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ABSTRACT. In this paper we study logarithmic double phase problems with variable exponents in-
volving nonlinearities that have generalized critical growth. We first prove new continuous and com-
pact embedding results in order to guarantee the well-definedness by studying the Sobolev conjugate
function of our generalized N-function. In the second part we prove the concentration compactness
principle for Musielak-Orlicz Sobolev spaces having logarithmic double phase modular function struc-
ture. Based on this we are going to show multiplicity results for the problem under consideration for
superlinear and sublinear growth, respectively.

1. INTRODUCTION

Recently, the authors [2] introduced a new class of logarithmic double phase operators given by

. — Vu| -2
div ( |[VulP® 2 Vu + u(x {lo e+ |Vu —|—|] V1@ Vu), 1.1
(vl ) [togte+ 9ul) + = T (9 (1)
whose energy functional is given by
|Vu|p(w) |Vu|q($)
U — ——— + p(x)———log(e + |Vu|) | dz, 1.2
/Q<p(x) (@) S o(e + |V (1.2

where 2 C RN, N > 2, is a bounded domain with Lipschitz boundary 042, e stands for Euler’s number,
p,q € C(Q) with 1 < p(z) < g(z) for all z € Q and p € L'(Q2). The related Musielak-Orlicz Sobolev
space is generated by the function

Hiog (2, 1) = tP@ 4 p(2)t1® log(e +t)  for all (x,t) € Q x [0, 00).

In [2] it is shown that the spaces W1 g (Q) and VVO1 Hios () are separable, reflexive Banach spaces and
the operator (1.1) turns out to be bounded, continuous, strictly monotone and of type (Sy). Note that
similar functionals as in (1.2) for constant exponents have been studied by Baroni-Colombo-Mingione
[4] in order to prove the local Hélder continuity of the gradient of local minimizers of the functional

w 0—>/ [Dwl? + a(z) | Dw|? log(e + |Dw|)] dz (1.3)
Q

whenever 1 < p < oo and 0 < a(-) € C%*(Q2). We point out that the functionals in (1.2) and (1.3)
coincide in case p = q are constant. In this direction we also mention the paper by De Filippis—-Mingione
[11] who proved the local Holder continuity of the gradients of local minimizers of the functional

w = / [|Dw|log(1 + |Dw|) + a(x)|Dw|?] dz (1.4)
Q

provided 0 < a(-) € C**(Q) and 1 < ¢ < 1+ 2. Note that (1.4) originates from functionals with
nearly linear growth given by

w / |Dw|log(1 4+ |Dw|) dz, (1.5)
Q

2020 Mathematics Subject Classification. 35A01, 35J20, 35J25, 35J62, 35J92, 35Q74.
Key words and phrases. Concentration compactness principle, critical growth, genus theory, logarithmic double phase
operator, logarithmic Musielak-Orlicz spaces, Sobolev embeddings.

1



2 R. ARORA, A. CRESPO-BLANCO, AND P. WINKERT

see the works by Fuchs-Mingione [20] and Marcellini-Papi [34]. Functionals as given in (1.5) appear,
for example, in the theory of plasticity with logarithmic hardening, see, Seregin—Frehse [411] and Fuchs—
Seregin [21].

In this paper we are going to deepen the study of the operator (1.1) and consider generalized
N-functions given by

S(x,t) = a(x)t*™® + b(2)t7®) 1og* @ (1 + t)  for (z,t) € Q x (0,00), (1.6)

where p,q € C(Q) with 1 < p(x),q(z) < N for a.a.x € , s € L*>() such that g(x)+s(x) > r > 1 and
0 < a,be L'(Q) such that a(z)+b(x) > d > 0 for all z € Q, see (Hy) for the precise assumptions. First
we are interested in continuous and compact embeddings from W1<(Q) into suitable Musielak-Orlicz
Lebesgue spaces. In particular, we prove that W1 S(Q) is continuously embedded into L™ (), where
8§*: Q x [0,00) — [0,00) is defined as

S*(x,t) == ((a(:v))ﬁ t)p*(x) N ((b(m) log™®) (1 + t)) L t) " (2) |

see Proposition 3.8. Such type of embedding is sharp in the sense that, for each fixed x, it coincides
with the sharp Sobolev conjugate in classical Orlicz spaces. Here we use ideas from the papers by
Arora—Crespo-Blanco-Winkert [2], Cianchi-Diening [7], Colasuonno—Squassina [9], Crespo-Blanco—
Gasiriski-Harjulehto—Winkert, [10], Fan [13], and Ho-Winkert [28]. Furthermore, we point out that
the new logarithmic double phase operator generated by S given in (1.6) is defined by

div (a(m)Vu|p(””)_2Vu
s(z) |Vl (L7)
a(2) =2 15ps(T)—1 2\
+ b(z)|Vu| log (1+[Vu|) <log(1 + |Vu|) + @) T+ |Vu|> Vu).
The study of problems involving the new logarithmic double phase operator (1.7) (see problem (1.9)
below) has two different features in contrast to the known works. The first different feature is the
degeneracy or singularity of the operator at Vu = 0 which is of polynomial type perturbed with a
logarithmic term, which again has degeneracy or singularity at Vu = 0 depending upon the exponent
s(+). The second different feature is the exponent s(-) itself on the logarithmic term which may change
sign depending upon the space variable z € ). This sign-changing nature of the exponent s(-) creates
several challenges and technical difficulties in our analysis. In particular, it leads to losing the convexity
of the corresponding generalized N-function (1.6), which is essential in setting up the corresponding
Banach spaces. Another difficulty arises in finding the suitable structure of the generalized (critical)
N-function for continuous and compact embeddings which takes the form of non-trivial estimates. To
handle these issues, we introduce a balance condition between the sign-changing exponent s(-) and ¢(-),
which together preserves the convexity of the generalized N-function (1.6) and several other properties
of the new logarithmic double phase operator (1.7). This makes the study of the new logarithmic
double phase operator (1.7) more challenging and interesting. In general, there are only few works
for the double phase operator with a logarithmic perturbation, see the papers by the authors [2], Lu—
Vetro—Zeng [33], Vetro-Winkert [13] and Vetro-Zeng [12]. In particular, in [33] the authors introduced
the operator

Hi (,[Vul)

U'—)AHLU_diV( Yl

Vu) . ue WhHte(Q) (1.8)

where Hp:  x x[0,00) — [0,00) is given by
Hy(2,8) = 7@ + ()1 log(e + at)

with & > 0. Note that (1.8) is a different operator than the one in this paper and also the one in (1.1).
Moreover, the work in [33] can be seen as the extension of Vetro—Zeng [12] from the constant exponent
case to the variable one while the paper by Vetro-Winkert [13] uses the same operator as in (1.1).
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In the second part of this paper we prove a concentration compactness principle of Lions type for the
Musielak-Orlicz Sobolev space VVO1 S(Q) having logarithmic double phase modular function structure.
Such result is of independent interest and can be also used for other types of logarithmic double phase
problems. Our result extends the works by Ferndndez Bonder—Silva [17, 18] for variable exponent
spaces and Orlicz spaces, respectively and Ha—Ho [23] (see also [24] by the same authors for the entire
space) for Musielak-Orlicz Sobolev spaces having double phase modular function structure without
logarithmic perturbation who proved a concentration compactness principle by extending the classical
work of Lions [31]. Other versions of the concentration compactness principle have been proved, among
others, by Ferndndez Bonder—Saintier—Silva [16], Fu—Zhang [19], Ho—Kim [26] and Palatucci-Pisante
[36]. In contrast to the cases just mentioned, for the logarithmic double phase operator, the same
ideas cannot be extended easily due to the non-uniform limit (with respect to the space variable)
of the Matuszewska index of the generalized N-function S defined in (1.6) (compared to Ferndndez
Bonder—Silva [18]) and the lack of appropriate scaling and homogeneity because of the logarithmic
perturbation (compared to Ho—Kim [26]). In order to handle this issue, we introduce suitable sub-
homogeneous functions perturbed with logarithmic growth, which plays a crucial role in our analysis.
This approach can also be extended to prove the concentration compactness principle for a larger
class of Musielak-Orlicz Sobolev spaces. In addition, we also prove a Brézis-Lieb lemma and a reverse
Holder type inequality.

