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Abstract. In this paper, we study multivalued nonlocal elliptic problems driven by the fractional double phase

operator with variable exponents and ω-logarithmic perturbation formulated by{
(−∆)sH u ∈ F(x, u) in Ω,

u = 0 on RN \ Ω.

We are going to establish maximum principles for the fractional perturbed double phase operator and show the

boundedness of weak solutions to the above problem. Finally, under appropriate assumptions we discuss the existence

of infinitely many small (non-negative) weak solutions to a single-valued nonlocal double phase problem.

This paper is dedicated with esteem to Professor Shujie Li on the occasion of his 85th birthday

1. Introduction

In the last years, problems involving fractional-order operators have been studied intensively due to their math-
ematical challenges and various real applications in fluid mechanics, relativistic quantum mechanics, conformal
geometry, probability and molecular dynamics, see Bertoin [11], Cabré–Tan [14], Caffarelli–Vasseur [15] and Chen–
Li–Ma [18] for more details. Particularly, the studies for problems involving fractional double phase operators have
attracted much attention for their compelling theoretical framework and diverse practical applications. Recently, de
Albuquerque–de Assis–Carvalho–Salort [23] established some abstract results on a new class of fractional Musielak-
Sobolev spaces including uniformly convexity, Brézis-Lieb type Lemma and Radon-Riesz property to the modular
function, (S+)-property and monotonicity. In this paper, based on the results obtained by de Albuquerque–de
Assis–Carvalho–Salort [23] for the solution space and the operator we deal with multivalued nonlinear problems
with Dirichlet boundary condition of the form{

(−∆)
s
H u ∈ F(x, u) in Ω,

u = 0 on RN \ Ω,
(1.1)

for u ∈ W s,H
0 (Ω) (see Section 2), where Ω is a bounded domain of RN (N ≥ 2) with Lipschitz boundary ∂Ω,

F : Ω × R → 2R \ {∅} is multivalued function, the associated variable exponent fractional double phase operator
with logarithmic perturbation is given as

(−∆)
s
H u(x) := CN,s,p,q lim

ε→0

∫
RN\Bε(x)

H′
(
x, y,

|u(x)− u(y)|
|x− y|s

)
dy

|x− y|N+s

= CN,s,p,q PV

∫
RN

H′
(
x, y,

|u(x)− u(y)|
|x− y|s

)
dy

|x− y|N+s

(1.2)

with Bε(x) := {z ∈ RN : |z − x| < ε}, s ∈ (0, 1), CN,s,p,q is some constant depending on N, s, p, q while PV denotes
the Cauchy principle value and H : RN × RN × [0,∞) → [0,∞) is defined as

H(x, y, t) =
[
tp(x,y) + µ(x, y)tq(x,y)

]
log(e+ ωt), (1.3)

for all (x, y) ∈ RN × RN and for all t ≥ 0, where ω ≥ 0, p, q ∈ C(RN × RN ) such that p(x, y) = p(y, x),
q(x, y) = q(y, x) as well as 1 < p(x, y) < N

s , p(x, y) ≤ q(x, y) for all (x, y) ∈ RN×RN , and 0 ≤ µ(·, ·) ∈ L1(RN×RN )

satisfies U1 := {(x, y) ∈ RN×RN : p(x, y) < q(x, y)} ⫅̸ U0 := {(x, y) ∈ RN×RN : µ(x, y) = 0} and µ(x, y) = µ(y, x).
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As we can see, problem (1.1) is driven by a type of fractional double phase operator, which is developed from
the classical double phase operator given by

div
(
|∇v|p−2∇v + µ(x)|∇v|q−2∇v

)
,

associated with the following energy functional

v 7→
∫
Ω

(
|∇v|p + µ(x)|∇v|q

)
dx. (1.4)

This type of energy functional was introduced first by Zhikov in 1986 to describe the nature of certain phenomena
occurring in the theory of elasticity, for example, it can describe the mathematical models of strongly anisotropic
materials as well as the Lavrentiev phenomenon, see Zhikov [70, 71]. In fact, energy functionals with of the form (1.4)
characterizes the phenomenon where the energy density varies its ellipticity and growth characteristics, contingent
upon the specific location within the domain. It can also describe the geometric properties of a composite formed
from distinct two materials characterized by the power hardening exponents p and q. Since the energy functional
(1.4) exhibits ellipticity in the gradient of order q when the modulating coefficient µ(·) ̸= 0 and exhibits ellipticity
in the gradient of order p when the modulating coefficient µ(·) = 0, we call it double phase.

In recent years, the classical double phase operator has been extended to various new class of operators. Crespo-
Blanco–Gasiński–Harjulehto–Winkert [20] considered the double phase operator with variable exponents defined
by

div
(
|∇v|p(x)−2∇v + µ(x)|∇v|q(x)−2∇v

)
,

and established some basic properties of this type of operator and the associated Musielak-Orlicz Sobolev spaces.
Furthermore, Vetro–Zeng [59] studied a type of double phase energy functional with log L-perturbed p, q-growth
defined by

div

(
H′
L(x, |∇v|)
|∇v|

∇v
)

with HL =
[
tp + µ(x)tq

]
log(e+ t).

They obtained the properties of the associated Musielak Orlicz-Sobolev space and then proved the existence and
uniqueness results of weak solution for Dirichlet double phase problems, see also Lu–Vetro–Zeng [46] for detailed
results concerning double phase energy operator with log L-perturbed p(·), q(·)-growth. For more results involving
the double phase type operator with logarithmic perturbation we refer to the recent work by Arora–Crespo-Blanco–
Winkert [4] who focused on the operator

div

(
|∇v|p(x)−2∇v + µ(x)

[
log(e+ |∇v|) + |∇v|

q(x)(e+ |∇v|)

]
|∇v|q(x)−2∇v

)
,

and established the existence and multiplicity results to the related double phase problems. We also mention
some recent existence results for double phase problems, see the works by Guarnotta–Livrea–Winkert [31] (variable
exponent double phase systems), Liu–Dai [45] (existence and multiplicity results of double phase problems), Vetro–
Zeng [59] (double phase Dirichlet problems), Zeng–Bai–Gasiński–Winkert [65] (multivalued double phase implicit
obstacle problems), Zeng–Rădulescu–Winkert [66] (double phase implicit obstacle problems), and Zeng–Rădulescu–
Winkert [67] (nonlocal double phase implicit obstacle problems). Finally, we refer to important works concerning the
regularity of local minimizers of related double phase functionals, see Baroni–Colombo–Mingione [8], Beck–Mingione
[9], Colombo–Mingione [19], Fuchs–Mingione [28] and Marcellini [47, 48], see also the references therein.

It is worth mentioning that more and more impressive studies on fractional double-phase problems have been
carried out recently. To be more precise, by using variational and topological arguments, the existence of weak
solutions to various fractional elliptic or parabolic double phase problems have been established by Ambrosio
[2] (existence of a nontrivial non-negative solution), Ambrosio–Isernia [3] (existence of infinitely many solutions),
Bhakta–Mukherjee [12] (existence of infinitely many nontrivial solutions), Xiang–Ma [64] (existence of normal-
ized ground state solutions), Zhang–Zhang [68] (existence and concentration phenomena of positive solutions) and
Zhang–Zhang–Rădulescu [69] (existence of positive ground state solutions). In the direction of Hölder continuity
and boundedness of weak solutions for nonlocal double phase problems we refer to the papers by Byun–Ok–Song
[13], Fang–Zhang [27] and Prasad–Tewary [53]. In terms of practical application, both integer and fractional double
phase problems can be used in a variety of real-world problems, such as, obstacle problems, nonlinear Derrick’s
problem, transonic flow problems, optimization, finance and image processing. More details can be found in the
works by Bahrouni–Rădulescu–Repovš [6] Benci–D’Avenia–Fortunato–Pisani [10] and Charkaoui–Ben-loghfyry [16].
For very recent advances regarding local and nonlocal double phase problems, we refer to Guo–Liang–Lin–Pucci [32],
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who established global bifurcation results for double phase problems; Liang–Pucci–Van-Nguyen [43], who obtained
multiplicity and concentration results for certain fractional variable-exponent double phase Choquard equations;
Pucci–Wang–Zhang [55], who demonstrated the multiplicity and stability of normalized solutions in nonlocal dou-
ble phase problems; and Pucci–Xiang [56], who found multi-bump solutions for logarithmic double phase critical
Schrödinger equations.

On the one hand, we are going to show the maximum principle for the perturbed fractional double phase operator.
It is well known that the maximum principle is useful for investigating the uniqueness and continuous dependence
of classical solutions for elliptic and parabolic boundary value problems, see Pucci–Serrin [54], Ladyzhenskaya–
Solonnikov–Uraĺtseva [41] and Vladimirov [63]. The general form of the maximum principle implies that the
appropriate solution of the homogeneous equation attains its extreme values on the boundary of the domain and
allows to derive an approximation for the maximum magnitude of the solution. Particularly, maximum principles
can be applied to investigate the stability and convergence of the difference solution in a uniform norm, see for
example Crouzeix–Thomée [22] and Thomée [57, 58]. Moreover, in Chen–Li [17] and Hu–Peng [39], the authors
combined the maximum principle for anti-symmetric functions and the method of moving planes to establish the
symmetry and monotonicity of positive solutions to nonlocal double phase problems. Motivated by these results, we
will show the maximum principle for the nonlocal double phase operator with logarithmic perturbation in Section
3.

On the other hand, we are interested to get a priori bounds for weak solutions of problem (1.1) with subcritical
and critical growth by utilizing De Giorgi’s iteration (or De Giorgi–Nash–Moser theory) and a localization method.
The beginning of research into the De Giorgi–Nash–Moser theory goes back to the works by De Giorgi [24], Nash [52]
as well as Moser [50]. This theory is a powerful tool for proving local and global L∞-bounds of weak solutions and
establishing the Harnack inequality and the Hölder continuity for weak solutions. For more details we refer to the
monographs of Gilbarg–Trudinger [30], Ladyženskaja–Solonnikov–Ural’ceva [41], Ladyženskaja–Ural’ceva [42] and
Lieberman [44]. Our proofs for the boundedness of weak solutions of problem (1.1) are mainly inspired by the papers
of Ho–Kim [35] (nonlinear elliptic problems involving the fractional p(·)-Laplacian), Ho–Kim–Winkert–Zhang [37]
(quasilinear elliptic equations involving variable exponents critical growth), Ho–Winkert [38] (generalized double
phase problems with critical and subcritical growth) and Winkert–Zacher [61, 62] (nonlinear elliptic equations with
nonstandard growth). In addition, motivated by the works of Ho–Kim [35] and Wang [60], we will show the existence
of infinitely many small solutions to the nonlinear problems driven by the operator given in (1.2) (see Section 5)
by employing the boundedness of weak solutions obtained in Section 4. More works related to L∞-bounds can be
found in Barletta–Cianchi–Marino [7], Crespo-Blanco–Winkert [21], Frisch–Winkert [29], and Marino–Winkert [49].

To the best of our knowledge, the maximum principle for the perturbed nonlocal double phase operator (1.2) and
the boundedness of weak solutions to problems driven by the fractional double phase operator with variable expo-
nents and logarithmic perturbation have not been studied yet. Moreover, problem (1.1) contains many interesting
special cases as follows:

(P1) Let ω = 0, µ = 0 in H (i.e.H(x, y, t) = tp(x,y) =: H1(x, y, t)). Moreover let F be a single-valued
Carathéodory function f , then problem (1.1) becomes the nonlinear elliptic problem involving the frac-
tional p(·)-Laplacian {

(−∆)
s
p(x) u = f(x, u) in Ω,

u = 0 on RN \ Ω;
(P2) Let ω = 0 (i.e. H(x, y, t) = tp(x,y) + µ(x, y)tq(x,y) =: H2(x, y, t)), then problem (1.1) becomes the nonlocal

elliptic variable exponents double phase problem;
(P3) Let 1 < p(·) ≡ p and 1 < q(·) ≡ q (i.e. H(x, y, t) = [tp + µ(x, y)tq] log(e+ ωt) =: H3(x, y, t)), then problem

(1.1) becomes the perturbed nonlocal double phase problem with constant exponents.
(P4) Let ω = 0 and 1 < p(·) ≡ p, 1 < q(·) ≡ q (i.e. H(x, y, t) = tp + µ(x, y)tq =: H4(x, y, t)), then problem (1.1)

becomes nonlocal double phase problem.

This paper is organized as follows. In Section 2, we recall several basic definitions and notations of variable
exponent Lebesgue spaces and Musielak-Orlicz spaces concerning the perturbed double phase function H. Further-
more, we will give the definition and basic properties of the fractional Musielak-Sobolev space W s,H(Ω), which is
the solution space of the considered problem. In Section 3, we establish the maximum principle for the fractional
perturbed double phase operator (1.2) while in Section 4 we show the main results of this paper, that is, proving the
boundedness of weak solutions to problem (1.1) by applying an appropriate version of De Giorgi’s iteration along
with the localization method. Finally, in Section 5, based on the L∞-bounds of the solutions and the maximum
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principle we prove the existence of infinitely many small non-negative weak solutions to the single-valued nonlocal
double phase problem (5.1).

2. Preliminaries

In this section, we recall some basic results concerning variable exponent Lebesgue spaces, the Musielak-
Orlicz spaces and fractional Musielak-Sobolev spaces, see Diening–Harjulehto–Hästö–Růžička [25], Fan–Zhao [26],
Harjulehto–Hästö [33], Kováčik–Rákosńık [40], Lu–Vetro–Zeng [46] and de Albuquerque–de Assis–Carvalho–Salort
[23] for more details. In the sequel let C be a constant that will change from line to line, and Cr means a constant
depending on the parameter r.

First, we introduce the subset C+(Ω) of C(Ω) given by

C+(Ω) :=

{
g ∈ C(Ω): 1 < inf

x∈Ω
g(x) for all x ∈ Ω

}
.

For every r ∈ C+(Ω) we define r− and r+ as

r− := inf
x∈Ω

r(x) and r+ := sup
x∈Ω

r(x),

and denote by r′ ∈ C+(Ω) the conjugate variable exponent of r, that is

1

r(x)
+

1

r′(x)
= 1 for all x ∈ Ω.

Let M(Ω) be the set of all measurable functions u : Ω → R, where two functions are considered identical if they
differ only on a Lebesgue-null set. Given a fixed r ∈ C+(Ω), the variable exponent Lebesgue space is given by

Lr(·)(Ω) =
{
u ∈M(Ω): ϱr(·)(u) <∞

}
,

where the corresponding modular function ϱr(·) is defined as

ϱr(·)(u) =

∫
Ω

|u|r(x) dx.

It is well known that Lr(·)(Ω) equipped with the Luxemburg norm

∥u∥r(·) = inf

{
λ > 0:

∫
Ω

(
|u|
λ

)r(x)
dx ≤ 1

}
forms a separable and reflexive Banach space. Moreover, Lr

′(·)(Ω) is the dual space of Lr(·)(Ω) and the following
Hölder type inequality holds:∫

Ω

|uv| dx ≤
[
1

r−
+

1

r′−

]
∥u∥r(·)∥v∥r′(·) ≤ 2∥u∥r(·)∥v∥r′(·)

for all u ∈ Lr(·)(Ω) and all v ∈ Lr
′(·)(Ω). Additionally, if r1, r2 ∈ C+(Ω) satisfying r1(x) ≤ r2(x) for all x ∈ Ω, then

the following embedding is valid

Lr2(·)(Ω) ↪→ Lr1(·)(Ω).

Next, in order to introduce Musielak-Orlicz spaces, we give the definition of N -functions and generalized N -
functions.

Definition 2.1.

