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Abstract. This paper is concerned with the study of the following double

phase equation with logarithmic nonlinearity

− div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
+ |u|p−2u+ µ(x)|u|q−2u

= K1(x)|u|p
∗−2u+ λK2(x)|u|r−2u log(|u|) in RN ,

with dimension N ≥ 2, parameter λ > 0, 1 < p < q < N , µ : RN → [0,∞)
is a Lipschitz continuous function and max{p,N(p− 1)/(N − p)} < r < p∗ =

Np/(N − p). Here, the weight function K1 is positive, while K2 may change

sign on RN . By a different variational approach, we prove an existence result
which in some aspects improves our contribution in [A. Bahrouni, A. Fiscella,

P. Winkert, J. Math. Anal. Appl. 547 (2025), no. 2, Paper No. 129311, 24

pp.]. For this, we need some restrictive assumptions on the weights µ(·), K1

and K2.

1. Introduction

In our paper [7], we mainly studied the following quasilinear equation

− div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
+ |u|p−2u+ µ(x)|u|q−2u

= K1(x)|u|p
∗−2u+ λK2(x)|u|r−2u log(|u|) + γK3(x)|u|β−2u, in RN ,

(1.1)

driven by an operator of double phase type. In particular, in [7, Theorem 4.1] we
proved the existence of a mountain pass solution of (1.1) in a superlinear logarithmic
setting with exponents 1 < p < q < β < r < p∗, where p∗ = Np/(N − p), and
considering γ = λ with λ sufficiently large. In order to deal with the logarithmic
term, we strongly used the nonlinear perturbation with exponent β. Indeed, to get
a mountain pass solution for (1.1), we needed an important asymptotic property
of the mountain pass level itself, as λ goes to ∞. The proof of this asymptotic
condition was obtained by a challenging combination of the superlinear logarithmic
term and of the β-nonlinearity, explicitly highlighted in the assumption

K2(x) ≤
e (r − β) r (β − σ)

β(r − σ)
K3(x), for any x ∈ RN ,

with q < σ < β, strongly requested in [7, Theorem 4.1].
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In the present paper, we want to face (1.1) without the help of the β-perturbation,
that is considering γ = 0. For this, we study the equation

− div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
+ |u|p−2u+ µ(x)|u|q−2u

= K1(x)|u|p
∗−2u+ λK2(x)|u|r−2u log(|u|), in RN ,

(1.2)

with the following structural assumptions, similar to the ones in [7, Theorem 4.1]:

(H1) 1 < p < q < N, q < p∗ and µ : RN → R+ = [0,∞) is Lipschitz continuous
such that µ(·) ∈ L∞(RN ).

(H2) K1 ∈ C(RN ) ∩ L∞(RN ), K1(x) > 0 for all x ∈ RN and if {An}n∈N ⊂ RN

is a sequence of Borel sets such that the Lebesgue measure |An| ≤ C for all
n ∈ N and some C > 0, then

lim
n→∞

∫
An∩Bc

ρ(0)

K1(x) dx = 0,

for some ρ > 0.
(H3) K2 ∈ L1(RN ) ∩ L∞(RN ) with |K2| ≤ K1 on RN .

We point out that we still suppose that K2 can change sign in RN . However, in
order to handle a superlinear logarithmic term, we need a further condition for the
weight functions appearing in (1.2):

(H4) there exist R > 0 and κ > 0 such that µ(x) = 0, K1(x) = ∥K1∥∞ and
K2(x) = ∥K2∥∞ for a.a.x ∈ BR(0).

The requirement in (H4) forK1 andK2 is quite standard when working with critical
equations in RN , as shown in [17]. The restriction on the double phase weight µ(·)
is crucial to exploit the explicit expression of the extremal functions for the Sobolev
inequality into Lp∗

(RN ), as used in [11].
Our main result is the following theorem.

Theorem 1.1. Let (H1)–(H4) be satisfied and let r be such that

max

{
p,

N(p− 1)

N − p

}
< r < p∗.

Then, equation (1.2) admits at least one nontrivial weak solution for any λ > 0.

We strongly point out that in Theorem 1.1 we are able to cover the situation
when p < r ≤ q, remain unanswered in [7, Theorem 4.1]. Indeed, we can guarantee
that N(p − 1)/(N − p) < p < r < p∗ whenever N > p2. Also, in Theorem 1.1
we can consider any generic value for the parameter λ > 0. However, technically
speaking, we are not able to get a mountain pass solution. More precisely, by
the mountain pass theorem we construct a Palais-Smale sequence at the critical
mountain pass level. But this sequence admits a subsequence which just converges
weakly to a nontrivial critical point of the energy functional related to (1.2). That
is, we cannot prove the strong convergence of the Palais-Smale subsequence, which
guarantees the attainability of the critical mountain pass level.