In the last part of the paper, based on the continuous embedding W$(Q) < LS (Q) and the
concentration compactness principle both developed before, we are going to study quasilinear elliptic
equations driven by the logarithmic double phase operator and with right-hand sides having the new
critical growth perturbed with superlinear and sublinear growth nonlinearities

—div (M(z, Vu)) = AM*(z,u) + AM, (x, u) in Q,

u=0 on 09, (1.9)

where Q € RV, N > 2, is a bounded domain with Lipschitz boundary 99, X, A > 0 are parameters to
be specified and M: Q x RY — R is given by

M(z, &) = e(M(x,8)),  M(x,8) := <5P<w>+£q<$>log 1+ ¢

(@.6) = %(M(@.0). M.€) = (S51er + S0 (1 + )
while M* M, are Carathéodory functions on 2 x R defined by
M*(z,t) = Oy (M*(z,1t)), M, (z,t) = O (My(z,1)),

where

. 1 RN A CO N " & o\
M (@,t) = —— ((a(@)7@ 1t])” " + ((bm log™ (1 + [¢])) |t) ,

p*(x) q*(x)
1 1

q+ ()

(@) ((a(x))ﬁ It\)p*(w) + e ((b(x) log™ ™) (1 + |t|))ﬁ |t> ,

with p. (), g«(-) and p*(-), ¢*(-) being the subcritical and critical Sobolev variable exponents of p(-)
and ¢(+), respectively, that is, p.(-) < p*(+) and ¢, () < ¢*(*), see (H,) below. We consider the cases of
superlinear and sublinear growth separately and get multiplicity results in the Theorems 6.8 and 6.17.
In the case of superlinear growth, by extending the ideas of Komiya—Kajikiya [29, Theorem 2.2] via
genus theory and the deformation lemma, for each n € N, we show the existence of at least n-pairs
of solutions for A € (0,A,). In case of the sublinear growth, using Krasnosel’skii genus theory (see
Krasnosel’skii [30]) along with appropriate truncation technique following ideas by Garcia Azorero—
Peral Alonso [22] and Farkas—Fiscella-Winkert [15], the existence of infinitely many weak solutions
with negative energy sign has been shown. Note that the appearance of the logarithmic term in our
operator makes the treatment much more complicated than in the known works.

In general, there are only few existence results for critical double phase problems without loga-
rithmic perturbation in case of constant or variable exponents, see the papers by Arora—Fiscella—
Mukherjee-Winkert [3], Farkas—Fiscella-Winkert [15], Ho-Kim-Zhang [27], Liu-Papageorgiou [32] and

M, (z,t) =
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PapageorgiouVetro-Winkert [37, 38]. All these works have just terms like |u|?” 2w or |u|P” (*)=24 on
the right-hand side of their problems without any term likes ,u(x)|u\q’F*2U. In the recent paper by
Colasuonno—Perera [8] the authors study double phase problems in the local and in the nonlocal
Kirchhoff case by allowing a growth on the right-hand side given by

[ulP" =20 + b(x)|ul? 2 (1.10)

with a suitable weight function b(-). Moreover, Ha—Ho [23] studied Kirchhoff double phase problems
with variable exponents via a new concentration compactness principle (we already mentioned this
fact above) and with a growth like

. @)
[ulP" @2y 4 a(z) Ee) [u|?” @) =2, (1.11)

see also a paper by the same authors [24] for the case in RY. For the use of a growth as in (1.11),
the authors in [23] have used general embedding results for variable exponent double phase problem
proved by Ho-Winkert [28], see also the work by Cianchi-Diening [7] for a general Sobolev embedding
theorem in Musielak-Orlicz Sobolev spaces. In contrast to (1.10) and (1.11) we allow a growth of the
form

q"(z)

. \t|)p*(m) + ﬁ ((b(w) log**) (1 + Itl))ﬁ tl)

p*(z)

The study of the above generalized critical growth nonlinearity is motivated by embeddings of the
corresponding Musielak-Orlicz-Sobolev space VVO1 S(Q) and the above concentration compactness prin-
ciple. Such types of nonlinearities have not yet been investigated in the literature. In this direction, the
current work presents new multiplicity results for quasilinear elliptic problems involving the logarithmic
double phase operator given in (1.7) and generalized critical growth with logarithmic perturbation.

The paper is organized as follows. In Section 2 we present the general theory about Musielak-Orlicz
spaces and introduce our special N-function § including the proofs of some properties of it. Section 3 is
devoted to the new continuous and compact embedding results (see Proposition 3.8) while in Section
4 we are going to develop and prove a concentration compactness principle adapted to logarithmic
double phase structures as presented before in this paper, see Theorem 4.6. In Section 5 we discuss
the properties of the energy functional and the logarithmic double phase operator in (1.9). Finally,
in Section 6 we prove our main multiplicity results for problem (1.9) in the case of superlinear and
sublinear growth, respectively, Theorems 6.8 and 6.17.

2. THE FUNCTION SPACES

We begin with a brief description of Lebesgue and Sobolev spaces with variable exponents and
introduce then the necessary definitions for introducing the required Musielak-Orlicz Sobolev spaces.
We refer to the monographs of ChlebickaGwiazda-Swierczewska-Gwiazda-Wréblewska-Kamiriska ],
Diening-Harjulehto-Hést6-Ruzicka [12], Harjulehto-Hésto [25], Musielak [35], Papageorgiou—Winkert
[39] and the paper Fan—Zhao [14].

Given a bounded domain  C RY with N > 2 and Lipschitz boundary 99, we denote by L"(2) the
usual Lebesgue space for 1 < 7 < oo equipped with the norm || - ||,. Moreover, W17 (2) and W, ()
stand for the related Sobolev spaces with the norm || - |1, = || - |- + |V - |l» and if 1 < r < o0, then
W," () can be endowed with the equivalent norm ||V - ||,..

For any function f: @ — R we write

[f1(z) := max{f(z),0} and |f](x):=min{f(z),0}.
For r € C(Q), we set 7~ = min, g 7(z) and 7" = max_ g r(z) and we define
Ci(Q)={reC():1<r }.

Note that for any bounded function g: 2 — R we use the same notation, that is, we set

+ . - :
g"=maxg(r) and g~ :=ming(w).
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Now, for r € C(2) and M () being the set of all measurable functions u: £ — R, we denote by
L") (Q) the Lebesgue space with variable exponent given by
L"OQ) = {u € M(Q): 0,(y(u) < o},
equipped with the norm

lullry = inf {3 > 0: 00y (5) <1

whereby the modular associated with r is

oo /MW

It is well known that L™()(Q) is a separable and reflexive Banach space and its norm is uniformly
convex. Also, it holds [L™()(Q )] = L' 0)(Q), where 7’ € C(Q) is the conjugate variable exponent of
r given by 7/(z) = r(z)/[r(z) — 1] for all z € Q. Furthermore, we also have a Hélder type inequality
of the form

1 1 .
/Q luv| dr < L + } ullry [0l < 2lullyyllvlley  for all u,v € L™O(Q).

If 1,70 € C(Q) and 71(z) < 7"2(1') for all z € Q, we have the continuous embedding L™()(Q) —
L0O(Q).

The next proposition shows the relation between the norm and its modular, see Fan-Zhao [14,
Theorems 1.2 and 1.3].

Proposition 2.1. Let r € C;(Q), A >0, and u € L") (Q), then
(i) [lullr¢y = A if and only if 0.y (%) =1 with u # 0;
(i) ||u\|r() <1 (resp. =1, >1) zf and only if ory(u) <1 (resp. =1, > 1);
omﬁwmm<1mmwmgsww><wmy
(1) if Nl > 1, then ull, < ory (@) < [lullf);
(v) llullyy = 0 if and only if or((u) = 0;
)

(vi

Next, we introduce the corresponding variable exponent Sobolev space Wl”’(')(Q) which is defined
by

lullr.y — +oo if and only z'f QT(_)(u) s 400,

Wit (Q) = {u e L"O(Q): |Vu| € L"C (Q)}

endowed with the norm
lulliecy = inf {2 >0: 0100 () <1},
where
01,r( (1) = 2r(y (1) + or () (Vu),
with 0,y (Vu) = 0,(.)(|Vul). Moreover, we denote
Wol,T(~)(Q) _ W”'”LT(').

We know that the spaces W'7() and VVO1 ’7'(')((2) are both separable and reflexive Banach spaces and
the norm || - ||1,, is uniformly convex. Furthermore, we have the Poincaré inequality, that is

lullry < col|Vullpy forallue Wol’r(')(Q).
for some ¢g > 0. Therefore, we can equip the space Wol’r(‘)(Q) with the equivalent norm ||u||W1 ") =

| Vu||,.y which turns out to be uniformly convex as well.
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For r € C(Q) we introduce the critical Sobolev variable exponents 7* and r, with the following
expression

r(z) = { Nor@) @) <N - alzeq,
any number s € (r(z),00) ifr(zx) > N
(N—-1)r(x) if <N -
ro(z)={ Nor@) fr@e) <N Az e,
any number s € (r(z),00) ifr(zx) >N

Let us denote the space C%Tes (1) by the set of all functions h: & — R which are log-Holder
continuous, i.e. there exists C' > 0 such that

C — 1
h(x) —h < — forall Q with |x — —.
()~ hiy)| < (o forall v,y € Qwith [r —y| < 5

Ifr € O o (), then the set C°(€2) of smooth functions with finite support is dense in Wol’r(') ().
1 —

Given a function u € Wol’r(')(Q) with r € C% o7 (Q), the smooth approximations of u in Wol’r(')(Q)
can be obtained by means of the Friedrichs mollifiers. -
The following analog of the Sobolev embedding theorem holds. Given p,q € C () with infq (p*(z)—

q(x)) > 0, then for every u € Wol’p(')(Q)
”qu(),Q < CHUHWOLP(')(Q)? with C' = C(p:tv qiv |Q|7 N)v

and the embedding Wol’p(')(ﬂ) C L10)(Q) is compact.