(i) A function φ : [0,∞) → [0,∞) is called a N -function if it possesses the following properties: it is continuous,
convex with φ(t) = 0 if and only if t = 0, Additionally, it fulfills

lim
t→0+

φ(t)

t
= 0 and lim

t→+∞

φ(t)

t
= +∞.

(ii) A function φ : Ω×Ω× [0,∞) → [0,∞) is called a generalized N -function, denoted by φ ∈ N(Ω×Ω), if for
all t ≥ 0 φ(·, ·, t) is measurable. Additionally, φ(x, x, ·) is a N-function for a.a. (x, x) ∈ Ω × Ω. Similarly,
we can give the definition of functions φ ∈ N(Ω).

Next, we recall some definitions related to N -functions and generalized N -functions.
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Definition 2.2.

(i) A function φ : Ω× [0,∞) → [0,∞) is locally integrable if for all t > 0, φ(·, t) belongs to L1(Ω).
(ii) Let φ,ψ ∈ N(Ω), we say that φ is weaker than ψ, denoted by φ ≺ ψ, if there exist constants c1, c2 > 0 such

that

φ(x, t) ≤ c1ψ(x, c2t) + g(x) for a.a.x ∈ Ω and for all t ≥ 0,

where 0 ≤ g(·) ∈ L1(Ω). Furthermore, φ,ψ are equivalent, denoted by φ ∼ ψ, if φ ≺ ψ and in the same
time ψ ≺ φ.

(iii) Let φ,ψ ∈ N(Ω), we say that φ increases essentially slower than ψ near infinity, denoted by φ ≪ ψ, if for
every k > 0 the limit

lim
t→∞

φ(x, kt)

ψ(x, t)
= 0

holds uniformly for a.a.x ∈ Ω.

Given φ ∈ N(Ω), we can define the associated modular function as

ρφ(u) =

∫
Ω

φ(x, |u|) dx,

and the corresponding Musielak-Orlicz space, denoted by Lφ(Ω), is given as

Lφ(Ω) := {u ∈M(Ω): there exists λ > 0 such that ρφ(λu) < +∞}.
This space is equipped with the Luxemburg norm given by

∥u∥φ,Ω := inf
{
λ > 0: ρφ

(u
λ

)
≤ 1
}
.

To simplify the notation, we may write the norm for the domain Ω as ∥u∥φ instead of ∥u∥φ,Ω.
The following useful embedding result can be found in Musielak [51, Theorem 8.5].

Proposition 2.3. If φ ∈ N(Ω) and ψ ∈ N(Ω) satisfying φ ≺ ψ, then Lψ(Ω) ↪→ Lφ(Ω).

Next, we introduce some basic definitions and notations for fractional Musielak-Sobolev spaces which are mainly
taken from the work by de Albuquerque–de Assis–Carvalho–Salort [23].

In the remaining parts of this paper, we define

H(x, y, t) =

∫ t

0

h(x, y, τ) dτ,

where h : Ω× Ω× [0,∞) → [0,∞). Moreover, we introduce the following assumptions:

(φ1) limt→0 φ(x, y, t) = 0 and limt→∞ φ(x, y, t) = +∞ with t 7→ φ(x, y, t) being continuous on the interval (0,∞)
for all (x, y) ∈ Ω× Ω;

(φ2) t 7→ φ(·, ·, t) is increasing on (0,∞);
(φ3) there exist constants 1 < ℓ ≤ m < +∞ satisfying

ℓ ≤ h(x, y, t)

H(x, y, t)
≤ m,

for all (x, y) ∈ Ω× Ω and for all t ∈ (0,∞).

From de Albuquerque–de Assis–Carvalho–Salort [23], we know that if the function h satisfies conditions (φ1)–
(φ3) and h(·, ·, t) is measurable for all t ≥ 0, then H is a generalized N -function. Moreover, we consider the function

Ĥ : Ω× [0,∞) → [0,∞) given by

Ĥ(x, t) :=

∫ t

0

ĥ(x, τ) dτ,

where ĥ(x, t) := h(x, x, t) for all (x, t) ∈ Ω× [0,∞).
Recall that

H(x, y, t) = [tp(x,y) + µ(x, y)tq(x,y)] log(e+ ωt) for all (x, y, t) ∈ Ω× Ω× [0,∞).

Throughout this paper we will assume the following hypotheses:



6 S. ZENG, Y. LU, V.D. RĂDULESCU, AND P. WINKERT

(H1) p, q ∈ C(RN ×RN ) such that 1 < inf(x,y)∈RN×RN p(x, y) ≤ sup(x,y)∈RN×RN < N
s and p(x, y) ≤ q(x, y) for all

(x, y) ∈ RN×RN with U1 := {(x, y) ∈ RN×RN : p(x, y) < q(x, y)} ⫅̸ U0 := {(x, y) ∈ RN×RN : µ(x, y) = 0}
and p(x, y) = p(y, x), q(x, y) = q(y, x) for all (x, y) ∈ RN × RN . 0 ≤ µ(·, ·) ∈ L∞(RN × RN ) such that
µ(x, y) = µ(y, x) and µ(x) = 0 =⇒ µ(x, y) = 0 for all (x, y) ∈ RN × RN .

Note that

p∗s(x, y) =
Np(x, y)

N − sp(x, y)
.

In the sequel, we use the notations

p− := inf
(x,y)∈Ω×Ω

p(x, y) and q− := sup
(x,y)∈Ω×Ω

p(x, y).

Moreover, q−, q+ can be defined in the same way.
Under the hypotheses of (H1), we deduce from the argument in Section 5 of [23] that h satisfies assumptions

(φ1)–(φ3) with ℓ = p− and m = q+ + 1.
Let (H1) hold true, it is easy to check that H given in (1.3) is a locally integrable N -function. Then the modular

function related to Ĥ is given as

ρĤ(u) =

∫
Ω

Ĥ(x, |u|) dx

while the corresponding Musielak-Orlicz space is

LĤ(Ω) = {u ∈M(Ω): ρĤ(λu) < +∞, for some λ > 0},
endowed with the Luxemburg norm

∥u∥Ĥ = inf
{
λ > 0: ρĤ

(u
λ

)
≤ 1
}
.

Furthermore, the fractional Musielak-Orlicz space W s,H(Ω) is defined as

W s,H(Ω) :=
{
u ∈ LĤ(Ω): ρs,H(λu) <∞ for some λ > 0

}
,

where

ρs,H(u) :=

∫
Ω

∫
Ω

H(x, y, |Dsu(x, y)|) dν for s ∈ (0, 1),

with

dν :
dx dy

|x− y|N
and Dsu(x, y) :=

u(x)− u(y)

|x− y|s
,

where dν is a regular Borel measure on Ω× Ω. The Musielak-Sobolev space W s,H(Ω) is equipped with the norm

∥u∥s,H := ∥u∥Ĥ + [u]s,H,

where [ · ]s,H is called (s,H)-Gagliardo seminorm defined by

[u]s,H := inf
{
λ > 0: ρs,H

(u
λ

)
≤ 1
}
.

Furthermore, we introduce the following closed subspace of W s,H(Ω) defined by

W s,H
0 (Ω) =

{
u ∈W s,H(RN ) : u = 0 a.e. in RN \ Ω

}
.

It is worth to note that since the function H fulfills assumptions (φ1)–(φ3), we infer from [23] that the corre-

sponding Musielak-Orlicz Lebesgue space LĤ(Ω) and the fractional Musielak-Sobolev space W s,H
0 (Ω) are separable

and reflexive Banach spaces.
The following boundedness condition is used to established a generalized Poincaré type inequality.

Definition 2.4. Let H ∈ N(Ω × Ω), then H is said to satisfy the fractional boundedness condition if there exist
some constants C1, C2 > 0 such that

0 < C1 ≤ H(1) ≤ C2 for all (x, y) ∈ Ω× Ω. (Bf )
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It is easy to check that, if hypotheses (H1) hold, then hypotheses (Bf ) is satisfied with C1 = 1 and C2 =
(1 + ∥µ∥∞) log(e+ ω).

The next proposition can be found in the work by Azroul–Benkirane–Shimi–Srati [5, Theorem 2.3].

Proposition 2.5. Let s ∈ (0, 1), and let Ω be a bounded domain in RN with Lipschitz boundary. If (H1) hold,
then one can find a positive constant C satisfying

∥u∥Ĥ ≤ C[u]s,H,

for all u ∈W s,H
0 (Ω).

By Proposition 2.5, for all u ∈W s,H
0 (Ω), we can find λ1 > 0 such that∫

Ω

Ĥ(x, |u(x)|) dx ≤ λ1

∫
Ω

∫
Ω

H(x, y, |Dsu(x, y)|) dν.

Moreover, [ · ]s,H is an equivalent norm of ∥ · ∥s,H on W s,H
0 (Ω), that is

[u]s,H ≤ ∥u∥s,H ≤ C ′[u]s,H for all u ∈W s,H
0 (Ω), (2.1)

with C ′ being a positive constant.

The following proposition gives the relation between the norm of the space LĤ(Ω) and its modular, the proof
can be found in Theorem 2.21 of Lu–Vetro–Zeng [46].

Proposition 2.6. Let hypotheses (H1) be satisfied, u ∈ LĤ(Ω) and the modular is defined by

ρĤ(u) =

∫
Ω

[
|u|p(x) + µ(x)|u|q(x)

]
log(e+ ω|u|) dx for all u ∈ LĤ(Ω).

Then for σ > 0, the following hold:

(i) ∥u∥Ĥ = λ⇔ ρĤ(uλ ) = 1 with u ̸= 0;
(ii) ∥u∥Ĥ < 1 (resp.= 1, > 1) ⇔ ρĤ(u) < 1 (resp.= 1, > 1);

(iii) if ∥u∥Ĥ < 1, then C−1
σ ∥u∥q

++σ

Ĥ
≤ ρĤ(u) ≤ ∥u∥p

−

Ĥ
;

(iv) if ∥u∥Ĥ > 1, then ∥u∥p
−

Ĥ
≤ ρĤ(u) ≤ Cσ∥u∥q

++σ

Ĥ
;

(v) ∥u∥Ĥ → 0 ⇔ ρĤ(u) → 0;
(vi) ∥u∥Ĥ → ∞ ⇔ ρĤ(u) → ∞;
(vii) ∥u∥Ĥ → 1 ⇔ ρĤ(u) → 1;

(viii) if un → u in LĤ(Ω) then ρĤ(un) → ρĤ(u).

Remark 2.7. For γ > 0, we consider the function fσ′ : [0,∞) → [0,∞) defined as

fσ′ =
tσ

′

logγ(e+ ωt)
with σ′, γ > 0 and ω ≥ 0.

Obviously, one can find σ∗ > 0 such that fσ′ > 0 is increasing for all σ′ ≥ σ∗. Also, for 0 < σ′ < σ∗, there
exist points t1, t2 such that the following hold: if 0 < t < t1 and t > t2, then fσ′ is increasing, conversely, fσ′ is

decreasing for t1 ≤ t ≤ t2. So that for any 0 < a ≤ b, we have fσ′(a) ≤ Cσ′ · fσ′(b) with Cσ′ = fσ′ (t1)
fσ′ (t2)

> 1. Hence,

as done in the proof of Proposition 2.21 of [46], we can get the same conclusions given in Proposition 2.6 with

ρĤ(u) :=

∫
Ω

[
|u|p(x) + µ(x)|u|q(x)

]
logγ(e+ ω|u|) dx,

where γ > 0.

Similar to Proposition 2.6, we deduce the following relations between the semi-modular ρs,H(·) and the (s,H)-
Gagliardo seminorm [·]s,H.

Proposition 2.8. Let (H1) be satisfied and u ∈W s,H(Ω).Then, for σ > 0, the following hold:

(i) if [u]s,H < 1, then C−1
σ [u]q

++σ
s,H ≤ ρs,H(u) ≤ [u]p

−

s,H;

(ii) if [u]s,H > 1, then [u]p
−

s,H ≤ ρs,H(u) ≤ Cσ[u]
q++σ
s,H .
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Under conditions (φ1)–(φ3) we see that Ĥ : [0,+∞) → [0,+∞) is an increasing homeomorphism. Next, we

introduce the inverse function of Ĥ denoted by Ĥ−1 satisfying the following conditions:∫ 1

0

Ĥ−1(x, τ)

τ
N+s
N

dτ <∞ and

∫ ∞

1

Ĥ−1(x, τ)

τ
N+s
N

dτ = ∞ for all x ∈ Ω.

We denote by Ĥ∗
s the Musielak-Sobolev conjugate function of Ĥ and the inverse function of Ĥ∗

s is defined by

(Ĥ∗
s)

−1(x, t) =

∫ t

0

Ĥ−1(x, τ)

τ
N+s
N

dτ for all x ∈ Ω and for all t ≥ 0.

In the sequel, we denote by X ↪→ Y the continuous embedding from the space X into the space Y . Also, denote
by X ↪→↪→ Y the compact embedding from X into Y . The next result is due to Azroul–Benkirane–Shimi–Srati [5,
Lemma 2.3].

Lemma 2.9. Let 0 < s′ < s < 1, Ω be a bounded domain in RN and suppose (H1). Then there exists holds the

continuous embedding W s,H(Ω) ↪→W s′,r(Ω) with r ∈ [1, p−).

Next, we give the definition of a Young function.

Definition 2.10. A function φ : [0,∞) → [0,∞] is called a Young function if it is convex, continuous, non-constant,

φ(0) = 0 and φ(t) =
∫ t
0
a(τ) dτ , where a : [0,∞) → [0,∞] is a non-decreasing function. Moreover, we denote the

left-continuous inverse of φ by φ−1 : [0,∞) → [0,∞) given by

φ−1(t) = inf{τ ≥ 0: φ(τ) ≥ t}
for t ≥ 0.

Let H be a Young function such that∫ ∞( t

H(t)

) s
N−s

dt = ∞ and

∫
0

(
t

H(t)

) s
N−s

dt <∞. (2.2)

Then the corresponding Orlicz target is defined as

HN
s
(t) = H(T−1(t)) (2.3)

for all t ≥ 0, where

T (t) =

(∫ t

0

(
τ

H(τ)

) s
N−s

dτ

)N−s
N

for all t ≥ 0.
The following continuous embedding with respect to the fractional Orlicz-Sobolev space W s,H(Ω) is taken from

Alberico–Cianchi–Pick–Slav́ıková [1, Theorem 8.1].

Theorem 2.11. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary and let s ∈ (0, 1). If H is a Young
function satisfying conditions (2.2) and HN

s
is given by (2.3), then there holds

W s,H(Ω) ↪→ L
HN
s (Ω),

and the embedding is optimal.

By the definition of W s,H
0 (Ω), under the hypotheses of Theorem2.11, we deduce that W s,H

0 (Ω) ↪→ W s,H(Ω) ↪→
L
HN
s (Ω). Referring to Example 8.3 by Alberico–Cianchi–Pick–Slav́ıková [1], we see that if we set

H := tp
−
log(e+ ωt) + µ(x)tq

−
log(e+ ωt),

then

HN
s
∼ H∗ := t(p

−)∗s log
(p−)∗s
N (e+ ωt) + µ(x)γt(q

−)∗s log
(q−)∗s
N (e+ ωt),

for 1 ≤ p−, q− < N
s , for all t ≥ 0 and γ > 0. Furthermore, we introduce that following function:

B(x, t) = tς(x) log
ς(x)
N (e+ ωt) + µ(x)γtτ(x) log

τ(x)
N (e+ ωt)
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for all γ > 0, for all x ∈ Ω, and for all t ∈ [0,∞) with ς, τ ∈ C(Ω) such that 1 < ς(x) ≤ (p−)∗s and 1 < τ(x) ≤ (q−)∗s
for all x ∈ Ω. It is not hard to see that H ≺ H as well as B ≺ HN

s
, so we conclude that

W s,H
0 (Ω) ↪→W s,H

0 ↪→ L
HN
s (Ω) ↪→ LB(Ω). (2.4)

According to Theorem 9.1 by Alberico–Cianchi–Pick–Slav́ıková [1], we get that following compact embedding
theorem.

