well as hypothesis H(iv)(3) yields

by () = /Q G (iVu) di — /Q £, (2. fu) da

<71 ()" [VullZ = o) (1) lullf.

Since 6 < v (see hypotheses H(a)(iv) and H(iv)) we see that by taking ¢ € (0, 1)
even smaller if necessary we will have from (3.34)

1[)7 (fu) <0

Let u € int (
exists a number

(3.34)

which gives, due to (3.31),
12’7 (uy) <0 = I/A’“/(O)-
Hence, u, # 0. As u, is a critical point of 1&7 there holds (1%)/ (uy) =0, that is
A(uy) = Ny (un). (3.35)

Acting on (3.35) with —u; € W, "(Q) gives

1Vl <o,

thanks to the truncation in (3.30) and Lemma 2.4(iii). Hence, u, > 0,u, # 0.

Now, taking (u, —uy)" € WP (€) as test function in (3.35) results in, due to
(3.29) and (3.30),

<A(u7) (uy —up)™ /f7 z,uy) (uy — up) " dx

Therefore
/ (a(Vuy) —a(Vuy), Vuy — Vuy)py dz <0,
{u.y>ux}

which means that |[{u, > ux}|y = 0 and so u, < uy.
To sum up we have proved that

€ [0,uy] = {u €Wy P(): 0 < u(x) <uy(x) for a.a. € Q}
Then according to (3.30), equation (3.35) becomes
A(uy) = Ng, (uy)  with fy(2,5) = f(2,s,7).

Hence, u, € S(v) Cint (C3(Q)+) and so v € L.
Therefore, we can say that if A € £, then (0, ] C L. (]

Remark 3.6. The above structural property of the admissible set L means that L
is in fact an interval in (0,400).
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Hypotheses H(iv),(v) imply that, for all A > 0,
f(z,8,A) > é(M\)s? 1 —¢is™ 1 for a.a. € Q and for all s > 0. (3.36)

This unilateral growth estimate on f(z, -, \) leads to the following auxiliary Dirichlet
problem
—diva(Vu) = ég(M\u’~t — cu™ 71 in Q,
u=20 on 0},

We have the following existence and uniqueness result for (Auy).

(AH)\)

Proposition 3.7. Let hypotheses H(a) be satisfied and let 6 < p < d < p <
r* < p* as well as A > 0. Then, problem (Auy) has a unique positive solution
Uy € int (C’é(ﬁ).ﬂ and the map A — Uy is increasing, that is, if X < ~, then
iy — iy € it (C}()).

Proof. First, we establish the existence of a positive solution to (Auy) for all A > 0.
To this end, let &) : VVO1 P(Q) — R be the C’l functional defined by

w= [ 6(vu

Since r* > p and because of Corollary 2.5 we easily Verlfy that &, is coercive.
Similar to the arguments in the proof of Proposition 3.5 we can conclude that £, is
sequentially weakly lower semicontinuous. Hence, we find @, € VVO1 (Q) such that

€y (iy) = inf [@\(u) ue W&P(Q)} . (3.37)

As in the proof of Proposition 3.5 and since 6 < u < p < r* < p* we infer that if
u € int (C§(Q)4) and ¢t € (0,1) sufficiently small, then &x(tu) < 0, which implies,
because ) is the global minimizer of £, (see (3.37)), that

f,\ (’l])\) <0= f)\(O).
Thus, @y # 0. Furthermore, (3.37) gives & (@y) = 0, that is
0— o
Alin) = éo ((a2)") g, (@) g (3.38)

Taking — (7))~ € Wy (Q) as test function in (3.38) yields, owing to Lemma 2.4(iii),

+

_|IP
ﬂ)\) <0.
p

So, 4y > 0,4y # 0. Then, (3.38) becomes
A) = 2 (i2)"" = ¢ ()"

meaning that 4, is a positive solution of (Auy). As before (see the proof of Propo-
sition 3.3), the nonlinear regularity theory (see Ladyzhenskaya-Ural’tseva [20] and
Lieberman [22]) and the nonlinear maximum principle (see Pucci-Serrin [27, pp.
111, 120]) imply that @, € int (C§(Q)4).