Next, we begin by recalling some definitions and preliminary results from Fan [13], Harjulehto-H&sto
[25] and Musielak [35] in order to introduce Musielak-Orlicz Sobolev spaces and its properties. First,
let us denote by (X, X, u) a o-finite, complete measure space with p Z 0.

Definition 2.2. Let ¢: X x (0,+00) = R. We say that

(i) ¢ is almost increasing in the second variable if there exists a > 1 such that p(z,s) < ap(s,t)
forall0 < s <t and for a.a.x € X;

(ii) @ is almost decreasing in the second variable if there exists a > 1 such that ap(x,s) > p(x,t)
forall0 < s <t and for a.a.x € X.

Definition 2.3. Let ¢: X x (0,+00) — R and p,q > 0. We say that ¢ satisfies the property
(Inc), if t™Pp(z,t) is increasing in the second variable;
(alnc), if t™Pp(x,t) is almost increasing in the second variable;
(Dec), if t~9¢(x,t) is decreasing in the second variable;
(aDec), if t~9¢(z,t) is almost decreasing in the second variable.

Without subindez, that is (Inc), (alnc), (Dec) and (aDec), it indicates that there exists some p > 1 or
q < oo such that the condition holds.

Next, we give the definition of a generalized ®-function.

Definition 2.4. A function p: X x [0,4+00) — [0,400] is said to be a generalized p-function if
@ is measurable in the first variable, increasing in the second variable and satisfies (x,0) = 0,
lim; o+ @(z,t) =0 and limy_, 4 ©(x,t) = +00 for a.a.x € X. Moreover, we say that
(i) ¢ is a generalized weak p-function if it satisfies (alnc); on X x (0,400);
(ii) @ is a generalized convex p-function if o(x,-) is left-continuous and convez for a.a.x € X;
(iii) ¢ is a generalized strong @-function if p(x, ) is continuous in the topology of [0, 00| and convex
for a.a.x € X.

The set of all generalized strong ®-function is denoted by ().

Now we define the conjugate of a generalized ¢-function and its left-inverse.
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Definition 2.5. Let ¢: X x [0, +00) — [0, +00]. We denote by ¢¥ the conjugate function of o which
is defined for x € X and s > 0 by

@ﬁ(xv 5) - ?glo)(ts - gD(:C,t)).

We denote by =1 the left-continuous inverse of ¢, defined for x € X and s > 0 by
o Y (z,s) =inf{t > 0: (x,t) > s}.
Definition 2.6. Let ¢: X x [0,4+00) — [0, +0], we say that
(i) ¢ is doubling (or satisfies the Aqg-condition) if there exists a constant K > 2 such that
p(z,2t) < Ko(x,t)
for allt € (0,400] and for a.a.x € X;
(ii) o satisfies the Vy condition if ©* satisfies the Aa-condition.

(iil) Let ¢1,d2 € B(QY). We say ¢ is weaker than ¢a, denoted by ¢y < ¢o, if there exist constants
C1,0y >0 and h € LY(Q), h > 0 such that

d1(x,t) < Crda(x, Cot) + h(z) for a.a.z € Q and for all t > 0.

We say that the functions ¢1, ¢o are equivalent denoted by ¢1 ~ ¢, if there exists L > 1 such
that

1 (x, tL7Y) < ¢o(x,t) < ¢y (x,tL)  for a.a.x € Q and for all t > 0,
or weakly equivalent denoted by ¢1 ~ ¢ if there exists L > 1 and h € L*(Q) such that
oa(x,t) < ¢1(x,tL) + h(x)
and
o1(x,t) < @o(x,tL) + h(x) for a.a.x € Q and for all t > 0.

(iv) A function ¥: [0,00) — [0,00) is said to be a N-function (N stands for Nice function) if 1 is

a ®(Q) function and

lim M =0 and lim ¥

t—0+ ¢ t—o0

A function ¥: Qx[0,00) — [0, 00) is said to be a generalized N -function if (-, t) is measurable
for allt > 0 and ¥(x,-) is a N-function for a.a.xz € Q. We denote by N () the class of all
generalized N -function on Q.

(v) Given ¢1,¢2 € Na(Q), we say ¢1 increases essentially slower than ¢o near infinity, denoted
by &1 < ¢a, if for any £ >0

. ¢1 (l‘, ft)
Jim, b2z, 1)

Definition 2.7. Let p: Q x [0,400) — [0,+00] be a generalized p-function, we say that it satisfies
the condition
(AO) if there exists 0 < 8 < 1 such that B < ¢~ (z,1) < B~ for a.a.z € Q;
(A0)’ if there exists 0 < B < 1 such that ¢(z,3) <1< p(z,B71) for a.a.x € Q;
(A1) if there exists 0 < 3 < 1 such that B~ t(z,t) < ¢~ (y,t) for every t € [1,1/|B|] and for
a.a.x,y € BNQ with every ball B such that |B| < 1;
(A1)’ if there exists 0 < 5 < 1 such that o(x,Bt) < p(y,t) for every t > 0 such that ¢(y,t) €
[1,1/|B]|] and for a.a.z,y € BN Q with every ball B such that |B| < 1;
(A2) if for every s > 0 there exists 0 < 3 < 1 and h € L*(Q) N L>®(Q) such that By~ (z,t) <
0 Yy, t) for every t € [h(z) + h(y),s] and for a.a.z,y € Q;
(A2) if there exists s > 0, 0 < 8 < 1, poo weak p-function (that is, constant in the first variable)
and h € L*(Q) N L*(Q) such that o(z, Bt) < voo(t) + h(x) and poo(Bt) < @(x,t) + h(x) for
a.a.x € Q and for all t > 0 such that Yoo (t) < s and ¢(z,t) < s.

=0 uniformly for a.a.x € Q.

<
2
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The following result can be found in Harjulehto-Hésto [25].

Lemma 2.8. Let ¢: X [0,400) — [0, +00] be a generalized weak o-function, then

(1) ¢ satisfies the Ag-condition if and only if ¢ satisfies (aDec), for some q¢ > 1;

(ii) if ¢ is a generalized convex p-function, ¢ satisfies the As-condition if and only if ¢ satisfies
(Dec)q for some g > 1;

(i) ¢ satisfies the Vo condition if and only if ¢ satisfies (alnc), for some ¢ > 1;

(iv) ¢ satisfies the (AQ) condition if and only if ¢ satisfies the (A0)’ condition;

(v) if ¢ satisfies the (AO) condition, the (A1) condition holds if and only if the (A1)’ condition
holds;

(vi) ¢ satisfies the (A2) condition if and only if ¢ satisfies the (A2) condition.

For the next result we refer again to Harjulehto—Hé&sto [25].

Proposition 2.9. Let p: X x[0,+00) — [0, 4+00] be a generalized weak p-function and let its associated
modular be

0() = [l ) du(o).
Then, the set
LX) ={ue M(X): p,(Au) < oo for some XA > 0}
equipped with the associated Luremburg quasi-norm
u
=i : — )<
ull, 1nf{>\ >0: 0, (A) < 1}

1s a quasi Banach space. Furthermore, if ¢ is a generalized convex p-function, it is a Banach space;
if ¢ satisfies (aDec), for some ¢ > 1, it holds that

LX) ={ue M(X): o,(u) < co};

if ¢ satisfies (aDec), for some ¢ > 1 and p is separable, then L¥(X) is separable; and if ¢ satisfies
(alnc), and (aDec), for some p, ¢ > 1 it possesses an equivalent, uniformly convex norm, hence it is
reflexive.

The relation of the modular and the norm is stated in the following proposition.

Proposition 2.10. Let ¢: X X [0,400) — [0,400] be a generalized weak @-function that satisfies
(alnc), and (aDec)y, with 1 <p < ¢ < co. Then

1 .
—min {{Jull}, [ull} < op(w) < amax {|ull}, |lul2}

for all measurable functions u: X — R, where a is the mazimum of the constants of (alnc), and
(aDec)q.

The following characterization of suitable embeddings has been proven by Musielak [35, Theorems
8.4 and 8.5].

Proposition 2.11. Let ¢,9: X x [0,+00) — [0,+00] be generalized weak @-functions and let 1 be
atomless. Then L¥(X) — L¥(X) if and only if there evists K > 0 and a non-negative integrable
function h such that for all t > 0 and for a.a.x € X

¥ (z,t) < Ko(z,t) + h(x).
We also have the following Holder inequality in Musielak-Orlicz spaces, see Harjulehto—Hasto [25].
Proposition 2.12. Let ¢: X X [0,+00) — [0, +00] be a generalized weak @-function, then
/ Jul [v] dp(z) < 2lfullgllvll e for allu € L9(X), ve L (X).
X

Moreover, the constant 2 is sharp.
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Proposition 2.13. Let ¢: X X [0,+00) — [0,+00] be a generalized weak o-function such that ¢ €

Ao NV, then
2
o <x, (p(j’t)) < p(x,t) < ¢F (:107 90(:’0) for allt > 0.