Proposition 2.12. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary, and let s ∈ (0, 1). Assume that
H is a Young function satisfying conditions (2.2) and HN

s
is given by (2.3). If G is a Young function such that

G≪ HN
s
, then there holds

W s,H(Ω) ↪→↪→ LG(Ω).

Hence, it follows that W s,H
0 (Ω) ↪→W s,H(Ω) ↪→↪→ LG(Ω).

Finally, we recall some background from the theory of operators of monotone type.

Definition 2.13. Let X be a reflexive Banach space with X∗ being the corresponding dual space, the duality pairing
is denoted by ⟨·, ·⟩ and A : X → X∗.

(i) A satisfies the (S+)-property if un ⇀ u in X and lim supn→∞⟨Aun, un − u⟩ ≤ 0 imply un → u in X;
(ii) A is monotone (strictly monotone) if ⟨Au−Av, u− v⟩ ≥ 0 (> 0) for all u, v ∈ X such that u ̸= v;
(iii) A is coercive if there exists a function g : [0,∞) → R with lim

t→∞
g(t) = ∞ such that

⟨Au, u⟩
∥u∥X

≥ g(∥u∥X) for all u ∈ X.

According to Lemma 3.10 of [23], we have the following properties of the functional

Is,H = ρs,H(u) :=

∫
Ω

∫
Ω

H(x, y, |Dsu(x, y)|) dν

and its Gâteaux derivative.

Proposition 2.14. Let (H1) be satisfied. Then Is,H ∈ C1(W s,H
0 (Ω),R) and the Gâteaux derivative of Is,H is given

by

⟨A(u), v⟩ =
∫
Ω

∫
Ω

H′(x, y, |Dsu(x, y)|)Dsv(x, y) dν,

for all u, v ∈W s,H
0 (Ω). Moreover, A satisfies the (S+)-property.

We end this section with the following iteration lemma, which is the important tool for the proof of the bound-
edness results of solutions, see Ho–Kim [36, Lemma 4.3] .

Lemma 2.15. Let {Zn}, n = 0, 1, 2, . . . , be a sequence of positive numbers satisfying the recursive inequality

Zn+1 ≤Mkn
(
Z1+γ1
n + Z1+γ2

n

)
, n = 0, 1, 2, . . . ,

for some k > 1, M > 0 and γ2 ≥ γ1 > 0. If

Z0 ≤ min

(
1, (2M)−

1
γ1 k

− 1

γ21

)
or

Z0 ≤ min

(
(2M)−

1
γ1 k

− 1

γ21 , (2M)−
1
γ2 k

− 1
γ1γ2

− γ2−γ1
γ22

)
,

then Zn ≤ 1 for some n ∈ N ∪ {0}. Furthermore,

Zn ≤ min

(
1, (2M)−

1
γ1 k

− 1

γ21 k−
n
γ1

)
, for all n ≥ n0,

with n0 being the smallest n ∈ N ∪ {0} fulfilling Zn ≤ 1. In particular, Zn → 0 as n→ ∞.
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3. Maximum principle

In this section, we establish the maximum principle for functions u ∈W s,H(Ω). The proof is inspired by Chen–Li
[17].

Theorem 3.1. Let (H1) be satisfied and Ω be a bounded domain in RN . Let u ∈W s,H(Ω) be lower semi-continuous
on Ω such that {

(−∆)
s
H u(x) ≥ 0, x ∈ Ω,

u(x) ≥ 0, x ∈ RN \ Ω,
(3.1)

then
u(x) ≥ 0 in Ω. (3.2)

Moreover, if there exists some point x0 ∈ Ω such that u(x0) = 0, then u(x) = 0 for a.a.x ∈ RN . In addition, if we
assume that

lim|x|→∞u(x) ≥ 0,

then we have the same conclusions for Ω being unbounded.

Proof. Suppose that (3.2) fails, then the lower semi-continuity of u on Ω implies that there exists x∗ ∈ Ω such that

u(x∗) = min
Ω
u < 0.

Taking u(x) ≥ 0 for x ∈ RN \ Ω into account, we calculate that

(−∆)
s
H u(x∗) = CN,s,p,q PV

∫
RN

(
|u(x∗)− u(y)|p(x∗,y)−2(u(x∗)− u(y))

|x∗ − y|N+sp(x∗,y)
log

(
e+ ω

|u(x∗)− u(y)|
|x∗ − y|s

)
+

ω|u(x∗)− u(y)|p(x∗,y)−1(u(x∗)− u(y))

|x∗ − y|N+s(p(x∗,y)+1)
(
e+ ω |u(x∗)−u(y)|

|x∗−y|s

)
+ µ(x∗, y)

|u(x∗)− u(y)|q(x∗,y)−2(u(x∗)− u(y))

|x∗ − y|N+sq(x∗,y)
log

(
e+ ω

|u(x∗)− u(y)|
|x∗ − y|s

)
+ µ(x∗, y)

ω|u(x∗)− u(y)|q(x∗,y)−1(u(x∗)− u(y))

|x∗ − y|N+s(q(x∗,y)+1)
(
e+ ω |u(x∗)−u(y)|

|x∗−y|s

)) dy

≤ CN,s,p,q

∫
RN\Ω

(
|u(x∗)− u(y)|p(x∗,y)−2(u(x∗)− u(y))

|x∗ − y|sp(x∗,y)
log

(
e+ ω

|u(x∗)− u(y)|
|x∗ − y|s

)
+

ω|u(x∗)− u(y)|p(x∗,y)−1(u(x∗)− u(y))

|x∗ − y|N+s(p(x∗,y)+1)
(
e+ ω |u(x∗)−u(y)|

|x∗−y|s

)
+ µ(x∗, y)

|u(x∗)− u(y)|q(x∗,y)−2(u(x∗)− u(y))

|x∗ − y|sq(x∗,y)
log

(
e+ ω

|u(x∗)− u(y)|
|x∗ − y|s

)
+ µ(x∗, y)

ω|u(x∗)− u(y)|q(x∗,y)−1(u(x∗)− u(y))

|x∗ − y|N+s(q(x∗,y)+1)
(
e+ ω |u(x∗)−u(y)|

|x∗−y|s

)) dy

< 0.

The above inequality contradicts to the first inequality in (3.1), thus, (3.2) holds true.
On the other hand, if there exists some point x0 ∈ Ω such that u(x0) = 0, then we have

(−∆)
s
H u(x0) = CN,s,p,q PV

∫
R

(
|u(y)|p(x0,y)−2(−u(y))
|x0 − y|N+sp(x0,y)

log

(
e+ ω

|u(y)|
|x0 − y|s

)
+

ω|u(y)|p(x0,y)−1(−u(y))

|x0 − y|N+s(p(x0,y)+1)
(
e+ ω |u(y)|

|x0−y|s

)
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+ µ(x0, y)
|u(y)|q(x0,y)−2(−u(y))

|x0 − y|sq(x0,y)
log

(
e+ ω

|u(y)|
|x0 − y|s

)
+ µ(x0, y)

ω|u(y)|q(x0,y)−1(−u(y))

|x0 − y|N+s(q(x0,y)+1)
(
e+ ω |u(y)|

|x0−y|s

))dy

≤ 0,

Combining this with the first inequality in (3.1) implies that the above integral must be zero. Note that we have
proved that u ≥ 0 in RN , thus u(x) = 0 for a.a.x ∈ RN .

Suppose now Ω is unbounded. Then, since lim|x|→∞u(x) ≥ 0 and u is lower semi-continuous, if u(x) ≥ 0 in

Ω, we can find x∗ ∈ Ω such that u(x∗) = minΩ u < 0. As done in the above proof we can show the remaining
conclusions. □

The following corollary can be directly derived since H3 given in (P3) is a special case of H.

Corollary 3.2. Let (H1) be satisfied with 1 < p(·, ·) ≡ p, 1 < q(·, ·) ≡ q and let Ω be a bounded domain in RN . Let
u ∈W s,H3(Ω) be lower semi-continuous on Ω such that{

(−∆)
s
H3
u(x) ≥ 0, x ∈ Ω,

u(x) ≥ 0, x ∈ RN \ Ω,
then

u(x) ≥ 0 in Ω.

Moreover, if there exists some point x0 ∈ Ω such that u(x0) = 0, then u(x) = 0 for a.a.x ∈ RN . In addition, if we
assume that

lim|x|→∞u(x) ≥ 0,

then we have the same conclusions for Ω being unbounded.

In particular, if ω = 0, i.e.H(x, y, t) = tp(x,y)+µ(x, y)tq(x,y) = H2(x, y, t) for (x, y) ∈ RN×RN and for t ∈ [0,∞).
Due to the homogeneity of tp(·,·) and tq(·,·), we can establish the maximum principle for anti-symmetric functions,
which is essential for applying the method of moving planes to investigating symmetry and monotonicity of solutions,
see for example Chen–Li [17] and Hu–Peng [39]. To this end, we introduce the following notations. First, we define
the moving planes as

Tλ =
{
x ∈ RN : x1 = λ for some λ ∈ RN

}
,

and define the left region of the plane Tλ as

Σ =
{
x ∈ RN : x1 < λ

}
.

Moreover, we denote the reflection of x of the plane Tλ by xλ, that is

xλ = (2λ− x1, x2, . . . , xN ),

and let

w = uλ(x)− u(x) = u(xλ)− u(x).

Theorem 3.3. Let (H1) be satisfied and suppose that ω = 0. Let Ω be a bounded domain in Σ and u ∈W s,H2(Ω)
be lower semi-continuous on Ω such that{

(−∆)
s
H2
uλ(x)− (−∆)

s
H2
u(x) ≥ 0, x ∈ Ω,

w(x) ≥ 0, x ∈ Σ \ Ω,
(3.3)

then
w(x) ≥ 0 in Ω. (3.4)

Moreover, if there exists some point x0 ∈ Ω such that w(x0) = 0, then w(x) = 0 for a.a.x ∈ RN . In addition, if we
assume that

lim|x|→∞w(x) ≥ 0,

then we have the same conclusions for Ω being unbounded.
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Proof. Suppose that (3.4) is not true, then we can find a point x∗ ∈ Ω such that

w(x∗) = min
Ω
w < 0.

We set G1(x, y, t) := |t|p(x,y)−2t and G2(x, y, t) := |t|q(x,y)−2t. It is not hard to see that t 7→ G1(x, y, t) and
t 7→ G2(x, y, t) are strictly increasing functions with

(G1)′(x, y, t) = (p(x, y)− 1)|t|p(x,y)−2 ≥ 0,

(G2)′(x, y, t) = (q(x, y)− 1)|t|q(x,y)−2 ≥ 0.

The following inequalities hold

(−∆)
s
H2
uλ(x

∗)− (−∆)
s
H2
u(x∗)

=CN,s,p,q PV

∫
RN

G1 [x∗, y, uλ(x
∗)− uλ(y)]−G1 [x∗, y, u(x∗)− u(y)]

|x∗ − y|N+sp(x∗,y)
dy

+ CN,s,p,q PV

∫
RN

G2 [x∗, y, uλ(x
∗)− uλ(y)]−G2 [x∗, y, u(x∗)− u(y)]

|x∗ − y|N+sq(x∗,y)
µ(x∗, y) dy

≤CN,s,p,q PV
∫
Σ

G1 [x∗, y, uλ(x
∗)− uλ(y)]−G1 [x∗, y, u(x∗)− u(y)]

|x∗ − y|N+sp(x∗,y)
dy

+ CN,s,p,q PV

∫
Σ

G1 [x∗, y, uλ(x
∗)− u(y)]−G1 [x∗, y, u(x∗)− uλ(y)]

|x∗ − yλ|N+sp(x∗,y)
dy

+ CN,s,p,q PV

∫
Σ

G2 [x∗, y, uλ(x
∗)− uλ(y)]−G2 [x∗, y, u(x∗)− u(y)]

|x∗ − y|N+sq(x∗,y)
µ(x∗, y) dy

+ CN,s,p,q PV

∫
Σ

G2 [x∗, y, uλ(x
∗)− u(y)]−G2 [x∗, y, u(x∗)− uλ(y)]

|x∗ − yλ|N+sq(x∗,y)
µ(x∗, y) dy

≤CN,s,p,q PV
∫
Σ

[
1

|x∗ − y|N+sp(x∗,y)
− 1

|x∗ − yλ|N+sp(x∗,y)

]
×
[
G1 [x∗, y, uλ(x

∗)− uλ(y)]−G1 [x∗, y, u(x∗)− u(y)]
]
dy

+ CN,s,p,q PV

∫
Σ

[
G1 [x∗, y, uλ(x

∗)− uλ(y)]−G1 [x∗, y, u(x∗)− u(y)]

+G1 [x∗, y, uλ(x
∗)− u(y)]−G1 [x∗, y, u(x∗)− uλ(y)]

] dy

|x∗ − yλ|N+sp(x∗,y)

+ CN,s,p,q PV

∫
Σ

[
1

|x∗ − y|N+sq(x∗,y)
− 1

|x∗ − yλ|N+sq(x∗,y)

]
×
[
G2 [x∗, y, uλ(x

∗)− uλ(y)]−G2 [x∗, y, u(x∗)− u(y)]
]
µ(x∗, y) dy

+ CN,s,p,q PV

∫
Σ

[
G2 [x∗, y, uλ(x

∗)− uλ(y)]−G2 [x∗, y, u(x∗)− u(y)]

+G2 [x∗, y, uλ(x
∗)− u(y)]−G2 [x∗, y, u(x∗)− uλ(y)]

]
µ(x∗, y)

dy

|x∗ − yλ|N+sq(x∗,y)

=CN,s,p,q PV(I1 + I2 + I3 + I4).

(3.5)

Moreover, since

1

|x∗ − y|
>

1

|x∗ − yλ|
> 0

for any x∗, y ∈ Σ, and by the monotonicity of G1, G2 along with [uλ(x
∗)−uλ(y)]− [u(x∗)−u(y)] = w(x∗)−w(y) ≤ 0

but not equal to zero, we have I1 < 0, and similarly, taking µ ≥ 0 into account, we deduce that I3 ≤ 0.
On the other hand, by applying the mean value theorem we get

I2 =

∫
Σ

[
G1 [x∗, y, uλ(x

∗)− uλ(y)]−G1 [x∗, y, u(x∗)− uλ(y)]

+G1 [x∗, y, uλ(x
∗)− u(y)]−G1 [x∗, y, u(x∗)− u(y)]

] dy

|x∗ − yλ|N+sp(x∗,y)
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= w(x∗)

∫
Σ

[(
G1
)′
(ξ(y)) +

(
G1
)′
(ζ(y))

] dy

|x∗ − yλ|N+sp(x∗,y)
≤ 0,

where ξ(y) ∈ (uλ(x
∗)− uλ(y), u(x

∗)− uλ(y)) and ζ(y) ∈ (uλ(x
∗)− u(y), u(x∗)− u(y)). Thus I2 ≤ 0, and analo-

gously we get I4 ≤ 0 (note that µ ≥ 0). Recall that I1 < 0 and I3 ≤ 0, applying (3.5) we conclude that

(−∆)
s
H2
uλ(x

∗)− (−∆)
s
H2
u(x∗) < 0,

which contradicts (3.3). Hence, it must hold w(x∗) ≥ 0.
Moreover, if we assume that w(x0) = 0 at some point x0 ∈ Ω, then x0 is a minimum of w in Ω, which indicates

I2 = I4 = 0. So, (3.3) implies I1, I3 ≥ 0. However, since [uλ(x0)−uλ(y)]−[u(x0)−u(y)] = w(x0)−w(y) = −w(y) ≤ 0,
it holds I1, I3 ≤ 0. Hence, we conclude that I1 = I3 = 0, thus

w(y) = 0 for a.a. y ∈ Σ,

and by the antisymmetry of w we get

w(y) = 0 for a.a. y ∈ R.
Similarly, we get the conclusion for the case that Ω is unbounded. □

Moreover, since H4 given in (P4) is a special case of H2 given in (P2), we have the following corollary.