Now, we are going to prove the uniqueness of @y. To this end, let T : L'(Q) —
R U {oo} be the integral functional defined by

G (Vui)d if u>0,ui € WhP(Q),
T(u):/ﬂ<u>x ifu>0,u 0 P ()

+00 otherwise.
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Let w1, ug be in the domain of T, i.e. uy,uy € dom(T {u e LY( Q) T(u) < +oo}

and let further y = ((1 — t)u; + tug)d with ¢ € [0, 1] Let y; = u1 Y2 = u2 , then
y1,y2 € Wy (). Now, we apply Lemma 1 in Diaz-Sa4 [#] to obtain

1
IVy@)ley < (1= 0) V0@l +t1Vm@)lE)" ac o
Since Gy is increasing and thanks to hypotheses H(a)(iv)(1) we obtain
Go (IVu(@)llgx)

< 6o (- DIV @Iy + ¢ V(o))

< (1= 1)Go (1Y @)llgw) +1Go (ITua(@)gn) e, in Q.
In view of G(&) = Go(||€]]) for all £ € RY it follows

G(Vu(x)) < (1 =t)G (Vyi(x)) +tG (Vya(z)) a.e. in Q.

Therefore, T' is convex. In addition, via Fatou’s lemma, we see that T is lower
semicontinuous.

Suppose that @, is another positive solution of (Auy). As done for @), via
the nonlinear regularity theory and the nonlinear maximum principle, we have
Uy € int (C§(Q)+). Therefore, if h € C§(Q2) and t € (—1,1) is small enough in its
absolute value, then

(in)? + th € dom(T) and (@y)* + th € dom(T).

So, the Gateaux derivative of T at (@iy)* and (7y)? in the direction h exists and
using the chain rule it follows

T ((a)\)d) (h) = 1 /Q Mhdm,

d (ﬁ)\)dfl
s 1 [ —diva(Vay)

The convexity of T implies the monotonicity of T”. This leads to

< (@) =7 (@) @ = @)

(@
< dival VU/\ - _dij c;((leu,\)> ((fw\)d - (ﬂA)d> dx

(x
— ()" Tt oWt = ey
~ d 1 - — \d—1
(i (@)

_\d i \d
x ((uA) — (@) ) dx.
Since § < p < d < p < r* < p* the last inequality implies uy = wy. This proves
the uniqueness of the positive solution of (Auy) for all A > 0.
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Next, we examine the monotonicity of the map A — 7 from (0, 00) into C3 () 1\
{0}. Letting 0 < A < v, we first observe, due to hypothesis H(iv)(2), that

—diva (Vi) = éo(y)ad ! — chal, "
0 . (3.39)
> éo(Naf "t —cpul, 7t foraa. x e Q.
Introducing the Carathéodory function
0 if s <0,
va(T,8) = { ép(\)s?™ —chs 1 if 0 < s <1y(x), (3.40)

eo(N) (i (2))" " = ¢ (@ ()" 71 if @y (2) <5,

and setting Vi(z,s) = [; va(z,t)dt, we consider the C''-functional oy : Wy P (Q) —
R defined by

ox(u) = /Q G(Vu)dz — /Q Va(z, u)dz.

Applying Corollary 2.5 and the truncation defined in (3.40) we conclude that oy
is coercive. In addition, it is sequentially weakly lower semicontinuous. Therefore,
we find an element @y € Wy™*(€2) such that

o (iiy) = inf [UA(u) ‘u€ Wol’p(Q)] . (3.41)

As in the proof of Proposition 3.5 and since 0 < p < r*, for u € int (C& (§)+)
and ¢ € (0,1) small enough (at least such that tu < 4., see Lemma 2.10), we have
ox(tu) < 0 implying

o (ax) < 0=0x(0).
Thus, @y # 0. The assertion in (3.41) gives o} (4y) = 0 and so

A (ty) = Ny, () - (3.42)
Acting on (3.42) with — (Gy)~ € W,y"”(€2) and applying Lemma 2.4(iii) as well as
(3.40) gives
P

<0.
P

C1
p—1

Hence, @iy > 0,1 # 0. Now, we choose (iiy — @,)" € W, P(Q) in (3.42). By means
of (3.39) and (3.40) we obtain

(A (=) 7) = [ on i) (i = )" do

v @)

- / [00) (a0)' ™" = ¢ (@) 7] (an — ) o
Q
< (), (i —i)"),
which implies

/ (a (Vin) — a(Vi,), Vi — Vi) gx < 0.
{@x>ay}
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Taking into account Lemma 2.4(i) we conclude that [{ty > @ }|, = 0 and hence,
iy < @,. So, we have proved

i € [u,iy] = {u e WP(Q) 10 < ufe) iy for aa. € Q. (3.43)
Then, equation (3.42) becomes
Ain) = eo(N) (2)" " = (@)
due to the truncation function defined in (3.40). Therefore, 4y is a positive solution

of ((Auy)) and because of the uniqueness of the positive solutions of (Auy) we infer
that 4 = uy. In particular, we conclude that
Uy < Ty (3.44)
(see (3.43)).
Note that, for a given p > 0, we can find &, > 0 such that
* _r—1

s — &,sP 71 — c§s"! is nondecreasing on [0, p). (3.45)