Finally, we can also define associated Sobolev spaces to these Musielak-Orlicz spaces analogously
to the classical case. We refer to Harjulehto—Hasto [25].

Proposition 2.14. Let ¢: Qx[0,4+00) — [0, 400] be a generalized weak @-function such that L¥ () C
Li,.(Q) and k > 1. Then, the set

W2 (Q) = {u € L?(Q): dou € L¥(Q) for all |a| < k},
where we consider the modular

OheW) = Y 0p(Bau)

0<|al<k

and the associated Luxemburg quasi-norm

. U
llullk, = inf {)\ > 0: o, (X> < 1}
is a quasi Banach space. Analogously, the set
Wéﬂ’tp(g) _ WH'HIWP’

where C§°(Q) are the C*°(Q) functions with compact support, equipped with the same modular and
norm is also a quasi Banach space. Furthermore, if ¢ is a generalized convex p-function, both spaces
Wk#(Q) and Wéw’(ﬂ) are Banach spaces; if ¢ satisfies (aDec), for some g > 1, then they are separable;
and if ¢ satisfies (alnc), and (aDec), for some p, ¢ > 1 they possess an equivalent, uniformly convex
norm, hence they are reflexive.

The next proposition summarizes the relation between the norm in W#(€) and its modular.

Proposition 2.15. Let ¢: Q x [0,400) — [0,+00] be a generalized weak p-function that satisfies
(alnc), and (aDec),, with 1 <p < q < co. Then

e

k.o

for all w € Wk2(Q), where a is the mazimum of the constants of (alnc), and (aDec),.

1 .
~min {1l s ullf b < oo () < amax {ull? . [l

Now we can give our precise assumptions:
(Ho) (i) Q c RN, N > 2, is a bounded domain with Lipschitz boundary 9€;
(ii) p,q € C(Q) with 1 < p(z),q(z) < N for all x € Q and s € L>(2) such that ¢(z) + s(z) >
r > 1 for a.a.x €
(iii) 0 < a,b € LY(Q) and a(z) + b(x) > d > 0 for a.a.z € Q.
We define the function S: © x [0, 00) — [0, 00) by
S(x,t) = a(z)t*® + b(2)t"® 1og* @ (1 + ) for (z,t) € Q x (0,00) (2.1)
and denote
a(z) = min{p(z),q(z)} and  B(z) = max{p(z),q(z)}.
The following lemma summarizes the main properties of the ®-function S.

Lemma 2.16. Let (Hy) be satisfied. Then S is a generalized strong ®-function and satisfy (Inc),-
and (Dec)y+ for 1 < £~ =min{p~, (¢+ [s])"} and for £+ = max{p™, (¢ + [s])*}.
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Proof. Observe that in light of (Hy), we have

the map x — S(z,t) is a locally integrable for all t > 0
the map t — S(x,t) is increasing and continuous for a.a.z € Q.

For all t > 0 and for a.a.z € {2, we have

0,°S(x,1) = a(@)p(w)(p(x) — P2 4 (@)t 10g* @ =2 (1 4 ) x |q(x)(g(z) — 1)log? (1 +1)

+ 2q(z)s(z) log(1 + t)%ﬂ + s(x)(s(x) — 1)(117”2 — s(x)log(1 +t) a i t)Q}

= a(z)p(z)(p(z) — DP® =2 4 ()19 2 10g*®=2(1 + ) x M.,

The convexity of the function S(z,-) follows from the sign of its second derivative. From the above
estimate, it is enough to prove that M > 0.
Case 1: s(x) >0

It holds _
M = g(2)(q(@) — Dlog*(1 + 1) + 5(2) (1%0 log(1-+1) 4(x) - 117:}
+ s(z) 111 {Q(x) log(1+1¢)+ (s(z) — 1)1t—|—t]

> g(2)(a(x) — 1) log?(1 + 1) + sz >(1 L los(1+1) . t]
>

+ s(x)q(z) 1 j_ [log 14+t

Q+

where in the last inequality we have used the fact that
Case 2: s(z) <0
For a fixed x such that s(x) < 0, we define

hy(t) == 2q(z)(1 +t)log(l +t) —tlog(l +t) + 2(s(x) — 1)t

and
() = 2s(x)q(x)t n s(z)(s(z) — 1)t B s(z)t?
(I1+t)log(l+¢t) (1+t)2(log(l+1t)2 (1+¢)2log(l+1t)
s(x)t (s(x) — 1)t t
= Ar 1o 10 |29 T T e 1)~ A+
Note that
lim r = lim _ 1, lim tz =
t=0 (1 +t)2(log(1 +1¢))2 =0 (1 +¢)log(1 +t) T150 (1+¢)2log(1 + t)
and

M = log®(1 + 1) lg(2)(g(2) — 1) + 2(t)].
Since ¢(z) 4+ s(z) > 1 and s(z) < 0, we have
2:(0) = }gr(l) zz(t) = s(z) [(s(x) — 1) + 2¢(x)] <0 and hy(0) =0.
Next, we claim that both h;(-) and z,(-) are increasing functions and achieves their infimums h, (0)
and z,(0) at 0, respectively. Differentiating with respect to ¢ and using
(1+t)log(l+¢) >t >In(l+¢t), q(z)+s(z)>1, qz)>1,

we obtain

B () = 29(2)[1 + log(1 + £)] — 1%% “log(L+ )+ 2(s(x) — 1)
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=2(gq(x) +s(z) — 1) + (2q(x) — 1) log(1 4+ t) — %-&-t
> 2(q(w) + s(z) — 1) +2(g(z) — 1) >0
and
SA0 pp— [<1 —s(@)l—log(1+1)] 1 }
’ (T+8)log(l+1t) [ (1+t)2(log*(1+1))  (1+1)?
_ s(2)[t —log(1 +1)] [ o) (s(x)—1)t ¢ }
(1+1t)2log*(1+ 1) (1+t)(log(1+1t)) (1+1)
s(z)[t —log(1 +1)]
(1 +1)3 log® (1+1) [2q(z)(1 4+ t)log(1 4+ t) — tlog(1l +t) + 2(s(x) — 1)¢]

B s(x)t
(14+t)3log(1+1t) —

This implies
= log®(1 +t) [g(=)(g(x) = 1) + 2:(1)] > log?(1 +t) [g(«)(g(x) — 1) + 2,(0)]
=log®(1 +t) [q(=)(g(x) = 1) + s(z) [(s(x) — 1) + 2q()]]
= log®(1 + 1) [(q(z) + s(2))(g(x) + s(x) — 1)] > 0.
Note that, for any ¢ € {¢~,¢T} and z € Q, we have
i(ﬁ@*ﬁ%“”u+ﬂ):ﬁ@*“4bf@)%1+ﬂ(@@ﬂ—@by1+ﬂ+squt)

For £ = ¢~ = min{p~, (¢ + [s])"}

(a(x) — ) log(1 4+ ) + s(a)— > {0~ +sl@)agy (@) 20

For £ = ¢* = max{p™, (¢ + [s])"}

t (q(z) — 0F + s(z))log(1 +¢t) if s(z) >0
x) — (") log(1 + 1) + s(z
(ale) = £7) log(L+1) + 5(r) {0 ifs(z) <0 (23)
<0.

Therefore, in the view of the condition ¢(z) 4+ s(z) > r > 1 in (Hy)(ii) as well as (2.2) and (2.3), it is
easy to verify that, for 1 < ¢~ = min{p~, (¢ + [s]) "} and £T = max{p™, (¢ + [s]) "},

S(z,t - _

g;>:a@ﬁM@4 - b(2) 1 1og® @ (1 4 1),

S(x7 t) xXr)— + xT)— + s(x

S =T 4 (@)@ o (1 4+ 1)
are increasing and decreasing functions, respectively. O

As a consequence of the previous Lemma, we obtain the following.

Proposition 2.17. Let the assumption (Hg) hold. Then, the spaces L°(2), Wh(Q) and Wol’S(Q)
are reflexive Banach spaces.

Proof. Using Lemma 2.16 and Propositions 2.9 and 2.14, we know that the spaces LS (Q), Wh¥(Q)

and WO1 S (Q) are separable Banach spaces. To prove the remaining claim, it is enough to prove that
L3(Q) is reflexive. From Lemma 2.16, we know that the map ¢ — Sff_’t)

t— St(ff) is decreasing, i.e., S satisfies (Inc),~ and (Dec),+. Now, by using Harjulehto-Hé&sto [25,

is increasing and the map

Proposition 3.6.2, Theorem 3.6.6 and Lemma 2.1.8], there exists a uniformly convex function ¢ € ®(1)
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such that S ~ ¢ and ¢ satisfies (Dec),+. Hence, using again Harjulehto—Hé&st6 [25, Propositions 3.2.4
and 3.6.6], L?(€2) is uniformly convex, L%(Q) = L?(Q) and by the Milman-Pettis Theorem it follows
that LS(Q) is reflexive. O

Now we denote, for all u € L(1),
os(u) = / (a(m)|u|p(w) + b(a) |9 10g*® (1 + |u|)) dx
Q
u
=1 : —) < .
ulls mf{)\ >0: 0s (A) < 1}

The following proposition shows the relation between gs(-) and | - ||s.
Proposition 2.18. Assume (Hg) holds true and u € L°(Q). Then the following hold:
(i) If u # 0, then ||u|ls = n if and only if os (%) =1.
(ii) o ()<1(0r—10r>1)<:>||uH5<1(0r—10T>1)
(i) I ulls <1, then [l D7) < ps(u) < Julf5™ LD,
() If fulls > 1, then [[ull§™ 7 DT < og(u) < [l DT,
(v) lunlls — 0 (01" 1 or o0) in L3(Q) < os(un) — 0 (or 1 or 00).
Proof. For any u € L5(Q), define
u: [0,00) = R, &u(n) := os(nu).

