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ABSTRACT. This paper is concerned with the study of the following double
phase equation with logarithmic nonlinearity

—div (|Vu\p72Vu + u(ac)|Vu|q72Vu) + [ulP "2+ p(x) |ul 2

= K1 (a)|ul?” ~2u + AKa(x)|u|""2ulog(ju|) in RN,
with dimension N > 2, parameter A > 0, 1 < p < ¢ < N, u: RV — [0, 00)
is a Lipschitz continuous function and max{p, N(p —1)/(N —p)} <r < p* =
Np/(N — p). Here, the weight function K is positive, while Ko may change
sign on RY. By a different variational approach, we prove an existence result
which in some aspects improves our contribution in [A. Bahrouni, A. Fiscella,
P. Winkert, J. Math. Anal. Appl. 547 (2025), no. 2, Paper No. 129311, 24

pp.]. For this, we need some restrictive assumptions on the weights u(-), K1
and Ko.

1. INTRODUCTION

In our paper [7], we mainly studied the following quasilinear equation
— div (|VulP 72V + p(2)|Vu|T*Vu) + [ulP"?u + p(z)|u]?

" 1.1
_ K@)l 2+ Ko@)l 2 log(ul) + v Ks@lal 2, mEY, D

driven by an operator of double phase type. In particular, in [7, Theorem 4.1] we
proved the existence of a mountain pass solution of (1.1) in a superlinear logarithmic
setting with exponents 1 < p < ¢ < 8 < r < p*, where p* = Np/(N — p), and
considering v = A with A sufficiently large. In order to deal with the logarithmic
term, we strongly used the nonlinear perturbation with exponent 5. Indeed, to get
a mountain pass solution for (1.1), we needed an important asymptotic property
of the mountain pass level itself, as A goes to co. The proof of this asymptotic
condition was obtained by a challenging combination of the superlinear logarithmic
term and of the S-nonlinearity, explicitly highlighted in the assumption

e(r—p0)r(B—o)
K <
=756 =)
with ¢ < o < 3, strongly requested in [7, Theorem 4.1].

Ks(z), for any z € RY,
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In the present paper, we want to face (1.1) without the help of the S-perturbation,
that is considering v = 0. For this, we study the equation

— div (|Vul[P 72 Vu + p(z)|[Vu|T*Vu) + [uP~?u + p(z)|ul!u
= K1 (2)[ul” ~?u+ AKz(@)u " 2ulog(lul), in RY,
with the following structural assumptions, similar to the ones in [7, Theorem 4.1]:
(H) 1<p<qg<N,qg<p*and u: R¥N — R, = [0,00) is Lipschitz continuous
such that u(-) € L= (RM).
(Hp) Ky € C(RN) N L®RY), Ki(z) > 0 for all # € RN and if {A,,}hen € RY
is a sequence of Borel sets such that the Lebesgue measure |A,| < C for all
n € N and some C > 0, then

(1.2)

lim Ki(z)dz =0,

"0 J A, NBg(0)
for some p > 0.
(H3) Ky € LYRY) N L>®RY) with |Ks| < K; on RV,
We point out that we still suppose that K, can change sign in RY. However, in
order to handle a superlinear logarithmic term, we need a further condition for the
weight functions appearing in (1.2):
(Hy) there exist R > 0 and x > 0 such that u(z) = 0, K;(x) = || K1l and
Ks(x) = || K3||oo for a.a.xz € Br(0).
The requirement in (Hy) for K and K5 is quite standard when working with critical
equations in RY, as shown in [17]. The restriction on the double phase weight u(-)
is crucial to exploit the explicit expression of the extremal functions for the Sobolev
inequality into LP" (RY), as used in [11].
Our main result is the following theorem.

Theorem 1.1. Let (Hy)—(Hy) be satisfied and let r be such that

N(p-—1
max{p,]ilp)} <r<p*.
-p

Then, equation (1.2) admits at least one nontrivial weak solution for any A > 0.

We strongly point out that in Theorem 1.1 we are able to cover the situation
when p < r < ¢, remain unanswered in [7, Theorem 4.1]. Indeed, we can guarantee
that N(p —1)/(N —p) < p < r < p* whenever N > p?. Also, in Theorem 1.1
we can consider any generic value for the parameter A > 0. However, technically
speaking, we are not able to get a mountain pass solution. More precisely, by
the mountain pass theorem we construct a Palais-Smale sequence at the critical
mountain pass level. But this sequence admits a subsequence which just converges
weakly to a nontrivial critical point of the energy functional related to (1.2). That
is, we cannot prove the strong convergence of the Palais-Smale subsequence, which
guarantees the attainability of the critical mountain pass level.