Let p = ||i ||, and let £, be as in (3.45). Then, by applying (3.44), (3.45), and
hypothesis H(iv)(2), we obtain

Now, let
) = éof
) = éof

h(w) = eo(7) (i1 (2))"™H = & (1 ()" ~F + &, (11 ()P
< h(x)

™)
> (éo(y) = 20(N) (@ ()"
Since @y € int (C§(2)4) and éo(y) > é(A) (see H(iv)(2)), it follows that h <
h which implies ¢ < h. Then, Proposition 2.9 gives @, — 4y € int (C’&(ﬁ)Jr).
Therefore, A — u) is increasing. O

Proposition 3.8. Let hypotheses H(a) and H be satisfied and let A € L. Then,
iy < u for allu € S(X), where @y € int (C§(€)4) is the unique positive solution of
(Auy ) obtained in Proposition 3.7.

Proof. Let u € S(X) C int (C§(9)+) (see Proposition 3.3) and consider the follow-
ing Carathéodory function
0 if s <0,
k(x,s) = éo(N)s?~1 — s ! if 0 < s < u(x), (3.46)
coNu(x)?=t — ciu(z)” 1 if u(x) < s.
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Let K(z,s) = [; k(z,t)dt and consider the C'-functional 6 : W, LP(Q) — R defined

by
:/S)G(Vu)dx—/QK(’Iau)dx

It is clear that & is coercive and sequentially weakly lower semicontinuous which
implies the existence of & € W"(€) such that

& (@) = inf [&(u) Tu€ W(}#’(Q)} . (3.47)

As before, exploiting the fact that § < u < p < r*, for u € 1nt( (Q) +) and
t € (0,1) small enough, we can show that &(tu) < 0, Wthh implies 6 (&) < 0 = 6(0).
Hence, @ # 0.

From (3.47) we have (6)’ (@) = 0, that is

A(d) = Ny (@) . (3.48)

As before, acting on (3.48) with — (@)~ € Wy*() and using (3.46) as well as
Lemma 2.4(iii) we have @& > 0,4 # 0. Next, we choose (i —u)™ € WyP(Q) as test
function in (3.48). Based on (3.36), (3.46) and since u € S()), we obtain

Consequently,
/{ } (a (Vi) —a(Vu),Vi — Vu)py dz < 0.
a>u
Therefore, {4 > u}|y = 0 (see Lemma 2.4(i)) and so, & < u. We have proved that
€ 0,u]l = {’U e WyP(Q): 0 < wv(z) < u(x) for a.a. € Q}

Having regard to (3.46) and (3.48) we see that 4 is a positive solution of (Au,).
Taking into account Proposition 3.7 we easily verify that @ = u, which implies
iy < wufor all u € S(N). O

Let \* =sup L.
Proposition 3.9. If hypotheses H(a) and H hold, then \* < co.

Proof. Arguing by contradiction, suppose we can find a sequence (A, ),>1 C £ such
that A, / +oo0 as n — co. For every n > 1 we find u, € S(A,) C int (C§(Q)4)
satisfying

o, (un) <0 (3.49)
(see the proof of Proposition 3.5). Inequality (3.49) reads as

/pG(Vun)d:c — / pF (z,un, Ap)dx <0 foralln> 1. (3.50)
Q Q
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Moreover, there holds
A(un) = Ny, (u,) foralln>1.

Taking u,, € Wy () as test function gives
- /Q(a(Vun), Vg )gvde + /Q f(x,un, Ap) updxr =0 for all n > 1. (3.51)
Adding both (3.50) and (3.51) and making use of hypothesis H(a)(iv)(3) results in
/Q [f (@, un, An) up, — DF (2, un, Ap)] de < M5 for alln > 1, (3.52)

and for some M5 > 0.
By virtue of hypotheses H(i),(iv) there exist 3 € (0,8 (A1) and ¢17 > 0 such
that

Bs™O) —c1r < flx, 8, M) — pF (2,5, \y) for a.a. €€, foralls>0, (3.53)
and for all n > 1. Applying (3.53) in (3.52) shows that
(Un)n>1 € L™P(Q) is bounded. (3.54)

Now, applying (3.54) and reasoning as in the proof of Proposition 3.4 (see the
part of the proof after (3.17)), we obtain that

(Un)n>1 € WyP() is bounded. (3.55)
From (3.51), (3.55), and Lemma 2.4(ii), we see that there exists Mg > 0 such that
/ fl@,upn, Ap)upde < Mg for all n > 1.
Q
This gives, due to (3.36),

§M6 for all n > 1.