Let ||u|ls = 1. Now, by using the definition of the norm, the continuity and the strict monotonicity of
the map &, because of (Hy), we have for ¢ € (0,7)

fu( ! >>1 and §u<1><1 = §u<1>:1 ie. Qs(u>:1.
n—e n n n

The converse part holds trivially from the definition of the norm and the strict monotonicity of the
map &,. Hence, (i) follows. Using the continuity of the function S and Harjulehto-H&st6 [25, Lemma
3.2.3], we get (ii). Moreover, (iii) and (iv) follow from Proposition 2.10 and Lemma 2.16. Moreover,
from (ii)—(iv), for any v € L¥(Q), we have

. min{p~, s|)™ max +, st
mm{l,llvlls B @)Yy max(p® (et }}

min{p~, s|)™ max +’ ST
SQS(U)SmaX{17||U|3 {r~,(qg+1]s)) }7HU||S {p™,(q+[s1) }}

and
min {17 (05 (0)) 1/ mntp™ (o ls) "} (QS(U))Umax{pt(qﬂsw}}
< |lo]ls < max {1, (0 ()1 minte(a+Ls) ) (QS(U))l/max{p+,(q+r51)+}}.
Finally, by taking v = u,, in the above estimates, we obtain the required claim in (v). O

For our purposes, we further need to work on the associated Sobolev space, whose properties are
summarized in the following statement. Its proof is completely analogous to the proof of Proposition
2.18 except that now we use Proposition 2.14 (instead of Proposition 2.9) and Proposition 2.15 (instead
of Proposition 2.10).

Proposition 2.19. Let (Hy) be satisfied, Then the following hold:
(1) If u #0, then ||ull1,s =n if and only if 01.s (%) =1.
(i) o1,s(u) <1l(resp.=1;>1) < Juli,s <1 (resp.=1; >1).
(if) 1f [[ulls <1, then [ul P57 VT < gy () < ul gD
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() IF ullys > 1, then [lull75 0D < oy s(u) < fu gt D

(v) up — 0 (or 1 or 00) in WH9(Q) & 01.5(us) — 0 (or 1 or o) respectively as n — oo.

The next lemma will be useful to prove Sobolev embeddings of Musielak-Orlicz Sobolev spaces. We
define

Boor(z,t) = a(x)t?® + b(z)t®@ logm @ (1 4 1).
where 6, © are positive continuous function on Q and T is a bounded function on €.
Proposition 2.20. Let (Hg) be satisfied. Then the embeddings
L5 () — LBrim(Q) — L*)(Q)

are continuous, where p, j, £ € C, (), m € L>(Q), ¢(x) < min{p(x),j(x)} for all z € Q, and j(-) and
m(-) are given by

q(z)  if s(x) >0,

la e
< q(z) otherwise, for alt @

m(z) < s(x), jx)+m(z) >0 fora.a xze€Q andj(x)= {
(2.4)
Proof. We will prove the embeddings by applying Proposition 2.11 to the corresponding ®-functions.
For j € C(Q) and m € L™ (Q) satisfying (2.4), we have
Bp;jﬂﬂ (ma t)
= a(@)t?® + b(z)t! @) 1og™ @ (1 4 1) (2.5)
< (@)t + b(@)t ) 1og™ (1 + )X s(@) 20} () + b)) g™ (1 + 1) X (5(2) <0} ()
Now, we estimate the terms in the right-hand side of the above inequality separately. Note that the
condition j(x) + m(z) > 0 implies that t/(*) log™® (1 + ) is an increasing function.
Case 1: z € {s(x) > 0}
It holds
(e —1)7=) ift <e—1,

7 1og™®) (1 4 1) <
g™ )< 1@ 1og*@ (1 +1) ift>e—1, (2.6)

< (e—1)7" 4190 1og"@) (1 4 1),
where in the above inequalities we have used m(z) < s(z) and j(z) + m(x) > 0 in {s(z) > 0}.
Case 2: z € {s(z) <0}
By the continuity of j(-) and ¢(-), there exists € > 0 such that
t4(@)=i(*) > 4= for all + > 1 and for all z € {s(x) < 0}.

It is easy to show that for the above choice of € > 0 there exists t. = t.(¢) > e — 1 (independent of x)
such that

log(_s)+(1 +1) <t® forallt>tr. (2.7)
Combining the above estimates, we deduce that
9@ > @) 16g=*@ (1 4 ¢)  for all t > t* and for a.a.x € {z € Q: s(x) < 0}. (2.8)

Again, by using m(z) < s(z) and j(z) +m(x) > 0 for a.a.z € {z € Q: s(z) < 0}, we obtain
7@ 10g™® (14 1) <@ 1og™ ) (1 + )y rcpey (£) + 7@ 1og™ ) (1 + ) x im0y (1)
< ()" 1og! ™™ (14 4)) + 1190 10g™ P (1 + 1),
Using the estimates (2.6), (2.7), (2.8) and (2.9) in (2.5), it follows that
Bp.jm (x,t) < S(z,t) + h(z),

(2.9)
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where
h(z) = log™™ " (1 +t)(t*)" + (e — 1)7".
This concludes the proof. O
As a consequence of the previous result, we have the following embeddings.

Proposition 2.21. Under the assumption (Hy) the following embeddings hold:
(i) WES(Q) = WhBrsm (Q) — WHO(Q), WHS(Q) = WP (Q) = W (Q) are continu-

ous with 1 < {(z) < min{p(z),j(z)} for all x € Q and j(-) and m(-) are given by (2.4).

(i) if min{p(-), ()} € COToet (Q), WLS(Q) — LEO(Q), WhS(Q) — L O(Q) are continuous
for all £ € C(Q) with 1 < 4(x) < min{p(z),j(x)} for all z € Q.

(iil) WhS(Q) — LY O(Q), Wol’s(ﬂ) < LYO(Q) are compact for all £ € C(Q) with 1 < l(z) <

min{p(x),j(x)} for all z € Q.

Proof. The embeddings are straightforward to verify via Proposition 2.20 and the Sobolev embeddings
in variable exponent spaces by finding a weaker ® function and comparing the variable exponents in
the modular function. O

Under some additional conditions, we prove the following Poincaré inequality in WO1 S (Q).
Proposition 2.22. Let (Hy) be satisfied and suppose
a,b€ L>®(Q) and max{p(r),q(r)} < min{p*(x),q*(z)} for all x € Q. (2.10)
Then WHS(Q) — LS(Q) is a compact embedding and there exists a constant S > 0 such that
lulls < 8||Vulls for allu € Wol’S(Q),

where S is independent of u and so |V - ||s is an equivalent norm on Wy > ().

Proof. Note that S(z,) is an increasing and continuous function for a.a.x € Q and for € > 0 there
exists t, = t.(e) (independent of x) such that

log® @ (1+1¢) < logs+(1 +1t) <t® forallt>t" and for a.a.z € {zx € Q: s(z) > 0}. (2.11)
This directly implies that
S(x,t) < C1 4 a(@)tP® 4 b(z)t1@*  for a.a.x € {z € Q: s(x) > 0} (2.12)

and
S(.’I}, t) = S(J?, t)X{t<efl}(t) + S(l‘, t)X{tZefl}(t)

< Oy + a(z)t?® +b(2)t?™  for a.a z € {z € Q: s(z) < 0}
where C7 and Cy depend on t* and L*-norms of ¢,b and s. The uniform continuity of p and ¢ and
the sharp inequality in (2.10) gives the choice of & in (2.11) such that

max{p(z), ¢(z)} + 2¢ < min{p*(z),¢*(z)} forall z € Q. (2.14)
Now, by combining the estimates in (2.12) and (2.13) with the inequality in (2.14), we obtain
S(z,t) < Cstmin{p*(90)41"‘(90)}—E + Cy.
Finally, by applying Proposition 2.11 and Proposition 2.21 (iii), we obtain the required embedding. O

(2.13)
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3. MUSIELAK-ORLICZ SOBOLEV EMBEDDINGS

For a parameter £ > 1, we denote

. {ts(;ve) ifo<t<de,

S(z,t) = for all (z,t) € Q€ |0 . 3.1
D=5y itear | PrAl@HEQC0 ) (31)

Since Q € R is bounded and S(x,t) = S(x,t) for all (z,t) € Q x [(,00), we get LS(Q) = LS(Q) and
WLS(Q) = WS(Q) and their norms are comparable. Therefore, in light of the embedding results,
we may use S in place of §. For the sake of brevity, we write & instead of S. Now, we define the
Sobolev conjugate function of S in order to study the continuous and compact embeddings of certain
Musielak-Orlicz Sobolev spaces into Musielak-Orlicz Lebesgue spaces.

