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ABSTRACT. In this paper, we study multivalued nonlocal elliptic problems driven by the fractional double phase
operator with variable exponents and w-logarithmic perturbation formulated by
{(-A); w€ Flz,u)  inQ,
u=0 on RN\ Q.
We are going to establish maximum principles for the fractional perturbed double phase operator and show the

boundedness of weak solutions to the above problem. Finally, under appropriate assumptions we discuss the existence
of infinitely many small (non-negative) weak solutions to a single-valued nonlocal double phase problem.

This paper is dedicated with esteem to Professor Shujie Li on the occasion of his 85th birthday

1. INTRODUCTION

In the last years, problems involving fractional-order operators have been studied intensively due to their math-
ematical challenges and various real applications in fluid mechanics, relativistic quantum mechanics, conformal
geometry, probability and molecular dynamics, see Bertoin [11], Cabré-Tan [14], Caffarelli-Vasseur [15] and Chen—
Li-Ma [18] for more details. Particularly, the studies for problems involving fractional double phase operators have
attracted much attention for their compelling theoretical framework and diverse practical applications. Recently, de
Albuquerque—de Assis—Carvalho—Salort [23] established some abstract results on a new class of fractional Musielak-
Sobolev spaces including uniformly convexity, Brézis-Lieb type Lemma and Radon-Riesz property to the modular
function, (Sy)-property and monotonicity. In this paper, based on the results obtained by de Albuquerque—de
Assis—Carvalho—Salort [23] for the solution space and the operator we deal with multivalued nonlinear problems
with Dirichlet boundary condition of the form

{(A); u € F(z,u) in Q,

1.1
u=0 on RV \ Q, (L)

for u € W™ () (see Section 2), where Q is a bounded domain of RN(N > 2) with Lipschitz boundary 9,
F: QxR — 28\ {0} is multivalued function, the associated variable exponent fractional double phase operator
with logarithmic perturbation is given as

(—A)5 u(x) := ON s p,q lim vy (x, v, u(z) — u(y)|)

€=0 JrV\ B, (z) |z —yl*
u(z) — u(y)| dy
= CNsp, PV/ H (m,y, |
P SR lz—yl* ) |z —y[Nte
with B.(z) := {z € RN : |z — x| <€}, s € (0,1), Cnsp4 is some constant depending on N, s, p, g while PV denotes
the Cauchy principle value and H: RY x RY x [0,00) — [0, 00) is defined as

H(x,y,t) = [tp("”’y) + plx, y)tq(z’y)} log(e + wt), (1.3)

for all (z,y5) € RY x RY and for all t > 0, where w > 0, p,q € C(RY x RY) such that p(z,y) = p(y,z),
q(z,y) = q(y,z) aswellas 1 < p(z,y) < &, p(z,y) < q(z,y) for all (z,y) € RNV xRN, and 0 < p(-,-) € L'(RY xRY)
satisfies Uy := {(z,y) € RN xRN : p(z,y) < q(z,y)} € Uy :={(z,y) € RY xRV : p(z,y) = 0} and p(z,y) = pu(y, z).

dy
|z — y|N+s

(1.2)
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As we can see, problem (1.1) is driven by a type of fractional double phase operator, which is developed from
the classical double phase operator given by

div (\Vv|p*2Vv + u(x)|Vv|q*2Vv),

associated with the following energy functional

UH/Q(|W|P+M(QJ)\W|Q) dz. (1.4)

This type of energy functional was introduced first by Zhikov in 1986 to describe the nature of certain phenomena
occurring in the theory of elasticity, for example, it can describe the mathematical models of strongly anisotropic
materials as well as the Lavrentiev phenomenon, see Zhikov [70, 71]. In fact, energy functionals with of the form (1.4)
characterizes the phenomenon where the energy density varies its ellipticity and growth characteristics, contingent
upon the specific location within the domain. It can also describe the geometric properties of a composite formed
from distinct two materials characterized by the power hardening exponents p and ¢. Since the energy functional
(1.4) exhibits ellipticity in the gradient of order ¢ when the modulating coefficient u(-) # 0 and exhibits ellipticity
in the gradient of order p when the modulating coefficient u(-) = 0, we call it double phase.

In recent years, the classical double phase operator has been extended to various new class of operators. Crespo-
Blanco—Gasinski-Harjulehto-Winkert [20] considered the double phase operator with variable exponents defined
by

div (|Vv|p(z)72Vv + u(x)|Vv|q(m)72Vv>,

and established some basic properties of this type of operator and the associated Musielak-Orlicz Sobolev spaces.
Furthermore, Vetro—Zeng [59] studied a type of double phase energy functional with log L-perturbed p, g-growth

defined by
I
div (WV@) with  Hp = [t? 4+ p(z)t?] log(e + t).
v
They obtained the properties of the associated Musielak Orlicz-Sobolev space and then proved the existence and
uniqueness results of weak solution for Dirichlet double phase problems, see also Lu—Vetro—Zeng [16] for detailed

results concerning double phase energy operator with log L-perturbed p(-), ¢(-)-growth. For more results involving
the double phase type operator with logarithmic perturbation we refer to the recent work by Arora—Crespo-Blanco—
Winkert [1] who focused on the operator

; pla)-2 |W|} a(a) -2 )
div (Vv| Vv + p(z) {log(e +|Vo|) + e+ Vo) |Vl Vo,

and established the existence and multiplicity results to the related double phase problems. We also mention
some recent existence results for double phase problems, see the works by Guarnotta—Livrea—Winkert [31] (variable
exponent double phase systems), Liu—Dai [45] (existence and multiplicity results of double phase problems), Vetro—
Zeng [59] (double phase Dirichlet problems), Zeng-Bai—-Gasiniski-Winkert [65] (multivalued double phase implicit
obstacle problems), Zeng—Radulescu—Winkert [66] (double phase implicit obstacle problems), and Zeng-Radulescu—
Winkert [67] (nonlocal double phase implicit obstacle problems). Finally, we refer to important works concerning the
regularity of local minimizers of related double phase functionals, see Baroni-Colombo-Mingione [3], Beck-Mingione
[9], Colombo—Mingione [19], Fuchs—Mingione [28] and Marcellini [47, 48], see also the references therein.

It is worth mentioning that more and more impressive studies on fractional double-phase problems have been
carried out recently. To be more precise, by using variational and topological arguments, the existence of weak
solutions to various fractional elliptic or parabolic double phase problems have been established by Ambrosio
[2] (existence of a nontrivial non-negative solution), Ambrosio—Isernia [3] (existence of infinitely many solutions),
Bhakta—Mukherjee [12] (existence of infinitely many nontrivial solutions), Xiang—Ma [64] (existence of normal-
ized ground state solutions), Zhang—Zhang [68] (existence and concentration phenomena of positive solutions) and
Zhang—Zhang-Radulescu [09] (existence of positive ground state solutions). In the direction of Hélder continuity
and boundedness of weak solutions for nonlocal double phase problems we refer to the papers by Byun—-Ok—Song
[13], Fang—Zhang [27] and Prasad—Tewary [53]. In terms of practical application, both integer and fractional double
phase problems can be used in a variety of real-world problems, such as, obstacle problems, nonlinear Derrick’s
problem, transonic flow problems, optimization, finance and image processing. More details can be found in the
works by Bahrouni-Rédulescu—Repovs [6] Benci-D’Avenia—Fortunato—Pisani [10] and Charkaoui-Ben-loghfyry [10].
For very recent advances regarding local and nonlocal double phase problems, we refer to Guo-Liang—Lin—Pucci [32],
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who established global bifurcation results for double phase problems; Liang—Pucci—Van-Nguyen [43], who obtained
multiplicity and concentration results for certain fractional variable-exponent double phase Choquard equations;
Pucci-Wang—Zhang [55], who demonstrated the multiplicity and stability of normalized solutions in nonlocal dou-
ble phase problems; and Pucci-Xiang [56], who found multi-bump solutions for logarithmic double phase critical
Schrédinger equations.

On the one hand, we are going to show the maximum principle for the perturbed fractional double phase operator.
It is well known that the maximum principle is useful for investigating the uniqueness and continuous dependence
of classical solutions for elliptic and parabolic boundary value problems, see Pucci-Serrin [54], Ladyzhenskaya—
Solonnikov-Uralseva [11] and Vladimirov [63]. The general form of the maximum principle implies that the
appropriate solution of the homogeneous equation attains its extreme values on the boundary of the domain and
allows to derive an approximation for the maximum magnitude of the solution. Particularly, maximum principles
can be applied to investigate the stability and convergence of the difference solution in a uniform norm, see for
example Crouzeix—-Thomée [22] and Thomée [57, 58]. Moreover, in Chen-Li [17] and Hu-Peng [39], the authors
combined the maximum principle for anti-symmetric functions and the method of moving planes to establish the
symmetry and monotonicity of positive solutions to nonlocal double phase problems. Motivated by these results, we
will show the maximum principle for the nonlocal double phase operator with logarithmic perturbation in Section
3.

On the other hand, we are interested to get a priori bounds for weak solutions of problem (1.1) with subcritical
and critical growth by utilizing De Giorgi’s iteration (or De Giorgi-Nash—Moser theory) and a localization method.
The beginning of research into the De Giorgi—Nash—Moser theory goes back to the works by De Giorgi [24], Nash [52]
as well as Moser [50]. This theory is a powerful tool for proving local and global L>°-bounds of weak solutions and
establishing the Harnack inequality and the Holder continuity for weak solutions. For more details we refer to the
monographs of Gilbarg—Trudinger [30], Ladyzenskaja—Solonnikov—Ural’ceva [41], Ladyzenskaja—Ural’ceva [42] and
Lieberman [44]. Our proofs for the boundedness of weak solutions of problem (1.1) are mainly inspired by the papers
of Ho—Kim [35] (nonlinear elliptic problems involving the fractional p(-)-Laplacian), Ho-Kim—Winkert-Zhang [37]
(quasilinear elliptic equations involving variable exponents critical growth), Ho—Winkert [38] (generalized double
phase problems with critical and subcritical growth) and Winkert—Zacher [61, 62] (nonlinear elliptic equations with
nonstandard growth). In addition, motivated by the works of Ho-Kim [35] and Wang [60], we will show the existence
of infinitely many small solutions to the nonlinear problems driven by the operator given in (1.2) (see Section 5)
by employing the boundedness of weak solutions obtained in Section 4. More works related to L*°-bounds can be
found in Barletta—Cianchi-Marino [7], Crespo-Blanco-Winkert [21], Frisch-Winkert [29], and Marino—Winkert [19].

To the best of our knowledge, the maximum principle for the perturbed nonlocal double phase operator (1.2) and
the boundedness of weak solutions to problems driven by the fractional double phase operator with variable expo-
nents and logarithmic perturbation have not been studied yet. Moreover, problem (1.1) contains many interesting
special cases as follows:

(P1) Let w = O, = 0 in H (e H(x,y,t) = t!@Y) = H,(x,y,t)). Moreover let F be a single-valued

Carathéodory function f, then problem (1.1) becomes the nonlinear elliptic problem involving the frac-
tional p(-)-Laplacian

(=A)pyu=flr,u) inQ,
u=0 on RV \

(P2) Let w =0 (i.e. H(x,y,t) = tP@Y) 4 p(x,y)t?@Y) =: Hy(x,y,t)), then problem (1.1) becomes the nonlocal

elliptic variable exponents double phase problem,;

(P3) Let 1 < p(-)=pand 1 < q(-) =q (i.e. H(z,y,t) = [t? + p(z,y)t?]log(e + wt) =: Hz(x,y,t)), then problem

(1.1) becomes the perturbed nonlocal double phase problem with constant exponents.

(P4) Let w=0and 1 < p(-) =p,1 < q(-) = ¢ (ie. H(z,y,t) =t + p(z,y)t? =: Ha(x,y,t)), then problem (1.1)

becomes nonlocal double phase problem.