Thus, comparing Theorem 1.1 with [7, Theorem 4.1], we have the following gains:

(i) we do not need to add any S-perturbation to control the logarithmic term,
as in (1.1);

(ii) we cover a strongly superlinear logarithmic situation, with possibly p < r <
4q;

(iii) the parameter A > 0 is generic.
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However, we need to pay some information in exchange:
(i) we have a new restrictive assumption for the weights pu(-), K; and Ky as
given in (Hy);
(ii) formally, we do not get a mountain pass solution for (1.2).
The double phase operator given in problems (1.1) and (1.2) is associated to the
energy functional

W (u) = /RN (;|W|p+ ’“‘(q“’c)wuw) da, (1.3)

which was first introduced in [37, 38, 39] to provide models for strongly anisotropic
materials in the framework of homogenization. A distinguishing feature of the
double phase functional (1.3) is the variation in its ellipticity depending on the
behavior of the function u(-). Specifically, the energy density exhibits ellipticity of
order ¢ in regions where p(z) > e for any fixed ¢ > 0, while it has ellipticity of
order p at points where u(z) = 0. Consequently, the integrand in (1.3) switches
between two distinct types of elliptic behavior. A first mathematical treatment of
functionals of type (1.3) has been done in a number of papers in [8, 9, 10, 12, 13,

, 29, 30, 31, 30] related to regularity properties of local minimizers.

Over the past 10 years, there have been several contributions dealing with double
phase problems in the whole space RY. We refer to [2, 4, 6, 22, 23, 25, 26, 28, 33],
see also the references therein. Only the authors in [25] do allow a critical growth,
in addition to the unboundedness of the domain. For bounded domains and critical
growth for double phase problems we mention the papers by [5, 11, 18, 19, 27, 32].
None of these works, however, consider the presence of a logarithmic term on the
right-hand side of the equation. For double phase problems involving nonlinearities
of logarithmic type on the right-hand side there are only few works. In addition
to the authors’ aforementioned work [7], we can simply make reference to [1] who
proved the existence of a nonnegative solution based on the Nehari manifold method
of the problem

— div (|[VulP7?Vu + p(z)|VulT*Vu) + V(2)u[P~>u
= AK (z)|u|""?ulog(|u|) in D, u|aD =0,

where D C M is an open bounded subset of a smooth complete compact Rie-
mannian N-manifold and r € (1,p). Very recently, the authors in [3] considered
logarithmic type double phase problems where the logarithm appears not only on
the right-hand side but also in the operator. However, due to the different operator,
the function space and the variational setting are different to the present work. In
summary, our work combines several important aspects: critical growth, the pres-
ence of a logarithmic term, and the unboundedness of the domain. Furthermore,
we improve upon the results from our earlier work in [7] in a nontrivial way.

The paper is organized as follows. In Section 2 we introduce the solution space,
the energy functional of (1.2) and some preliminary results. We give the proof of
Theorem 1.1 in Section 3, by using several auxiliary lemmas.

2. VARIATIONAL SETTING

In this section, we first state some known results about Musielak-Orlicz spaces
in RY. By LY(R") we denote the usual Lebesgue space endowed with the norm
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| -]l¢ for 1 < ¢ < oo. While W(RM) stands for the Sobolev spaces equipped with
the norm ||V - |l¢+ ] - [l¢, for any 1 < £ < 0.

Supposing assumption (H; ), we consider the nonlinear function H: RY x [0, c0) —
[0, 00) given by

H(z,t) = tF + p(x)t?.