Corollary 3.4. Let (H1) be satisfied with ω = 0 and 1 < p(·, ·) ≡ p, 1 < q(·, ·) ≡ q. Let Ω be a bounded domain in
Σ and u ∈W s,H4(Ω) be lower semi-continuous on Ω such that{

(−∆)
s
H4
uλ(x)− (−∆)

s
H4
u(x) ≥ 0, x ∈ Ω,

w(x) ≥ 0, x ∈ Σ \ Ω,
then

w(x) ≥ 0 in Ω.

Moreover, if there exists some point x0 ∈ Ω such that w(x0) = 0, then w(x) = 0 for a.a.x ∈ RN . In addition, if we
assume that

lim|x|→∞w(x) ≥ 0,

then we have the same conclusions for Ω being unbounded.

4. Boundedness of weak solutions

The aim of this section is to obtain a priori bounds for solutions to problem (1.1) with subcritical and critical
growth. The proofs are mainly inspired by Ho–Kim [35], Ho–Kim–Winkert–Zhang [37], Ho–Winkert [38], and
Winkert–Zacher [61, 62] using De Giorgi’s iteration along with the localization method. In this section, we denote
by Ci(i ∈ N) positive constants.

Given a fixed u ∈M(Ω) we define

F(u) =
{
ξ ∈M(Ω): ξ(x) ∈ f(x, u(x)) for a.a.x in Ω

}
,

which is the measurable selection of f(·, u).
First, we introduce the following definition of weak solutions to problem (1.1), which are well defined under the

hypotheses given in this section.

Definition 4.1. A function u ∈ W s,H
0 (Ω) is said to be a weak solution of problem (1.1), if there exist ξ(x) ∈

f(x, u(x)) for a.a.x ∈ Ω satisfying∫
Ω

∫
Ω

H′(x, y, |Dsu(x, y)|)Dsv(x, y) · dν =

∫
Ω

ξv dx (4.1)

for all v ∈W s,H
0 (Ω).
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4.1. Subcritical growth. First, we consider the subcritical case and suppose appropriate growth conditions on f
that guarantee that the set F(u) given above is not empty.

(H2) (i) Assume f : Ω×R → 2R\{∅} is graph measurable and f(x, ·) : R×RN → 2R\{∅} is upper semicontinuous
for a.a.x ∈ Ω.

(ii) Let γ > 0, ς, τ ∈ C(Ω) such that p+ < ς(x) < p∗s(x) and q+ < τ(x) < q∗s (x) for all x ∈ Ω. Suppose
that there exists a constant β > 0 satisfying

sup{|ξ| : ξ ∈ f(x, t)}

≤ β

[
|t|ς(x)−1 log

ς(x)
N (e+ ω|t|) + µ(x)γ |t|τ(x)−1 log

τ(x)
N (e+ ω|t|) + 1

]
for a.a.x ∈ Ω and for all t ∈ R.

The next theorem is one of our main results in this section.

Theorem 4.2. Let hypotheses (H1) and (H2) be satisfied. Then, for any weak solution u ∈ W s,H
0 (Ω) of problem

(1.1), it holds that u ∈ L∞(Ω) and

∥u∥∞,Ω ≤ Cmax
{
∥u∥ℓ1B,Ω, ∥u∥

ℓ2
B,Ω

}
, (4.2)

where the positive constants C, ℓ1, ℓ2 are independent of u.

Proof. Assume that u ∈W s,H
0 (Ω) is a weak solution of problem (1.1). Our proof is divided into several steps.

Step 1. Constructing the iteration sequence and developing basic estimates.
For any n ∈ N0 we define

Zn :=

∫
Aψn

[
(u− ψn)

ς(x)
log

ς(x)
N (e+ ω(u− ψn))

+ µ(x)γ (u− ψn)
τ(x)

log
τ(x)
N (e+ ω(u− ψn))

]
dx,

(4.3)

with

Aψ := {x ∈ Ω: u(x) > ψ}, ψ ∈ R. (4.4)

Moreover, for n ∈ N0, ψn is defined by

ψn := ψ∗

(
2− 1

2n

)
, (4.5)

where ψ∗ > 0 will be specified later. Obviously, for all n ∈ N0, we have

ψn ↗ 2ψ∗ and ψ∗ ≤ ψn < 2ψ∗,

Aψn+1
⊂ Aψn and Zn+1 ≤ Zn.

By the definition of ψn, we obtain

u(x)− ψn ≥ u(x)

(
1− ψn

ψn+1

)
=

u(x)

2n+2 − 1
for a.a.x ∈ Aψn+1

and ∣∣Aψn+1

∣∣ ≤ ∫
Aψn+1

(
u− ψn

ψn+1 − ψn

)ς(x)
log

ς(x)
N (e+ ω(u− ψn)) dx

≤
∫
Aψn

2ς(x)(n+1)

ψ
ς(x)
∗

(u− ψn)
ς(x)

log
ς(x)
N (e+ ω(u− ψn)) dx.

This implies

u(x) ≤
(
2n+2 − 1

)
(u(x)− ψn) for a.a.x ∈ Aψn+1 and for all n ∈ N0, (4.6)∣∣Aψn+1

∣∣ ≤ (ψ−ς−
∗ + ψ−ς+

∗

)
2(n+1)ς+Zn ≤ 2

(
1 + ψ−ς+

∗

)
2(n+1)ς+Zn for all n ∈ N0. (4.7)
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Let un := (u− ψn+1)+ for n ∈ N0. We claim that∫
Ω

∫
Ω

(
|un(x)− un(y)|p(x,y)

|x− y|sp(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)

+ µ(x, y)
|un(x)− un(y)|q(x,y)

|x− y|sq(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

))
dν

≤ C1

(
1 + ψ−ς+

∗

)
2n(α0+

α0
N )Zn,

(4.8)

where α0 := max{ς+, τ+}. Now, we are going to verify (4.8). To this end, we take un = (u− ψn+1)+ ∈ W s,H
0 (Ω)

as test function in (4.1) and obtain∫
Ω

∫
Ω

(
|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(un(x)− un(y))

|x− y|sp(x,y)
log

(
e+ ω

|u(x)− u(y)|
|x− y|s

)
+
ω|u(x)− u(y)|p(x,y)−1(u(x)− u(y))(un(x)− un(y))

|x− y|s(p(x,y)+1)
(
e+ ω |u(x)−u(y)|

|x−y|s

)
+ µ(x, y)

|u(x)− u(y)|q(x,y)−2(u(x)− u(y))(un(x)− un(y))

|x− y|sq(x,y)
log

(
e+ ω

|u(x)− u(y)|
|x− y|s

)
+ µ(x, y)

ω|u(x)− u(y)|q(x,y)−1(u(x)− u(y))(un(x)− un(y))

|x− y|s(q(x,y)+1)
(
e+ ω |u(x)−u(y)|

|x−y|s

) )
dν

=

∫
Ω

ξun(x) dx.

Since (u(x)− u(y))(un(x)− un(y)) ≥ (un(x)− un(y))
2 and |u(x)− u(y)| ≥ |un(x)− un(y)|, also, u ≥ u−ψn+1 ≥ 0

on Aψn+1 , by the above equality, we calculate that∫
Ω

∫
Ω

(
|un(x)− un(y)|p(x,y)

|x− y|sp(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)

+ µ(x, y)
|un(x)− un(y)|q(x,y)

|x− y|sq(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

))
dν

≤
∫
Ω

β

[
|u|ς(x)−1 log

ς(x)
N (e+ ω|u|) + µ(x)γ |u|τ(x)−1 log

τ(x)
N (e+ ω|u|) + 1

]
un(x) dx

≤ 2β

∫
Aψn+1

[
uς(x) log

ς(x)
N (e+ ωu) + µ(x)γuτ(x) log

τ(x)
N (e+ ωu) + 1

]
dx

≤ C2

∫
Aψn+1

([(
2n+2 − 1

)
(u− ψn)

]ς(x)
log

ς(x)
N
[
e+ ω

(
2n+2 − 1

)
(u− ψn)

]
+µ(x)γ

[(
2n+2 − 1

)
(u− ψn)

]τ(x)
log

τ(x)
N
[
e+ ω

(
2n+2 − 1

)
(u− ψn)

])
dx+ C2

∣∣Aψn+1

∣∣
≤ C1

(
1 + ψ−ς+

∗

)
2n(α0+

α0
N )Zn,

(4.9)

which associated (4.7) indicates (4.8).
Step 2. Localization and estimating Zn+1 by Zn.

Let Bi ⊂ RN be open balls of radius R with i ∈ I := {1, · · · ,m} and let {Bi}i∈I be a finite open covering of Ω
such that Ωi := Bi ∩ Ω for i ∈ I are Lipschitz domains. For any i ∈ I, we choose R small enough such that

|Ωi| < 1, p+i := sup
(x,y)∈Bi×Bi

p(x, y) < ς−i := inf
x∈Bi∩Ω

ς(x) ≤ ς+i := sup
x∈Bi∩Ω

ς(x) <
(
p−i
)∗
s

(4.10)

and q+i := sup
(x,y)∈Bi×Bi

q(x, y) < τ−i := inf
x∈Bi∩Ω

τ(x) ≤ τ+i := sup
x∈Bi∩Ω

τ(x) <
(
q−i
)∗
s
. (4.11)



16 S. ZENG, Y. LU, V.D. RĂDULESCU, AND P. WINKERT

Let {ηi}mi=1 be a partition of unity of Ω with respect to {Bi}mi=1, namely, for each i ∈ I, we have

ηi ∈ C∞
c (RN ), supp(ηi) ⊂ Bi, 0 ≤ ηi ≤ 1 and

m∑
i=1

ηi = 1 on Ω. (4.12)

By applying Jensen’s inequality and the following interpolation inequality

tα2 ≤ tα1 + tα3 for all t ≥ 0 and for all α1, α2, α3 with 0 < α1 ≤ α2 ≤ α3, (4.13)

we get

Zn+1 =

∫
Aψn+1

(
uς(x)n log

ς(x)
N (e+ ωun) + µ(x)γuτ(x)n log

τ(x)
N (e+ ωun)

)
dx

≤ mmax{ς+,τ+}
m∑
i=1

∫
Aψn+1

∩Ωi

(
|unηi|ςi(x) log

ςi(x)

N (e+ ω|unηi|)

+ µ(x)γ |unηi|τi(x) log
τi(x)

N (e+ ω|unηi|)
)
dx

≤ mmax{ς+,τ+}
m∑
i=1

∫
Aψn+1

∩Ωi

(
|unηi|ς

+
i log

ςi+

N (e+ ω|unηi|)

+ µ(x)γ |unηi|τ
+
i log

τ
+
i
N (e+ ω|unηi|) + |unηi|ς

−
i log

ς
−
i
N (e+ ω|unηi|)

+ µ(x)γ |unηi|τ
−
i log

τ
−
i
N (e+ ω|unηi|)

)
dx.

(4.14)

For any i ∈ I, r1 > 0, and r2 > 0, we define

Ln,i(r1, r2) :=

∫
Aψn+1

∩Ωi

[
|unηi|r1 log

r1
N (e+ ω|unηi|) + µ(x)γ |unηi|r2 log

r2
N (e+ ω|unηi|)

]
dx. (4.15)

Then, from (4.14) and (4.15) it follows that

Zn+1 ≤ mmax{ς+,τ+}
m∑
i=1

[
Ln,i(ς

−
i , τ

−
i ), Ln,i(ς

+
i , τ

+
i )
]
. (4.16)

Let ⋆ ∈ {+,−} for i ∈ I. Using (4.10) and Hölder’s inequality for ε > 0 satisfying ς⋆+ε < (p−i )
∗
s and τ

⋆+ε < (q−i )
∗
s

we arrive at

Ln,i(ς
⋆
i , τ

⋆
i ) =

∫
Aψn+1

∩Ωi

[
|unηi|ς

⋆
i log

ς⋆i
N (e+ ω|unηi|) + µ(x)γ |unηi|τ

⋆
i log

τ⋆i
N (e+ ω|unηi|)

]
dx

≤
(∫

Ω

|unηi|ς
⋆
i +ε log

ς⋆i +ε

N (e+ ω|unηi|) dx
) ς⋆i
ς⋆
i
+ε

|Aψn+1
∩ Ωi|

ε
ς⋆
i
+ε

+

(∫
Ω

µ(x)γ |unηi|τ
⋆
i +ε log

τ⋆i +ε

N (e+ ω|unηi|) dx
) τ⋆i
τ⋆
i
+ε

|Aψn+1
∩ Ωi|

ε
τ⋆
i
+ε

≤ |Aψn+1
∩ Ωi|

ε

ς++τ++ε

(∫
Ω

|unηi|ς
⋆
i +ε log

ς⋆i +ε

N (e+ ω|unηi|) dx
) ς⋆i
ς⋆
i
+ε

+

(∫
Ω

µ(x)γ |unηi|τ
⋆
i +ε log

τ⋆i +ε

N (e+ ω|unηi|) dx
) τ⋆i
τ⋆
i
+ε

 .

(4.17)

Next, we denote

B̃(x, t) := tς
⋆
i +ε log

ς⋆i +ε

N (e+ ωt) + µ(x)γtτ
⋆
i +ε log

τ⋆i +ε

N (e+ ωt). (4.18)

By Proposition 2.12, we see that

W s,H
0 (Ω) ↪→ LB̃ (Ω) . (4.19)
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Note that for s, t ≥ 0 and r ≥ 1,

(s+ t)r log(e+ s+ t) ≤ (2s)r log(e+ 2s) + (2t)r log(e+ 2t)

≤ 2r+1sr log(e+ s) + 2r+1tr log(e+ t),
(4.20)

and for all t ≥ 0, C ≥ 1

log(e+ Ct) ≤ C log(e+ t). (4.21)

Invoking the above inequalities, Remark 2.7, (4.10) and the continuous embedding (4.19) we see that there exist
σ > 0 such that

σ < min{ς−i − p+i , τ
−
i − q+i } for i ∈ I

satisfying (∫
Ω

|unηi|ς
⋆
i +ε log

ς⋆i +ε

N (e+ ω|unηi|) dx
) ς⋆i
ς⋆
i
+ε

≤ ∥unηi∥
ς̃⋆i
B̃|µ≡0,Ω

≤ C3 [unηi]
ς̃⋆i
s,H|µ≡0,Ω

≤ C4

S ς̃⋆i

p
−
i

n,i + S

ς̃⋆i

p
+
i

+σ

n,i

 ,

(4.22)

where

ς̃⋆i =

{
ς⋆i if ∥unηi∥B̃,Ω ≤ 1,

ς⋆i +
ς⋆i
N if ∥unηi∥B̃,Ω > 1,

(4.23)

and

Sn,i =

∫
Ω

∫
Ω

(
|un(x)ηi(x)− un(y)ηi(y)|pi(x,y)

|x− y|spi(x,y)
log

(
e+ ω

|un(x)ηi(x)− un(y)ηi(y)|
|x− y|s

)

+ µ(x, y)
|un(x)ηi(x)− un(y)ηi(y)|qi(x,y)

|x− y|sqi(x,y)
log

(
e+ ω

|un(x)ηi(x)− un(y)ηi(y)|
|x− y|s

))
dν.