This paper is organized as follows. In Section 2, we recall several basic definitions and notations of variable
exponent Lebesgue spaces and Musielak-Orlicz spaces concerning the perturbed double phase function H. Further-
more, we will give the definition and basic properties of the fractional Musielak-Sobolev space W**(Q), which is
the solution space of the considered problem. In Section 3, we establish the maximum principle for the fractional
perturbed double phase operator (1.2) while in Section 4 we show the main results of this paper, that is, proving the
boundedness of weak solutions to problem (1.1) by applying an appropriate version of De Giorgi’s iteration along
with the localization method. Finally, in Section 5, based on the L*°-bounds of the solutions and the maximum
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principle we prove the existence of infinitely many small non-negative weak solutions to the single-valued nonlocal
double phase problem (5.1).

2. PRELIMINARIES

In this section, we recall some basic results concerning variable exponent Lebesgue spaces, the Musielak-
Orlicz spaces and fractional Musielak-Sobolev spaces, see Diening—Harjulehto-Hést6-Ruzicka [25], Fan—Zhao [20],
Harjulehto-H&sto [33], Kovacik—Rdkosnik [10], Lu-Vetro—Zeng [16] and de Albuquerque—de Assis—Carvalho—Salort
[23] for more details. In the sequel let C' be a constant that will change from line to line, and C, means a constant
depending on the parameter r.

First, we introduce the subset C (Q2) of C(Q) given by

C.(Q):= {g €C(Q): 1< inf g(z) for all x € Q} .
€S

For every 7 € C(Q) we define r~ and r* as

r~:=inf r(z) and 7T :=supr(z),

zeQ zeQ)

and denote by r’ € C;(2) the conjugate variable exponent of r, that is
1 1
@ @)
Let M(£2) be the set of all measurable functions u: Q@ — R, where two functions are considered identical if they
differ only on a Lebesgue-null set. Given a fixed r € C;(£2), the variable exponent Lebesgue space is given by

where the corresponding modular function g,.(.) is defined as

or(y(u) = / Ju|"*)
Q

It is well known that L") () equipped with the Luxemburg norm

lu r(z)
|ullpy = inf$ X > 0: / () dr <1
a LA

forms a separable and reflexive Banach space. Moreover, L™ ()(Q) is the dual space of L™)(€) and the following
Holder type inequality holds:

11
/ luv|dz < [ + ] Nullry 1ol y < 2lullreyllvlle
Q T T

=1 foralzeq.

for all w € L™ (Q) and all v € L™ )(Q). Additionally, if r1, 7, € C(Q) satisfying r1 () < ro(z) for all z € Q, then
the following embedding is valid
L=0(Q) < LmO(Q).

Next, in order to introduce Musielak-Orlicz spaces, we give the definition of N-functions and generalized N-
functions.
Definition 2.1.

(i) A function ¢: [0,00) — [0, 00) is called a N -function if it possesses the following properties: it is continuous,
convex with p(t) =0 if and only if t = 0, Additionally, it fulfills

lim @:O and  lim @:—Foo
t—0+ ¢ t—+oo T
(ii) A function ¢: Q x Q x [0,00) — [0,00) is called a generalized N -function, denoted by ¢ € N(Q x Q), if for
allt >0 (-, -,t) is measurable. Additionally, p(x,x,-) is a N-function for a.a.(x,z) € Q x Q. Similarly,

we can give the definition of functions ¢ € N(Q).

Next, we recall some definitions related to N-functions and generalized N-functions.
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Definition 2.2.
(i) A function p: Q x [0,00) — [0,00) is locally integrable if for all t > 0, (-, t) belongs to L*(Q).
(i1) Let @, € N(Q), we say that ¢ is weaker than 1, denoted by @ < 1), if there exist constants c¢1,co > 0 such
that
p(x,t) < vz, cat) + g(x)  for a.a.xz € Q and for allt > 0,

where 0 < g(-) € LY(Q). Furthermore, o, are equivalent, denoted by @ ~ 1, if o < 1 and in the same
time ¥ < .

(i) Let o, € N(2), we say that ¢ increases essentially slower than ¢ near infinity, denoted by ¢ < 1, if for
every k > 0 the limit

ez, kt)
oo Pz, t)

holds uniformly for a.a.x € Q.

Given ¢ € N(Q2), we can define the associated modular function as

pola) = [ ola.ful o
and the corresponding Musielak-Orlicz space, denoted by L¥?(£), is given as
L?(2) :=={u € M(Q2): there exists A > 0 such that p,(Au) < +o0}.
This space is equipped with the Luxemburg norm given by

lull . = inf {)\ >0: py (%) < 1} .

To simplify the notation, we may write the norm for the domain  as [Ju||,, instead of ||ul, q-
The following useful embedding result can be found in Musielak [51, Theorem 8.5].

Proposition 2.3. If ¢ € N(Q) and ¢ € N(Q) satisfying ¢ < 1, then L¥(Q) — L¥(Q).

Next, we introduce some basic definitions and notations for fractional Musielak-Sobolev spaces which are mainly
taken from the work by de Albuquerque-de Assis—Carvalho—Salort [23].
In the remaining parts of this paper, we define

t
'H(x,y,t):/ h(z,y,7)dr,
0

where h: Q x Q x [0,00) — [0,00). Moreover, we introduce the following assumptions:
(p1) limy—o p(z,y,t) = 0 and lim;_,o ©(z,y,t) = +oo with t — ¢(x,y, t) being continuous on the interval (0, 0o)
for all (z,y) € Q x
(p2) t+— (-, 1) is increasing on (0, c0);
(p3) there exist constants 1 < £ < m < +oo satisfying

.y t)
~ H(w,yt) —
for all (x,y) € Q x Q and for all ¢ € (0, 00).
From de Albuquerque—de Assis—Carvalho—Salort [23], we know that if the function h satisfies conditions (¢1)—

(p3) and h(-, -, t) is measurable for all ¢ > 0, then H is a generalized N-function. Moreover, we consider the function

i~

H: Q% [0,00) = [0,00) given by

t
H(x,t) ::/ h(z,T)dr,
0
where h(z,t) := h(z,z,t) for all (z,t) € Q x [0, 00).
Recall that
Hw,y,t) = [P 4 p(a, )79 log(e +wt) for all (2,,1) € Q x Q x [0, 00).
Throughout this paper we will assume the following hypotheses:
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(H1) p,q € C(RY xRY) such that 1 < inf(, ,)erv xry p(z,y) < SUD(5,4)eRN xRN < Y and p(z,y) < q(z,y) for all
(z,y) € RV xRN with Uy := {(z,y) € RV xRY: p(z,y) < q(z,y)} € Uy := {(z,y) € RN xRV : p(z,y) = 0}
and p(z,y) = p(y,2),q(z,y) = q(y,z) for all (z,y) € RY xRN, 0 < p(,-) € L=(RY x RY) such that
p(x,y) = p(y,x) and p(z) = 0= p(z,y) = 0 for all (z,y) € RN x RN,

Note that
" Np(z,y)
ps(xay) - N _ Sp(x,y)
In the sequel, we use the notations
p = inf p(z,y) and ¢ = sup p(z,y).
(z,y)€EQXQ (z,9)€EQXQ

Moreover, ¢—, g7 can be defined in the same way.

Under the hypotheses of (H1), we deduce from the argument in Section 5 of [23] that h satisfies assumptions
(p1)—(p3) with £ =p~ and m = ¢ + 1.

Let (H1) hold true, it is easy to check that H given in (1.3) is a locally integrable N-function. Then the modular
function related to 7 is given as

pat) = [ o Ju) s
while the corresponding Musielak-Orlicz space is
LQ(Q) ={u € M(Q): pg(Au) < +oo, for some A > 0},
endowed with the Luxemburg norm
ull 5 = inf{)\ > 0: pyg (%) < 1}.
Furthermore, the fractional Musielak-Orlicz space W*7(Q) is defined as

WeH(Q) = {u € Lﬁ(Q): ps#(Au) < oo for some X\ > 0},

where
psa(u) = / / H(z,y,|Dsu(z,y)|)dv for s € (0,1),
with o
dv : dz dy and Dgu(z,y) := M,
|z —ylV [z —yl*

where dv is a regular Borel measure on Q x 2. The Musielak-Sobolev space W*7(Q) is equipped with the norm
[lls 2 = Nlullg + [uls

where [- |53 is called (s, H)-Gagliardo seminorm defined by
U
=i : - < .
[u]sﬂ 1nf{)\>0 Ps,H ()\) _1}
Furthermore, we introduce the following closed subspace of W**(Q) defined by
Wyt (Q) = {u e WSHRY): u=0ae.in RV \Q}.

It is worth to note that since the function H fulfills assumptions (¢1)—(p3), we infer from [23] that the corre-

sponding Musielak-Orlicz Lebesgue space Lﬁ(Q) and the fractional Musielak-Sobolev space W o (2) are separable
and reflexive Banach spaces.
The following boundedness condition is used to established a generalized Poincaré type inequality.

Definition 2.4. Let H € N(Q x Q), then H is said to satisfy the fractional boundedness condition if there exist
some constants C1,Cy > 0 such that

0< Oy <H(1) <Oy forall (z,y) € Qx Q. (By)
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It is easy to check that, if hypotheses (H1) hold, then hypotheses (By) is satisfied with C; = 1 and Cy =
(L4 [[plloo) log(e + w).

The next proposition can be found in the work by Azroul-Benkirane-Shimi-Srati [5, Theorem 2.3].
Proposition 2.5. Let s € (0,1), and let Q be a bounded domain in RN with Lipschitz boundary. If (H1) hold,

then one can find a positive constant C' satisfying

lullz < Cluls
for all uw € WS (Q).
By Proposition 2.5, for all u € WS (Q), we can find A\; > 0 such that

/Qﬁ(x, |u(x)|)dxgAl/Q/QH(x,y,|DSu(x,y)|)du.

Moreover, [-]s% is an equivalent norm of || - |5 on WOS’H(Q), that is
[W]sp¢ < lfulls e < C'[ulspe for all u € Wi (), (2.1)

with C’ being a positive constant. ~
The following proposition gives the relation between the norm of the space L*(£2) and its modular, the proof
can be found in Theorem 2.21 of Lu—Vetro—Zeng [46].

Proposition 2.6. Let hypotheses (H1) be satisfied, u € LQ(Q) and the modular is defined by
pg(u) = / {|u\p($) + ;L(x)|u|q(w)} log(e + wlul)dz  for all u € Lﬁ(Q)
Q

Then for o > 0, the following hold:
(1) lullz =A< pz(%) =1 with u #0;
(ii) lJullg <1 (resp.=1,>1) & pg(u) <1 (resp.=1,>1);
(i) if Jullg < L, then C; a7 < pgy(u) < ullZ ;
() if Jullg > 1, then [ull?) < pglu) < Colulls 7
(v) llullz = 0« pg(u) = 0;
(vi) ||uH3q — 00 & pﬁ(u) — 00;
(vii) [Jullg = 1< pglu) — 1;
(viii) if up — u in LQ(Q) then pg(un) — pg(u).
Remark 2.7. For v > 0, we consider the function f,: [0,00) — [0,00) defined as

’

s

Jor = log” (e + wt)
Obviously, one can find o* > 0 such that fo,r > 0 is increasing for all ¢’ > o*. Also, for 0 < o' < o*, there
exist points t1,ty such that the following hold: if 0 < t < t; and t > to, then f,/ is increasing, conversely, f, is
decreasing for t; <t < tg. So that for any 0 < a < b, we have fy(a) < Cyr - for(b) with Cyr = ;jglg > 1. Hence,
as done in the proof of Proposition 2.21 of [16], we can get the same conclusions given in Proposition 2.6 with

patu) = [ [P + ) ult)] og (e + wful) d,
Q

with o',y > 0 and w > 0.

where v > 0.