Thus, comparing Theorem 1.1 with [7, Theorem 4.1], we have the following gains:

(i) we do not need to add any β-perturbation to control the logarithmic term,
as in (1.1);

(ii) we cover a strongly superlinear logarithmic situation, with possibly p < r ≤
q;

(iii) the parameter λ > 0 is generic.
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However, we need to pay some information in exchange:

(i) we have a new restrictive assumption for the weights µ(·), K1 and K2 as
given in (H4);

(ii) formally, we do not get a mountain pass solution for (1.2).

The double phase operator given in problems (1.1) and (1.2) is associated to the
energy functional

Ψ(u) =

∫
RN

(
1

p
|∇u|p + µ(x)

q
|∇u|q

)
dx, (1.3)

which was first introduced in [37, 38, 39] to provide models for strongly anisotropic
materials in the framework of homogenization. A distinguishing feature of the
double phase functional (1.3) is the variation in its ellipticity depending on the
behavior of the function µ(·). Specifically, the energy density exhibits ellipticity of
order q in regions where µ(x) > ε for any fixed ε > 0, while it has ellipticity of
order p at points where µ(x) = 0. Consequently, the integrand in (1.3) switches
between two distinct types of elliptic behavior. A first mathematical treatment of
functionals of type (1.3) has been done in a number of papers in [8, 9, 10, 12, 13,
15, 29, 30, 31, 36] related to regularity properties of local minimizers.

Over the past 10 years, there have been several contributions dealing with double
phase problems in the whole space RN . We refer to [2, 4, 6, 22, 23, 25, 26, 28, 33],
see also the references therein. Only the authors in [25] do allow a critical growth,
in addition to the unboundedness of the domain. For bounded domains and critical
growth for double phase problems we mention the papers by [5, 11, 18, 19, 27, 32].
None of these works, however, consider the presence of a logarithmic term on the
right-hand side of the equation. For double phase problems involving nonlinearities
of logarithmic type on the right-hand side there are only few works. In addition
to the authors’ aforementioned work [7], we can simply make reference to [1] who
proved the existence of a nonnegative solution based on the Nehari manifold method
of the problem

− div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
+ V (x)|u|p−2u

= λK(x)|u|r−2u log(|u|) in D, u
∣∣
∂D

= 0,

where D ⊂ M is an open bounded subset of a smooth complete compact Rie-
mannian N -manifold and r ∈ (1, p). Very recently, the authors in [3] considered
logarithmic type double phase problems where the logarithm appears not only on
the right-hand side but also in the operator. However, due to the different operator,
the function space and the variational setting are different to the present work. In
summary, our work combines several important aspects: critical growth, the pres-
ence of a logarithmic term, and the unboundedness of the domain. Furthermore,
we improve upon the results from our earlier work in [7] in a nontrivial way.

The paper is organized as follows. In Section 2 we introduce the solution space,
the energy functional of (1.2) and some preliminary results. We give the proof of
Theorem 1.1 in Section 3, by using several auxiliary lemmas.

2. Variational setting

In this section, we first state some known results about Musielak-Orlicz spaces
in RN . By Lℓ(RN ) we denote the usual Lebesgue space endowed with the norm
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∥ · ∥ℓ for 1 ≤ ℓ ≤ ∞. While W 1,ℓ(RN ) stands for the Sobolev spaces equipped with
the norm ∥∇ · ∥ℓ + ∥ · ∥ℓ, for any 1 < ℓ < ∞.

Supposing assumption (H1), we consider the nonlinear functionH : RN×[0,∞) →
[0,∞) given by

H(x, t) := tp + µ(x)tq.

Denoting by M(RN ) the set of all measurable function u : RN → R, we then intro-
duce the Musielak-Orlicz Lebesgue space LH(RN ) by

LH(RN ) :=

{
u ∈ M(RN ) : ϱH(u) :=

∫
RN

H(x, |u|) dx < ∞
}

endowed with the Luxemburg norm

∥u∥H := inf
{
τ > 0: ϱH

(u
τ

)
≤ 1
}
,

where the modular function is given by

ϱH(u) :=

∫
RN

H(x, |u|) dx =

∫
RN

(
|u|p + µ(x) |u|q

)
dx.

By Lq
µ(RN ) we denote the weighted space given by

Lq
µ(RN ) :=

{
u ∈ M(RN ) :

∫
RN

µ(x)|u|q dx < ∞
}

equipped with the seminorm

∥u∥q,µ :=

(∫
RN

µ(x)|u|q dx
) 1

q

.

Moreover, the corresponding Musielak-Orlicz Sobolev space W 1,H(RN ) is defined
by

W 1,H(RN ) :=
{
u ∈ LH(RN ) : |∇u| ∈ LH(RN )

}
endowed with the norm

∥u∥1,H := ∥∇u∥H + ∥u∥H,

where ∥∇u∥H = ∥ |∇u| ∥H. In the following, we equip the space W 1,H(RN ) with
the equivalent norm

∥u∥ := inf

{
τ > 0:

∫
RN

[(
|∇u|
τ

)p

+ µ(x)

(
|∇u|
τ

)q

+
∣∣∣u
τ

∣∣∣p + µ(x)
∣∣∣u
τ

∣∣∣q] dx ≤ 1

}
,

whereby the corresponding modular is defined by

ϱ(u) :=

∫
RN

[
|∇u|p + µ(x) |∇u|q + |u|p + µ(x)|u|q

]
dx.