(4.24)

Analogously, by Remark 2.7, (4.11) and the continuous embedding (4.19) we obtain(∫
Ω

µ(x)γ |unηi|τ
⋆
i +ε log

τ⋆i +ε

N (e+ ω|unηi|) dx
) τ⋆i
τ⋆
i
+ε

≤ ∥unηi∥
τ̃⋆i
B̃,Ω

≤ C5 [unηi]
τ̃⋆i
s,H,Ω ≤ C6

S τ̃⋆i

p
−
i

n,i + S

τ̃⋆i

q
+
i

+σ

n,i

 ,

(4.25)

with

τ̃⋆i =

{
τ⋆i if ∥unηi∥B̃,Ω ≤ 1,

τ⋆i +
τ⋆i
N if ∥unηi∥B̃,Ω > 1.

(4.26)

From the inequalities (4.16), (4.17), (4.22) and (4.25), we get

Zn+1 ≤ C7

∣∣Aψn+1
∩ Ωi

∣∣ ε

ς++τ++ε

S ς̃⋆i

p
−
i

n,i + S

ς̃⋆i

p
+
i

+σ

n,i + S

τ̃⋆i

p
−
i

n,i + S

τ̃⋆i

q
+
i

+σ

n,i

 .

Combining this and (4.13) we infer

Zn+1 ≤ C8

∣∣Aψn+1

∣∣ ε

ς++τ++ε

(
S1+θ1
n,i + S1+θ2

n,i

)
, (4.27)

with

0 < θ1 := min
1≤i≤m

min

{
ς−i

p+i + σ
,

τ−i
q+i + σ

}
− 1 ≤ θ2 := max

1≤i≤m
max

 ς+i +
ς+i
N

p−i
,
τ+i +

τ+
i

N

p−i

− 1.

Next, let
Sn,i = J1 + 2J2, (4.28)
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where

J1 =

∫
Bi

∫
Bi

(
|un(x)ηi(x)− un(y)ηi(y)|pi(x,y)

|x− y|spi(x,y)
log

(
e+ ω

|un(x)ηi(x)− un(y)ηi(y)|
|x− y|s

)

+ µ(x, y)
|un(x)ηi(x)− un(y)ηi(y)|qi(x,y)

|x− y|sqi(x,y)
log

(
e+ ω

|un(x)ηi(x)− un(y)ηi(y)|
|x− y|s

))
dν,

and

J2 =

∫
Ω\Bi

∫
Bi

(
|un(x)ηi(x)− un(y)ηi(y)|pi(x,y)

|x− y|spi(x,y)
log

(
e+ ω

|un(x)ηi(x)− un(y)ηi(y)|
|x− y|s

)

+ µ(x, y)
|un(x)ηi(x)− un(y)ηi(y)|qi(x,y)

|x− y|sqi(x,y)
log

(
e+ ω

|un(x)ηi(x)− un(y)ηi(y)|
|x− y|s

))
dν.

Next, we introduce the indicator function χµ satisfying χµ(x) = 1 if µ(x) > 0 and χµ(x) = 0 if µ(x) = 0. Applying
inequalities (4.20), (4.21) and the interpolation inequality (4.13) we see that

J1 =

∫
Bi

∫
Bi

|un(x)ηi(x)− un(y)ηi(y)|pi(x,y)

|x− y|N+spi(x,y)
log

(
e+ ω

|un(x)ηi(x)− un(y)ηi(y)|
|x− y|s

)
+ µ(x, y)

|un(x)ηi(x)− un(y)ηi(y)|qi(x,y)

|x− y|N+sqi(x,y)
log

(
e+ ω

|un(x)ηi(x)− un(y)ηi(y)|
|x− y|s

)
dx dy

≤ 2p
+
i +1

∫
Bi

∫
Bi

|un(x)− un(y)|pi(x,y)

|x− y|N+spi(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)
dx dy

+ 2p
+
i +1 max

{
∥∇ηi∥

p−i∞ , ∥∇ηi∥
p+i +1
∞

}
×
∫
Bi

(∫
Bi

dx

|x− y|N+(s−1)p−i
+

∫
Bi

dx

|x− y|N+(s−1)(p+i +1)

)
×
(
|un(y)|p

−
i + |un(y)|p

+
i

)
log(e+ ω|un(y)|) dy

+ 2q
+
i +1

∫
Bi

∫
Bi

µ(x, y)
|un(x)− un(y)|qi(x,y)

|x− y|N+sqi(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)
dx dy

+ 2q
+
i +1∥µ∥∞ max

{
∥∇ηi∥

q−i∞ , ∥∇ηi∥
q+i +1
∞

}
×
∫
Bi

(∫
Bi

dx

|x− y|N+(s−1)q−i
+

∫
Bi

dx

|x− y|N+(s−1)(q+i +1)

)
× χµ(y)

(
|un(y)|q

−
i + |un(y)|q

+
i

)
log(e+ ω|un(y)|) dy

≤ C9

∫
Bi

∫
Bi

|un(x)− un(y)|pi(x,y)

|x− y|spi(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)
+ µ(x, y)

|un(x)− un(y)|qi(x,y)

|x− y|sqi(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)
dν

+ C10

∫
Bi

|un(y)|p
+
i log(e+ ω|un(y)|) + µ(y)|un(y)|q

+
i log(e+ ω|un(y)|) dy

+ C10

∫
Bi

|un(y)|p
−
i log(e+ ω|un(y)|) + µ(y)|un(y)|q

−
i log(e+ ω|un(y)|) dy,

(4.29)

where we have used ∫
Bi

dx

|x− y|N+(s−1)r
≤
∫
BR′ (0)

dz

|z|N+(s−1)r
=
ωN (R′)(1−s)r

(1− s)r
(4.30)
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for r > 0 and R′ > 1 satisfying Bi ⊂ BR′(0) for all i ∈ I. Since u ≥ u− ψn+1 ≥ 0 on Aψn+1 , associating (4.9) and

(4.13) we calculate that for p̂i ∈ {p−i , p
+
i , p

−, p+} and q̂i ∈ {q−i , q
+
i , q

−, q+}, there hold∫
Bi

|un(y)|p̂i log(e+ ω|un(y)|) + µ(y)|un(y)|q̂i log(e+ ω|un(y)|) dy

≤
∫
Aψn+1

∩Bi
|u(y)|p̂i log(e+ ω|u(y)|) + µ(y)|u(y)|q̂i log(e+ ω|u(y)|) dy

≤ C11

∫
Aψn+1

∩Bi

[
u(x)ς(x) log

ς(x)
N (e+ ωu(x)) + µ(x)γu(x)τ(x) log

τ(x)
N (e+ ωu(x))

]
dx

+ C
∣∣Aψn+1

∣∣
≤ C12

(
1 + ψ−ς+

∗

)
2n(α0+

α0
N )Zn.

(4.31)

Combining (4.29), (4.30) and (4.31) we get

J1 ≤ C13

(
1 + ψ−ς+

∗

)
2n(α0+

α0
N )Zn.

Similarly, by inequalities (4.13), (4.20), (4.21) and (4.31) we have

J2 =

∫
Ω\Bi

[∫
Bi

|un(x)ηi(x)|pi(x,y)

|x− y|N+spi(x,y)
log

(
e+ ω

|un(x)ηi(x)|
|x− y|s

)
+µ(x, y)

|un(x)ηi(x)|qi(x,y)

|x− y|N+sqi(x,y)
log

(
e+ ω

|un(x)ηi(x)|
|x− y|s

)
dx

]
dy

≤
∫
supp(ηi)∩Aψn+1

(∫
Ω\Bi

dy

|x− y|N+sp−
+

∫
Ω\Bi

dy

|x− y|N+s(p++1)

)
×
(
|un(y)|p

−
+ |un(y)|p

+
)
log(e+ ω|un(y)|) dx

+ ∥µ∥∞
∫
supp(ηi)∩Aψn+1

(∫
Ω\Bi

dy

|x− y|N+sq−
+

∫
Ω\Bi

dy

|x− y|N+s(q++1)

)
× χµ(x)

(
|un(y)|q

−
+ |un(y)|q

+
)
log(e+ ω|un(y)|) dx

≤ C14

∫
Aψn+1

∩Bi
|u(x)|p

−
log(e+ ω|u(x)|) + µ(x)|u(x)|q

−
log(e+ ω|u(x)|) dx

+ C14

∫
Aψn+1

∩Bi
|u(x)|p

+

log(e+ ω|u(x)|) + µ(x)|u(x)|q
+

log(e+ ω|u(x)|) dx

≤ C15

(
1 + ψ−ς+

∗

)
2n(α0+

α0
N )Zn,

(4.32)

where we have used that

sup
x∈supp(ηi)

∫
Ω\Bi

dy

|x− y|N+sr
≤
∫
|z|≥di

dy

|z|N+sr
=

ωN
srdsri

,

with di := dist(Ω \Bi, supp(ηi)) > 0 and r > 0.
Inequality (4.8) and (4.28)-(4.32) lead to

Sn ≤ C16

(
1 + ψ−ς+

∗

)
2n(α0+

α0
N )Zn for all n ∈ N0.

Therefore, we get

S1+θ1
n + S1+θ2

n ≤ C17

(
1 + ψ

−ς+(1+θ2)
∗

)
2n(α0+

α0
N )(1+θ2)

(
Z1+θ1
n + Z1+θ2

n

)
. (4.33)

Moreover, (4.7) yields∣∣Aψn+1

∣∣ ε

ς++τ++ε ≤ C18

(
ψ
− ες−
ς++τ++ε

∗ + ψ
− ες+

ς++τ++ε
∗

)
2

ες+

ς++τ++εZ
ε

ς++τ++ε
n .
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Taking this and (4.27) as well as (4.33) into account, we get

Zn+1 ≤ C19

(
ψ−ρ1
∗ + ψ−ρ2

∗
)
kn
(
Z1+γ1
n + Z1+γ2

n

)
for all n ∈ N0, (4.34)

where

0 < ρ1 :=
ες−

ς+ + τ+ + ε
< ρ2 := ς+ (1 + θ2) +

ες+

ς+ + τ+ + ε

1 < k := 2
(α0+

α0
N )(1+θ2)

ες+

ς++τ++ε ,

0 < γ1 := θ1 +
ε

ς+ + τ+ + ε
≤ γ2 := θ2 +

ε

ς+ + τ+ + ε
.

Recall that α0 = max{ς+, τ+}.
Step 3. A priori bounds

Referring to Lemma 2.15, we see that (4.34) yield

Zn → 0 as n→ ∞, (4.35)

provided that

Z0 ≤ min

{(
2C19

(
ψ−ρ1
∗ + ψ−ρ2

∗
))− 1

γ1 k
− 1

γ21 ,
(
2C19

(
ψ−ρ1
∗ + ψ−ρ2

∗
))− 1

γ2 k
− 1
γ1γ2

− γ2−γ1
γ22

}
.

Note that

Z0 =

∫
Ω

[
(u− ψ∗)

ς(x)
+ log

ς(x)
N (e+ ω(u− ψ∗)+)

+µ(x)γ (u− ψ∗)
τ(x)
+ log

τ(x)
N (e+ ω(u− ψ∗)+)

]
dx

≤
∫
Ω

B(x, |u|) dx.

We also see that ∫
Ω

B(x, |u|) dx ≤
(
2C19

(
ψ−ρ1
∗ + ψ−ρ2

∗
))− 1

γ1 k
− 1

γ21 ,∫
Ω

B(x, |u|) dx ≤
(
2C19

(
ψ−ρ1
∗ + ψ−ρ2

∗
))− 1

γ2 k
− 1
γ1γ2

− γ2−γ1
γ22

is equivalent to

ψ−ρ1
∗ + ψ−ρ2

∗ ≤ (2C19)
−1
k−

1
γ1

(∫
Ω

B(x, |u|) dx
)−γ1

,

ψ−ρ1
∗ + ψ−ρ2

∗ ≤ (2C19)
−1
k−

1
γ1

− γ2−γ1
γ2

(∫
Ω

B(x, |u|) dx
)−γ2

.

Moreover,

2ψ−ρ1
∗ ≤ (2C19)

−1
k−

1
γ1

− γ2−γ1
γ2 min

{(∫
Ω

B(x, |u|) dx
)−γ1

,

(∫
Ω

B(x, |u|) dx
)−γ2

}
,

2ψ−ρ2
∗ ≤ (2C19)

−1
k−

1
γ1

− γ2−γ1
γ2 min

{(∫
Ω

B(x, |u|) dx
)−γ1

,

(∫
Ω

B(x, |u|) dx
)−γ2

}
,

is equivalent to

ψ∗ ≥ (4C19)
1
ρ1 k

1
ρ1

( 1
γ1

+
γ2−γ1
γ2

) max

{(∫
Ω

B(x, |u|) dx
) γ1
ρ1

,

(∫
Ω

B(x, |u|) dx
) γ2
ρ1

}
,

ψ∗ ≥ (4C19)
1
ρ2 k

1
ρ2

( 1
γ1

+
γ2−γ1
γ2

) max

{(∫
Ω

B(x, |u|) dx
) γ1
ρ2

,

(∫
Ω

B(x, |u|) dx
) γ2
ρ2

}
.
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Hence, if we take

ψ∗ = max
{
(4C19)

1
ρ1 , (4C19)

1
ρ2

}
k

1
ρ1

(
1
γ1

+
γ2−γ1
γ2

)
·max

{(∫
Ω

B(x, |u|) dx
) γ1
ρ2

,

(∫
Ω

B(x, |u|) dx
) γ2
ρ1

}
,

(4.35) holds true, by applying Lebesgue’s dominated convergence theorem we have

Zn =

∫
Ω

[
(u− ψn)

ς(x)
+ log

ς(x)
N (e+ ω(u− ψn)+)

+µ(x)γ (u− ψn)
τ(x)
+ log

τ(x)
N (e+ ω(u− ψn)+)

]
dx

→
∫
Ω

[
(u− 2ψ∗)

ς(x)
+ log

ς(x)
N (e+ ω(u− 2ψ∗)+)

+µ(x)γ (u− 2ψ∗)
τ(x)
+ log

τ(x)
N (e+ ω(u− 2ψ∗)+)

]
dx→ 0,

as n→ ∞. This implies that

ess sup
x∈Ω

u(x) ≤ 2ψ∗.

Analogously, by replacing u with −u, we get

ess sup
x∈Ω

(−u)(x) ≤ 2ψ∗.

Therefore,

∥u∥∞,Ω ≤ Cmax

{∫
Ω

B(x, |u|) dxℓ1 ,
∫
Ω

B(x, |u|) dxℓ2
}
, (4.36)

with C, ℓ1, ℓ2 being positive constants independent of u. Finally, from (4.36) and Remark 2.7, we obtain (4.2). □

In addition, motivated by Ho–Kim [35] we can expend the range of ς and τ given in (H2)(ii) by strengthening
the restrictive conditions on p and q (see (H2’)(iii)). For this purpose, we consider the following assumptions:

(H2’) (i) Assume f : Ω×R → 2R\{∅} is graph measurable and f(x, ·) : R×RN → 2R\{∅} is upper semicontinuous
for a.a.x ∈ Ω.