Similar to Proposition 2.6, we deduce the following relations between the semi-modular p, #(-) and the (s, H)-
Gagliardo seminorm [-], .

Proposition 2.8. Let (H1) be satisfied and u € W (Q). Then, for o > 0, the following hold:
(i) if [ulare < 1, then 5 [ul?57 < page(u) < [ul? 5y
(i) if [u]s,2 > 1, then [“]f;t < psu(u) < C’g[u](s’;ja.
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Under conditions (¢1)—(¢3) we see that 7: [O +oo) — [0,+00) is an increasing homeomorphism. Next, we
introduce the inverse function of H denoted by H1 satisfying the following conditions:

/H N+3 d7'<oo and / HNiﬂ)dT:oo for all z € Q.

N

We denote by ’;Qj the Musielak-Sobolev conjugate function of H and the inverse function of ﬁj is defined by

(HE) " (,1) /H N+S dT for all € Q and for all ¢t > 0.

In the sequel, we denote by X < Y the continuous embedding from the space X into the space Y. Also, denote
by X —<— Y the compact embedding from X into Y. The next result is due to Azroul-Benkirane-Shimi-Srati [5,
Lemma 2.3].

Lemma 2.9. Let 0 < s’ < 5 < 1, Q be a bounded domain in RN and suppose (H1). Then there exists holds the
continuous embedding W (Q) — W*""(Q) with r € [1,p™).

Next, we give the definition of a Young function.

Definition 2.10. A function ©:[0,00) = [0, 00] is called a Young function if it is convex, continuous, non-constant,
©(0) = 0 and o(t fo 7)dr, where a: [0,00) — [0,00] is a non-decreasing function. Moreover, we denote the
left-continuous inverse ofnp by 0t [0,00) = [0,00) given by

o Ht) = inf{r > 0: (1) >t}
fort>0.

Let H be a Young function such that

/Oo <Hit)> T = oo and /0 (Ht(t)> T dt < 0. (2.2)

Then the corresponding Orlicz target is defined as

for all t > 0, where

o-([ () ")
for all ¢ > 0.

The following continuous embedding with respect to the fractional Orlicz-Sobolev space W (Q) is taken from
Alberico-Cianchi-Pick—Slavikové [1, Theorem 8.1].

Theorem 2.11. Let Q C RY be a bounded domain with Lipschitz boundary and let s € (0,1). If H is a Young
function satisfying conditions (2.2) and Hx is given by (2.3), then there holds

Wt (Q) < L7 (Q),
and the embedding is optimal.

By the definition of W'"' (), under the hypotheses of Theorem2.11, we deduce that W' (Q) — W7 (Q) —
L (). Referring to Example 8.3 by Alberico-Cianchi-Pick—Slavikova [1], we see that if we set

H :=t? log(e+ wt) + u(x)t? log(e + wt),
then
Hy ~H":= ACRE log%(e + wt) + ()t : log%(e + wt),
for 1<p ,q” < %, for all ¢ > 0 and v > 0. Furthermore, we introduce that following function:

B(z,t) =t 1og§5\:’c) (e +wt) + p(z)"t™® log R (e +wt)
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for all v > 0, for all z € Q, and for all ¢ € [0, 00) with ¢,7 € C(Q) such that 1 < ¢(z) < (p7)f and 1 < 7(x) < (¢7)*
for all € Q. It is not hard to see that H < H as well as B < Hx, so we conclude that

Wt Q) - Wt o 175 () < L5(9). (2.4)
According to Theorem 9.1 by Alberico-Cianchi-Pick—Slavikové [1], we get that following compact embedding
theorem.

Proposition 2.12. Let Q@ C RN be a bounded domain with Lipschitz boundary, and let s € (0,1). Assume that
H is a Young function satisfying conditions (2.2) and Hw is given by (2.3). If G is a Young function such that
G < Hn, then there holds &

WH(Q) s LY Q).
Hence, it follows that WS (Q) — W H(Q) < LE(Q).
Finally, we recall some background from the theory of operators of monotone type.

Definition 2.13. Let X be a reflexive Banach space with X* being the corresponding dual space, the duality pairing
is denoted by (-,-) and A: X — X*.

(i) A satisfies the (Sy)-property if u, — u in X and limsup,,_, . (Atn, uy —u) < 0 imply up, — u in X;
(ii) A is monotone (strictly monotone) if (Au — Av,u —v) >0 (> 0) for all u,v € X such that u # v;
(iii) A is coercive if there exists a function g: [0,00) — R with tlim g(t) = oo such that
— 00
(Au, u)

[l x

> g(JJullx) for allu e X.

According to Lemma 3.10 of [23], we have the following properties of the functional

Is}l :ps,'H(u) = / / H(x,y,|DSu(x,y)|)dl/
QJQ

and its Gateaux derivative.

Proposition 2.14. Let (H1) be satisfied. Then I € Cl(WS’H(Q),R) and the Gateaur derivative of Is 4 is given
by

(A(u),v) :/Q/QH’(JJ,y, |Dsu(x,y)|)Dsv(z, y) dv,

for all u,v € WS’H(Q). Moreover, A satisfies the (S4)-property.

We end this section with the following iteration lemma, which is the important tool for the proof of the bound-
edness results of solutions, see Ho-Kim [36, Lemma 4.3] .

Lemma 2.15. Let {Z,},n=0,1,2,..., be a sequence of positive numbers satisfying the recursive inequality
Zpsr S ME" (Z)t + Z)P2) . n=0,1,2,...,
for somek>1, M >0 and v > v1 > 0. If
_a
Zy < min (1, (2M) 7k )

or

1 -1 . 1 _22=m
Zy < min ((2M)nk R (2M) T2k 2 E ) ,
then Z, <1 for some n € NU{0}. Furthermore,
T
Z,, < min <1, (2M)" 7k k‘w) . for all n > ny,

with ng being the smallest n € NU {0} fulfilling Z,, < 1. In particular, Z, — 0 as n — oo.
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3. MAXIMUM PRINCIPLE

In this section, we establish the maximum principle for functions u € W*%(Q). The proof is inspired by Chen—Li
[17].

Theorem 3.1. Let (H1) be satisfied and Q2 be a bounded domain in RN . Let u € W*™(Q) be lower semi-continuous
on Q such that

(—A);, u(x) >0, T € Q,
{u(m) ;107 z e RN\ Q, (3-1)
then
u(zx) >0 in Q. (3.2)

Moreover, if there exists some point xg € Q such that u(zg) = 0, then u(x) = 0 for a.a.x € RN. In addition, if we
assume that

then we have the same conclusions for  being unbounded.

Proof. Suppose that (3.2) fails, then the lower semi-continuity of u on Q implies that there exists z* € € such that
u(z*) = mg%nu <0.

Taking u(z) > 0 for z € RV \ Q into account, we calculate that

s ey Ju(a®) — u@)P Y (u(a”) — u(y)) u(z”) — uly)]
(—=A), u(z*) = CNysp,g PV /]RN ( 2+ — gV ) log ( e+ W T
wlu(z*) — u(y) P (u(@®) — u(y))
* s(p(z*, Ju(z*)—u(y)|
|z% — y[NFsle@p)+l) <e+w | )

T —y|®

Ju(z*) — u(y) |92 (u(z*) — u(y))
‘x* _ y‘N—s-sq(gc*,y)

wwmﬂ—uwwww>%wﬁv—mw>>dy

|2+ — y|N+s(a(e®)+D) (6 1 e —uw)

|z —y[*
u(a*) = u(y) [PV 2 (u(@*) — u(y)) lu(z*) —u(y)|
< CnNspyg /RN\Q < log (e + w)

*

+p(z”,y)

u(e”) = U(y)l>

log <e+w "
% —yl°

+p(z™,y)

|x* — y|5p(w*7y)

wlu(z*) — )PV (u(z*) — u(y))
|$* _ y|N+s(p(;c*,y)+1) (6 Tw ‘"(f*)—u(y)‘)

[z*—yl*

*) _ q(z*,y)—2 *) _ *)
N 1 0 i (10 B ) I R L C B 1]
‘SL‘* _ y|5q(z ,Y) |(E* _ y‘s
. wlu(z*) — u(y) |1 D=1 (u(z*) — uly
Ty |x*|—( 137+‘€(q§x*),|y)+1) (e -s(- i|u()$*)—u((y))?) dy
Y > —y[*
<0.

The above inequality contradicts to the first inequality in (3.1), thus, (3.2) holds true.
On the other hand, if there exists some point z¢ € Q such that u(zo) = 0, then we have

s _ Ju(y) [P0 "2 (—u(y)) Ju(y)|
(_A)H U(.’L'O) = CN,s,p,q PV/R < |x0 fy|N+Sp(I0,y) ].Og €+UJW

wlu(y) P~ (—u(y))
|z — y[N+s(p(@o.v)+1) (e v w%)
To—Y|"

+
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[u(y)| =0 2(<u(y)) Ju(y)]
g —gpaon 8 ( fr y>
wlu(y) 7= (~u(y) ) "

|z — y|N+s(a@o.v)+1) (e + wplsal

+ (o, y)

+ (o, y)

<0,

Combining this with the first inequality in (3.1) implies that the above integral must be zero. Note that we have
proved that v > 0 in RY | thus u(z) = 0 for a.a.z € RV.

Suppose now 2 is unbounded. Then, since lim,_,u(z) > 0 and u is lower semi-continuous, if u(z) > 0 in
Q, we can find z* € Q such that u(z*) = mingu < 0. As done in the above proof we can show the remaining
conclusions. O

The following corollary can be directly derived since Hs given in (P3) is a special case of H.

Corollary 3.2. Let (H1) be satisfied with 1 < p(-,-) = p, 1 < q(-,-) = q and let Q be a bounded domain in RN . Let
u € WH3(Q) be lower semi-continuous on Q such that

(=A)5, u(z) >0, z €,
u(z) >0, r € RN\ Q,
then
u(z) >0 in Q.

Moreover, if there exists some point xo € 0 such that u(zo) = 0, then u(x) =0 for a.a.x € RN . In addition, if we
assume that
then we have the same conclusions for  being unbounded.

In particular, if w = 0, i.e. H(z,y,t) = tP@Y) 4 pu(z, y)t9@Y) = Hy(x,y,t) for (z,y) € RV xRN and for ¢ € [0, 00).
Due to the homogeneity of t*(+) and t2(~) we can establish the maximum principle for anti-symmetric functions,
which is essential for applying the method of moving planes to investigating symmetry and monotonicity of solutions,
see for example Chen—Li [17] and Hu—Peng [39]. To this end, we introduce the following notations. First, we define
the moving planes as

T)\Z{LL’ERN:J:l:)\fOISOHle)\ERN}7
and define the left region of the plane T) as
Z:{xERN:x1</\}.
Moreover, we denote the reflection of z of the plane T by z*, that is
2 = 2\ — 21,29, ..., TN),
and let
w = uy(x) —u(zr) = u(@) — u(z).