Both spaces LH(RN ) and W 1,H(RN ) are separable reflexive Banach spaces, see [26,
Theorem 2.7].

Next, we recall the relations between the norm ∥ · ∥ and the associated modular
ϱ(·). We refer to [26, Proposition 2.6] for its proof, see also [14].

Lemma 2.1. Let (H1) be satisfied, u ∈ W 1,H(RN ) and c > 0. Then the following
hold:

(i) for u ̸= 0 we have ∥u∥ = c if and only if ϱ(uc ) = 1;
(ii) ∥u∥ < 1 implies ∥u∥q ≤ ϱ(u) ≤ ∥u∥p;
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(iii) ∥u∥ > 1 implies ∥u∥p ≤ ϱ(u) ≤ ∥u∥q;
(iv) ϱ(u) → 0 if and only if ∥u∥ → 0;
(v) ϱ(u) → ∞ if and only if ∥u∥ → ∞.

The following result is taken from [26, Theorem 2.7].

Lemma 2.2. Let (H1) be satisfied. Then, the embedding W 1,H(RN ) ↪→ Lℓ(RN )
is continuous for any ℓ ∈ [p, p∗]. Also, W 1,H(RN ) ↪→ Lℓ

loc(RN ) is compact for any
ℓ ∈ [1, p∗).

Furthermore, we recall the continuous and the compact embedding of W 1,H(RN )
into the Lebesgue space

Ls
K1

(RN ) :=

{
u ∈ M(RN ) :

∫
RN

K1(x)|u|s dx < ∞
}
,

where 1 < s < ∞ and K1 fulfills (H2). Then, in [7, Proposition 3.1] we proved the
following result.

Lemma 2.3. Let (H2) be satisfied. Then, W 1,H(RN ) ↪→ Ls
K1

(RN ) is compact for
any s ∈ (p, p∗).

A function u ∈ W 1,H(RN ) is called a weak solution of (1.2) if∫
RN

(
|∇u|p−2 ∇u · ∇φ+ µ(x) |∇u|q−2 ∇u · ∇φ

)
dx

+

∫
RN

(
|u|p−2

uφ+ µ(x) |u|q−2
uφ
)
dx

=

∫
RN

K1(x)|u|p
∗−2uφ dx+ λ

∫
RN

K2(x)|u|r−2u log(|u|)φ dx,

is satisfied for any φ ∈ W 1,H(RN ) \ {0}. Moreover, the corresponding energy
functional Iλ : W

1,H(RN ) → R of problem (1.2) is given by

Iλ(u) =
1

p

(
∥∇u∥pp + ∥u∥pp

)
+

1

q

(
∥∇u∥qq,µ + ∥u∥qq,µ

)
−
∫
RN

K1(x)
|u|p∗

p∗
dx

− λ

∫
RN

K2(x)

r
|u|r log(|u|) dx+ λ

∫
RN

K2(x)

r2
|u|r dx.

By [7, Lemma 3.3], we know that Iλ is well defined and of class C1(W 1,H(RN ),R).
Also, it is clear that weak solutions of (1.2) are critical points of Iλ.

Finally, we recall the following technical lemma which allows us to deal with the
logarithmic nonlinearity in (1.2), see [35] for its proof.

Lemma 2.4.

(i) For any σ > 0, we have

log(t) ≤ 1

eσ
tσ for any t ∈ [1,∞).

(ii) For any σ > 0, we have

tσ| log(t)| ≤ 1

eσ
for any t ∈ (0, 1).

(iii) For any σ ∈ (0, 1) and s > 1, there exists Cσ > 0 such that

ts| log(t)| ≤ Cσ

(
ts(1−σ) + ts(1+σ)

)
for any t > 0.
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3. The existence result

We first study the compactness property for the functional Iλ under a suitable
threshold c, set as

c :=

(
1

p
− 1

p∗

)
S

p∗
p∗−p

∥K1∥
p

p∗−p
∞

> 0, (3.1)

where S > 0 is the best constant of the Sobolev embedding W 1,p(RN ) ↪→ Lp∗
(RN ),

given as

S := inf
u∈W 1,p(RN )

∥∇u∥pp + ∥u∥pp
∥u∥pp∗

. (3.2)

For this, we say that {un}n∈N ⊂ W 1,H(RN ) is a Palais-Smale sequence for Iλ at
level c ∈ R if

Iλ(un) → c and I ′λ(un) → 0 in
(
W 1,H(RN )

)∗
as n → ∞. (3.3)

Then, by [7, Lemma 4.5] we have the following result.

Lemma 3.1. Let (H1)–(H3) be satisfied and let λ > 0. Let {un}n∈N ⊂ W 1,H(RN )
be a bounded (PS)c sequence with c ∈ R. Then, up to a subsequence, ∇un(x) →
∇u(x) a.e. in RN as n → ∞.

In what follows, we provide a technical result for the logarithmic term.