(ii) Let ς, τ ∈ C(Ω) such that p(x) < ς(x) < p∗s(x) and q(x) < τ(x) < q∗s (x) for all x ∈ Ω. Suppose that
there exists a constant β > 0 satisfying

sup{|ξ| : ξ ∈ f(x, t)}

≤ β

[
|t|ς(x)−1 log

ς(x)
N (e+ ω|t|) + µ(x)γ |t|τ(x)−1 log

τ(x)
N (e+ ω|t|) + 1

]
for a.a.x ∈ Ω and for all t ∈ R.

(iii) For r ∈ {p, q}, the following hypotheses hold

inf
R>0

sup
(x,y)∈RN×RN
0<|x−y|<1/2

∣∣∣r(x, y)− r−BR(x,y)

∣∣∣ log 1

|x− y|
<∞, (4.37)

with r−BR(x,y) := inf(x̄,ȳ)∈BR(x,y) r(x̄, ȳ).

Remark 4.3. A example for r ∈ C(RN × RN ) satisfying the hypotheses (H2’)(iii) was given by Ho–Kim [35,
Example 4.3].

Theorem 4.4. Let hypotheses (H1) and (H2’) be satisfied. Then, for any weak solution u ∈ W s,H
0 (Ω) of problem

(1.1), it holds that u ∈ L∞(Ω) and

∥u∥∞,Ω ≤ Cmax
{
∥u∥ℓ̃1B,Ω, ∥u∥

ℓ̃2
B,Ω

}
,

where the positive constants C, ℓ̃1, ℓ̃2 are independent of u.
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Proof. First, we repeat Step 1 of the proof for Theorem 4.2, namely, assume that (4.3)-(4.8) hold.
(a): Localization

Let Bi ⊂ RN be open balls of radius R with i ∈ I := {1, · · · ,m} and let {Bi}i∈I be a finite open covering of Ω
such that Ωi := Bi ∩ Ω for i ∈ I are Lipschitz domains. For any i ∈ I, we choose R small enough such that (4.10)
and (4.11) are fulfilled. According to the continuity of p, q given by (4.37), there exists R ∈ (0, 1/4) small enough
such that there exist C20, C21 > 0 satisfying

−
∣∣∣p(x, y)− p−B4R(x,y)

∣∣∣ log |x− y| ≤ C20, (4.38)

−
∣∣∣q(x, y)− q−B4R(x,y)

∣∣∣ log |x− y| ≤ C21 (4.39)

for all (x, y) ∈ RN × RN satisfying |x − y| < 1
2 . As done before, let {ηi}mi=1 be a partition of unity of Ω satisfying

(4.12). Let p−i = p(x′, y′) for some (x′, y′) ∈ Bi ×Bi. Thus

|(x′, y′)− (x, y)| = |x′ − x|+ |y′ − y| < 4R for all (x, y) ∈ Bi ×Bi,

so (x′, y′) ∈ B4R(x, y) for all (x, y) ∈ Bi × Bi. Also, we see that |x − y| < 2R < 1/2 for all (x, y) ∈ Bi × Bi.
Combining these conclusions and (4.38) we get

−(p(x, y)− p−i ) log |x− y| ≤ −
(
p(x, y)− p−B4R(x,y)

)
log |x− y| ≤ C19 for all (x, y) ∈ Bi ×Bi,

which implies

|x− y|s(p(x,y)−p
−
i ) = es(p(x,y)−p

−
i ) log |x−y| ≥ C22 for all (x, y) ∈ Bi ×Bi. (4.40)

Similarly, (4.39) implies

|x− y|s(q(x,y)−q
−
i ) = es(q(x,y)−q

−
i ) log |x−y| ≥ C23 for all (x, y) ∈ Bi ×Bi. (4.41)

We claim that ∫
Bi

∫
Bi

(
|un(x)− un(y)|p

−
i

|x− y|N+sp−i
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)

+ µ(x, y)
|un(x)− un(y)|q

−
i

|x− y|N+sq−i
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

))
dx dy

≤ C24

[∫
Bi

∫
Bi

(
|un(x)− un(y)|p(x,y)

|x− y|N+sp(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)

+µ(x, y)
|un(x)− un(y)|q(x,y)

|x− y|N+sq(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

))
dx dy +

∣∣Aψn+1

∣∣] ,

(4.42)

which associates (4.7) and (4.8) implies∫
Bi

∫
Bi

(
|un(x)− un(y)|p

−
i

|x− y|N+sp−i
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)

+ µ(x, y)
|un(x)− un(y)|q

−
i

|x− y|N+sq−i
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

))
dx dy

≤ C25

(
1 + ψ−ς+

∗

)
2α0+

α0
N Zn,
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for all i ∈ I and all n ∈ N, where we recall that α0 ∈ max{ς+, τ+}. Now, we are going to prove the claim. We have∫
Bi

∫
Bi

(
|un(x)− un(y)|p(x,y)

|x− y|N+sp(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)

+ µ(x, y)
|un(x)− un(y)|q(x,y)

|x− y|N+sq(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

))
dx dy

=

∫
Bi∩Aψn+1

∫
Bi∩Aψn+1

(
|un(x)− un(y)|p(x,y)

|x− y|N+sp(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)

+ µ(x, y)
|un(x)− un(y)|q(x,y)

|x− y|N+sq(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

))
dx dy

+ 2

∫
Bi∩Aψn+1

∫
Bi\Aψn+1

(
|un(x)− un(y)|p(x,y)

|x− y|N+sp(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)

+ µ(x, y)
|un(x)− un(y)|q(x,y)

|x− y|N+sq(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

))
dx dy

=: T1 + 2T2.

(4.43)

Invoking (4.40) and (4.41) we get

T1 =

∫
Bi∩Aψn+1

∫
Bi∩Aψn+1

(∣∣∣∣ |un(x)− un(y)|
|x− y|2s

∣∣∣∣p(x,y) · 1

|x− y|N−sp−i

× 1

|x− y|−s(p(x,y)−p−i )
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)

+ µ(x, y)

∣∣∣∣ |un(x)− un(y)|
|x− y|2s

∣∣∣∣q(x,y) · 1

|x− y|N−sq−i

× 1

|x− y|−s(q(x,y)−q−i )
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

))
dx dy

≥
∫
Bi∩Aψn+1

∫
Bi∩Aψn+1

(
C22

∣∣∣∣ |un(x)− un(y)|
|x− y|2s

∣∣∣∣p(x,y)
× log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)
1

|x− y|N−sp−i

+ C23µ(x, y)

∣∣∣∣ |un(x)− un(y)|
|x− y|2s

∣∣∣∣q(x,y)
× log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)
1

|x− y|N−sq−i

)
dx dy.
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Furthermore, if
∣∣∣ |un(x)−un(y)|q(x,y)|x−y|2s

∣∣∣ < 1, it follows that

T1 ≥
∫
Bi∩Aψn+1

∫
Bi∩Aψn+1

(
C22

(∣∣∣∣ |un(x)− un(y)|
|x− y|2s

∣∣∣∣p
−
i

− 1

)

× log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)
1

|x− y|N−sp−i

+ C23µ(x, y)

(∣∣∣∣ |un(x)− un(y)|
|x− y|2s

∣∣∣∣q
−
i

− 1

)

× log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)
1

|x− y|N−sq−i

)
dx dy

≥
∫
Bi∩Aψn+1

∫
Bi∩Aψn+1

(
C22

|un(x)− un(y)|p
−
i

|x− y|N+sp−i
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)
− C22 log

(
e+ ω

|un(x)− un(y)|
|x− y|2s

|x− y|s
)

1

|x− y|N−sp−i

+ C23µ(x, y)
|un(x)− un(y)|q

−
i

|x− y|N+sq−i
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)

− C23∥µ∥∞ log

(
e+ ω

|un(x)− un(y)|
|x− y|2s

|x− y|s
)

1

|x− y|N−sq−i

)
dx dy

≥
∫
Bi∩Aψn+1

∫
Bi∩Aψn+1

(
C22

|un(x)− un(y)|p
−
i

|x− y|N+sp−i
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)

+ C23µ(x, y)
|un(x)− un(y)|q

−
i

|x− y|N+sq−i
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)
dx dy

− C26 log (e+ ω(2R)s)

∫
Aψn+1

(∫
Bi

1

|x− y|N−sp−i
+

1

|x− y|N−sq−i

)
dx

)
dy,

(4.44)

and if
∣∣∣ |un(x)−un(y)|q(x,y)|x−y|2s

∣∣∣ ≥ 1, it follows that

T1 ≥
∫
Bi∩Aψn+1

∫
Bi∩Aψn+1

(
C22

|un(x)− un(y)|p
−
i

|x− y|N+sp−i
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)

+ C23µ(x, y)
|un(x)− un(y)|q

−
i

|x− y|N+sq−i
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

))
dx dy,

(4.45)

Furthermore, we choose R̃ > 1 such that Ω× Ω ⊂ BR̃−1(0). Hence, for any i ∈ I and r > 0, it holds that∫
Bi

1

|x− y|N−sr dx ≤
∫
BR̃(0)

1

|z|N−sr dz =
ωN R̃

sr

sr
for all y ∈ Ω. (4.46)

From the above inequality we get∫
Bi

1

|x− y|N−sp−i
≤ ωN R̃

sp−i

sp−i
≤ ωN R̃

sp+

sp−
and

∫
Bi

1

|x− y|N−sq−i
≤ ωN R̃

sq+

sq−
.
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Utilizing the last two inequalities along with (4.44) and (4.45) we arrive at

T1 ≥ C27

∫
Bi∩Aψn+1

∫
Bi∩Aψn+1

(
|un(x)− un(y)|p

−
i

|x− y|N+sp−i
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)

+ µ(x, y)
|un(x)− un(y)|q

−
i

|x− y|N+sq−i
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

))
dx dy − C28

∣∣Aψn+1

∣∣ . (4.47)

Similarly, applying (4.40), (4.41) and (4.46) again, we have

T2 =

∫
Bi∩Aψn+1

∫
Bi\Aψn+1

(∣∣∣∣ |un(x)− un(y)|
|x− y|2s

∣∣∣∣p(x,y) · 1

|x− y|N−sp−i

× 1

|x− y|−s(p(x,y)−p−i )
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)

+ µ(x, y)

∣∣∣∣ |un(x)− un(y)|
|x− y|2s

∣∣∣∣q(x,y) · 1

|x− y|N−sq−i

× 1

|x− y|−s(q(x,y)−q−i )
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

))
dx dy

≥
∫
Bi∩Aψn+1

∫
Bi\Aψn+1

(
C22

|un(x)− un(y)|p
−
i

|x− y|N+sp−i
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)

+ C23µ(x, y)
|un(x)− un(y)|q

−
i

|x− y|N+sq−i
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

))
dx dy

− C26 log (e+ ω(2R)s)

∫
Aψn+1

(∫
Bi

1

|x− y|N−sp−i
+

1

|x− y|N−sq−i
dx

)
dy

≥ C27

∫
Bi∩Aψn+1

∫
Bi\Aψn+1

(
|un(x)− un(y)|p

−
i

|x− y|N+sp−i
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)

+ µ(x, y)
|un(x)− un(y)|q

−
i

|x− y|N+sq−i
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

))
dx dy − C28

∣∣Aψn+1

∣∣ .

(4.48)

This along with (4.43), (4.47) and (4.48) yield (4.42), and the claim is proved.
(b): Estimating Zn+1 by Zn.

Recall that Ln,i and B̃ are defined by (4.17) and (4.18), respectively, for ⋆ ∈ {+,−} and i ∈ I. According to
inequalities (4.20), (4.21), Remark 2.7, (4.10) and the continuous embedding (2.4) we see that there exist σ̃ > 0
such that

σ̃ < min{ς−i − p−i , τ
−
i − q−i } for i ∈ I

satisfying (∫
Ω

|unηi|ς
⋆
i +ε log

ς⋆i +ε

N (e+ ω|unηi|) dx
) ς⋆i
ς⋆
i
+ε

≤ ∥unηi∥
ς̃⋆i
B̃|µ≡0,Ω

≤ C29 [unηi]
ς̃⋆i
s,H|µ≡0,Ω

≤ C30

S̃ ς̃⋆i

p
−
i

n,i + S̃

ς̃⋆i

p
−
i

+σ̃

n,i

 ,

with ς̃⋆i given by (4.23) and

S̃n,i =

∫
Ω

∫
Ω

(
|un(x)ηi(x)− un(y)ηi(y)|p

−
i

|x− y|N+sp−i
log

(
e+ ω

|un(x)ηi(x)− un(y)ηi(y)|
|x− y|s

)

+ µ(x, y)
|un(x)ηi(x)− un(y)ηi(y)|q

−
i

|x− y|sq−i
log

(
e+ ω

|un(x)ηi(x)− un(y)ηi(y)|
|x− y|s

))
dx dy.
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Analogously, inequalities (4.20), (4.21), Remark 2.7, (4.11) and the continuous embedding (2.4) yield(∫
Ω

µ(x)γ |unηi|τ
⋆
i +ε log

τ⋆i +ε

N (e+ ω|unηi|) dx
) τ⋆i
τ⋆
i
+ε

≤ ∥unηi∥
τ̃⋆i
B̃,Ω

≤ C31 [unηi]
τ̃⋆i
s,H,Ω ≤ C32

S̃ τ̃⋆i

p
−
i

n,i + S̃

τ̃⋆i

q
−
i

+σ̃

n,i

 ,

with τ̃⋆i given by (4.26). Similar to (4.27) one has

Zn+1 ≤ C33

∣∣Aψn+1

∣∣ ε

ς++τ++ε

(
S̃1+θ̃1
n,i + S̃1+θ̃2

n,i

)
, (4.49)

with

0 < θ̃1 := min
1≤i≤m

min

{
ς−i

p−i + σ̃
,

τ−i
q−i + σ̃

}
− 1 ≤ θ̃2 := max

1≤i≤m
max

 ς+i +
ς+i
N

p−i
,
τ+i +

τ+
i

N

p−i

− 1.