Theorem 3.3. Let (H1) be satisfied and suppose that w = 0. Let Q be a bounded domain in ¥ and u € W*72(Q)
be lower semi-continuous on 0 such that

(=A)5, ua(z) — (=A)5, u(z) >0, z € Q, (3.3)
w(z) >0, zeX\Q, .
then
w(z) >0 in Q. (3.4)
Moreover, if there exists some point xg € Q such that w(zo) = 0, then w(z) = 0 for a.a.x € RN. In addition, if we
assume that

li7rn|gc|—>oow(x) 2 Oa

then we have the same conclusions for  being unbounded.
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Proof. Suppose that (3.4) is not true, then we can find a point z* € Q such that
w(z*) = mg%nw < 0.
We set G'(xz,y,t) := [t|P@¥V =2t and G?(x,y,t) := [t|?®¥)=2¢. Tt is not hard to see that t — G'(z,y,t) and
t — G?(z,y,t) are strictly increasing functions with
(G (w9, t) = (p(x,y) = DI 72 > 0,

(G2)’(x,y,t) = (q(x,y) — 1)|t|q(z7y)—2 > 0.
The following inequalities hold

(= A5, un(@®) — (A, ulz)
:CN,s,p,q PV el [$*7y7uA(m*> _ u)\(y)] el [LL'*, y)u(x*) _ u(y)]

RN |x* — y|N+SP(I*,y) dy
G2 [1'*7y,'LL)\(.’K*) —U,\(y)] _G2 [ac*,y,u(m*)—u(y)] *
+ gV [ | e pla ) dy

G ",y un(2%) —ua(y)] = G [2*, y, u(a”) — u(y)]
SCN,S,ILq PV/ |l‘* _ y|N+sp(m*,y)

+ CNos.pa PV/ G [z*, y, ua(2*) —u(y)] = G' [2*, y, u(z™) — ux(y)]

dy

5 |z — yA|N+sp(e™y) dy
G2 [x*vya ’U,)\(l’*) - u)x(y)] — G2 [‘T*vyau(x*) _ U(y)] *
=+ ON,S,P,(I PV/ |$* _ y|N+S’1(m*’y) /,L(I 7y) dy
G2 [:L’*,y,uk(:c*) *U(y)} 7G2 [I*vyau(x*) 7uk(y)] *
+ CN,S,p,q PV/; |$* _ y)\‘N-‘qu(a?*,y) ILL(I ’ y) dy
<COnapyPV ! 1 (3.5)
=YN,s,p,q > ‘(E* — y‘N+sp(w*,y) - |x* — y>\|N+Sp(z*7y) ’
< [GH 2"y, un (@) —ua(y)] = G ",y u(a®) — u(y)]] dy
+ CN,s,p,q PV/ [Gl [.’IJ*, yvu/\(‘r*) - U)\(y)] - Gl [x*,y,u(x*) - ’U,(y)}
b))
dy

+G [z, y, ua(2”) — u(y)] - G 2"y, ula”) — ua(y)]

|Jj* — yk|N+SP(m*,y)
1 1
+CN7S;P;q PV/E |:|$* _y|N+sq(az*,y) - |CE* _y)\‘N-‘rsq(:E*,y)

x [G? 2%,y ua(z*) —ua(y)] — G? [%, y, u(z™) —u(y)]] p(a*,y) dy

 Cxapg PV / [C? [2* 4, ux(2*) — un(w)] — G2 [z*, v, u(*) — u(y)]

dy
|o* — y>\|N+sq(r*7y)

+G? [z, y, un(2”) — u(y)] = G* 27", y, u(z”) — ua()]] p(a*,y)
=CNspg PV(I1 + 12 + I3 + I).
Moreover, since
1 1
o=yl T =l
for any x*,y € %, and by the monotonicity of G1, G? along with [uy(z*) —ux(y)] — [u(z*) —u(y)] = w(z*) —w(y) <0

but not equal to zero, we have I; < 0, and similarly, taking © > 0 into account, we deduce that Is < 0.
On the other hand, by applying the mean value theorem we get

122/ (G 2%y, ua(z®) —ux(y)] — G [2*,y, u(z*) — ur(y)]
b

0

dy
‘l‘* _ y>\ |N+sp(:c* Y)

+G [z, y,ua(27) — u(y)] = G "y, ule”) — u(y)]]
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_ * 1)/ 1)/ dy

= (") [ (€)' €w) + (6" €w)] Gr—siwemar <O
where £(y) € (u(z*) — ur(y), u(a*) — ur(y)) and C(y) € (un(2*) — u(y), u(z*) — u(y)). Thus I < 0, and analo-
gously we get Iy < 0 (note that u > 0). Recall that I; < 0 and I3 < 0, applying (3.5) we conclude that

(=A)3, ua(@™) = (=A)3, u(z”) <0,
which contradicts (3.3). Hence, it must hold w(x*) > 0.
Moreover, if we assume that w(xg) = 0 at some point z¢ € ), then xg is a minimum of w in Q, which indicates

I, =1, =0. So, (3.3) implies I, I3 > 0. However, since [ux(xo)—ux(y)]—[u(zo)—u(y)] = w(zo)—w(y) = —w(y) <0,
it holds Iy, Is < 0. Hence, we conclude that I; = I3 = 0, thus

w(y) =0 foraa.yel,
and by the antisymmetry of w we get
w(y) =0 fora.a.yeR.

Similarly, we get the conclusion for the case that {2 is unbounded. O
Moreover, since H,4 given in (P4) is a special case of Hs given in (P2), we have the following corollary.

Corollary 3.4. Let (H1) be satisfied with w =0 and 1 < p(-,-) =p, 1 < q(-,*) = q. Let Q be a bounded domain in
Y and u € W*H1(Q) be lower semi-continuous on Q such that

(~A)5, ua(e) — (~A)y u(x) 20, zeQ,
w(z) >0, reX\Q,
then
w(z) >0 in .

Moreover, if there exists some point xg € Q such that w(zo) = 0, then w(z) = 0 for a.a.x € RN . In addition, if we

assume that
h7m|m|—>oow($) > Oa

then we have the same conclusions for  being unbounded.

4. BOUNDEDNESS OF WEAK SOLUTIONS

The aim of this section is to obtain a priori bounds for solutions to problem (1.1) with subcritical and critical
growth. The proofs are mainly inspired by Ho-Kim [35], Ho-Kim—Winkert-Zhang [37], Ho-Winkert [38], and
Winkert—Zacher [61, 62] using De Giorgi’s iteration along with the localization method. In this section, we denote
by C;(i € N) positive constants.

Given a fixed u € M(£2) we define

F(u)={£€ M(Q): &(z) € f(z,u(x)) for a.a.z in O},

which is the measurable selection of f(-, u).
First, we introduce the following definition of weak solutions to problem (1.1), which are well defined under the
hypotheses given in this section.

Definition 4.1. A function u € W3™(Q) is said to be a weak solution of problem (1.1), if there exist &(x) €
flx,u(x)) for a.a.x € Q satisfying

/Q/QH/(x,y,|Dsu(x,y)|)st(m,y) -dv = /vadx (4.1)
for allv e WM (Q).
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4.1. Subcritical growth. First, we consider the subcritical case and suppose appropriate growth conditions on f
that guarantee that the set F(u) given above is not empty.
(H2) (i) Assume f: QxR — 2%\ {0} is graph measurable and f(z,-): RxRY — 28\ {{)} is upper semicontinuous
for a.a.z € Q.
(ii) Let v > 0, ¢,7 € C(Q) such that p* < ¢(x) < p(x) and ¢* < 7(z) < ¢*(z) for all z € Q. Suppose
that there exists a constant 8 > 0 satisfying

sup{[¢]: £ € f(z, 1)}

s(z) T(x)
2 (0 4 wlt]) + ()7 log ™ <e+w|t|>+1]

< B[t~ log

for a.a.z € Q and for all t € R.
The next theorem is one of our main results in this section.
Theorem 4.2. Let hypotheses (H1) and (H2) be satisfied. Then, for any weak solution u € WOS’H(Q) of problem
(1.1), 4t holds that u € L*>°() and
¢ ¢

lulloe.0r < € mae {Jull o 1l o} (4:2)
where the positive constants C, {1, are independent of u.
Proof. Assume that u € WOS’H(Q) is a weak solution of problem (1.1). Our proof is divided into several steps.

Step 1. Constructing the iteration sequence and developing basic estimates.
For any n € Ny we define

Zy, = /AW [(u — 1p,)* ) log

s(z)

¥(e+w(u—1n))

(4.3)
@), @
(@) (u =) log ™ (e 4 wlu — ¢n))| de,
with
Ay ={x e Q:u(z) >y}, YeR (4.4)
Moreover, for n € Ny, v, is defined by
1
Yn = s (2 - 2n> ) (4.5)
where ¥, > 0 will be specified later. Obviously, for all n € Ny, we have
Yo /20, and i <ty < 29,
Aw"Jrl C Awn and Zn+1 < Z,.
By the definition of 1), we obtain
u(x) — PYn > u(z) (1 R TR for a.a.x € Ay, .,
and
s(z)
— n s(x)
|Awn+1| < / <uz/z> log™™ (e +w(u —y))de
A’l’n+1 wn-&-l - wn
2§(w)(n+l) (z) s(z)
< ————(u— )" 1og ¥ (e +w(u—y,))dr.
s(z)
Ay, s
This implies
u(z) < (2"% = 1) (u(z) —¢,) for aa.xz € Ay, ,, and for all n € Ny, (4.6)

Ay, | < (zp;c’ n w;“) on st 7 <9 (1 + qu*) 9(ntDs* 7 for all n € Ny. (4.7)
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Let uy := (u — ¥n11)+ for n € Ng. We claim that

|un - un( )|p(x,y) |Un($) - un(y)|
[ (e (ol

u-(xr) —u a(z,y) un () —u
4 () [2n(@) = un(0)] 10g<e+w|n<>n<y)|)>dy (4.8)

Ix—y‘SlI(i’y) ‘x—y|5

S Cl (1 + w;§+) 2n(ao+aWO)Zn’

where ag := max{c",7%}. Now, we are going to verify (4.8). To this end, we take u, = (u — ¥n11), € WS’H(Q)
as test function in (4.1) and obtain

[] <|u — () P () — u(y) ()~ waw) | @rEcEl

|z —y|*Ple) |z —yl*

4 wlu@) — u(y) PV () — u(y)) (un (@) — un(y))

|z — y[sPn)+D) (e T w '“ﬂ?jjﬁy”)

4 /,L(a;‘7y) "UJ(I) — u(y)|4($,y)*2(U(I) - U(y))(un(I) - Un(y)) IOg <€ + w|u(93)—u(y)|>

|z — y|atey) |z —yl*

wlu(@) — u(y) |19 (u() — u(y)) (un (@) — un(y))
+ p(z,y) oz — y|s(q(z,y)+1) (e + ww) > dv

Eup () da
Q

Since (u(z) = u(y))(un (@) = tn(y)) = (un(z) = un(y))? and |u(z) = u(y)| = [un(z) = un(y)], also, > u—1hni1 >0
on Ay,.,, by the above equality, we calculate that

L (gt )

U, () —u q(z,y) () —
+ a7~ un ) 10g(e+wln<>n<y>l)>dy

|w_y|sq(z,y) |x—y|5

< / B{WIC(IH log ¥
Q

<28 [ log ¥

A¢n+1

<e [ (1 =) =) o™

n+1

(e + wlul) + (@)l og ™ (e + wlul) + 1} up(z) dz

(e 4+ wu) + p(z) u™® long(Vw) (e + wu) + 1} dx

[e+w (2% =1) (u = ¥n)]

+u(z) [(2"72 = 1) (u— wn)r(m) logTEVw) [e+w (22— 1) (u— 1/Jn)]) dz + Cs |Ay, ., |
<0 (1 + w;c*) 2n(o¢o+%)zn’

which associated (4.7) indicates (4.8).
Step 2. Localization and estimating Z,,; by Z,.