Lemma 3.2. Let (H1)–(H3) be satisfied and let {un}n∈N ⊂ W 1,H(RN ) be a se-
quence satisfying

un ⇀ u in W 1,H(RN ), un → u in Ls
K1

(RN ), un(x) → u(x) a.e. in RN , (3.4)

for any s ∈ (p, p∗). Then, we have

lim
n→∞

∫
RN

K2(x)|un|r log(|un|) dx =

∫
RN

K2(x)|u|r log(|u|) dx (3.5)

and

lim
n→∞

∫
RN

K2(x)|un|r−2un log(|un|)φ dx =

∫
RN

K2(x)|u|r−2u log(|u|)φ dx, (3.6)

for any φ ∈ W 1,H(RN ).

Proof. We only prove (3.5), equation (3.6) can be proved in a similar way. By
Lemma 2.4 and (H3), for any Lebesgue measurable set U ⊂ RN and for any σ > 0
such that rσ < min {r − p, p∗ − r}, we have∫

U

K2(x)|un|r log(|un|) dx ≤ Cσ

∫
U

K1(x)
(
|un|r(1−σ) + |un|r(1+σ)

)
dx.

Thus, considering (3.4) and Vitali’s convergence theorem we get the assertion. □

We are now ready to study the compactness of Iλ under the threshold c.

Lemma 3.3. Let (H1)–(H3) be satisfied and let λ > 0. Let {un}n∈N ⊂ W 1,H(RN )
be a (PS)c sequence with 0 < c < c as given in (3.1). Then there exists u ∈
W 1,H(RN ) being a nontrivial critical point for Iλ such that, up to a subsequence,
un ⇀ u in W 1,H(RN ) as n → ∞.
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Proof. Let us fix c < c and let {un}n∈N be a (PS)c sequence in W 1,H(RN ), that
is, (3.3) is fulfilled. We first show that {un}n∈N is bounded in W 1,H(RN ) arguing
by contradiction. Then, going to a subsequence, still denoted by {un}n∈N, we
have lim

n→∞
∥un∥ = ∞ and ∥un∥ ≥ 1 for any n ∈ N. Let σ > 0 be such that

1 < p < max{r, q} < σ < p∗ and let ε > 0 be such that r + ε ∈ (p, p∗). Thus,
invoking Lemmas 2.1 and 2.4, we get

on(1) + c+ C∥un∥

= I(un)−
1

σ
⟨I ′(un), un⟩

≥
(
1

p
− 1

σ

)(
∥∇un∥pp + ∥un∥pp

)
+

(
1

q
− 1

σ

)(
∥∇un∥qq,µ + ∥un∥qq,µ

)
+

(
1

σ
− 1

p∗

)∫
RN

K1(x)|un|p
∗
dx− λ

(
1

r
− 1

σ

)∫
RN

K2(x)|un|r log(|un|) dx

≥
(
1

q
− 1

σ

)
∥un∥p +

(
1

σ
− 1

p∗

)∫
RN

K1(x)|un|p
∗
dx

− λ

(
1

r
− 1

σ

)∫
{x∈RN : |un(x)|>1|}

K2(x)|un|r log(|un|) dx

− λ

(
1

r
− 1

σ

)∫
{x∈RN : |un|<1|}

K2(x)|un|r log(|un|) dx

≥
(
1

q
− 1

σ

)
∥un∥p +

(
1

σ
− 1

p∗

)∫
RN

K1(x)|un|p
∗
dx

− λ

e(r + ε)

(
1

r
− 1

σ

)∫
RN

|K2(x)||un|r+ε dx.

Now, we can find a suitable constant Cλ > 0 such that

λ

e(r + ε)

(
1

r
− 1

σ

)
|t|r+ε ≤

(
1

σ
− 1

p∗

)
|t|p

∗
+ Cλ, for any t ∈ R,

and so, from (H3), we obtain

o(1) + c+ C∥un∥ ≥
(
1

q
− 1

σ

)
∥un∥p − Cλ

∫
RN

|K2(x)| dx.

This leads to a contradiction.
Hence {un}n∈N is bounded in W 1,H(RN ). By Lemmas 2.3 and 3.1, there exists

a subsequence, still denoted by {un}n∈N, and u ∈ W 1,H(RN ) such that

un ⇀ u in W 1,H(RN ), un ⇀ u in Lp∗
(RN ),

∇un(x) → ∇u(x) a.e. in RN , un(x) → u(x) a.e. in RN ,

un → u in Ls
K1

(RN ) for any s ∈ (p, p∗).

(3.7)

From (3.3), (3.6) and (3.7) we see that ⟨I ′λ(u), φ⟩ = 0 for any φ ∈ W 1,H(RN ), which
means that u is a critical point of Iλ.