¢o(An) HunHO

Recall that r* € (p,p*] (see hypothesis H(V)) Then, from the last inequality and
the Sobolev embedding theorem combined with (3.55) it follows

¢o(An) Hun”z < M; for all n > 1 and with some M7 > 0.
Now, we may apply Propositions 3.8 and 3.7 to obtain
o(An) llaa, |5 < My for all n > 1,

which contradicts the fact that éy(A,) — 400 as n — oo (see hypothesis H(iv)(2)).
This proves that A* < co. [

Proposition 3.5 implies that (0,\*) C L.
Next, we establish a multiplicity result if A € (0, A\*). To do this, we need to
strengthen the conditions on f(z,-, \).

H: f: QxR x(0,00) = R is a function such that (x,s,\) — f(x,s,\) is a
Carathéodory mapping on Q x [R x (0,00)], A = f(z, s, A) is nondecreasing,
f(z,0,A) =0 for a.a. x € Q, for all A > 0, hypotheses H’(i)—(v) are the
same as the corresponding hypotheses H(i)—(v) and
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(vi) for every p > 0 and every A > 0, there exists £) > 0 such that
s— flx,s,A\) + 62‘51’*1 is nondecreasing on [0, p]
for a.a. z € Q and for A > p > 0 there holds
essQinf [f(z,s,A) — f(z,s,1) : s > p] >m, > 0.
Remark 3.10. The examples of functions f presented after hypotheses H still
satisfy the new conditions stated in H’.

Proposition 3.11. Let hypotheses H(a) and H’ be satisfied and let A € (0, \*).
Then, problem (P)) admits at least two positive solutions

ug, @ € int (Cy(Q)4) with ug < 4 and ug # .
Proof. Let v € (A\,A*) and let u, € S(v) C int (C§(€2)4). We have
—diva (Vuy) = f(z,uy,7) > f(z,uy,A) foraa zel (3.56)
We introduce the following Carathéodory function

RS FICAERY if s < uqy(x),
(@, s) {f(x7u7(m),,\) if uq(z) <s.

Setting Fy(z,s) = IN fa(z,t)dt, we define the C'-functional ¥y : WP (Q) — R

through
/GVuda:—/F,\xu

Reasoning as in the proof of Proposition 3.5 (see the part of the proof after (3.30))
and using (3.56), we can show the existence of a solution ug € S(\) such that

up € [0,uy] = {u € WP (Q): 0 < u(z) < uy(x) for aa. x € Q}
In fact we can say more. Let p = [lu,|/, and let fj,gg be as postulated by

hypothesis H’(vi). Choosing £, > max {¢),€)} and using H'(vi), up < u,, and the
fact that u, € S(v) we derive

—diva (Vug) +€pu0 (z,ug, A) —i—épug_l

(,u0,7) + Epub ™" = [f (x,u0,7) = [ (%, u0, M)
(@, uqy,y) + épufy_l

= —diva(Vu,) + épu{’{_l for a.a. x € Q.

Note that, if o(z) = f (z,uo(z),7) — f (z,uo(z), ), then since ug € int (C3(Q)4)
and owing to hypotheses H’(vi) we have 0 < o and so we may apply Proposition
2.9 to conclude that uy — ug € int (C§ ()4 ). Therefore, we have

up € int [0, us). (3.57)
5 (Q)

Y]

f
=f
</f

Applying ug we introduce the following truncation of the mapping s — f(x,s,\)

fla,up(z), A) if s <wup(z),

exl@; ) = {f(x,s,)\) if ug(x) < s, (3.58)
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which is known to be a Carathéodory function. We set Ex(z,s) = [ ex(z,t)dt and
consider the C''-functional wy : Wy (€2) — R defined by

wx(u):/QG(Vu)dxf/QEA(x,u)dx.