Definition 3.1. A function S, is called the Sobolev conjugate function of S if the inverse of the Sobolev
conjugate function S;1: Q x [0,00) — [0, 00) is given by
s o—1
Sz, s) = / %ﬁ;ﬂdf for all (z,5) € Q x [0, 00), (3.2)
0 T N
where S, (x,t) € Q% [0,00) — s € [0,00) is such that Sy (x,8) =t and S~ (x,-): [0,00) — [0,00) is
the inverse function of S(x,-) for all x € Q.
In addition to the assumption (H), we suppose the following regularity and oscillation conditions:
(Hy) (i) p,q,s € C*Y(Q) and a,b € C*1(Q);
iy max{p(z),q(z) 1.9
(ii) i) a0} < 1+ & in Q.
Now, we prove some continuous and compact embedding results using ideas from the papers by

Cianchi-Diening [7], Colasuonno—Perera [9], Crespo-Blanco—Gasinski-Harjulehto-Winkert [10], Fan
[13], and Ho-Winkert [28].

Proposition 3.2. Let (Hy) and (Hy) be satisfied. Then, the following hold:

(i) WHS(Q) < L5 (Q) is a continuous embedding.

(ii) Suppose L € ®(Q) and L < S., then there exists a compact embedding WS () < L* ().
Proof. The proof follows from Fan [13, Theorem 1.1 and 1.2] provided S satisfy the condition (P4)
and condition (2) in [13, Proposition 3.1], i.e.

lim S;!(z,t) =c0 forallz € Q
t—00

and there exist positive constants ¢,y and d < % such that for each j =1,2,..., N

t
3‘2(57)‘ < (8w, 1) for all 2 € Q and for all £ > £
J

for which Va(x), Vb(z), Vp(z), Vq(z), Vs(z) exist and so ‘%&’”‘ does.
For (z,t) € 2 x [1,00), note that for any € > 0 and = € Q,

_a(@)tP® + b(2)t1®) 10g* @ (1 4 1)
lim
t—o0 tﬁ(a:)+s

=0 with () = max{p(z), q(x)},
that is, for any n > 0, there exists a constant m; > 0 (independent of x) such that
S(z,t) = a(@)t"@ 4+ b(z)t1®) 1og* @ (1 + t) <t @+ for all 2 € Q and for all t > m.
Replacing t by S~!(z,t) in the above inequality gives
t

FlayTe
Sz, t) > () for all x € Q and for all ¢t > S(x, my).
n
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Hence, by choosing e small enough such that 3(x) +& < N for all z € Q, we obtain

1 t
S;l(z,t) > S;l(x,S(:r,ml)) + / Tﬁ(w1>+ff% dr

Ao Js(ama)
> C(n,ﬂi,N) (tﬁ_% - (S(x,ml))w_%) — 00 ast—oo.
For ¢ > 0 there exists to = to(¢) > 1 large enough such that
1 < log(log(1 + 1)) < log(t) < log(1 + t) < cot W¥3TI=T < cotf  for ¢ > to. (3.3)

Differentiating the function & with respect to z;, we get

08 (x,t) Op da 0b
Y < 2@ | 2 oo (t @) | 2 (@) 1508(®) (1 4 ¢
‘ (’)xj ' - CL(%) 837j Og( )+ 8xj + al‘j 08 ( + )
+ b(z)t1®) log(t) ‘gj log*™® (1 4 1t) (3.4)
J

+ b()t7) | log(log(1 + t))| ‘88;_ log®* @ (1 + ¢).
J

Now by using (3.3) multiple times in (3.4) for ¢ > tg > 1, we obtain

0S(z,t)
afﬂj

9(2)+5 1oes " i >
I N A R ) R L
ta(z)+3 log® (1+1t) ifs(z)<0
max{p(xz),q(z)}+{ ;
“c t | {p(z),q(z)} ?f s(z) >0 (3.5)
pmax{p(x),q(x)}+¢  if s(xr) <0

< O (a(@)t) 4 b(@)9) + b)) PP

Now, by using the uniform continuity of the functions p(-), ¢(+) in Q and (H;) (ii), we can find ¢ = ((9)
such that

max{p(z),q(x)} + ¢ 1 . =
- <l+d6<1+— inQ. 3.6
min{p(z), ¢(2)} N (36)
Using (3.6) in (3.5), we get
‘958(;”7”‘ <O (S(z, )™ for (z,t) € Q x (to, 00).
J
This shows the assertions of the proposition. O

Remark 3.3. With a similar argumentation as in Arora—Crespo-Blanco- Winkert [2, Lemma 3.10 and
Theorem 3.12], it can be concluded that the function S satisfies (A0) and (A1), provided the conditions

A q i
be C*(Q) and <) <1+ — 3.7
@) y) <1 (37)
hold true with a(z) =1, 1 < p(z) < q(z), and s(x) = 1. Consequently, this embedding result is a
specific instance of Cianchi-Diening [7, Theorem 3.5], assuming the more stringent conditions stated
in (3.7) compared to those in (Hy) and (Hy).

Next, we provide estimates for the Sobolev conjugate function S, of S, which is crucial for studying
the concentration-compactness principle in the next section. Specifically, we intend to look for a func-
tion &* weaker than S, and of polynomial growth or polynomial growth perturbed with a logarithmic
function governed by the support of the modulating coefficients a(-) and b(-). In the following we
assume that (Hp) and (H;) hold.

Proposition 3.4. Let S, be the Sobolev conjugate function of S given by (3.2). Then, the following
hold:
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(i) For (z,s) € Q x [0,S(x,0)]
Nt N-1

N_138@0°

st
S(x,0)
(i) For (z,t) € Q x [0,S Y (z,S(x,))]

S Y(x,s) = and  S;'(z,s) =

Sz, O)(N — 1))<NN1>t x

S*(x,t): < Nf N-1

where S, (x, S(x, () = NNi_fl(S(x,g))%‘

Proof. From the definition of the Sobolev conjugate function S, of S defined in (3.1), we get
14 N/ _ _
S Y(x,s) = @ and  S; M (wz,s) = ms% for (z,s) € Q x [0,8(z,1)].
By taking the inverse of the function S !, we get

Su(a,t) = <S(x?\(f;1)> TS for (2,t) € QA x 0,87 (z,8(z, 0))).

O

Now, we prove a series of results offering the lower estimates of the Sobolev conjugate function S,
in the components {A4;};=12 C Q where A;, i = 1,2 is defined as

A ={x€Q:a(r)#0} and Ay:={ze€Q:b(x)+#0}.

Proposition 3.5. Let S, be the Sobolev conjugate function given by (3.2). Then, for (x,t) € Ay x
(S (2, S(x,6)),00), we have

1 1 " (z) 1 p* ()
a(x) P N S(z, 0)\ r® e a(x)7®
S.a,) > [ e <t+(s<m,f>> <p< (22 Nl))] > [ L t] 7

where equality holds in the region A C Ay with AY := {x € Q: b(z) = 0}.

Proof. From (3.1), we know that for (z,t) € Q x [¢, ), the function S is given by
S(z,t) = a(z)t*® + b(2)t log* @ (1 + ¢).

By taking t = S~!(z,y) for y > S(x,/) and z € Q, we get

y=a(@) (57 (x.9)"" +b(x) (5 (2,) " 1og"@ (1 + (57 (2,1)) (3.8)
and

S Ha,y) > ¢ forall (z,y) € Q x [S(x,£), ).
The non-negativity of the modulating coefficient b(-) implies
ol
s < (515)" or () € A x IS(e.0).0), (39

where equality holds in A} x [S(z, £), 00). Now, by using (3.9) and Proposition 3.4 in the definition of
the inverse of the Sobolev conjugate function S, for (z,z) € A; x [S(z,¢),0), we obtain

z —1
57N, 2) = 87\ (@, S(a,0)) + / ST @y g,
S(z,0) Yy N

1

SS;l(x,S(x,é))Jr/z <a(y$)>” Gy

S(z,0) Yy
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- Lﬂzp*im) L1 [ Nel ) <s(x,g)) pm} |

Replacing z = S, (x,7) for z € Ay and 7 > S, (z,S(x, 1)), we get
* : 1 N (&)
@) (s, () 4 i [ L (S(m,€)> ]
(a(x)) (S(z, )~

This further gives

T <

1

1 p*(z)
Su(w,7) > [“;f)(;(; <T+(S(x,£))N1 (p*(x) (Séaf)y( - ]\,N_Zl)ﬂ

a(x)EéW p*(z)
> T )
p*(x)

where the last inequality follows from the fact that S(z,£) > a(x)?®) and p*(z) > s forz e 4. O

The non-negativity of the modulating coefficient a(-) in (3.8) and S7(z,y) > £ > 1 for (z,y) €
Ag x [S(z, ), 00) gives

q(x)
S~V (z,y) < y . 3.10
( y><<b( Ylog™™ (1 + 81 (, >>) (310)

Now, depending upon the sign of s(-), we further partition the set Ay into two disjoint components
and estimate the Sobolev conjugate function over the following disjoint components

AV = AN {s(z) >0} and AP = Ay N {s(z) <0}

Proposition 3.6. Let S, be the Sobolev conjugate function given by (3.2). Then, there exist lo > 1
and C > 0 such that for £ > fo and for x € A(l) the following estimates hold true:

—s(x)

(i) S Ha,y) < (b&)) ) log @) (1 + (h(¢))w> for any y € [S(x,{), 00) where

h(z) :=a(x) +b(x) and hi(x):=max{p(x),q(z)+e},e > 0.