Denoting by M (RY) the set of all measurable function u: RY — R, we then intro-
duce the Musielak-Orlicz Lebesgue space L™ (RY) by

LHRY) .= {u € M(RN): oy(u) := / H(z, |u])de < oo}
RN
endowed with the Luxemburg norm

|lw]|3¢ := inf {T >0: oy (E) < 1} ,
T
where the modular function is given by

outw)i= [ Gl = [ (1ol + uo) ol ) o

By Lf, (RM) we denote the weighted space given by

LIRY) = {u € M(RY): /

RN

pla)ll o < o

equipped with the seminorm

o = ( [, u(x)ulqu);

Moreover, the corresponding Musielak-Orlicz Sobolev space W1 (RY) is defined
by
WHHRY) = {u e L*RY): [Vu| € L*(RY)}
endowed with the norm
[ull = IVullag + llull3,

where ||[Vu|ly = |||[Vu| |3 In the following, we equip the space WL #(RY) with
the equivalent norm

] = mf{T >0 /RN K'i“')pw(x) ('i“): ‘g‘p—k,u(x) ‘;ﬂ dz < 1},

whereby the corresponding modular is defined by
olw) = [ (190l + (o) IVul? + ul? + ) ful] .
RN

Both spaces L™ (RY) and W1 (R¥) are separable reflexive Banach spaces, see [
Theorem 2.7].

Next, we recall the relations between the norm || - || and the associated modular
o(+). We refer to [26, Proposition 2.6] for its proof, see also [14].

Lemma 2.1. Let (Hy) be satisfied, u € W (RY) and ¢ > 0. Then the following
hold:

(i) for u # 0 we have ||ul| = ¢ if and only if o(%) = 1;

(i) flull <1 implies [lul|? < o(u) < ||ul[?;

)
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(iif) [luf] > 1 implies [lul[” < o(u) < [|ul|?;
(iv) o(u) = 0 if and only if ||u|]| — O;
(v) o(u) — oo if and only if ||u|| — oco.

The following result is taken from [26, Theorem 2.7].

Lemma 2.2. Let (H;) be satisfied. Then, the embedding WHH(RN) — L{(RN)
is continuous for any £ € [p,p*]. Also, WHH(RN) — Lf (RN) is compact for any
¢ e [1,p%).

Furthermore, we recall the continuous and the compact embedding of W17 (RY)
into the Lebesgue space

e (RY) = {u € M(RY): /RN K (2)]uf* dz < oo} ,

where 1 < s < oo and K fulfills (Hy). Then, in [7, Proposition 3.1] we proved the
following result.

Lemma 2.3. Let (Hy) be satisfied. Then, W-H(RN) — L5 (RY) is compact for
any s € (p,p").
A function u € WHH(RY) is called a weak solution of (1.2) if

/ (|Vu|p72 Vu - Vo + p(z) |[Vul"> Vu - ch) dz
RN
b [ (1Pt o)l ) da
RN

:/ Kl(x)\uv)”wdxm/ Ko (2)|ul""2ulog(|ul)e d,
RN RN

is satisfied for any ¢ € WHLH(RN)\ {0}. Moreover, the corresponding energy
functional I: WH(RY) — R of problem (1.2) is given by
(Ivullp + i) + - (I1V

1 1
- ~(Ivult + alz,) = [ Kt

K K
f>\/ ﬂmmogqu\)dxm/ ng)|u\rdx.
RN T RN T

.
l”

I(u) »

By [7, Lemma 3.3], we know that I, is well defined and of class C*(WL7(RM) R).
Also, it is clear that weak solutions of (1.2) are critical points of T.

Finally, we recall the following technical lemma which allows us to deal with the
logarithmic nonlinearity in (1.2), see [35] for its proof.

Lemma 2.4.
(i) For any o > 0, we have

log(t) < %t" for any t € [1,00).
(ii) For any o > 0, we have
t7|log(t)] < é for any t € (0,1).
(iii) For any o € (0,1) and s > 1, there exists C, > 0 such that
t*|log(t)| < Co (ts(l_”) + ts(1+")) for any t > 0.
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3. THE EXISTENCE RESULT

We first study the compactness property for the functional I, under a suitable

threshold ¢, set as
11\ S#=
C:= ( — *> 7 > O, (31)
L e

where S > 0 is the best constant of the Sobolev embedding W' ?(RN) «— LP" (RY),
given as

[Vall§ + llullp

u€Wip(RN) |l

S = (3.2)

P
.
For this, we say that {u,}neny C WEH(RY) is a Palais-Smale sequence for I at
level c € R if

D(uy) —c and Ii(u,) —0 in (WEHRYM)" asn—oo.  (3.3)
Then, by [7, Lemma 4.5] we have the following result.

Lemma 3.1. Let (Hy)—(Hj3) be satisfied and let X > 0. Let {uy, }nen € WHH(RY)
be a bounded (PS). sequence with ¢ € R. Then, up to a subsequence, Vu,(x) —
Vu(z) a.e.in RN as n — oc.