Let
S̃n,i = J̃1 + 2J̃2, (4.50)

where

J̃1 =

∫
Bi

∫
Bi

(
|un(x)ηi(x)− un(y)ηi(y)|p

−
i

|x− y|sp−i
log

(
e+ ω

|un(x)ηi(x)− un(y)ηi(y)|
|x− y|s

)

+ µ(x, y)
|un(x)ηi(x)− un(y)ηi(y)|q

−
i

|x− y|sq−i
log

(
e+ ω

|un(x)ηi(x)− un(y)ηi(y)|
|x− y|s

))
dν,

and

J̃2 =

∫
Ω\Bi

∫
Bi

(
|un(x)ηi(x)− un(y)ηi(y)|p

−
i

|x− y|sp−i
log

(
e+ ω

|un(x)ηi(x)− un(y)ηi(y)|
|x− y|s

)

+ µ(x, y)
|un(x)ηi(x)− un(y)ηi(y)|q

−
i

|x− y|sq−i
log

(
e+ ω

|un(x)ηi(x)− un(y)ηi(y)|
|x− y|s

))
dν.
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By (4.9), (4.13) and (4.30) we get

J̃1 =

∫
Bi

∫
Bi

(
|un(x)ηi(x)− un(y)ηi(y)|p

−
i

|x− y|N+sp−i
log

(
e+ ω

|un(x)ηi(x)− un(y)ηi(y)|
|x− y|s

)

+ µ(x, y)
|un(x)ηi(x)− un(y)ηi(y)|q

−
i

|x− y|N+sq−i
log

(
e+ ω

|un(x)ηi(x)− un(y)ηi(y)|
|x− y|s

))
dx dy

≤ 2p
+
i +1

∫
Bi

∫
Bi

|un(x)− un(y)|p
−
i

|x− y|N+sp−i
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)
dx dy

+ 2p
+
i +1 max{∥∇ηi∥

p−i∞ , ∥∇ηi∥
p−i +1
∞ }

×
∫
Bi

(∫
Bi

dx

|x− y|N+(s−1)(p−i +1)

)
|un(y)|p

−
i log(e+ ω|un(y)|) dy

+ 2q
+
i +1

∫
Bi

∫
Bi

µ(x, y)
|un(x)− un(y)|q

−
i

|x− y|N+sq−i
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)
dx dy

+ 2q
+
i +1∥µ∥∞ max{∥∇ηi∥

q−i∞ , ∥∇ηi∥
q−i +1
∞ }

×
∫
Bi

(∫
Bi

dx

|x− y|N+(s−1)(q−i +1)

)
χµ(y)|un(y)|q

−
i log(e+ ω|un(y)|) dy

≤ C34

∫
Bi

∫
Bi

(
|un(x)− un(y)|p

−
i

|x− y|sp−i
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)

+ µ(x, y)
|un(x)− un(y)|q

−
i

|x− y|sq−i
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

))
dν

+ C35

∫
Bi

|un(y)|p
−
i log(e+ ω|un(y)|) + µ(y)|un(y)|q

−
i log(e+ ω|un(y)|) dy

≤ C36

∫
Aψn+1

∩Bi

[
u(x)ς(x) log

ς(x)
N (e+ ωu(x)) + µ(x)γu(x)τ(x) log

τ(x)
N (e+ ωu(x))

]
dx

+ C
∣∣Aψn+1

∣∣
≤ C37

(
1 + ψ−ς+

∗

)
2n(α0+

α0
N )Zn,

(4.51)

and

J̃2 =

∫
Ω\Bi

(∫
Bi

|un(x)ηi(x)|p
−
i

|x− y|N+sp−i
log

(
e+ ω

|un(x)ηi(x)|
|x− y|s

)

+ µ(x, y)
|un(x)ηi(x)|q

−
i

|x− y|N+sq−i
log

(
e+ ω

|un(x)ηi(x)|
|x− y|s

)
dx

)
dy

≤
∫
supp(ηi)∩Aψn+1

(∫
Ω\Bi

dy

|x− y|N+sp−i
+

∫
Ω\Bi

dy

|x− y|N+s(p−i +1)

)
× |un(y)|p

−
i log(e+ ω|un(y)|) dx

+ ∥µ∥∞
∫
supp(ηi)∩Aψn+1

(∫
Ω\Bi

dy

|x− y|N+sq−i
+

∫
Ω\Bi

dy

|x− y|N+s(q−i +1)

)
× χµ(x)|un(y)|q

−
i log(e+ ω|un(y)|) dx

≤ C38

∫
Aψn+1

∩Bi
|u(x)|p

−
i log(e+ ω|u(x)|) + µ(x)|u(x)|q

−
i log(e+ ω|u(x)|) dx

≤ C39

(
1 + ψ−ς+

∗

)
2n(α0+

α0
N )Zn,

(4.52)
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Inequality (4.8) and (4.50), (4.51), as well as (4.52) imply

S̃1+θ̃1
n + S̃1+θ̃2

n ≤ C40

(
1 + ψ

−ς+(1+θ̃2)
∗

)
2n(α0+

α0
N )(1+θ̃2)

(
Z1+θ̃1
n + Z1+θ̃2

n

)
, (4.53)

which along with (4.7), (4.49), (4.53) gives

Zn+1 ≤ C41

(
ψ−ρ̃1
∗ + ψ−ρ̃2

∗
)
k̃n
(
Z1+θ̃1
n + Z1+θ̃2

n

)
for all n ∈ N0,

where

0 < ρ̃1 :=
ες−

ς+ + τ+ + ε
< ρ̃2 := ς+

(
1 + θ̃2

)
+

ες+

ς+ + τ+ + ε

1 < k̃ := 2
(α0+

α0
N )(1+θ̃2) ες+

ς++τ++ε ,

0 < γ̃1 := θ̃1 +
ε

ς+ + τ+ + ε
≤ γ̃2 := θ̃2 +

ε

ς+ + τ+ + ε
.

Finally, repeating the arguments of Step 3 in the proof of Theorem 4.2, gives the assertion. □

4.2. Critical growth. In this subsection we discuss the critical case. Recall that in Subsection 4.1, to apply the
Hölder inequality in (4.17) we require that there exists ε > 0 such that ς⋆ + ε < (p−i )

∗
s and τ⋆ + ε < (q−i )

∗
s with

⋆ ∈ {−,+}. However, in this subsection, we assume that ς(x) = (p−)∗s and τ(x) = (q−)∗s for all x ∈ Ω, so we
cannot find ε > 0 satisfying the above conditions anymore. Hence, we consider a different argument to show the
boundedness of weak solutions to problem (1.1), and under this argument, the inequality (4.2) is invalid. Now, we
state our hypotheses on the data.

(H3) (i) Assume f : Ω×R → 2R\{∅} is graph measurable and f(x, ·) : R×RN → 2R\{∅} is upper semicontinuous
for a.a.x ∈ Ω.

(ii) Let ς, τ ∈ C(Ω) such that p+ < ς(x) = (p−)∗s and q+ < τ(x) = (q−)∗s for all x ∈ Ω. Suppose that there
exists a constant β > 0 satisfying

sup{|ξ| : ξ ∈ f(x, t)}

≤ β

[
|t|(p

−)∗s−1 log
ς(x)
N (e+ ω|t|) + µ(x)γ |t|τ(x)−1 log

(q−)∗s
N (e+ ω|t|) + 1

]
for a.a.x ∈ Ω and for all t ∈ R.

Theorem 4.5. Let hypotheses (H1) and (H3) be satisfied. Then, for any weak solution u ∈ W s,H
0 (Ω) of problem

(1.1) is bounded, that is u ∈ L∞(Ω).

Proof. As done in Subsection 4.1, let Bi ⊂ RN be open balls of radius R with i ∈ I := {1, · · · ,m} and let {Bi}mi=1

be a finite open covering of Ω such that Ωi := Bi ∩ Ω for i ∈ I are Lipschitz domains. For any i ∈ I, we choose R
small enough such that

q+i <
(
p−
)∗
s

for all i ∈ I.

Let Aψ still be defined by (4.4), suppose u ∈W s,H
0 (Ω) is a weak solution of problem (1.1) in the sense of definition

4.1, and choose ψ∗ ≥ 1 large enough such that∫
Ω

∫
Ω

(
|u(x)− u(y)|p(x,y)

|x− y|sp(x,y)
log

(
e+ ω

|u(x)− u(y)|
|x− y|s

)

+ µ(x, y)
|u(x)− u(y)|q(x,y)

|x− y|sq(x,y)
log

(
e+ ω

|u(x)− u(y)|
|x− y|s

))
dν +

∫
Aψ∗

B∗(x, |u|) dx < 1,

(4.54)

with

B∗(x, t) := t(p
−)∗s log

(p−)∗s
N (e+ ωt) + µ(x)γt(q

−)∗s log
(q−)∗s
N (e+ ωt),

for all x ∈ Ω and for all t ≥ 0. Note that for any n ∈ N0, ψn is still given by (4.5).
In the sequel, for any n ∈ N0 we define Zn by

Zn :=

∫
Aψn

[
(u− ψn)

(p−)∗s log
(p−)∗s
N (e+ ω(u− ψn)) + µ(x)γ (u− ψn)

(q−)∗s log
(q−)∗s
N (e+ ω(u− ψn))

]
dx.
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Note that u ≥ u− ψn+1 ≥ 0 and u > ψn+1 ≥ 1 on Aψn+1 , similar to the proof of Theorem 4.2, we have∫
Ω

∫
Ω

(
|un(x)− un(y)|p(x,y)

|x− y|sp(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)

+ µ(x, y)
|un(x)− un(y)|q(x,y)

|x− y|sq(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

))
dν

≤
∫
Ω

β

[
|u|(p

−)∗s−1 log
(p−)∗s
N (e+ ω|u|) + µ(x)γ |u|(q

−)∗s−1 log
(q−)∗s
N (e+ ω|u|) + 1

]
un(x) dx

≤ 2β

∫
Aψn+1

[
u(p

−)∗s log
(p−)∗s
N (e+ ωu) + µ(x)γu(q

−)∗s log
(q−)∗s
N (e+ ωu)

]
dx

≤ C42

∫
Aψn+1

([(
2n+2 − 1

)
(u− ψn)

](p−)∗s log
(p−)∗s
N

[
e+ ω

(
2n+2 − 1

)
(u− ψn)

]
+µ(x)γ

[(
2n+2 − 1

)
(u− ψn)

](q−)∗s log
(q−)∗s
N

[
e+ ω

(
2n+2 − 1

)
(u− ψn)

])
dx

≤ C432
n

(
(q−)∗s+

(q−)∗s
N

)
Zn.

Let {ηi}mi=1 be a partition of unity of Ω with respect to {Bi}mi=1, namely, for each i ∈ I, ηi ∈ C∞
c (RN ), supp(ηi) ⊂ Bi,

0 ≤ ηi ≤ 1, and
m∑
i=1

ηi = 1 on Ω.

By applying Jensen’s inequality we get

Zn+1 =

∫
Aψn+1

[
u
(p−)∗s
n log

(p−)∗s
N (e+ ωun) + µ(x)γu

(q−)∗s
n log

(q−)∗s
N (e+ ωun)

]
dx

≤ mmax{(p−)∗s ,(q
−)∗s}

m∑
i=1

[∫
Aψn+1

|unηi|(p
−)∗s log

(p−)∗s
N (e+ ω|unηi|)

+µ(x)γ |unηi|(q
−)∗s log

(q−)∗s
N (e+ ω|unηi|) dx

]
.

By Proposition 2.12, we see that

W s,H
0 (Ω) ↪→ LB∗

(Ω) ,

then

Zn+1 ≤ mmax{ι+,π+}
m∑
i=1

∫
Ω

B∗ (x, |unηi|) dx.

From assumption (4.54) we have∫
Ω

B∗ (x, |unηi|) dx ≤ ∥unηi∥
(p−)∗s
B∗,Ω ≤ C44[unηi]

(p−)∗s
s,H,Ω ≤ C45(Sn,i)

(p−)∗s
q
+
i

+σ ,

where Sn,i is given by (4.24). So, we get

Zn+1 ≤ C46

(
S1+ϑ1
n,i + S1+ϑ2

n,i

)
for all n ∈ N0 (4.55)

with

0 < ϑ1 := min
1≤i≤m

(p−)∗s
q+i + σ

− 1 ≤ ϑ2 := max
1≤i≤m

(p−)∗s
q+i + σ

− 1,

where σ > 0 satisfies

σ < (p−)∗s − q+i for i ∈ I.
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Recalling (4.28) we make the similar estimation of J1 and J2, that is

J1 ≤ C47

∫
Bi

∫
Bi

(
|un(x)− un(y)|pi(x,y)

|x− y|spi(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)

+ µ(x, y)
|un(x)− un(y)|qi(x,y)

|x− y|sqi(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

))
dν

+ C48

∫
Bi

|un(y)|p
+
i log(e+ ω|un(y)|) + µ(y)|un(y)|q

+
i log(e+ ω|un(y)|) dy

+ C48

∫
Bi

|un(y)|p
−
i log(e+ ω|un(y)|) + µ(y)|un(y)|q

−
i log(e+ ω|un(y)|) dy

≤
∫
Ω

∫
Ω

(
|un(x)− un(y)|p(x,y)

|x− y|sp(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

)

+ µ(x, y)
|un(x)− un(y)|q(x,y)

|x− y|sq(x,y)
log

(
e+ ω

|un(x)− un(y)|
|x− y|s

))
dν

+ C49

∫
Aψn+1

∩Bi

[
u(x)(p

−)∗s log
(p−)∗s
N (e+ ωu(x)) + µ(x)γu(x)(q

−)∗s log
(q−)∗s
N (e+ ωu(x))

]
dx,

≤ C502
n

(
(q−)∗s+

(q−)∗s
N

)
Zn,

and J2 ≤ C512
n

(
(q−)∗s+

(q−)∗s
N

)
Zn. Hence

Sn,i ≤ C522
n

(
(q−)∗s+

(q−)∗s
N

)
Zn for all n ∈ N0.

Therefore, we get

S1+ϑ1
n,i + S1+ϑ2

n ≤ C532
n

(
(q−)∗s+

(q−)∗s
N

)
(1+ϑ2)

(
Z

1+ϑ1

n + Z
1+ϑ2

n

)
. (4.56)

Taking (4.55) and (4.56) into account, we arrive at

Zn+1 ≤ C54k̄
n
(
Z

1+ϑ1

n + Z
1+ϑ2

n

)
for all n ∈ N0, (4.57)

where

1 < k̄ := 2

(
(q−)∗s+

(q−)∗s
N

)
(1+ϑ2)

.

Using Lemma 2.15, we see that (4.57) yields

Zn → 0 as n→ ∞, (4.58)

if we choose ψ∗ > 1 large enough such that

Z0 =

∫
Ω

[
(u− ψ∗)

(p−)∗s
+ log

(p−)∗s
N (e+ ω(u− ψ∗)+)

+µ(x)γ (u− ψ∗)
(q−)∗s
+ log

(q−)∗s
N (e+ ω(u− ψ∗)+)

]
dx

≤ min

{
(2C54)

− 1
ϑ1 k̄

− 1

ϑ21 , (2C54)
− 1
ϑ2 k̄

− 1
ϑ1ϑ2

−ϑ2−ϑ1
ϑ22

}
.

Thus by (4.58) and Lebesgue’s dominated convergence theorem we arrive at

Zn =

∫
Ω

[
(u− ψn)

(p−)∗s
+ log

(p−)∗s
N (e+ ω(u− ψn)+)

+µ(x)γ (u− ψn)
(q−)∗s
+ log

(q−)∗s
N (e+ ω(u− ψn)+)

]
dx
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→
∫
Ω

[
(u− 2ψ∗)

(p−)∗s
+ log

(p−)∗s
N (e+ ω(u− 2ψ∗)+)

+µ(x)γ (u− 2ψ∗)
(q−)∗s
+ log

(q−)∗s
N (e+ ω(u− 2ψ∗)+)

]
dx→ 0,

as n→ ∞. This implies that

ess sup
x∈Ω

u(x) ≤ 2ψ∗.

Similarly, replacing u with −u, it can be shown that

ess sup
x∈Ω

(−u)(x) ≤ 2ψ∗.

Therefore,

∥u∥∞,Ω ≤ 2ψ∗,

with ψ∗ ∈ R. □

Since problem (P2) and (P3) are special cases of problem (1.1), we obtain the following corollaries.

Corollary 4.6. Let hypotheses (H1) and (H2) (or (H2’)) be satisfied with ω = 0. Then every weak solution

u ∈W s,H2

0 (Ω) of problem (P2) belongs to L∞(Ω) and it holds

∥u∥∞,Ω ≤ Cmax
{
∥u∥ℓ1B,Ω, ∥u∥

ℓ2
B,Ω

}
,

with C, ℓ1, ℓ2 being positive constants independent of u. Moreover, if hypotheses (H1) and (H3) hold, then any weak
solution of problem (P2) belongs to L∞(Ω).

Corollary 4.7. Let hypotheses (H1) and (H2) (or (H2’)) be satisfied with ω = 0. Then every weak solution

u ∈W s,H3

0 (Ω) of problem (P3) belongs to L∞(Ω) and it holds

∥u∥∞,Ω ≤ Cmax
{
∥u∥ℓ1B,Ω, ∥u∥

ℓ2
B,Ω

}
,

with C, ℓ1, ℓ2 being positive constants independent of u. Moreover, if hypotheses (H1) and (H3) hold, then any weak
solution of problem (P3) belongs to L∞(Ω).