- B
(i) Sz, 2) < — - nayae = 1 + (S(Ivg))wlg (% - (I)) for any ¢ € (0,1)
¢(b(2)) 1) 1oga() (H(ﬁ)hw)

and z € [S(z, (), 00).

o q" (x) i
(iii) Si(z,t) >C (U’;)Zq)ml g% (1 +t)> 7@ for any t € [S7 Nz, S(2,0)),0).

Proof. For any § > 0, we know that log(1 +¢) < t° for t > t¢(6). Then, by taking § = ﬁ for some
€ > 0 and ¢ large enough such that ¢ > fy(e, |s|") > 1 gives that

log®@ (1 + 84 (z,y)) < (S Mz, 9) 1T < (5~ (z,9))",

which further implies
y < alw) (S, 9)" +ba) (S7Hw,9) " < hla) (S w,y) " (3.11)
Now, by using the fact that h(z) > d for all z € Q in (3.11), we get

Y e Lz an og s(2) Yy 28 0g® (@) 1y
(h(m)) <S8 (z,y) d 1 <1+(h(m)> ><1 g@ (1 + S (z,y)). (3.12)
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Combining (3.10) and (3.12) for (z,y) € Agl) x [S8(z, ), 00) it follows that

S (z,y) < <b(yx)) - log 75 <1+ (hglx)>”> . (3.13)

Using (3.13) and Proposition 3.4 in the definition of the inverse of the Sobolev conjugate function S,
for (x,z2) € Agl) x [S(x, L), 00), we have

1 ® 1 (x) ﬁ
57w <SS+ ——— [yt o T (14 (L) ) ay
(b(x)) 7@ JS(.0) h(x)

= 57 (@, 8(2,0) + ————g(x,2).

(b))

By applying integration by parts formula for (z, z) € Agl) x [S(x, £),00), we estimate

(3.14)

. zq%(z) S:L',E 7" ()
9(2,2) < ¢"(2) - (52,0

) s ST
>q s(z) S(z,0) @
10gq(r> 1+ ( & ) loge@ [ 1+ ( e )
N s(z)q" (z)
S(z

——9(z,2).
q(x)h1 () log <1+< (( f))hm))g

+
st h
Taking ¢ > 1 such that ¢ > (e rThy 0 1> (where the precise value of ¢ € (0, 1) is chosen later),

we get

A <=0 < - og (1407 ) < (1- Q) log <1+ (SW))’”‘”’)

and

oz < T . . (S(,0) e

i@ s(=) e
¢ logﬂ 2 <1 + (h(x)) B )) loga@ (1 + (%af)) R >)

Using (3.15) in (3.14) and the fact that b(z) # 0 for z € Aél) implies

S1(z,2) < —L@) N
T C(b(a)) o o
(b)) T 1og 53 (1+(hm>) )
Y 7 (z) (S(x, €))7
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Q*(x)l 2@ _ (S 0)Fe (J\Tl\fl_q*(x)>7
C(b@) T 155 (1 + () W) ¢
where in the last inequality we have used b(z)¢4®) In*@) (1 + ¢) < S(x,¢) < h(x)™@ . Now, by
choosing ¢ > 1 large enough and 0 < ¢ < 1 small enough such that ¢ < £ (_ _1), we rewrite the above
estimate. Now by replacing z = S.(z, 1) for x € A2 and 7 > S,
Si(z,7)

» (w,S(;v,f)), we get
1 q* (z)
(b(x))q o 2z) Si(z, 1)\ @ . UNE q¢'(x) N
Z[ () 1g<)<1+( h(z) ) >{ 80 E( ¢ Nl)” (3.16)
1 q" () 1
¢(b(z))a= . o s(z )q (=) Si(z, 1)\ t®
Z[ q*(x) ] o <1+< > )

h(z)
To estimate S.(x,7) in the logarithmic term in the right-hand side of the above estimate, we use the
fact that S~1(z,y) > £ > 1 in (3.10) and obtain

b= (a(@) + b)) (S () ™" = h(@) (57 (a9) "
This yields

a(z

S Yz,y) < (hé)) for (z,y) € As N {s(z) > 0} x [S(x, ), 00). (3.17)
Now, by repeating the arguments for estimating the upper bound of inverse of the Sobolev conjugate

function S;1(x,y) in the light of (3.17), we obtain
1 z
5. (@S )+ —— [

(h(a)) 7 St
NY -1 o*(x) 1
—(S(x,0)) ¥ + ——— 2@ — S(x,0))"@ ).
e re= (S, )=
we have

Replacing z = S, (x,7) for x € AyN{s(z) > 0} and 7 > S, (x,S(z,¢)), and using S(x, () > h(x)l~=
1 1 a*(z)
(h(z))== S S(z, £)\ =@ N¢
S E [W ( (8,0 (a @ (Se) " - N—lm
(e =\
| at(@)
o (z)

Merging the above lower estimate of S.(z,7) in (3.16) and using the assumption (H;) which implies
) > 1, we obtain

z,2) <81

y=@ ' dy

I

s(x)q” (z)

a* (@)
oy — o Ry (@)
h a(x) a*(x)
X log 4@ 1+ <( (@) ) T

—~
—
+
\‘
SN—
l—|
—
(0
—
8
~
S~—
z\H
/\
<
*
8
S~—
\
~~_
| I
| I
_
&
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q*(z) T‘I*(x),

> C [ (b)) 7 log# (147)]"
where the constant C' depends upon ¢, (¢*)+, (a™)+, h14, ht. O

Proposition 3.7. Let S, be the Sobolev conjugate function given by (3.2). Then, there exist ly > 1
and C > 0 such that for £ > 60 and for x € A(z) the following estimates hold true:

—s(x)

(i) S Y(x,y) < (b(zi)) i) log G <1 + ( (z)) h2m> for any y € [S(z,£), 00) where
h(z) :=a(x) +b(x) and he(x):= min{p(x),q(z) —e},e > 0.

1

i) S7l(z,2) < (S(z,0) 7 |-L — ¢ + @ @ e <1+ hz(”)
(i) §:4(5,2) < (S O) ¥ [5 - ' (@)] + L7 log (i) ™" ) for amy
2 € [S(a.0). ).

o (@)
(iii) Si(z,t) > C <(b;)2;)(z> log% (1+ t)) @ for any t € [S; (2, S(x,0)),00) .

Proof. Using log(1 +t) < ¢ for t > to(e,[—s]T) and € > 0 in (3.8), we get

S(x,0) > a(x)tP® 4+ b(x)01 D= > h(z)th=@ for £ > 05> 1, (3.18)
which further implies, by replacing y = S(x, ¢) in the above inequalities,
-1 Y e (2)
S (z,y) < ) for (z,y) € Ay x [S(x,£), 00). (3.19)

where
ho(z) := min{p(z), ¢(z) — €}.
From (3.10) and (3.19), we get

ﬁ —s(x) Wﬁ
-1 < v (@) Yy .
s < (i) s (1 (i) )

Now, by using the fact that = € A§2) in the definition of the inverse of the Sobolev conjugate function,
we obtain

~ <f >(> )1 (Sta, )77 log = <”<Sz5fxf)>(ﬂ

where in the last inequality we have used (3.18) and S(z, £) > b(2)¢4(*) log*™) (1+¢). Now, by replacing
z=8.(x,7) for z € Ay N {s(z) <0} and 7 > S; (z,S(z,)), we get

! 1 q*(z)
(@)@ Sz, 7)\ =@
SA%J)Z( ¢ (@) 1g”<l+( h(z) ) ))

<|r+ s eliw - NNl]] 7

N
—
O
—
8
S
S~—
2| L
1
=
I
—_
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Next, by repeating the above arguments for the lower bound, we get

S(z, ) < h(z)"*®)  for £ > e —1, where hs(z) = max{p(x), ¢(x)}.