Now, let us prove by contradiction that u is nontrivial. If u ≡ 0, by (3.5) we
have ∫

RN

K2(x)|un|r log(|un|) dx = on(1),
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from which, by using also (3.3) and (3.7), we obtain

c+ on(1) = Iλ(un) =
1

p

(
∥∇un∥pp + ∥un∥pp

)
+

1

q

(
∥∇un∥qq,µ + ∥un∥qq,µ

)
− 1

p∗

∫
RN

K1(x)|un|p
∗
dx+ on(1)

(3.8)

and
on(1) = ⟨I ′λ(un), un⟩ = ∥∇un∥pp + ∥un∥pp + ∥∇un∥qq,µ + ∥un∥qq,µ

−
∫
RN

K1(x)|un|p
∗
dx+ on(1).

(3.9)

Taking (3.2) and (3.9) into account, it follows

on(1) ≥ ϱ(un)

1− ∥K1∥∞

(
∥∇un∥pp + ∥un∥pp

) p∗
p −1

S
p∗
p

 . (3.10)

If ϱ(un) → 0, by Lemma 2.1 we have that ∥un∥ → 0 so that by (3.8) we obtain
c = 0, a contradiction.

Thus, (3.10) implies that

∥∇un∥pp + ∥un∥pp ≥ S
p∗

p∗−p

∥K1∥
p

p∗−p
∞

+ on(1),

so that by (3.8) and (3.9) we get

c =

(
1

p
− 1

p∗

)(
∥∇un∥pp + ∥un∥pp

)
+

(
1

q
− 1

p∗

)(
∥∇un∥qq,µ + ∥un∥qq,µ

)
+ on(1)

≥
(
1

p
− 1

p∗

)
S

p∗
p∗−p

∥K1∥
p

p∗−p
∞

+ on(1),

which contradicts c < c and (3.1). □

In order to apply Lemma 3.3, we need to guarantee that Iλ(u) falls into the
range of validity 0 < c < c, for a suitable u ∈ W 1,H(RN ). To this end, the idea is
to employ a suitable truncation of the function

Uε(x) =
CN,p ε

(N−p)/p(p−1)

(εp/(p−1) + |x|p/(p−1))(N−p)/p
, with ε > 0, (3.11)

which belongs to W 1,p(RN ). Here, the best constant of the Sobolev embedding
(3.2) is attained, considering a normalization constant CN,p > 0 given by

CN,p =

[
N

(
N − p

p− 1

)p−1
](N−p)/p2

.

Let us consider BR(0) as in (H4), then we can introduce a cut-off function ϕR ∈
C∞

0 (BR(0)) such that

0 ≤ ϕR ≤ 1 and ϕR(x) = 1 for x ∈ BR/2(0). (3.12)

For any ε > 0, we set

uε = ϕR Uε and vε =
uε

∥uε∥p∗
. (3.13)

Then, considering S as in (3.2), we can prove the following crucial estimates for vε.
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Lemma 3.4. Let vε be as defined in (3.13). Then, for any r > N(p− 1)/(N − p)
and as ε → 0+, we have:

(i)

∫
RN

|∇vε|p dx+

∫
RN

|vε|p dx = S +O(ε(N−p)/(p−1));

(ii)

∫
RN

|vε|r dx = C1ε
N−r(N−p)/p +O(εN−r(N−p)/p);

(iii)

∫
RN

|vε|r |log(|vε|)| dx = C2ε
N−r(N−p)/p log

(
1

ε

)
+O(εN−r(N−p)/p).

Proof. Assertions (i) and (ii) follow directly from [20, Theorem 8.4], see also [17,
21, 24]. We just prove (iii), inspired by [16, Lemmas 3.2 and 3.4].

First, recall the estimate given in [20, Lemma 7.1]∫
RN

|uε|p
∗
dx = S

N
p +O(ε

N
p−1 ). (3.14)

By (3.13) we have∫
RN

|vε|r |log(|vε|)| dx =

∫
RN

(
ϕR Uε

∥uε∥p∗

)r

|log(ϕR)| dx

+

∫
RN

(
ϕR Uε

∥uε∥p∗

)r ∣∣∣∣log( Uε

∥uε∥p∗

)∣∣∣∣ dx
=: A1 +A2.

(3.15)

We begin by evaluating A1, taking into account (3.11), (3.12), (3.14) as well as
Lemma 2.4, so that

|A1| =
∫
BR(0)\BR/2(0)

(
ϕR Uε

∥uε∥p∗

)r

|log(ϕR)| dx

≤ 1

erS
rN
p

∫
BR(0)\BR/2(0)

Ur
ε dx

=
CN,p

erS
rN
p

ε
(N−p)r
p(p−1)

− (N−p)r
p−1

∫
BR(0)\BR/2(0)

1(
1 +

∣∣x
ε

∣∣ p
p−1

) (N−p)r
p

dx

=
CN,p

erS
rN
p

ε
(N−p)r
p(p−1)

− (N−p)r
p−1 +N

∫
BR/ε(0)\BR/2ε(0)

1(
1 + |y|

p
p−1

) (N−p)r
p

dy

≤ CN,p

erS
rN
p

ε
(N−p)r
p(p−1)

− (N−p)r
p−1 +N

∫ R/ε

R/2ε

tN−1

t
(N−p)r

p−1

dt

= Cε
(N−p)r
p(p−1) = O(εN− r(N−p)

p ),

(3.16)

for a suitable C > 0, where the last identity comes from r > N(p− 1)/(N − p). In
order to estimate A2 we first split as

A2 =

∫
RN\BR/2(0)

(
ϕR Uε

∥uε∥p∗

)r ∣∣∣∣log( Uε

∥uε∥p∗

)∣∣∣∣ dx
+

∫
BR/2(0)

(
ϕR Uε

∥uε∥p∗

)r ∣∣∣∣log( Uε

∥uε∥p∗

)∣∣∣∣ dx
=: A3 +A4.