Let B; C RY be open balls of radius R with i € Z := {1,--- ,m} and let {B;},.7 be a finite open covering of
such that Q; := B; N Q for ¢ € Z are Lipschitz domains. For any ¢ € Z, we choose R small enough such that

Q| < 1, pj = sup p(z,y) < = inf <¢(z) < gf = sup <(2) < (p; * 410
| | (z,y)EB; X B; ( ) z€B;NQ ( ) d 2E€B;NQ ( ) ( i )s ( )
and ¢ := sup qz,y) <7 = inf 7(x) <7 := sup 7(v)< (q[):- (4.11)

(z,y)€Bi x B; z€B;NQ £€B; N
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Let {n;}™, be a partition of unity of Q with respect to {B;}™;, namely, for each i € Z, we have
m
n € C(RY), supp(n;) € B;, 0<m <1 and Zm =1 on . (4.12)
i=1
By applying Jensen’s inequality and the following interpolation inequality
192 <t + ¢ for all t > 0 and for all a1, s, a3 with 0 < a7 < as < as, (4.13)

we get

Zni1 = / (UZ(’”) log ™% (¢ + wuy) + (@) u]® log ¥ (e + wun)) da
A

Y41

m
+ ot
< mmax{c 7T} E / (|un772
i=1 Awn+lin

7i(z) 1Og$ (e + WIun,m'I)> dr

si (@)
N

si(@) log™ ™ (e + w|unn;|)

+ (@) fun i (4.14)

m
+ Ssit
< mmax{c*,'r*} Z/ <|Un771|§’ log™ (6 +W|Un77i|)
i=1" A

1 nQ;

“ log ¥ (e + wlunl)

.
+ Ti
+ (@) fupmi|™ log™ (e + wlunmi|) + [unn;

i log% (e + w|unm|)> dz.

+ (@) [unm;
For any i € Z, r; > 0, and r5 > 0, we define

i

mehmw=/‘ (il 10g™ (e + wluni]) + (@) funi] ™ 1og ¥ (e + wlunmi)| da. (4.15)
A'¢n+1nQ
Then, from (4.14) and (4.15) it follows that
m
Zngr <mm TN L (60 70) Lnils 7)) (4.16)

i=1

Let x € {+,—} for i € Z. Using (4.10) and Hoélder’s inequality for £ > 0 satisfying ¢* +¢& < (p; )¥ and 7 +¢ < (g; )%
we arrive at

Ln,i(gi*a 7-‘*) = /
AI/)n+1

< (/Q |
+(AM@WWM

< |A¢n+1 N Q] sT+rT+e (/ |wnn;
Q

Lunmqu log ™ (e + wlunmi]) + (@) Junm|™ log ¥ (€ + wlumi]) | da
ey

i TE =
|A1/1n+1 N Ql‘ e

si4e site
i log™ N (e+w|unm|)dx)

T

2
F

Tite logT N (e+w|unni|)dx) |[Ay, . N7t (4.17)

*

i)
Fte

i

sl +e site .
iT¢log N (e+w|unnz|)dx>

-

([ e+ 108" (e i o)
Q

Next, we denote

~ « <f Fe « T te
B(z,t) ==t " log ¥ (e +wt) + pu(z)t7 tlog ™~ (e + wt). (4.18)
By Proposition 2.12, we see that ~
W (Q) = LF (9). (4.19)
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Note that for s,t > 0 and r > 1,
(s+1) log(e+ s +t) < (25)" log(e + 25) + (2¢)" log(e + 2¢)
< 2"t 5" log(e + 5) + 2" 1" log(e + 1), (4.20)
and for allt >0, C > 1
log(e + Ct) < C'log(e + t). (4.21)

Invoking the above inequalities, Remark 2.7, (4.10) and the continuous embedding (4.19) we see that there exist
o > 0 such that

o <min{s; —pf, 77 —¢'} forieZ

satisfying
/ [unm;|% T log™ ¥ (e + w|u,n;|) do
Q
(1.22)
cx cx = i,
< ||un77i||;,~1|HEO’Q < Cs[unnil sy, _y0 < Ca | Sply +Sn )

where

a5 ilunlag <1 )

' G+ % i luanillgg > 1,
and

o Jwn ()0 () = un (y)mi (y) [PV [un (@)ni(z) — un(y)mi(y)]
Snﬂ_/g/g( log(e—I—w )

|z — ylopiley) [z —yl*

(4.24)
. _ . ai(z,y) . — .
+ @)~ O  Jn(nte) — @m0l ) g,
oyl ETE
Analogously, by Remark 2.7, (4.11) and the continuous embedding (4.19) we obtain
« T te r}iﬁ
(/ (@) |unmi |7 T log TN (e + wlunmi) dm)
Q
7 7 (4'25)
7 7 = s
< llunnillg g, < Cs lunnil iz < Co | S + 82577 |
with
* if UnNilliz < ].,
R P N (4.2)
5% i uenllgg > 1
From the inequalities (4.16), (4.17), (4.22) and (4.25), we get
S R
Z”""l < 07 |Awn+1 N Qi St Sn:z + Sn:z + Sn:z + Sn:z
Combining this and (4.13) we infer
Zuir < Cs | Ay, |57 (S4E0 4 8147 (4.27)
with
— — + g+ + 'r,+
4 . LY S
0 <6 := min min{f, _:1 }—ISGQ:: max max i _N,TZ — N A 1.
1<i<m p; + o q; + 1<i<m p; p;
Next, let

Spi=Ji+ 2, (4.28)
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where
_ |wn ()i () — wn(y)mi (y) [P ¥ |[un (@)1 (%) — un(y)ni (y)|
Jl_/Bi /Bl< |x_y|sp1(a¢,y) log <6+w |.T—y|s )
| (€)1 () = wn (y)mi (y) |22 |un (@)1 (%) — un (y)n: (y)]
) [z — gl o e+ = =9l ) ) d”’
and

[un (2)1i () — un(y)ni(y )|pi($’y) [un (2)1i () — un(y)m:(y)
Jy = /Q\B,/1 ( ‘x,y|sp1(z Y) log <e+w o=y )

i (2)1s(2) = un () s)| | < L @) - un<y>m<y>|> ) W

+ p(z,y) EJSETRER) lz —yl*

Next, we introduce the indicator function yx,, satisfying x,(x) = 1 if pu(x) > 0 and x,(z) = 0 if u(x) = 0. Applying
inequalities (4.20), (4.21) and the interpolation inequality (4.13) we see that

| (2)7:(2) — wn (y)n; () [P &) [ (2)ni(2) — wn ()0 ()]
- |
J / / |x_y|N+sp1(L,y) og e+ w |x_y|s

) _ . qi(z,y) ) _ .
+u(x’y)|un( )nfi) #1(%)2%) log <e+w|un(:c)m(o;)_ ;L':(y)m(y)> dedy
. Un () = up (y)[P1 Y U () — un(y
< 2P; +1/ / | p— |N+sp?( 3 log e+w|(|x)—y|s() dz dy
+
+ 22 ma { Vil 912}

/ / dx / dzx
X — + T
i \Bi o —y[NHE=Dpe o — y[NH=DEIHD

% (lun (@) + lun ()1 ) Tog(e + wlun (y)]) dy

et [ [ O June) =t

= =y

}

/ / dx / dx
X —+
B \Jp: o — gV EDa S, o -y VDD
- +
X X () (\un<y> % Jun ()| og(e + wlun(y)]) dy
[un(z) — un(y) pile.y) [un(z) — un(y)|
= 09/ / |x T A S Pt

[un () — un(y )‘%(1’9) [tn () — un(y)|
1 — | d
+ o) |z — y|s9:(zv) oslety |z —yl® Y

(4.29)

+2qz+1||u||oomax{uwz [Vmill2

+Cio [ )7 og(e + wlan () + () ()1 08+ (1)) dy

+C10/ [un (y)
B;

where we have used N (1—s)
dx / dz wn (R)Vr
_de _ (4.30)
/Bi z — y[N+G-Dr By (0) 12N FE=Dr (I=9)r

(e + wlun(y)]) dy,

(e + wlun()]) + 1Y) lun (y)|%
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for » > 0 and R’ > 1 satisfying B; C Bg/(0) for all i € Z. Since u > u — 9,41 > 0 on Ay, ,,, associating (4.9) and
(4.13) we calculate that for p; € {p; ,p;,p~,p*} and 4; € {¢; , ¢, ¢, ¢}, there hold

/| )

< / [u(y) [P Tog (e + wlu(y)]) + () |u(y)|% log(e + wlu(y)]) dy
Ay NB;

n+1

P log(e + wlun (y)]) + (y) [un ()| % log(e + wlun (y)]) dy

s(x)

(e + wu(x)) + (@) u(z) @ log & (e + wu(m))} da (4.31)

< Cn/ [u(m)g(x) log
A

Y41 nB;

+C Ay, |
< Cp (1497 2nleot Rz,
Combining (4.29), (4.30) and (4.31) we get
Jy < Chs (1 n w;“) gn(aotR) 7
Similarly, by inequalities (4.13), (4.20), (4.21) and (4.31) we have

) pi(z,y) )
7 :/ [/ '“"(””ﬁl‘,(w ” log (leun(w)m(sx))
o\B; L/B, |z —y[VTepil@y |z —yl

|y () ()] 96>¥) |un (z)mi ()]
1 ——————— ] dz|d
|z — y|N+sai(@y) ogletw |z —yl|* i

</ S T o T
B supp(m)ﬂAwn+1 Q\B; |$ - y‘N+Sp_ Q\B; xr — y|N+s(p++1)

% (Jun @ + lun ()" ) log(e +wlun(y)]) da

dy dy (4.32)
+ [[pllso / / =t / :
supp(m)ﬂAwn+1 Q\B; |l‘ - y|N+éq Q\B; |'T - y|N+s(q++1)

% xu(@) (Jun @) + lun ()T ) 1og(e + wlun(y)]) da

+u(z,y)

< Cu /A u(@)|” log(e +wlu(@)]) + p(@)|u(@)| log(e + wlu(z)]) dz

Vpy1 B

+Cu /A u(z) [P log(e + wlu(@)]) + p(@)|u(@)|?" log(e + wlu(z)|) dz

¢n+1mBi
S C15 (1 + 1/);§+) 2n(a0+%)zn7

where we have used that

dy dy WwN
sup N+sr < N+sr = asr ’
wesupp(n;) Jo\B; [T — Yl 214, 1] STy

with d; := dist(Q\ B;,supp(n;)) > 0 and r > 0.
Inequality (4.8) and (4.28)-(4.32) lead to

S, < Cig (1 + w;<+) 9(e0t5) 7 for all n € No.
Therefore, we get
Sl 4 gl+te < ) (1 I ¢—<+(1+92)) on(ao+52)(1462) (Z1H00 4 Z1+02) (4.33)
n n — * n n . .
Moreover, (4.7) yields

&g

— +
e — == — et —_
sTHrt e S 018 (w* Shartae + w* <++T++E> 2<++T++E Z7§++T++E .