Claim: K,, = {u e Wy P(Q) : wh(u) = 0} C [uo)
with [ug) = {u € Wy P(Q) : uo(z) < u(z) for a.a. x € Q}
Let u € K,,, that is, w} (u) = 0 and so
A(u) = N, (u). (3.59)
Acting on (3.59) with (ug —u)" € Wy P(Q) yields

<A(u), (up — u)+> = /Q ex(z,u) (up —u) "t da

= | f(zu0,N) (uo —u) " da
Q

= <A (ug), (up — u)+>

due to the truncation defined in (3.58) and the fact that ug € S(\). Therefore
/ (a(Vuo) —a(Vu),Vug — Vu)py dz =0
{uo>u}

implying [{uo > u}|y = 0 (see Lemma 2.4(i)) and thus, ug < w. This proves the
Claim.

By virtue of the Claim and (3.57) we see that the critical points of wy are positive
solutions of problem (P,). So, we may assume that

Ky, N [[uo,u,y] \ {uo}] =0 (3.60)

(see (3.57)), otherwise we would already have a second solution @ > wug, 4 # ug.
Now, we introduce the following truncation of ey (z, )

R _ Jea(z,s) if s <wuy(x),
en(@,5) = {ex(x,u,y(x)) if uy(z) < s, (3.61)

being again a Carathéodory function. We set E,\ (x,8) = fos éx(z,t)dt and consider
the C'-functional y : Wy (Q) — R defined by

wy(u) = QG(Vu)dx— QEA(x,u)da:.

By means of (3.61) and Corollary 2.5 we see that ) is coercive. As before, it
is also sequentially weakly lower semicontinuous. Then, the Weierstrass theorem
implies the existence of @y € W,**(€2) such that

Wy (fi) = inf {@A(u) Lue Wg’p(m} ,
that is, () (iig) = 0, hence

A (iig) = Na, (o) - (3.62)
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As before, acting on (3.62) with (g —u,)" € WyP(Q) and using the Claim, we
derive that

U € [ug, uy] = {u € Wy P(Q) : uo(x) < ulz) < u,(x) for aa. xe Q}

Then, from (3.60) (3.61) we see that g = uo.

Note that 121,\|[0,uv] = w,\|[0’u7] which follows from the definition of the trunca-
tions in (3.58) and (3.61). Recall that u, — ug € int (C}(€2)4) (see (3.57)). There-
fore, we know that ug is a local C3(Q)-minimizer of wy and taking into account
Proposition 2.8 we have that ug is a local VVO1 P(Q)-minimizer of w) as well.

Let us assume that K, is finite, otherwise we would have infinity distinct posi-
tive solutions u of (P)) with u > ug (see the Claim). Hence, there exists p € (0,1)
small enough such that

wy (ug) < inf [wy(u) : ||u — u0||W01,p(Q) = p] =m, (3.63)

(see Aizicovici-Papageorgiou-Staicu [1, Proof of Proposition 29]). Note that, due
to (3.58),

wy = px + & with &, € R. (3.64)
From (3.26) and (3.64) it follows, for u € int (C3(Q)4),
wy(tu) = —o0  ast — +oo. (3.65)

Furthermore, owing to (3.64) and Proposition 3.4, we have that
w) satisfies the C-condition. (3.66)

Now, based on (3.63), (3.65), and (3.66), we may apply the mountain pass the-
orem stated in Theorem 2.2. Hence, there exists @& € W, (Q) such that

4 € Ky, and wy(ug) <m, <wy(4). (3.67)

The first assertion in (3.67) in combination with the Claim and Proposition 3.3 says
that

@e S\ Cint (Cy(Q)4) and wp < @
The second assertion gives ug # . (]
Next, we examine what happens at the critical case A = A* (bifurcation point).
Proposition 3.12. If hypotheses H(a) and H’ hold, then \* € L and so L = (0, \*].

Proof. Let (An)n>1 C L be a sequence such that A\, /' A\* as n — co. Then we can
find u, € S (Ap) such that

©x, (u,) <0 foralln>1. (3.68)
Since u, € S(A,), there holds
A(un) = Ny, (u,) foralln>1. (3.69)

From (3.68) and (3.69), as in the proof of Proposition 3.9, we obtain that
(Un)n>1 C WyP() is bounded.
So, we may assume that
Up — uy in WyP(Q) and  w, — u, in L"AD(Q). (3.70)
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Acting on (3.69) with u,, —u, € W, ?(Q), passing to the limit as n — oo, and using
(3.70) (recall that r (A\*) > r (\,) for all n > 1, see H’(ii)), we obtain

lim (A(uy,), un — us) =0,

n—oQ

which by the (S);-property of the operator A (see Proposition 2.7) results in

Uy, — Uy in WyP(Q). (3.71)
So, if we pass in (3.69) to the limit as n — oo and apply (3.71), we get