(3.17)
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By (3.14) and Lemma 2.4, we obtain

|A3| ≤
∫
RN\BR/2(0)

(
Uε

∥uε∥p∗

)r ∣∣∣∣log( Uε

∥uε∥p∗

)∣∣∣∣ dx
≤ Cσ

∫
RN\BR/2(0)

((
Uε

∥uε∥p∗

)r(1−σ)

+

(
Uε

∥uε∥p∗

)r(1−σ)
)

dx

≤ Cσ

S
r(1−σ)N

p

ε
(N−p)r(1−σ)

p(p−1)
− (N−p)r(1−σ)

p−1 +N

×
∫
RN\BR/2ε(0)

1(
1 + |y|

p
p−1

) (N−p)r(1−σ)
p

dx

+
Cσ

S
r(1+σ)N

p

ε
(N−p)r(1+σ)

p(p−1)
− (N−p)r(1+σ)

p−1 +N

×
∫
RN\BR/2ε(0)

1(
1 + |y|

p
p−1

) (N−p)r(1+σ)
p

dx

≤ Cσ

S
r(1−σ)N

p

ε
(N−p)r(1−σ)

p(p−1)
− (N−p)r(1−σ)

p−1 +N

∫ ∞

R/2ε

tN−1

t
(N−p)r(1−σ)

p

dt

+
Cσ

S
r(1+σ)N

p

ε
(N−p)r(1+σ)

p(p−1)
− (N−p)r(1+σ)

p−1 +N

∫ ∞

R/2ε

tN−1

t
(N−p)r(1+σ)

p

dt

≤ Cε
(N−p)r(1−σ)

p(p−1) = O(εN− r(N−p)
p ),

(3.18)

for a suitable C > 0, by taking ε > 0 and above all σ > 0 sufficiently small such
that

(N − p)r(1− σ)

p− 1
> N > Np− (N − p)r.

On the other hand, we have

A4 =

∫
BR/2(0)

(
Uε

∥uε∥p∗

)r ∣∣∣∣log( Uε

∥uε∥p∗

)∣∣∣∣ dx
= Cr

N,p

∫
BR/2(0)

ε
(N−p)r
p(p−1)

∥uε∥rp∗

(
ε

p
p−1 + |x|

p
p−1

) (N−p)r
p

×

∣∣∣∣∣∣∣∣log
 CN,pε

(N−p)
p(p−1)

∥uε∥p∗

(
ε

p
p−1 + |x|

p
p−1

) (N−p)
p


∣∣∣∣∣∣∣∣ dx

= Cr
N,p ε

(N−p)r
p(p−1)

− (N−p)r
p−1 +N

∫
BR/2ε(0)

1

∥uε∥rp∗

(
1 + |y|

p
p−1

) (N−p)r
p

×

∣∣∣∣∣∣∣∣log
 CN,pε

−(N−p)
p

∥uε∥p∗

(
1 + |y|

p
p−1

) (N−p)
p


∣∣∣∣∣∣∣∣ dy
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=
Cr

N,p(N − p)

p
ε

(N−p)r
p(p−1)

− (N−p)r
p−1 +N log

(
1

ε

)
×
∫
BR/2ε(0)

1

∥uε∥rp∗

(
1 + |y|

p
p−1

) (N−p)r
p

dy

+ Cr
N,p ε

(N−p)r
p(p−1)

− (N−p)r
p−1 +N

∫
BR/2ε(0)

1

∥uε∥rp∗

(
1 + |y|

p
p−1

) (N−p)r
p

×

∣∣∣∣∣∣∣∣log
 CN,p

∥uε∥p∗

(
1 + |y|

p
p−1

) (N−p)
p


∣∣∣∣∣∣∣∣ dy

=
Cr

N,p(N − p)

p
ε

(N−p)r
p(p−1)

− (N−p)r
p−1 +N log

(
1

ε

)
×
∫
RN

1

∥uε∥rp∗

(
1 + |y|

p
p−1

) (N−p)r
p

dy

+
Cr

N,p(N − p)

p
ε

(N−p)r
p(p−1)

− (N−p)r
p−1 +N log

(
1

ε

)
×
∫
RN\BR/2ε(0)

1

∥uε∥rp∗

(
1 + |y|

p
p−1

) (N−p)r
p

dy

+ Cr
N,p ε

(N−p)r
p(p−1)

− (N−p)r
p−1 +N

∫
BR/2ε(0)

1

∥uε∥rp∗

(
1 + |y|

p
p−1

) (N−p)r
p

×

∣∣∣∣∣∣∣∣log
 CN,p

∥uε∥p∗

(
1 + |y|

p
p−1

) (N−p)
p


∣∣∣∣∣∣∣∣ dy.