In what follows, we provide a technical result for the logarithmic term.

Lemma 3.2. Let (Hy)—(H3) be satisfied and let {u,}nen C WHH(RY) be a se-
quence satisfying

u, = u in WHHRN), w, = win L (RY), u,(z) = u(z) ae.in RY, (3.4)

for any s € (p,p*). Then, we have

lim Kg(sc)|un|rlog(|un|)dx:/ Ko(x)|u|" log(|ul) dz (3.5)
n— oo ]RN ]RN
and
lim Kg(x)|un\r_2unlog(|un|)g0dx:/ Ko(x)|ul"?ulog(|u])pdz, (3.6)
n—roo RN RN

for any ¢ € WHH(RN),

Proof. We only prove (3.5), equation (3.6) can be proved in a similar way. By
Lemma 2.4 and (H3), for any Lebesgue measurable set U C RY and for any o > 0
such that ro < min {r — p,p* — r}, we have

[ Ka(@unl oslual) do < € [ K1) (Junl 0 fun 1))

U U

Thus, considering (3.4) and Vitali’s convergence theorem we get the assertion. O
We are now ready to study the compactness of I, under the threshold ¢.

Lemma 3.3. Let (H;)-(H3) be satisfied and let X > 0. Let {uy, }nen € WHH(RY)
be a (PS). sequence with 0 < ¢ < ¢ as given in (3.1). Then there exists u €
WEH(RN) being a nontrivial critical point for Iy such that, up to a subsequence,
up — u in WHH(RY) as n — .
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Proof. Let us fix ¢ < ¢ and let {u,}n,en be a (PS). sequence in W17 (RY), that
is, (3.3) is fulfilled. We first show that {u, },en is bounded in WL H(RY) arguing
by contradiction. Then, going to a subsequence, still denoted by {u,}nen, we
have nlLIr;OHunH = oo and |luy| > 1 for any n € N. Let 0 > 0 be such that

1 < p < max{r,q} < o < p* and let € > 0 be such that r + ¢ € (p,p*). Thus,
invoking Lemmas 2.1 and 2.4, we get

on(1) + ¢ Clu|
= 1(un) = T (), )

1 1 1 1
> (- 2) 9wl + hual) + (2 2) (19 + ol

p O o

1 1 . 1 1
. (0 . p*> [, Ea@unl” s = ( - U) |, Kelalual o(fua]) da
1 1 1 1 *
> (- D+ (3-5) [ @l as
q O g p RN
1 1 r
) ( _ ) / Ko (@) un|" log(lun ) da
r g {z€RN: |u, (z)|>1]}
1 1 r
) ( _ ) / Ko ()| | log(un ) da
r g {zeRN: |u,|<1|}
1 1 1 1 *
> (- D+ (3- %) [ @l as
q O g p RN

A (11 e

Now, we can find a suitable constant C'y > 0 such that

A 1 1 1 1
s
e(r+e)\r o o p*

and so, from (Hj3), we obtain

P 4Oy, foranyteR,

1 1
o(1) + ¢+ Cllun| = ( - ) [[unl” = CA/ |K2(2)| da.
q O RN

This leads to a contradiction.
Hence {uy, }nen is bounded in WH(RY). By Lemmas 2.3 and 3.1, there exists
a subsequence, still denoted by {u, }nen, and u € WHH(RY) such that

Uy —u  in WHHRY), Up — u  in LP RM),
Vun(z) — Vu(z) ae.in RY, un(z) = u(z) aeinRY, (3.7
up, — uin Ly (RY) for any s € (p,p*).

From (3.3), (3.6) and (3.7) we see that (I} (u), p) = 0 for any ¢ € WLH(RY), which
means that u is a critical point of 1.
Now, let us prove by contradiction that w is nontrivial. If uw = 0, by (3.5) we

have

[, ol 0g(un]) d = 0,1,
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—~

from which, by using also (3.3) and (3.7), we obtain

HwMD:Awm:%NV%M+WM@+$MV%M#+MML)
X * (3.8)
[ K@l de+ o)
D" JrN
and
on(1) = (s (tn), tn) = IVt l12 + [tnllZ + [ V]9, + 1tn]2,
—/ K1 (@) unl?” dz + on(1). (3.9)
RN
Taking (3.2) and (3.9) into account, it follows
p p %_1
0u(1) > ofun) |1 15 oo IT 12l F ltn ) (3.10)

p_
P

If o(un) — 0, by Lemma 2.1 we have that |ju,| — 0 so that by (3.8) we obtain
¢ =0, a contradiction.
Thus, (3.10) implies that

i
[Vun [ + llunlly = ———== + on(1),

so that by (3.8) and (3.9) we get

1 1 1 1
c= (p - p) (IVnll? + flunlZ) + (q - p) (IVnll9 + nll9,.) + 0n(1)