‘ Awn+1
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Taking this and (4.27) as well as (4.33) into account, we get

Znp1 < Cro (V7 + 0, P2) k™ (Z)P + Z)772)  for all n € Ny, (4.34)
where
es™ est
0<pp ::§+—|—j'7+—|—6 < p2 ::§+(1+92)+§++j’7++6
1< ke 2(a0+%)<1+92)ﬁ7
€ 5
0<m ::91+m§72 2292+m-
Recall that oy = max{¢t,7"}.
Step 3. A priori bounds
Referring to Lemma 2.15, we see that (4.34) yield
Z, —0 asn— oo, (4.35)

provided that

Zo < min{ (20 (674 7)) Ik, (20 (04 u) E TR

Note that

(e 4 w(u—1)1)

Zy = /Q {(u - w*)j_(m) log

(2)7 (= )1 log ™™ (e + w(u — 1)) de

4
< / Bz, [u]) da.
Q

We also see that
1 _ 1
/ B(z, |ul) dz < (2C19 (Y57 +¢52)) Tk T,
Q

1 Y2=71

/B(x’ [ul) dz < (2010 (y77 +972)) 7k
Q

is equivalent to

N -1
Yo 4y < (2010) K ( | B ul dx) ,
Q

1 Y271 2
v v < o) K E T ([ Baan)
Q
Moreover,

1 Y2 -1

27" < (2C19) k73T 2 min

1 y2—71

2P < (2C19) " k7T %2 min

is equivalent to

Jy2—71

g > (4019)ﬁ kot Grt 52 max

1 Y271

i > (4019)£ ker Grt 52 max

—_—— —— — —
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,</st<x,|u|>dx>3f},

Hence, if we take

1

ER 1y, L (LJru) )
by = max{(llclg)ﬁl ,(4C1q) 72 } ko G52 ) max B(z, |u]) dz
Q
(4.35) holds true, by applying Lebesgue’s dominated convergence theorem we have
Zp = / [(u - wn)i(z) log
Q
- (@)
(@) (u = n) [ og ™ (e + w(u - n)y)| deo
- s(z)
— /Q [(u - 21&*)1(%) log

(et wlu— 2).)
+u(z) (u— Qw*)i(z) log$ (e +w(u— 2’(/J*)+):| dr — 0,

<(x)

Yot w(u—1vn)t)

as n — oo. This implies that

esssup u(x) < 2t,.
zeQ
Analogously, by replacing v with —u, we get
esssup (—u)(z) < 21,
zeQ
Therefore,

lulloo.cr < Cmax{/ Bz, |u|)da;€1,/ Bz, |u|)dxf2}, (4.36)
Q Q

with C, £y, {5 being positive constants independent of u. Finally, from (4.36) and Remark 2.7, we obtain (4.2). O

In addition, motivated by Ho—Kim [35] we can expend the range of ¢ and 7 given in (H2)(ii) by strengthening
the restrictive conditions on p and ¢ (see (H2’)(iii)). For this purpose, we consider the following assumptions:
(H2) (i) Assume f: QxR — 28\ {0} is graph measurable and f(z,-): RxRY — 2R\ {}} is upper semicontinuous
for a.a.x € QL.
(ii) Let ¢,7 € C(Q) such that p(z) < ¢(z) < p*(z) and q(z) < 7(z) < ¢*(x) for all x € Q. Suppose that
there exists a constant 8 > 0 satisfying

sup{[¢]: € € f(z,t)}

<(x)

T(z)
(e +wlt]) + p@) |t og N (e 4 wt]) + 1

< B]t*™ " og

for a.a.xz € 2 and for all t € R.
(iii) For r € {p, ¢}, the following hypotheses hold

1
inf sup T(T,Y) =75z 108 < 00, 4.37
B B o [0~ T | B 1y 30
0<|z—y|<1/2
with T Bn(ay) = inf (z 5 eBp () (T, 7)-
Remark 4.3. A ezample for r € C(RY x RY) satisfying the hypotheses (H2’)(iii) was given by Ho—Kim [35,
Example 4.3].

Theorem 4.4. Let hypotheses (H1) and (H2’) be satisfied. Then, for any weak solution u € WOSH(Q) of problem
(1.1), 4t holds that w € L*>() and

Z Z.
oo < Cmax { [ullZgs IullZ o }

where the positive constants C, 01,0 are independent of u.



22 S. ZENG, Y. LU, V.D. RADULESCU, AND P. WINKERT

Proof. First, we repeat Step 1 of the proof for Theorem 4.2, namely, assume that (4.3)-(4.8) hold.
(a): Localization

Let B; C RN be open balls of radius R with i € Z := {1,--- ,m} and let {Bi},c7 be a finite open covering of Q
such that Q; := B; N Q for ¢ € Z are Lipschitz domains. For any ¢ € Z, we choose R small enough such that (4.10)
and (4.11) are fulfilled. According to the continuity of p,q given by (4.37), there exists R € (0,1/4) small enough
such that there exist Cyg, Co1 > 0 satisfying

- ‘p(:v, y) — pgm(m,y)‘ log |z — y| < Oy, (4.38)

— [0l ) = G50 | 08 17— 9] < Cn (4.39)
for all (z,y) € RY x RY satisfying |x —y| < 5. As done before, let {n;}7, be a partition of unity of € satisfying
(4.12). Let p; = p(a’,y’) for some (2',y’) € B x B;. Thus

|(z',y") — (x,y)| =2’ —z|+ |y —y| <4R for all (z,y) € B; x By,

o (2',y") € Byg(x,y) for all (x,y) € B; x B;. Also, we see that |z —y| < 2R < 1/2 for all (z,y) € B; x B;.
Combining these conclusions and (4.38) we get

~(p(@.y) — v oglz — 9| < = (p(@.9) = P, 0y ) 1082 = 9] < Cro for all (x,y) € Bi x B,
which implies
|z — y| @) = esl@w)=p)losle—vl > o, for all (z,y) € B; x B;. (4.40)
Similarly, (4.39) implies
|z — y|*a@n)=a) = gsla@y)—a)logle=yl > 0y for all (x,y) € B; x Bi. (4.41)

[, ] (et e

R (8 Co k) ( L (@) - un<y>|> ) Sedy

We claim that

|z — [Nt [ =yl (4.42)
[t () — 1, () [P () = 1 ()] '
= [/ /. ( gV BT
1 () — 1, (37)[2)

+pu(,y) ,

log (e +w ‘un ;{;(y)> > dzdy + |Ay, . |

|z — |N+sq z,y)

which associates (4.7) and (4.8) implies

e G =
)

il <e+w|u(z)un(y)|>>dxdy

|un (7) — un(y
|N+s

+ p(x,y)

|z — |z —y|®

< Oy (1 + 1/)*—&) 2°‘°+#Zn7
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for all ¢ € Z and all n € N, where we recall that ag € max{c*,7"}. Now, we are going to prove the claim. We have

n () = n () 7= n () = un(y)
A

Jtn (2) = un(y) 1Y) [un () — un(y)|

+,U/($,y) |;E _y‘N+Sq(a:,y) log €+UJW dedy
_ p(z,y) _
-/ / (@) — () bgG+wWM@ uﬁ@)

BiﬂA¢n+1 BiﬂAwn+1 |x - y| SPATY |J; - y|

[t () — ()| 750 [un (@) = un(y)] (4.43)
e Y) T gty 08 (et meS dz dy

|u

af 0 (@) — W“”bgG+w a2 =)
BinAy, ., JBA\A,, |z — y| N Fsp(@y) |z — y|*

[t () — n ()| 2 |un () — un(y)|
+/.L(.T,y) |x_y‘N+sq(x,y) lOg €+WW dxdy

=: T1 + 2T2
Invoking (4.40) and (4.41) we get

- [ / () = un () [ 1
BiNAy, ., /BiNAy, | |x_y|25 ‘.73 _y|N—sp,:
1 n - Un
g (o4 1@ = 10
|z — y| 5@y -p) |z — y|®
Jun(2) = un(y)| "Y1

+ p(z,y) 2 — g

1 )bg(e+w1MQﬂ_“"@)>>dxdy

|z — y|s@@v) g |l —y|®

p(z,y)
> / / Ca2 o
BiNAy, , /BiNAy,, [z -yl

|’U,n($) _un(y)|> 1
|z —y[Ners

q(z,y)

| =y

X log <e+w
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p;
-1

|un (&) =un ()] 1Y)
le—y[?

Tl Z/ / 022
BinA"/’7z+1 BinA'd)n,+1

n - Un 1
o (4. LnfE) oo ]
lz =yl |z — y|N =P

q;
-1

g <e+w|un<x>—un<y>|> — 1 )dxdy

Furthermore, if < 1, it follows that

[un(2) — un(y)|
|z —y|?*

|un () = un(y)]
|z — y|*s

+ Cozpu(z,y) (

|z —y|® y| Vs
_ D; _
> / / Cﬂlun(x) un ()| log (e + plun(@) ur;(y)>
Bi0A¢n+1 BiﬂA¢n+1 |.’I,' — y|N+Sp’i |x - y|
mn - Un 1
RS A S . "
|z —y|* |z — y|N s
|un(x) - un(y) % |un(ac) B un(y)|
+ Cosp(z,y ~—log | e+ w————"—
) v — y|N o |z —y|*
n - Un 1
- Canlll o tog (e + e Wlia ) Yoy
|z — y[?s |z — y|N %

2 /
BiNA,

+ CQ3/1,(£B, Yy

— Py —
[ SRACETHO W ARG ESHE
BiNAy, |z — y|Ntop; lz — yl

_ q; _
)Iun(x) un(y)_ log (e o |un () un(y)l) dedy
|z — y| Vs lz —y|*

1 1
— Cylog (e +w 2R5/ / -+ — | dz | dy,
26 log ( (2R)*) Ay ( B, |z — y|N—spi |z — y| V5%

and if Iun(r)_un(y)lqu'y)
lz—y]?

n+1

> 1, it follows that

— p; —
7 > / / iy 1 () — tn ()] log <e 4 ln(@) uz(y)l)
BiNAy, ., JBiNAy, |z — y|N+sp; |z =y

- (4.45)
SO Lo R )| I (e N MW—WDI) dedy,
|z — y|[NHea [z —yl*
Furthermore, we choose R > 1 such that Q x Q C Bpy_,(0). Hence, for any i € Z and 7 > 0, it holds that
1 1 ST
/ TN dr < / N o dz = wy for all y € Q. (4.46)
B, |7 =yl B0 |2 sr

From the above inequality we get

= ep— = opt ~oat

1 wy RPi wy RP 1 wy R
/ < 2N < 2N and / < 2N .
B; | — B; |x —

yN=eee T spr s y|N=sa T sq
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Utilizing the last two inequalities along with (4.44) and (4.45) we arrive at

— P; —
neen| ) I g, ) =m0
BiNAy, ., JBiNAy, |z — y|Ntop: |z — yl

B (4.47)
Up(T) — Uy, 9 Up (T) — Uy,
—|—,u(:17,y)‘ |gizy|N+(SZ)_| log (6+"J| (|x)_y|s(y)> ) difdy—028’f4wn+1| :
Similarly, applying (4.40), (4.41) and (4.46) again, we have
n=[ () — wn ()| [P 1
BiﬁA,l/,7l+1 Bi\Awn+1 |1’ - y|28 ‘fE — y|N*Sp;
1 mn - Un

e — (e—i—wu <|z) U| (y)|>

T —y —s(p(z,y)—p; -y 8
+M@y)wmm—umww“”, 1

’ |z —y|* |z — y|N =59
1 _
| | (q¢(=,y)—a; ) log (e +W|un(z) yu|n(y)|) ) e dy
z—y —s(q(z,y)—q; _ ols
Up\T) — Up p; Unp\T) — Un
S S RO B B s
BiﬁAwnH Bi\Awn+1 |I - y| Pi z Y
_ a; _
I —
|z — y|[N e |z —yl*

1 1
— Cqg log (e+w(2R)S)/ (/ N+ o dx) dy
AI/JnJrl B; |T — y| Pi |fE - y‘ %

_ p; _
o ine) = T (., b))
BiNAy, , JBi\Ay, ., |z — y|N+sp: lz -yl

|un () — un(y)| % ( |un (z) —un(y)|>
+ p(z,y ~——log | e + w—F"———+ dedy — Cas |Ay, ., |-
) o =y [Aons

This along with (4.43), (4.47) and (4.48) yield (4.42), and the claim is proved.
(b): Estimating Z,11 by Z,.