By (3.14), we observe that∫
RN\BR/2ε(0)

1

∥uε∥rp∗

(
1 + |y|

p
p−1

) (N−p)r
p

dy ≤ 1

S
rN
p

∫ ∞

R/2ε

tN−1

t
(N−p)r

p−1

dt

≤ Cε
(N−p)r

p−1 −N = O(ε
(N−p)r

p−1 −N ),

for a suitable C > 0. From (3.14) and Lemma 2.4, for a suitable C > 0 independent
by ε, we have∣∣∣∣∣∣∣∣

∫
BR/2ε(0)

1

∥uε∥rp∗

(
1 + |y|

p
p−1

) (N−p)r
p
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×

∣∣∣∣∣∣∣∣log
 CN,p

∥uε∥p∗

(
1 + |y|

p
p−1

) (N−p)
p


∣∣∣∣∣∣∣∣ dy

∣∣∣∣∣∣∣∣
≤ (| log (CN,p) |+ | log (∥uε∥p∗) |)

∥uε∥rp∗

∫
RN

1(
1 + |y|

p
p−1

) (N−p)r
p

dy

+
N − p

p

∫
RN

1

∥uε∥rp∗

(
1 + |y|

p
p−1

) (N−p)r
p

∣∣∣log (1 + |y|
p

p−1

)∣∣∣ dy
≤ C

∫
RN

1(
1 + |y|

p
p−1

) (N−p)r
p

dy

+
N − p

S
N
p peσ

∫
RN

1(
1 + |y|

p
p−1

) (N−p)r
p −σ

dy < ∞

while the last inequality holds true if we choose σ > 0 small enough such that

N − (N − p)r

p− 1
+

pσ

p− 1
< 0.

Hence, combining the above calculations and taking into account (3.14), we obtain

A4 = CεN− (N−p)r
p log

(
1

ε

)
+O(εN− r(N−p)

p ). (3.19)

Summing up (3.15), (3.16), (3.17), (3.18), and (3.19), we get∫
RN

|uε|r |log(|uε|)| dx = CεN− (N−p)r
p log

(
1

ε

)
+O(εN− r(N−p)

p ).

This completes the proof. □

We are now able to prove the estimate for Iλ(tvε), with a suitable t ≥ 0, which
allows us to apply Lemma 3.3.

Lemma 3.5. Let (H1)–(H4) be satisfied, let λ > 0 and let vε be as in (3.13). Then,
then there exists ε > 0 sufficiently small such that

sup
t≥0

Iλ(tvε) < c for any λ > 0.

Proof. Let ε > 0 and λ > 0. By (H4) and (3.13), we have

Iλ(tvε) =
tp

p

(
∥∇vε∥pp + ∥vε∥pp

)
− ∥K1∥∞

tp
∗

p∗

− λ∥K2∥∞
tr

r

∫
RN

|vε|r log(t|vε|) dx+ λ∥K2∥∞
tr

r2

∫
RN

|vε|r dx.
(3.20)

Since p < r < p∗, we easily see that limt→0 Iλ(tvε) = 0 and limt→∞ Iλ(tvε) = −∞.
Hence, there exists tε ≥ 0 such that

sup
t≥0

Iλ(tvε) = Iλ(tεvε).
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If tε = 0, the proof of the lemma follows immediately. On the other hand, if tε > 0,
then using the fact that d

dtIλ(tεvε) = 0, we obtain

0 = tp−1
ε

(
∥∇vε∥pp + ∥vε∥pp

)
− ∥K1∥∞tp

∗−1
ε

− λ∥K2∥∞tr−1
ε log(tε)

∫
RN

|vε|r dx

− λ∥K2∥∞tr−1
ε

∫
RN

|vε|r log(|vε|) dx.

(3.21)

Clearly, {tε}ε>0 is bounded. Indeed, if tε < e the claim holds trivially, while if
tε > e by (3.21), we have

tp−1
ε

(
∥∇vε∥pp + ∥vε∥pp

)
− ∥K1∥∞tp

∗−1
ε

= λ∥K2∥∞tr−1
ε

∫
RN

|vε|r log(tε|vε|) dx

= λ∥K2∥∞tr−1
ε

∫
RN

|vε|r log(tε) dx+ λ∥K2∥∞tr−1
ε

∫
RN

|vε|r log(|vε|) dx

≥ λ∥K2∥∞er−1

∫
RN

|vε|r dx+ λ∥K2∥∞er−1

∫
RN

|vε|r log(|vε|) dx,

which gives the required boundedness. Furthermore, combining (3.21) with Lemma
3.4, for ε > 0 sufficiently small, we get

0 = tp−1
ε

(
S +O(ε(N−p)/(p−1))