Afw) = N, (w).
Additionally, Propositions 3.7 and 3.8 imply that

uy, <uy, <u, foralln>1.
Therefore, @y, < u,. From this we see that u. € S(A*) and so \* € £, that is
L= (0,\]. O
Next, we show the existence of a smallest positive solution to problem (P,) for

every A € L = (0, \*]

Proposition 3.13. Let hypotheses H(a) and H’ be satisfied and let A € £ = (0, \*].
Then, problem (Py) admits a smallest positive solution Ty € S(X) C int (C}(Q)4)
and the map A — @y from (0,00) into CZ(Q)1 \ {0} is increasing, that is, if A < v,
then U, — Uy € int (C3(Q)4).

Proof. As done in Filippakis-Kristaly-Papageorgiou [10], due to the monotonicity of
the operator A (see Proposition 2.7), we can check that S(\) is downward directed,
that is, if u, @ € S(\), then there exists & € S(A) such that & < v and @ < @. Since
we are looking for the smallest positive solution of problem (P)), we may assume,
without loss of generality, that there exists Mg > 0 such that

[[ulloo < Mg for all u € S(N). (3.72)

From Dunford-Schwartz [9, p. 336] we know that there exists a sequence (up, )n>1
C S()) such that

inf S(A\) = inf w,.

n>1
Moreover, since u,, € S(A), we have
A(uyn) = Ny, (up,) foralln > 1. (3.73)
From (3.72) and (3.73) it follows that
(Un)n>1 € WyP() is bounded.

Then, as in the proof of Proposition 3.12, by applying Proposition 2.7, we have (for
a subsequence if necessary) that

U, — Ty in Wy P(Q) as n — oo.
Hence, (3.73) implies
A(uy) = Ny, (uy) foralln>1.

Moreover, due to Proposition 3.8, uy < u, for all n > 1, hence u) < uw) and so
uy € S(N). Evidently, uy = inf S(A).
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Finally, if v € (A, A*], then, as in the proof of Proposition 3.11, we can prove the
existence of

uy € S(A) such that uy, € int [0,,].
Co ()

Thus, U, — Uy € int (C§(Q)4). O
We can also prove a continuity property of the map A — @y from (0, \*] into

C ().

Proposition 3.14. If hypotheses H(a) and H’ hold, then A\ — 1y from (0, \*] into

C3 () is left continuous.

Proof. Let (Ap)n>1 C L be a sequence such that A\, 7 X as n — co. By means of
Proposition 3.13 we know that (%, ), is increasing and u,, <, for all n > 1.
We have

A(uy,) = Ny,, (uy,) foralln>1,

that is
—diva(Vay,) = f (z,ax,, A\n) in Q,
u=0 on 0.
The regularity results of Lieberman [22] imply the existence of a € (0,1) and

My > 0 such that
Ty, € Cy*(Q) and ||ﬂ)\n‘|cé,a(§) < My foralln>1.

Exploiting the compact embedding of Cé’a(ﬁ) into C}(Q) gives, due to the mono-
tonicity of the sequence (U,\n)nzp

Uy, S Ut in Ch(Q), a*eS(\). (3.74)

Suppose that @* is not the minimal positive solution of problem (P)). Then we
can find zg € Q such that

ux(zo) < u* (o).
Moreover, taking into account (3.74), we find a number ng > 1 such that
Ty (o) < Ty, (x9) for all n > ny,

which is a contradiction to Proposition 3.13. Hence, 4* = w) and we have proved
the desired continuity of A — . ([l

Summarizing the situation for problem (P ), we can state the following bifurca-
tion-type theorem.

Theorem 3.15. If hypotheses H(a) and H’ hold, then there exists \* > 0 such that
(i) for all A € (0, \*), problem (P») admits at least two positive solutions
ug, U € int (C&(Q)Jr) , o ug <, ug # U
(ii) for A = \*, problem (P ) has at least one positive solution

u, € 1int (C5(Q)4) ;
(iii) for all X\ > X*, problem (P)) has no positive solution.

Furthermore, for every A € (0, \*], problem (P)) has a smallest positive solution
Uy € int (C§(Q)4) and the map X\ — uy from (0,\*] into C§(Q) is
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e increasing, that is, if A <y, then U, — Uy € int (C’é (§)+);
o \ — Wy is left continuous, that is, if A, A, then Uy, — uy in CL(Q).
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