Recall that L,,; and B are defined by (4.17) and (4.18), respectively, for x € {+,—} and i € Z. According to
inequalities (4.20), (4.21), Remark 2.7, (4.10) and the continuous embedding (2.4) we see that there exist & > 0
such that

6 <min{s; —p;, 7, —q; } forieZ
satisfying

*
S5

<F4

* g; te i
(Jflunnﬂ“*flogN(64-a’unnﬂ)d$)
Q

& a
& S L gt
< Coo [unilyqy o0 < Cs0 | Spli + 505 ;

S,
Bl/LEl)vQ

~%
7

S Hunni

with ¢ given by (4.23) and

@¢:A;L<Wdﬂm®%ﬂmwm@W“bgG+wmA@m©%—%wmmm>

|z —y| Ve |z —yl®

(o) — W (e_+cu

+ p(z,y

hM@M@—%@m@U)M@.

o — gl o=l
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*

* T;-%—e #
Titelog TN (e + wlunn|) do

* *

Analogously, inequalities (4.20), (4.21), Remark 2.7, (4.11) and the continuous embedding (2.4) yield

([ e

< luntill3 o < Con [wnmil s 0 < Ca | S + 8,57

n,t

Y

with 7 given by (4.26). Similar to (4.27) one has

Zps1 < Cz | Ay, |[FH7 7 (§}ng§1 + 5;;52) , (4.49)
with
- - LT
0 <6 := min min{_gi~, _Ti ~}—1§92 ‘= max max Si —EN,Tl —EN —1.
1<i<m p; + 0o q; + 0o 1<i<m p; p;
Let B B N
Sn,i =J1 4+ 2Js, (450)
where
7, :/ / fun (2)m:() = un (y)mi ()1 log <e+wlun(x)m(:c) un(y)m(y)l)
B, /B, |z — y|*P: lx —yl*
] _ . q; ) _ .
+ ,LL(l‘, y) |Un (I)"?z (I) ’Um(zJ)m (y)l log (e Tw ‘un (x)m (I) un(y)m (y)|> dy,
|z — y|5% |z —yl®
and

|z —yl*

= [un(@)mi(@) —uny)m)P | (N (@)ni(2) — un(y)mi(y)]
JQ_/Q\Bl/Bl< |a:—y\3pf 1g(+ )

) |un (@)1 () = un(y)mi(y)|*

+ p(z,y log (e +w

|z — y|*e |z —yl|*

|un ()7 (x) — un(y)’?i(y”) ) dv.
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By (4.9), (4.13) and (4.30) we get

-/ [ ('“n ) N (. nfenle) el

+p(z,y

Ix—yIN“q? |z —yl°

_ p; —_
|x - ywm o =l

p; +1}

—|—2pl +1 maX{HVm 51 Vmilod

dx -
x eyl B CAC)l i
B; B ‘x — y| +(s )(pz +1)

et [ i gliata)= COLEW ORI P

|a:—y|N+9’11 |z —yl®

(e + wlun(y)]) dy

“ 41
+ 297 ] oo mae{ | Ve |, ||V 1261}

X/B (/ .r—y|N':jZf D(a; +1>> p ()l (y)|*
<6’34/ / <|un |x—y:15 Ol log (e—i—wW)

)T () ) ) av

|z — y|5% |z —y|*

(e + wlua(y)]) dy

+C35/ [un (y)|P log(e + wlun (y)]) + (y) un(y)|* log(e + wlun(y)]) dy

i

< 036/ {u(x)c(a:) 10g<5$>
Awn+lmBi

+ O |A¢n+1
< Csr (1 + w*—<+) 2n(a0+%1)zm

~ . 2 )
oB; \ /B, |z —y|NTeps |z =yl
. q; )
DDLU (L CINPATY
|z — Vot |z —yl*

/ Foo Tt * v e
< — + =
supp(n)N Ay, o\B; y|N+spi O\B; y|N+s(Pi +1)

X Jun (y)|P log(e + wlun (y)]) dz

+ [l / / v, / &y
Moo I —— —
supp(m)Ndy, ,, \JB; [z —y[N T Jos, & —y[NFsla+D

X X () un ()| % og (e + wlun (y)]) dz

(e + wu(@)) + ple) u(z) @ log ¥

(e + wu(x))| dz

and

+ p(w,y)

< Css [u(x)|P+ log(e +wlu(@)]) + p(@)[u(x)|% log(e + wlu(z)]) dz

< Oy (147" ) 200t Rz,

)\un(:r)m(:c) —un (y)ni (y)|% log (e +w|un($)77i(:c) - un(y)m(y)> ) dz dy
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(4.51)

(4.52)
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Inequality (4.8) and (4.50), (4.51), as well as (4.52) imply
S0 4 G462 < o (1 +¢;<+(1+é2)) gn(ao+ ) (1+62) (Z1+é1 n Z1+é2) : (4.53)
which along with (4.7), (4.49), (4.53) gives
Znir < Cay (V7P 4 7 7) & (Z}fél + Z}ﬁ@) for all n € No,

where
0<fpyim——o <~'—+(1+9~>+7€§+
= F e 27" )Tt rrtte
| < iz 200+ S (140e) s
~ ~ €
0<y =0+ ——F— <=0+ ——.
n 1+<++T++E_V2 2+§++T++£
Finally, repeating the arguments of Step 3 in the proof of Theorem 4.2, gives the assertion. 0

4.2. Critical growth. In this subsection we discuss the critical case. Recall that in Subsection 4.1, to apply the
Holder inequality in (4.17) we require that there exists € > 0 such that ¢* + & < (p; ) and 7% + ¢ < (g; )¥ with
x € {—,+}. However, in this subsection, we assume that ¢(z) = (p~)* and 7(z) = (¢7)* for all z € Q, so we
cannot find £ > 0 satisfying the above conditions anymore. Hence, we consider a different argument to show the
boundedness of weak solutions to problem (1.1), and under this argument, the inequality (4.2) is invalid. Now, we
state our hypotheses on the data.
(H3) (i) Assume f: QxR — 28\ {0} is graph measurable and f(z,-): RxRN — 28\ {0} is upper semicontinuous
for a.a.x € Q.
(ii) Lets,7 € C(Q) such that p™ < ¢(x) = (p7)* and ¢+ < 7(z) = (¢7)* for all € Q. Suppose that there
exists a constant 8 > 0 satisfying

sup{[¢|: € € f(x,1)}

< B|1t/") " log

(a7 )}
¥ (e + wlt]) + p(@) |t og T T (e +wlt]) + 1
for a.a.x € Q) and for all t € R.

Theorem 4.5. Let hypotheses (H1) and (H3) be satisfied. Then, for any weak solution u € WOSH(Q) of problem
(1.1) is bounded, that is u € L>(Q).

Proof. As done in Subsection 4.1, let B; C RY be open balls of radius R with i € Z := {1,--- ,m} and let {B;},~,
be a finite open covering of Q such that Q; := B; N for i € T are Lipschitz domains. For any i € Z, we choose R
small enough such that

gf < (p7)., forallie

Let A, still be defined by (4.4), suppose u € W (Q) is a weak solution of problem (1.1) in the sense of definition
4.1, and choose ¥, > 1 large enough such that

[ (M v gl

u(z) — u(y)|2=y) u(z) —u
+u(w,y)| (z) — uly)] log (e—l—w()(zj)))du—i- . B*(z,|u|)dz < 1,

(4.54)

[z = e PR

with
N G N Ca )
B*(x,t) == t® ilog™ ¥ (e + wt) + p(z) 1t i log” ¥ (e 4 wt),
for all 2 € Q and for all ¢ > 0. Note that for any n € Ny, 1, is still given by (4.5).
In the sequel, for any n € Ny we define Z,, by

()3
N

Zy = /A {(u — ) logT 7 (e 4wt — ) + (@) (u—1hy) @ log% (e +w(u—1y))|de.
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Note that u > u —tp41 > 0 and u > P41 > 1 on Ay, similar to the proof of Theorem 4.2, we have

L v et

|un () — un(y)|q(:r,y) [un(z) — un(y)|
1 —_— d
+ p(z,y) iz — gyl ogletw iz g v

. ) e (@)t
< / B[|u|(p )S_llog ¥ (e + wlul]) +u(x)7|u|(q )s_llog ¥ (e 4 wlul) + 1] up(z) do
Q

<283 {u(” )i log o (e 4+ wu) + p(z) uld s log(qN) (e+ wu)} dz
Ad’n«#l
< 042/
Awn+1
+u(x) [(2"72 = 1) (u— wn)](q )s log L [e4+w (2" = 1) (u— Z/Jn)]> dz

n @3
< (432 < v ) Z .
Let {n;}™, be a partition of unity of Q with respect to { B;}7 ,, namely, for each i € Z, n; € C>°(RY), supp(n;) C B;,

0<mn <1,and
Znizl on Q.
i=1

DN

([ = 1) =] 108" [0 (22 = 1) (w2

By applying Jensen’s inequality we get

)%

— e ek e
Zny1 = / {u;p ) log™ 5 (e + wun) + p() Ul logm ¥ (e + wun)] dx
Aw

v e T
S mmaX{(P )57(‘1 )‘5} Z [/ |un771‘(p )s logT (e+w|un7h|)

Ay
ik (a7 )s
o)l Tog S e+l .
By Proposition 2.12, we see that
W (@) = L5 (@),
then

m
74 max{t,xt *
Zoa <m0V S B o) da
i=179

From assumption (4.54) we have
()%

: < C44[“n771].(9 ’H)Q < O45(Sn) %+,

/ B* |un77l|) dz < Hunnz

where S, ; is given by (4.24). So, we get

Zni1 < Cag (S};gﬂl + 53;192) for all n € Ny (4.55)
with
0 < ¥y := min f) —1 <49y := max +)3 -1,
1<i<m q; + o 1<i<m q; + o

where o > 0 satisfies
o< (p)i—gq foriel.
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Recalling (4.28) we make the similar estimation of J; and Jo, that is

U () — up (y) [P (®Y) Un () — Up,
e ], [ (M it

Un(T) — 1 qi(z,y) wn () — u
_’_M(‘r?y)' n( ) n(y)| log (e-}-w"”()n(y)'))dy

|z — y|oailey) = yl°

+C48/ [un (y)
+C48/ lun (y

// (|un : __;Z,E@)g(w o (leun('f;)_—;:(y)l)

up(z) —u a(=y) () — u
R A o) L <€+wln<>n<y>l>>dy

(e + wlun(y)]) dy

(e + wlun (y)]) + uy) un ()%

(e + wlua(y)]) dy

(e + wlun(®)]) + 1Y) |un(y)|%

|z — y|sal@y) lz —yl*

()% — (a7)%
0 [ [u< )% log U7 (e 4+ wu(e)) + ple) u() @ - log T (e + wu(x))| d,
Awn+lﬁB

§C502 <(q yrp i )S>7n,

(e

and Jy < Cx12 >7n. Hence

n —\x, (@)F o
Sn,i < Cs22 ( n >Zn for all n € Ny.

Therefore, we get

(a— )
+8 ) (1492) = -
S 4 gl < Oy (et oo (Z.""+7,"). (4.56)
Taking (4.55) and (4.56) into account, we arrive at
Zuir < Coak™ (2,7 +Z,"™) forall n e N, (4.57)

where

1</2::2<( R >(1+192).

Using Lemma 2.15, we see that (4.57) yields
Z,—0 asn — oo, (4.58)
if we choose 1, > 1 large enough such that

Zo= [ v 108" e bt - )

o) (0= )¢ 1o Y e o= 0] o

B B i
<mins (2C54) "1 k ¥1,(2C54) P2 k 172 %2 .
Thus by (4.58) and Lebesgue’s dominated convergence theorem we arrive at

zn:/ {(u%)g{“)? log%(e+w(uf¢n)+)
Q

o) (u = )8 og 5 et )] o
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%/[“—w 7% 10g 5 (e + wlu — 206.).)

+pu(z) (u— 2@/1*)5? * log e (e4+w(u—29)4)| do — 0,

as n — oo. This implies that

esssup u(x) < 21),.
z€Q

Similarly, replacing u with —u, it can be shown that

esssup (—u)(z) < 21,
€N

Therefore,
HUHoo,Q S 2¢*7
with ¢, € R. O
Since problem (P2) and (P3) are special cases of problem (1.1), we obtain the following corollaries.