5. Application

In this section, we consider the existence of weak solutions to the following single valued elliptic problem driven
by the fractional double phase operator with variable exponents and logarithmic perturbation:{

(−∆)
s
H u = f(x, u), in Ω,

u = 0 on RN \ Ω,
(5.1)

where Ω, s, and p satisfy (H1). Furthermore, based on the priori bounds we obtained in Section 4, we will show
the existence of infinitely many small weak solutions of (5.1) with the modified functional method applied by Ho–
Kim [35] and Wang [60]. Moreover, under appropriate conditions, we show that the solutions are non-negative
by applying the maximum principle established in Section 3. We will use a variational argument to establish the
existence results, and the proof is mainly based on the following lemma, see Heinz [34] for more details.

Lemma 5.1. Let X be a Banach space. Assume that I ∈ C1(X,R) and I is even, bounded from below and satisfies
the (PS)-condition with I(0) = 0. If for any n ∈ N, there exist an n-dimensional subspace Xn and rn > 0 satisfying

sup
Xn∩Srn

I < 0,

where Sr := {u ∈ X : ∥u∥X = r}, then I has a sequence of critical values cn < 0 such that cn → 0 as n→ ∞.

We suppose the following assumptions on the nonlinearity f :

(F1) The function f : Ω× R → R is a Carathéodory function such that

|f(x, t)| ≤ C(1 + |t|r(x)−1)

for a.a.x ∈ Ω, for all t ∈ R, for some constant C and r ∈ C(Ω) with 1 < r(x) ≤ p−.
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(F2) There exists a constant a > 0 such that

f is odd in t and p−F (x, t)− f(x, t)t > 0,

for a.a.x ∈ Ω and for all 0 < |t| < a, where F (x, t) :=
∫ t
0
f(x, τ) dτ .

(F3) limt→0
f(x,t)

|t|r(x)−2t
= +∞ uniformly for a.a.x ∈ Ω.

(F4) f(x, t) ≥ 0 for a.a.x ∈ Ω and t ∈ R.
Next, we prove the existence of infinitely many small solutions to problem (5.1). The proof is divided into several

steps, see also Ho–Kim [35] and Wang [60], in the following way:

(i) Modify the function f to f̃ and then construct a modified functional Ẽ.

(ii) Prove that the modified functional Ẽ satisfies the conditions of Lemma 5.1 to get a sequence of critical

points {un}n∈N such that Ẽ(un) → 0 as n→ ∞.

(iii) Show that un → 0 in W s,H
0 (Ω) and apply Theorem 4.2 to get ∥un∥∞,Ω → 0 as n → ∞. Finally, we verify

that un are solutions of the original problem (5.1).

Our existence result read as follows.

Theorem 5.2. Let hypotheses (H1) and (F1)–(F3) be satisfied. Then problem (5.1) has a sequence of weak solutions
{un}n∈N satisfying ∥un∥∞,Ω → 0 as n→ ∞. In addition, if (F4) hold, then the weak solutions un are non-negative.

Proof. First, we introduce the functional I : W s,H
0 (Ω) → R given as

I(u) =
∫
Ω

∫
Ω

(
|u(x)− u(y)|p(x,y)

p(x, y)|x, y|N+sp(x,y)
log

(
e+ ω

|u(x)− u(y)|
|x− y|s

)

+ µ(x, y)
|u(x)− u(y)|q(x,y)

q(x, y)|x, y|N+sp(x,y)
log

(
e+ ω

|u(x)− u(y)|
|x− y|s

))
dx dy,

for all u ∈W s,H
0 (Ω). Recalling Proposition 2.14, it is not hard to check that I ∈ C1(W s,H

0 (Ω),R) and its Gâteaux

derivative A : W s,H
0 (Ω) → (W s,H

0 (Ω))∗ is given by

⟨A(u), v⟩ =
∫
Ω

∫
Ω

(
|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+sp(x,y)
log

(
e+ ω

|u(x)− u(y)|
|x− y|s

)
+
ω|u(x)− u(y)|p(x,y)−1(u(x)− u(y))(v(x)− v(y))

|x− y|N+s(p(x,y)+1)
(
e+ ω |u(x)−u(y)|

|x−y|s

)
+ µ(x, y)

|u(x)− u(y)|q(x,y)(u(x)− u(y))(v(x)− v(y))

|x− y|N+sq(x,y)
log

(
e+ ω

|u(x)− u(y)|
|x− y|s

)
+ µ(x, y)

ω|u(x)− u(y)|q(x,y)−1(u(x)− u(y))(v(x)− v(y))

|x− y|N+s(q(x,y)+1)
(
e+ ω |u(x)−u(y)|

|x−y|s

) )
dx dy,

for all u, v ∈W s,H
0 (Ω).

In order to apply Lemma 5.1, we first modify the nonlinear function f to f̃ . Precisely, one can deduce from (F2)
and (F3) that there exits a1 ∈ (0, a) such that

F (x, t) ≥ |t|r(x) for a.a.x ∈ Ω and for all |t| < a1. (5.2)

Next, we choose a2 ∈ (0, a1/2) and take ϕ ∈ C1(R,R) to be an even function satisfying

ϕ(t) =

{
1, |t| ≤ a2,

0, |t| ≥ 2a2,
|ϕ′(t)| ≤ 2/a2 and ϕ′(t)t ≤ 0.

Next, we define

F̃ (x, t) := ϕ(t)F (x, t) + (1− ϕ(t))β|t|p
−
,
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where

β ∈

(
0,min

{
1

p−Ce1Ce2
,

1

q+C ′p−Cp
−

e3

})
(5.3)

with C ′ given by (2.1), Ce1 is the embedding constant from W s,p−

0 (Ω) to Lp
−
(Ω), Ce2 is the constant such that

∥u∥
W s,p−

0

≤ Ce2[u]s,p− and Ce3 is the embedding constant from W s,H
0 (Ω) to Lp

−
(Ω). Then, the modified function

f̃ is given by

f̃(x, t) :=
∂

∂t
F̃ (x, t).

Moreover, we consider the modified energy functional Ẽ : W s,H
0 (Ω) → R defined by

Ẽ(u) = I(u)−
∫
Ω

F̃ (x, u) dx, u ∈W s,H
0 (Ω).

By the definition of F̃ and f̃ , we see that F̃ is even in t and

f̃(x, t) = ϕ′(t)F (x, t) + ϕ(t)f(x, t)− ϕ′(t)β|t|p
−
+ (1− ϕ(t))βp−|t|p

−−2t. (5.4)

Thus,

p−F̃ (x, t)− f̃(x, t)t = ϕ(t)[p−F (x, t)− f(x, t)t]− ϕ′(t)t[F (x, t)− β|t|p
−
]. (5.5)

Recalling the definition of ϕ, by (5.2), (5.4) and (5.5) we get

p−F̃ (x, t)− f̃(x, t)t ≥ 0 for a.a.x ∈ Ω and for all t ∈ R, (5.6)

p−F̃ (x, t)− f̃(x, t)t = 0 if and only if t = 0 or |t| ≥ 2a2. (5.7)

Recalling (F1) and the definition of ϕ, F̃ and f̃ we can find C > 0 such that

F̃ (x, t) ≤ C + β|t|p
−

and |f̃(x, t)| ≤ C
(
1 + |t|p

−−1
)

for a.a.x ∈ Ω and for all t ∈ R. (5.8)

Hence, invoking that I ∈ C1(W s,H
0 (Ω),R) and W s,H

0 (Ω) ↪→ Lp
−
(Ω) one can prove that Ẽ ∈ C1(W s,H

0 (Ω),R).
Now, we are ready to show that Ẽ fulfills the conditions given by Lemma 5.1. It is not hard to see that Ẽ is

even and E(0) = 0. Utilizing (5.8) and Proposition 2.8, we get

Ẽ(u) ≥ 1

q+

(
[u]p

−

s,H − 1
)
− β∥u∥p

−

Lp− (Ω)
− C|Ω|

≥ 1

q+
[u]p

−

s,H − βCp
−

e3 ∥u∥p
−

s,H − C|Ω| − 1

q+

≥ 1

q+
[u]p

−

s,H − βCp
−

e3 C
′p− [u]p

−

s,H − C|Ω| − 1

q+
.

Note that the range of β given in (5.3) implies that Ẽ is coercive and bounded from below on W s,H
0 (Ω). Due to

(5.8) and the compact embedding W s,H
0 (Ω) ↪→↪→ Lp

−
(Ω) we infer that the operator u 7→

∫
Ω
f̃(x, t) dx is compact.

Let {un}n∈N ⊂W s,H
0 (Ω) be a (PS)-sequence, that is Ẽ(un) is bounded and Ẽ′(un) → 0. Then, by the coercivity of

Ẽ, we know that {un}n∈N is bounded. Since W s,H
0 (Ω) is reflexive, {un}n∈N possesses a subsequence still denoted

by {un}n∈N such that un ⇀ u∗ ∈ W s,H
0 (Ω). Hence, due to the compactness of u 7→

∫
Ω
f̃(x, t) dx and applying the

(S+)-property of A, we deduce that un → u∗ ∈W s,H
0 (Ω). This shows that Ẽ satisfies the (PS)-condition.

Next, we choose a fixed n ∈ N and let ϕ1, . . . , ϕn be linearly independent functions. We setXn := span{ϕ1, . . . , ϕn}.
Since Xn is a finite dimensional space, the norms ∥ · ∥∞,Ω, [ · ]s,H,Ω and ∥ · ∥Lp− (Ω) are equivalent on Xn. Thus one

can find c1, c2 > 0 such that

c1∥u∥∞,Ω ≤ [u]s,H,Ω ≤ c2∥u∥Lp− (Ω) for all u ∈ Xn. (5.9)

According to hypotheses (F2) and (F3) we can find a3 ∈ (0, a2) satisfying

F (x, t) ≥ 2cp
−

2

p−
|t|p

−
(5.10)
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for a.a.x ∈ Ω and for all |t| ≤ a3. Next, we take rn := min{1, a3c1}, then by (5.9) we see that for any u ∈ Xn

with [u]p
−

s,H = rn we have |u|s,H < 1 as well as ∥u∥∞,Ω ≤ a3. Note that F̃ (x, u) = F (x, u) for ∥u∥∞,Ω ≤ a3. Then,

Proposition 2.8 and inequality (5.10) yield

Ẽ(u) ≤ 1

p−
[u]p

−

s,H − 2cp
−

2

p−
∥u∥p

−

Lp−
≤ 1

p−
[u]p

−

s,H − 2

p−
[u]p

−

s,H = − (rn)
p−

p−
for all u ∈ Xn ∩ Srn ,

which implies

sup
u∈Xn∩Srn

Ẽ(u) < 0.

Using Lemma 5.1 we infer that there exists a sequence {un}n∈N ⊂W s,H
0 (Ω) with

Ẽ′(un) = 0 for all n ∈ N and Ẽ(un) → 0 as n→ ∞.

Moreover, recall that un → u∗ in W s,H
0 (Ω), due to Ẽ ∈ C1(W s,H

0 (Ω),R), we have Ẽ(u∗) = ⟨Ẽ′(u∗), u∗⟩ = 0, which

gives 1
p− ⟨Ẽ′(u∗), u∗⟩ − Ẽ(u∗) = 0. Taking this and (5.6) into account we arrive at

0 ≤
∫
Ω

∫
Ω

((
1

p−
− 1

p(x, y)

)
|u∗(x)− u∗(y)

p(x,y)|
|x− y|N+sp(x,y)

log

(
e+ ω

|u∗(x)− u∗(y)|
|x− y|s

)
+ µ(x, y)

(
1

p−
− 1

q(x, y)

)
|u∗(x)− u∗(y)

q(x,y)|
|x− y|N+sq(x,y)

log

(
e+ ω

|u∗(x)− u∗(y)|
|x− y|s

)
+

ω|u∗(x)− u∗(y)|p(x,y)+1

p−|x− y|N+s(p(x,y)+1)
(
e+ ω |u∗(x)−u∗(y)|

|x−y|s

)
+ µ(x, y)

ω|u∗(x)− u∗(y)|q(x,y)+1

p−|x− y|N+s(q(x,y)+1)
(
e+ ω |u∗(x)−u∗(y)|

|x−y|s

)) dx dy

= −
∫
Ω

(
F̃ (x, u∗(x))−

1

p−
f̃(x, u∗(x))u∗(x)

)
dx ≤ 0.

From the above inequalities and (5.7) we see that

0 ≤
∫
Ω

∫
Ω

((
1

p−
− 1

p(x, y)

)
|u∗(x)− u∗(y)

p(x,y)|
|x− y|N+sp(x,y)

log

(
e+ ω

|u∗(x)− u∗(y)|
|x− y|s

)
+ µ(x, y)

(
1

p−
− 1

q(x, y)

)
|u∗(x)− u∗(y)

q(x,y)|
|x− y|N+sq(x,y)

log

(
e+ ω

|u∗(x)− u∗(y)|
|x− y|s

)
+

ω|u∗(x)− u∗(y)|p(x,y)+1

p−|x− y|N+s(p(x,y)+1)
(
e+ ω |u∗(x)−u∗(y)|

|x−y|s

)
+ µ(x, y)

ω|u∗(x)− u∗(y)|q(x,y)+1

p−|x− y|N+s(q(x,y)+1)
(
e+ ω |u∗(x)−u∗(y)|

|x−y|s

)) dx dy

= 0

and for a.a.x ∈ Ω,

u∗ = 0,

or

|u∗(x)| ≥ 2a2 and u∗ = c,

where c is constant. Hence, F̃ (x, u∗(x)) = 0 or F̃ (x, u∗(x)) = β|u∗|p
−
. Moreover, p(x, y) = p− for a.a.x ∈ Ω

satisfying |u∗(x)| ≥ 2a2. This implies

0 = Ẽ ≥
∫
Ω

∫
Ω

1

p(x, y)

|u∗(x)− u∗(y)|p(x,y)

|x− y|N+sp(x,y)
dx dy −

∫
Ω

F̃ (x, u∗(x)) dx
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=

∫
Ω

∫
Ω

1

p−
|u∗(x)− u∗(y)|p

−

|x− y|N+sp−
dx dy −

∫
Ω

F̃ (x, u∗(x)) dx

≥ 1

p−
[u∗]

p−

s,p− −
∫
Ω

β|u∗|p
−
dx

=
1

p−
[u∗]

p−

s,p− − β∥u∗∥p
−

Lp−

≥ 1

p−
[u∗]

p−

s,p− − βCe1Ce2[u∗]
p−

s,p−

Due to β < 1
p−Ce1Ce2

, it holds that u∗ = 0. That means un → 0 in W s,H
0 (Ω), so ∥un∥B,Ω → 0 as n→ ∞. Note that

under the hypotheses (F1), f satisfies hypotheses (H2) (or (H2’)). Then we deduce from Theorem 4.2 (or Theorem
4.4) that ∥un∥∞,Ω → 0. Hence, ∥un∥∞,Ω ≤ a2 for n large enough, which means that {un}n∈N is a sequence of weak
solutions to problem (5.1) for n large enough.

Furthermore, if f(x, t) ≥ 0 for a.a.x ∈ Ω and for all t ∈ R, we see that{
(−∆)

s
H u ≥ 0, in Ω,

u = 0 on RN \ Ω.

Hence, employing Theorem 3.1 we see that u(x) ≥ 0 for x ∈ Ω and if there exists some point x0 ∈ Ω such that
u(x0) = 0, then u(x) = 0 for a.a.x ∈ RN . This ends the proof. □
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