)
− ∥K1∥∞tp

∗−1
ε

− λ∥K2∥∞tr−1
ε log(tε)C1 ε

N−r(N−p)/p − λ∥K2∥∞tr−1
ε C2 ε

N−r(N−p)/p log

(
1

ε

)
+O(εN−r(N−p)/p),

from which, up to a subsequence, we have either tε → 0 and the proof of the lemma
is immediate, or

tε →
(

S

∥K1∥∞

)1/(p∗−p)

as ε → 0+. (3.22)

On the other hand, by setting

h(t) =
S

p
tp − ∥K1∥∞

p∗
tp

∗
, t > 0,

by direct calculation we have

max
t>0

h(t) = h

((
S

∥K1∥∞

)1/(p∗−p)
)

=

(
1

p
− 1

p∗

)
S

p∗
p∗−p

∥K1∥
p

p∗−p
∞

. (3.23)

Thus, for ε > 0 sufficiently small, by (H4), (3.20), (3.22), (3.23) and Lemma 3.4,
we obtain

sup
t≥0

Iλ(tvε) = Iλ(tεvε)

≤ S

p
tpε + Cε(N−p)/(p−1) − ∥K1∥∞

p∗
tp

∗

ε

+ λ∥K2∥∞trε

(
1

r2
− log(tε)

r

)∫
RN

|vε|r dx
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− λ∥K2∥∞
trε
r

∫
RN

|vε|r log(|vε|) dx

≤
(
1

p
− 1

p∗

)
S

p∗
p∗−p

∥K1∥
p

p∗−p
∞

+ Cε(N−p)/(p−1) + CεN−r(N−p)/p

− CεN−r(N−p)/p log

(
1

ε

)
<

(
1

p
− 1

p∗

)
S

p∗
p∗−p

∥K1∥
p

p∗−p
∞

with C > 0 and r > N(p − 1)/(N − p) in the last inequality. This completes the
proof. □

We conclude by studying the mountain pass geometry for Iλ in correspondence
of vε, as set in Lemma 3.5.

Lemma 3.6. Let (H1)–(H3) be satisfied, let λ > 0 and let ε > 0 be as set in Lemma
3.5. Then we have the following statements:

(i) there exist δ > 0 and α > 0 such that Iλ(u) ≥ α for any u ∈ W 1,H(RN )
with ∥u∥ = δ;

(ii) there exist τε > 0 sufficiently large such that ∥τεvε∥ > δ and Iλ(τεvε) < 0.

Proof. Let λ > 0 and let ε > 0 be as set in Lemma 3.5. Let u ∈ W 1,H(RN ) with
∥u∥ ≤ 1 and let s > 0 such that r + s ∈ (q, p∗). By Lemmas 2.1, 2.3 and 2.4 along
with Hölder’s and Young’s inequalities, we get

Iλ(u) ≥
1

q
ϱ(u)− λ

r

∫
{x∈RN : |u(x)|>1}

K2(x)|u|r log(|u|) dx− 1

p∗

∫
RN

K1(x)|u|p
∗
dx

≥ 1

q
∥u∥q − d1

p∗
∥u∥p

∗
− d2λ

r
∥u∥r+s,

where d1, d2 are positive constants. Since q < r + s < p∗, we can easily get (i)
assuming ∥u∥ sufficiently small.

On the other hand, we have

lim
t→∞

Iλ(tvε) = −∞

from which we can conclude the proof. □

Proof of Theorem 1.1. Let λ > 0 and let ε > 0 be as set in Lemma 3.5. By
Lemma 3.6 together with the mountain pass theorem without (PS) condition, see
[34, Theorems 1.15 and 2.8], there exists a (PS)cλ sequence {un}n∈N ⊂ W 1,H(RN )
of Iλ, at the positive critical mountain pass value given by

cλ := inf
γ∈Γ

sup
t∈[0,1]

Iλ(γ(t))

with

Γ :=
{
γ ∈ C

(
[0, 1],W 1,H(RN )

)
: γ(0) = 0, γ(1) = tεvε

}
.

By Lemma 3.4 we have

0 < cλ ≤ sup
t≥0

Iλ(tvε) < c.
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Thus, we can apply Lemma 3.3 to {un}n∈N, so that there exists a nontrivial weak
solution u ∈ W 1,H(RN ) of (1.2). □
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[15] X. Dou, X. He, V.D. Rădulescu, Multiplicity of positive solutions for the fractional

Schrödinger-Poisson system with critical nonlocal term, Bull. Math. Sci. 14 (2024), no. 2,

Paper No. 2350012, 56 pp.
[16] Y. Deng, Q. He, Y. Pan, X. Zhong, The existence of positive solution for an elliptic problem

with critical growth and logarithmic perturbation, Adv. Nonlinear Stud. 23 (2023), no. 1,
Paper No. 20220049, 22 pp.



16 A. BAHROUNI, A. FISCELLA, AND P. WINKERT
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[20] J.P. Garćıa Azorero, I. Peral Alonso, Existence and nonuniqueness for the p-Laplacian: non-

linear eigenvalues, Comm. Partial Differential Equations 12 (1987), no. 12, 1389–1430.
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