> (1 _ 1) S +on(1),
|

* £
p p | K1 ||& "
which contradicts ¢ < ¢ and (3.1). O

In order to apply Lemma 3.3, we need to guarantee that Iy(u) falls into the
range of validity 0 < ¢ < ¢, for a suitable u € W1 *(RY). To this end, the idea is
to employ a suitable truncation of the function

Cn,p e(N=p)/p(p—1)
(gp/(pfl) + |m|p/(p*1))(N*p)/p’

which belongs to W1P(RY). Here, the best constant of the Sobolev embedding
(3.2) is attained, considering a normalization constant Cn, > 0 given by

_17 (N=p)/p?
N —p p-1
Cnpy=|N )
N [ (p—l) ]

Let us consider Br(0) as in (Hy), then we can introduce a cut-off function ¢r €
C§°(Bgr(0)) such that

0<¢r <1 and ¢g(z)=1for x € Bg/(0). (3.12)

For any € > 0, we set

Us(x) = with € > 0, (3.11)

Ue

u: = ¢prU. and v, = (3.13)

[|ue p*.

Then, considering S as in (3.2), we can prove the following crucial estimates for v..
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Lemma 3.4. Let v. be as defined in (3.13).
and as € — 0%, we have:

(i)/ IVvslpd:c+/ 0[P dzr = § + O(eW P/ (P~ 1)),
RN

Then, for any r > N(p —

(ii) / v|" da = CyeN—T(N=P)/p L QN (N =) /Py,
RN

1
€ € = L2 P
(iii) / ve|" Jlog(Jve])| da = Coe¥ =V Wlog( )+o( N=r(N=p)/p),
RN

Proof. Assertions (i) and (ii) follow directly from [
, 24]. We just prove (iii), inspired by [16, Lemmas 3.2 and 3.4].
First, recall the estimate given in [20, Lemma 7.1]

/ P de = S5 + 0(e7T).
RN

By (3.13) we have
d)R Ue

ve|" |log(|ve dmz/(
[ toet hogouly da = [ (2

) log(én)| da
Tl

+/ <¢RU5) log( Ua
RN e [l p~

e[l
=: A; + A,.

o

1)/(N —p)

, Theorem 8.4], see also [17,

(3.14)

(3.15)

We begin by evaluating Aj, taking into account (3.11), (3.12), (3.14) as well as

Lemma 2.4, so that

I
rU.
= (£25) Hoxton] aa
Br(0)\Br/2(0) P~
1
< — / Ul dz
erS» JBr(0)\Bgr/2(0)
C (N=p)r _ (N=p)r 1
= 7]\’;?\] g p(p—1) p—1 / (N—p)r dx
P B B =21 P
erS r(0)\Br/2(0) (1+ |§’p71)

- Cvg ey | R —
erS» Br/e(0)\Br/2:(0) (1_,’_ |y‘p’%1) p
CN7 (pr),,._(prh, N R/E tN—l

< —fperen e / o &

R/2e t p-1

N—p)r _r(N—-p)
Cerle—1) = O(gN P )7

for a suitable C' > 0, where the last identity comes from r > N(p —
order to estimate A, we first split as
U.
log () ‘ dz
e[l
U,

A2 _ / < ¢R Us )
RY\Br,2(0) \lluellpr
+/ (¢RUE) log( )‘dx
Br/2(0)

e -
=: A3 + A4.