Corollary 4.6. Let hypotheses (H1) and (H2) (or (H2’)) be satisfied with w = 0. Then every weak solution
we WS (Q) of problem (P2) belongs to L>(Q) and it holds

b }

B (>

with C, 01, L2 being positive constants independent of u. Moreover, if hypotheses (H1) and (H3) hold, then any weak
solution of problem (P2) belongs to L>°(2).

Corollary 4.7. Let hypotheses (H1) and (H2) (or (H2’)) be satisfied with w = 0. Then every weak solution
we WS (Q) of problem (P3) belongs to L>(Q) and it holds

b }

B (>

with C, £q, s being positive constants independent of u. Moreover, if hypotheses (H1) and (H3) hold, then any weak
solution of problem (P3) belongs to L*>(€).

lullsor < € max { ull g, |

el < € max {Jlull

5. APPLICATION

In this section, we consider the existence of weak solutions to the following single valued elliptic problem driven
by the fractional double phase operator with variable exponents and logarithmic perturbation:

{(A);u = f(z,u), 9

5.1
u=0 on RV \ Q (5.1)

where Q, s, and p satisfy (H1). Furthermore, based on the priori bounds we obtained in Section 4, we will show
the existence of infinitely many small weak solutions of (5.1) with the modified functional method applied by Ho—
Kim [35] and Wang [60]. Moreover, under appropriate conditions, we show that the solutions are non-negative
by applying the maximum principle established in Section 3. We will use a variational argument to establish the
existence results, and the proof is mainly based on the following lemma, see Heinz [34] for more details.

Lemma 5.1. Let X be a Banach space. Assume that I € C1(X,R) and I is even, bounded from below and satisfies
the (PS)-condition with I(0) = 0. If for any n € N, there exist an n-dimensional subspace X,, and r, > 0 satisfying

sup I <0,
XSy,

where S, = {u € X: ||u||x =1}, then I has a sequence of critical values ¢, < 0 such that ¢, = 0 as n — oo.

We suppose the following assumptions on the nonlinearity f:
(F1) The function f: @ x R — R is a Carathéodory function such that

[f@, )] < C(L+ [t
for a.a.x € Q, for all t € R, for some constant C and r € C(Q) with 1 < r(x) <p~.
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(F2) There exists a constant a > 0 such that
fisoddint and p~F(x,t) — f(x,t)t >0,

for a.a.z € Q and for all 0 < |¢| < a, where F(z,t) fo f(z,7)dr.
(F3) lim;_ Mi)t)% = 400 uniformly for a.a.z € Q.

(F4) f(x,t) >0 for a.a.x € Q and t € R.

Next, we prove the existence of infinitely many small solutions to problem (5.1). The proof is divided into several
steps, see also Ho—Kim [35] and Wang [60], in the following way:

(i) Modify the function f to f and then construct a modified functional E.
(ii) Prove that the modified functional E satisfies the conditions of Lemma 5.1 to get a sequence of critical
points {uy, }nen such that E(u,) — 0 as n — oo,
(iii) Show that u, — 0 in W™ (€) and apply Theorem 4.2 to get ||t [l — 0 as n — co. Finally, we verify
that u,, are solutions of the original problem (5.1).

Our existence result read as follows.

Theorem 5.2. Let hypotheses (H1) and (F1)—(F3) be satisfied. Then problem (5.1) has a sequence of weak solutions
{tun Inen satisfying || unl|co,0 = 0 as n — co. In addition, if (F4) hold, then the weak solutions u,, are non-negative.

Proof. First, we introduce the functional Z: T/V(fH(Q) — R given as

u(y) [P |u(z) — u(y)|
1 L S L
//< fcy\x yINW’(””’ S N P

ulz) —u q(z,y) ulz) —u
) Rl ) 10g(e+w' (2) <y>')>d$dy,

q(z, y)|x, y|N+sp@v) |z —yl*

for all u € W™ (). Recalling Proposition 2.14, it is not hard to check that Z € C'(Wg*(Q),R) and its Gateaux
derivative A: WS (Q) — (W™ (Q))* is given by
o= | (iu(w) Ul u(z) — u(y) (v(a) — oly) )= ()

oy N tog (”“ P

| wlu@) = ()"0 () = uly) (v(z) = v(y))
|z — y|N+sp(.y)+1) (e n WM)

lz—yl®
() — () 95 () — () (o) — () u(x) — uly)
) o=y Ve os e+l 020

+ o) Z U@ () () (v() —) v<y>>> Gy

— y|N+s(a(zy)+1 M
|CC y| +s(q( y)+)(e+w =—E

for all u,v € W™ ().
In order to apply Lemma 5.1, we first modify the nonlinear function f to f. Precisely, one can deduce from (F2)
and (F3) that there exits a; € (0,a) such that

F(x,t) > [t|"®  for a.a.x € Q and for all [t| < a;. (5.2)
Next, we choose as € (0,a1/2) and take ¢ € C'(R,R) to be an even function satisfying
1, |t| < as, ’ /
t) = t)| <2/a; and t)t <O0.
(1) {0’ e OIS amd (o<

Next, we define

F(z,t) == ¢()F(x,t) + (1= ¢(1)) B,
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where

1 1
€ | 0, min , — 5.3
IB ( {p_celceQ q+C/p_ 053 }) ( )

with O’ given by (2.1), Ce; is the embedding constant from WP (Q) to LP (Q), Ceq is the constant such that
[ull o- < Cezlu]s p- and Ces is the embedding constant from W H(Q) to LP (). Then, the modified function
0

f is given by
flz,t) = aF(x,t).

Moreover, we consider the modified energy functional E': Wy H(Q) — R defined by

E(u) = T(u) — /Q F(z,u)dz, ueWS™(Q).

By the definition of F and f, we see that F is even in ¢ and

Flw,t) = &' (OF (x,1) + ¢(t) f(x,) = &' (OB + (1= d(1))Bp |t” ~>¢. (5.4)
Thus,
P E e, 1) — Fa, )t = S0 s t) — £, 0] — & (e, 1) — Bl ] (5.5)
Recalling the definition of ¢, by (5.2), (5.4) and (5.5) we get
p F(z,t)— f(z,t)t >0 for a.a.z € Q and for all t € R, (5.6)
p F(x,t)— f(z,t)t =0 if and only if t = 0 or [t| > 2as. (5.7)
Recalling (F1) and the definition of ¢, F and f we can find C' > 0 such that
Flz,t) <C+ Bt and |f(z,t)| <C (1 n |tvf*1) for a.a.z € Q and for all ¢ € R. (5.8)

Hence, invoking that Z € C’l(WS’H(Q),R) and W (€Q) < LP™ (Q) one can prove that E € C*(W5*(Q),R). i
Now, we are ready to show that F fulfills the conditions given by Lemma 5.1. It is not hard to see that F is
even and E(0) = 0. Utilizing (5.8) and Proposition 2.8, we get

[ L P P
Blu) > o ([l = 1) = Bllull}, - g, ~ €l
j - 1
2 qj[“]gﬂ — BCL, ||u||f7-¢ - Ol - qj
1. - - 1
> [l — BCE O [l — €101 =

Note that the range of 3 given in (5.3) implies that E is coercive and bounded from below on W (). Due to
(5.8) and the compact embedding W7 () << LP™ () we infer that the operator u — Ja f(x,t)dz is compact.
Let {u, }nen C WETH(Q) be a (PS)-sequence, that is E(uy,) is bounded and E’(u,) — 0. Then, by the coercivity of
E, we know that {u, }nen is bounded. Since W™ () is reflexive, {un }nen possesses a subsequence still denoted
by {tn}nen such that u, — u, € WS (Q). Hence, due to the compactness of u — Jo f(z,t) dz and applying the
(S4)-property of A, we deduce that u, — u, € WS’H(Q). This shows that E satisfies the (PS)-condition.

Next, we choose a fixed n € Nand let ¢4, . .., ¢, be linearly independent functions. We set X,, := span{¢1,..., o, }.
Since X, is a finite dimensional space, the norms || - [s.0, [-]s,2,0 and || - || - () are equivalent on X,. Thus one
can find ¢y, co > 0 such that

c1llulloc,o < [uls o < e2llull - () forallu e X, (5.9)

According to hypotheses (F2) and (F3) we can find a3 € (0, as) satisfying

F(z,t) > 2;§|t|P (5.10)
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for a.a.x E Q and for all |t| < as. Next, we take r,, := min{1, agc;}, then by (5.9) we see that for any v € X,

with [u]? 5, = 7, we have |u|s3 < 1 as well as [lul|c,0 < az. Note that F(z,u) = F(z,u) for |u]se.a < as. Then,
Proposmon 2.8 and inequality (5.10) yield

- . 1o 2 e ()

E(U)SF[ 1o — - SPT[ ]57-[ F[u]sﬂz— = for all w € X,, NS,

which implies
sup  F(u) <0.
u€X NSy,
Using Lemma 5.1 we infer that there exists a sequence {uy }nen C WOS’H(Q) with

E'(up)=0 forallne N and E(u,) —»0 asn — oo.

Moreover, recall that u, — u, in Wg*(Q), due to E € CY (W™ (Q),R), we have E(u,) = (E'(u), u.) = 0, which

gives p%(E’(u*), u,) — E(u,) = 0. Taking this and (5.6) into account we arrive at

LY [ (@) — ()P () — s (9)

0</ / (( - y>> [ — [N orE) k’g<e+‘“ EEE )

1 fu() — () ) () — s (1)

*uley) (p‘ Q(%y)) |z — y|NHsal@y) |z —yl* >
Wl () = . (y) POV

e — | N+s(p(z,y)+1) Iu*(w)—u*(y)l)
plo =y V@@ (o4 ol

log <e 4w

_|_

wl () = . ()10

dxdy
p |z — y|Ntsla@y)+y) (e n ww)

lz—yl*
= _/Q (F(x7u*(x)) - ;f(m,u*(:b))u*(:b)> dz <0.

From the above inequalities and (5.7) we see that

o< (G ) M e (e o)

+u(w,y)( 11 ) | () — () 1Y) 10g< () —u*(y)|>

p= a(zy)) o —y[Nea@y)

e (z) = ()P

+ p(z,y)

+ |ux (@) —u. (y)|
p~ |z — y[NHseEy+D) (e + wlx_iy‘y)
Wl () — uy (y)]2@y)+1
+ o) LS RN U Y
p"x — y|N+5(Q($7y)+1) (e + w*\zfiyﬁy)
=0

and for a.a.z € (2,
u, =0,
or
|us(z)| > 2a2 and wu, =g,

where ¢ is constant. Hence, F(z,u.(z)) = 0 or F(z,u.(z)) = Blu.? . Moreover, p(z,y) = p~ for a.a.z € Q
satisfying |u.(z)| > 2aq. This implies

1 |ue(z) — u(y) [P) -
O_E>//pry = gy d;vdy—/QF(x,u*(x))dx
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P~
p‘ — [u.]? “p /ﬁ\u*| dz

1 _ _
_ p _ p
=, Bl

> pl P~ BCaColu]?,

Due to 8 < m, it holds that u, = 0. That means w,, — 0 in WOS’H(Q)7 80 |lun|lB,0 — 0 as n — oco. Note that
under the hypotheses (F1), f satisfies hypotheses (H2) (or (H2’)). Then we deduce from Theorem 4.2 (or Theorem
4.4) that ||uy|lec,0 — 0. Hence, ||up||co,0 < a2 for n large enough, which means that {u, },en is a sequence of weak
solutions to problem (5.1) for n large enough.

Furthermore, if f(x,t) > 0 for a.a.x € Q and for all t € R, we see that

(=A)5,u>0, in Q,
u=0 on RV \ Q.

Hence, employing Theorem 3.1 we see that u(z) > 0 for z € Q and if there exists some point xg € € such that
u(wg) = 0, then u(z) = 0 for a.a.x € RY. This ends the proof. O
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