/(N -

(3.16)

p). In

(3.17)
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By (3.14) and Lemma 2.4, we obtain

U. " U.
0 L (5 b5
RN\Bpg,2(0) [|ue || p~ e ||
r(l—o) r(l-o)
<C, (UE ) + (UE ) dz
RN\Bg/2(0) (e ||~ e [l p=

C, (N=p)r(1=0) _ (N—p)r(1—o)
9 T p-1 p—1 +N
= r(l—o)N
P
1
X /RN\B o S o) da
R/2e (1 + |y|ﬁ) P
C (N=p)r(i+o) _ (N—p)r(1to)
o R R (15
S »p
1
X /RN\B © S oo da
P _ P
w20 (14 lyl7T)
C, WN-prQ=o) _ (N=p)r(=a)  n [ V-1
—— ¢ p(p—D p—1 - dt
— r(l—o)N (N—p)r(l—0o)
) R/2e t D
C (N—p)r(ite) _ (N=p)r(i+o) oo V-1
+ -7 e plp-1) p—1 +N - dt
r(1+o)N (N—p)r(1+o)
ST » R/2e ¢ »

N—p)r(l—o) r(N—p)

(
<Ce - =07 ),

for a suitable C' > 0, by taking € > 0 and above all ¢ > 0 sufficiently small such
that

(N = p)r(L - o)

b1 >N > Np— (N —p)r.

On the other hand, we have
(i)
g
[[tte [|p~

A4 :/ < US )T lo
Bp/2(0) llte ||~
(N—p)r

” g plp—1)
= CN,p/ (N—p)r
el T N ) I

dx

C (épr))
ngp p—1
x |log ~r || d
p P P
Jutellp- (77 + Jo]7°7)
(N—p)r (N—p)r 1
— (T oo -1t
—CN,pep(p Y ot /B ©) NG
R/2 — P
O el (14 Iyl
—(N—-p)
CN,pS P

X |log dy

(N—p)

_p_
Juaellpe (14 Iy177)
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g

g rlp—1)
p
1
8 /B (0) j2 Nopir dy
O g (1 7))
b Oy en T RN / !
5 (N—p)r
p POy (1 )T
T
Cn
X IOg -+ (N—p) dy

Jetellpe (1 -+ 1177

g

g r(p—1) P
1
P _ P
iy (1 +1917°7)
Cy (N — (N—p)r _ (N=p)r 1
y ThoalV2p) oo (>

g rlp—1)
P €
1
g /RN\BR/%«J) o
el (1+ 19177
W—p)r_ (N—p)r 4 1
+ Czrv’pg p(p—1) p—1 : " - o
B e |7 (1 + \y|ﬁ> ’
Ch,
X IOg - RN =0 dy
Juaellp- (14 Jy177)
By (3.14), we observe that
1 1 oo tN71
o dy < - / N dt
e S5 JRrjoe 552

RN\Bp/2¢(0

) r 21
ey (1 -+ 19177

(N—p)r _ (N—p)r _
<Ce 1 N =01 N

?

for a suitable C' > 0. From (3.14) and Lemma 2.4, for a suitable C' > 0 independent

by e, we have

1
(N—p)r
BR/ZE(O) P

el (1 + |y|7T
ellp y
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X IOg (N—p) dy
el (14 177) 7
log (C . 1
< (|log (Cnp) - ( p )D/ e dy
[[well5- RN B
(1-%|ylpfl)
N-—p 1 _p_
+ / e [108 (1 + Iyl"*l)‘ dy
P Jry =
||u5 (1 fy)
<C - o W
(1+ Iy 1) ’
N — p 1
t—=x / (N—pr dy < o0
S'» pec 3

(1)
while the last inequality holds true if we choose ¢ > 0 small enough such that

N_
_WN=pr o
p—1 p—1

Hence, combining the above calculations and taking into account (3.14), we obtain

< 0.

i 1 r —
Ay = CeN-EFE log< ) +OEN . (3.19)
Summing up (3.15), (3.16), (3.17), (3.18), and (3.19), we get
_ 1 _r(N-p)
[tk og(fucl az = c=¥ () +O@EN T,
RN 5

This completes the proof. O

We are now able to prove the estimate for I (tv.), with a suitable ¢ > 0, which
allows us to apply Lemma 3.3.

Lemma 3.5. Let (Hy)—(Ha) be satisfied, let A > 0 and let v. be as in (3.13). Then,
then there exists € > 0 sufficiently small such that

sup Iy (tve) <€  for any A > 0.
>0

Proof. Let € > 0 and A > 0. By (Hy) and (3.13), we have

¢

tP tP
D(tve) = — (IVoelb + [l 5) = 1K lloo—
P - . (3.20)
Al [ el log(tlol) e+ N Ralloo 5y [ el
T JrN T RN
Since p < r < p*, we easily see that lim;_,o I\ (tve) = 0 and limy_, o I (tve) = —oc.

Hence, there exists ¢, > 0 such that

sup I (tve) = In(teve).
>0
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If t. = 0, the proof of the lemma follows immediately. On the other hand, if ¢, > 0,
then using the fact that < i (teve) = 0, we obtain

0= (IF0ell + oell) — 1K octt~
~ Aotz 0g() [ Jucl”da (321)

|t / fve " log(Jve ) dz
]RN

Clearly, {t:}e>o is bounded. Indeed, if t. < e the claim holds trivially, while if
te > e by (3.21), we have

2 (IV0elf + [oellB) — K1 lloot?”

= A Koot / fve " og(telue ) da
]RN

= A Koot / o2 " Tog(t2) dar + Al Kaloct? ™! / o2 " log([ve ) da
RN RN

> A Kalooe™? / el dz 4 A Koo / jve " log(|us ) dz
RN RN

which gives the required boundedness. Furthermore, combining (3.21) with Lemma
3.4, for € > 0 sufficiently small, we get

0= 2271 (5 + 0N/ E)) — | Kyt !
1
— | K ||loot? log(t)Cy eNTTNTR/P _ ) || Ky aott T Co eN TN PP 10 (€>

+ 0N =Py,

from which, up to a subsequence, we have either t. — 0 and the proof of the lemma
is immediate, or

S 1/(p"—p) N
te = | 70— ase — 07. (3.22)
) (|K1||m>
On the other hand, by setting
Killoo -
h(t) = Sl 1*” ", t>0,
p p
by direct calculation we have
1/(1’ —p) 1 S%
maxh(t) = h < - | — (3.23)
) ||K 12
Thus, for e > 0 sufficiently small, by (Hy), (3.20), (3.22), (3.23) and Lemma 3.4,
we obtain
sup I (tve) = In(t-ve)
>0
< S 4 cev-» /-1 _ [Killec
Pt

(1 log(te) ,
et (5 = 5 [ odrda
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‘s

t
CN|Eall / foe " log([ve]) da
T RN

_p*
< (1 _ 1) ST Ce R -1 N (N
ror e

— CeN-rIN=P)/P g <1)
€

(1 1) S
PP K&

with C > 0 and r > N(p — 1)/(N — p) in the last inequality. This completes the
proof. O

We conclude by studying the mountain pass geometry for I, in correspondence
of v, as set in Lemma 3.5.

Lemma 3.6. Let (H;)—(Hg) be satisfied, let A > 0 and let € > 0 be as set in Lemma
3.5. Then we have the following statements:
(i) there exist § > 0 and o > 0 such that I (u) > a for any u € WLH(RY)
with ||ul] = 0;
(ii) there exist 7. > 0 sufficiently large such that ||Tcve|| > ¢ and I\(7.v:) < 0.
Proof. Let A > 0 and let £ > 0 be as set in Lemma 3.5. Let u € WH(RY) with

[lu]l <1 and let s > 0 such that r + s € (¢q,p*). By Lemmas 2.1, 2.3 and 2.4 along
with Holder’s and Young’s inequalities, we get

1 A 1 .
L) = Lo~ 2 / Ko(@)ul" log(Jul) dz — ~ / Ky (@)|uf”” da
q T J{zeRN: |u(z)|>1} P Jrw
1 O
> Lo = D = 22,
q p r

where dy, do are positive constants. Since ¢ < r + s < p*, we can easily get (i)
assuming |lu|| sufficiently small.
On the other hand, we have

tlirgo I)\(tve) = —o0

from which we can conclude the proof. O

Proof of Theorem 1.1. Let A > 0 and let € > 0 be as set in Lemma 3.5. By
Lemma 3.6 together with the mountain pass theorem without (PS) condition, see
[34, Theorems 1.15 and 2.8], there exists a (PS)., sequence {u, }nen € WH(RY)
of I, at the positive critical mountain pass value given by
¢y = inf sup Ix(v(t))
7€l telo0,1]
with
o= {y € C (0,1, WHH(RY)) : 4(0) = 0, 7(1) = tevc}.

By Lemma 3.4 we have

0 < cy <suply(tve) <.
>0
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Thus, we can apply Lemma 3.3 to {uy, }nen, so that there exists a nontrivial weak
solution u € WHH(RY) of (1.2). O
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