By replacing y = S(z, £), we have S~ (z,y) > (h&.)) " and

N —1 1 z 1
57 (w.2) 2 o (S( ) F + 7/ YO dy
S

N1 (h(2)) 7 Js()
hi(x) 1

Again, by replacing z = S.(x,7) for z € AgQ) and 7 > S§;(z,S(x,¢)) and using d < a(z) + b(x), we
get
(h(z))

h3(z)
R () R ()
. T < Ch(x)r"s\ "),
h3(x) ]

Si(z,7) < [

where C' depends upon d, hy, hsy, (h3)+. The above estimate and the fact that Z;Eg > 1 implies

S*(ZU,T) =@ hE () %
log (1 + ( h(o) ) ) <log (1 + (CgT ) < Clog(l+ 7). (3.21)

Finally, by using (3.21) in (3.20) shows that

(b(x)) 707 1og2§3 (14 T)) q* () {T T (5(.0)7 [q*(m) B Hq (z)

)
q*(x

Si(z,7) > C (

For (x,t) € Q x [0,00), we define

1

§*(2,1) = ((a(x)) 7 t)p*(m) n ( (b(a) o™ 1 +t)>ﬁ t) " (3.22)

Now we obtain the following embedding results.

Proposition 3.8. Let (Hy) and (H,) be satisfied. Then, the Musielak-Orlicz Sobolev space W% (Q)
is continuously embedded into the Musielak-Orlicz Lebesgue space LS (). Moreover, the Musielak-
Orlicz Sobolev space WS(Q) is compactly embedded into the Musielak-Orlicz Lebesque space LN (Q)
if N* < §*.

Proof. Combining the lower estimates of the Sobolev conjugate function S, in Propositions 3.4-3.7,
the continuity of the function &* and Propositions 2.11 and 3.2 we obtain the required claim. O

Remark 3.9. Note that the embedding WS (Q) < LS (Q) is sharp is the sense that, for each fized z,
it coincides with the sharp Sobolev conjugate in classical Orlicz spaces. The sharpness in the case when
x s fized and s(x) = 0 can be justified by using the arguments by Cianchi-Diening |7, Example 3.11]
and Ho—Winkert [28, Proposition 3.5] while the case s(x) £ 0 can be justified by using the arguments
by Cianchi [6, Example 1.2] and Cianchi-Diening [7, Example 3.11].
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4. CONCENTRATION-COMPACTNESS PRINCIPLE

In this section, we prove the concentration compactness principle for the Musielak-Orlicz Sobolev
space VVO1 S (©2) having logarithmic double phase modular function structure. For this, we set

n_(2) = min {p(z),q(z) +5~(2)} 0 (2) = max {p(z), q(z) + 5* (@)},

me(z) := min {p(z), ¢(x) + €}, n.(z) := max {p(x), ¢(x) + €},

nl(z) := min {p*(x), ¢*(z) + &}, nl(x) := max {p*(x),q¢" (z) + ¢} fore € R,
* :=min < p*(z),q¢" (x s (@) n’ (z) := max<p*(x),q¢" (z 5™ ()

o (o) = win {7 (oo (@) (14 B i) = max @b (14 28

Straightforward computations give directly the following lemma.

Lemma 4.1. Let S and S* be the functions defined in (2.1) and (3.22). Then, the following hold:
(i) forz € Q and t,z € (0,00)
tS'(x,t)
<

m(z) < SCet) <ny(z),

and
min{t* @ P+ @1S(x, 2) < S(x, tz) < max{® @ +@)1S(x, 2)
where S’ represents the partial derivative of S with respect to the second variable t.
(ii) for e > 0, there exists t = t(e,sT) > 1 such that
tS'(x,t)
S(x,t)
for (z,t) € Q X (te,00) and z > 0.
The same estimates hold for the function 8* by replacing m_, ny and n. with m* , n* and n}, respec-
tively.
Proposition 4.2. Let g € C(Q) and N' € ®(Q) satisfies the Ay-condition,
N(z,tw) < wIN(z,t)  for w>1 and for all (z,t) € Q x (0, 00), (4.1)

and for a.a.x € Q, the map t — N (z,t) is non-decreasing. Then, for every e > 0 there exists Ce > 0
such that

<n.(z) and S(z,tz) <t"@S(x,2)

N (2, [t +m]) = N(z, [t])]| < C-N(x, [m]) + eN (z, [t]) (4.2)
for every t,m >0 and for a.a.z € 1.
Proof. Let t,m > 0 and § > 0. If m > dt, then the monotonicity of the map ¢ — AN (z,t) and the
As-condition give
N(z,t+m) < N(z,md~ 4+ m) < N(zx,2m) < CEN (z,m) (4.3)
where k = k(d) > 0 and C is the constant obtained in the As-condition. If m < ¢, then using (4.1),
we get
N(z, t+m) < N(z, (1+8)t) < (148N (z,t). (4.4)
Combining (4.3) and (4.4) yields
N(z,t+m) < (1+8)@N(x,t) + CsN (z,m).
Replacing t by |t| and m by |m| and using the triangle inequality and the monotonicity of the map
s = N(z,s), we obtain
Nz, [t+m]) = N(z, [t]) < (1 +6)7@) — )N (=, [t]) + CsN (z, |m])

4.5
N (z, |t]) + C.N(x,|m|) for all t,s € R and for a.a.z € Q. (4:5)

<(
<e
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Replacing ¢ by ¢t — m and then m by —m in (4.5), it follows
Nz, |t]) = Nz, |t + m])
< ((146)9®) — DN (z, |t +m|) + CsN (z, |m)) (4.6)
< (1469 —1)(1 + 8)9IN (=, [t]) + C5(1 + 8)9 N (z, |m])

for all t,s € R and for all a.a.xz € Q. Then, for given € > 0, choosing § small enough such that
(1+6)9" —1)(146)9" <ein (4.5) and (4.6), we obtain
N (@, [t +m|) = N(z, [t))] < CN(z, [m]) + eN(z, [t]).
O
Lemma 4.3 (Brézis-Lieb Lemma). Let N € ®(Q) satisfies (4.2). Then, for f, — f a.e.in Q and
fn — f in IN(Q), we have

lim ( [ N inoas - [ N(x,|f—fn|>¢dx) = [ N fode for cvery b € 1¥(9)
Q Q Q

n—oo

Proof. Define a sequence of functions B ,,: @ — RT as

Be () = [(1 — N (@, |fa(@)]) = N2, |f(2) = fa(2)]) = Nz, [ f(2)])
From (4.2), we note that

N (@, [fn(@)]) = N, |f (@) = ful@)]) = N2, |f(@)])] = eN ([ fo(@)])

< Wi, fa(@)]) = Nz, [f(@) = fu(@) D]+ N (2, [ f(2)]) = eN (@, | fa(2)])

< (Ce + DN (, | f(2)]).
It follows that

+

0 < Ben(z) < (Ce + DN (z, | f(z)]).

Now, by using Be ,(z) — 0 a.e.in 2 and Lebesgue’s dominated convergence theorem, we get

nh_)rrgo ) B n(z)p(x)de =0 for any ¢ € L*°(Q). (4.7)
On the other hand, f,, — f in LV (Q) implies
/ N (@, | fu(@))o(z) da — / N (2, |f(@) — ful@))é() da — /Q Nz, |f(@))é(x) dz
< / Ben(@)|6(x)| dz + £ /Q N (&, | ful@)D|6(z)| da. (48)

< [ Bea@ol@)|da+ <6l
for some constant C' > 0. Hence, the claim follows by combining (4.7) and (4.8). O

Proposition 4.4. The following inequalities hold true:

(i) log(1 +tz) > log(1+t)log(1+ z) for z € [0,1] and t > 0.
(i) log(1 +t)log(1l + 2) > log(2)log(1l + tz) for z>1 and t > 1.

Proof. For a fixed z € [0, 1], define h,: Rt — R given by
h.(t) =log(1 + tz) — log(1 + ¢t) log(1 + 2).
Note that 2(0) = 0 and

B (1) = z log(1+ z2)

1+tz 1+t

>0 forallt>0andze€l0,1].
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Hence, the claim in (i) follows. Observe that the function k: [1,00) — R given by
k(z) = z (log(1 + z) — log(2)) + log(1 + z) — zlog(2) is non-negative for all z € [1, o). (4.9)
Now, to prove (ii), we fix z > 1 and define g,: [1,00) — R given by
g:(t) =log(1 +¢)log(l + z) —log(2) log(1 + tz).

Clearly g,(1) = 0 and
g (1) = o1 +2) — zlog(2)) + (log(1 + 2) — log(2))t=
: 1+ +t2)
o, (log(1 + 2) — zlog(2)) + (log(1 + z) — log(2))=
- (L+¢)(1+tz)

where in the last inequality, we have used (4.9). This further implies g, > 0 in [1,00) and for all z > 1,
and hence the claim in (ii) is shown. O

>0 forz,t>1,

For € € (0,1), we define sub-multiplicative functions as follows:

P ,k m_ (x) if 1
M (2, 2) == min{z"" @, 2T @M, 1 (2,2)) and  Mo(z,2) =4 trss (4.10)
7 2@ if 2 > 1,
where
s(@)a* (=)
(log(1+2z))" «@  if s(z) >0and z <1,
s(@)q* (z)
(log(2))” «@ 2¢ ifs(z)>0and z>1,
Me.tog (7, 2) = 1 if s(x) <0 and z <1,
s(x)q* (z)
(%) 2 ifs(z) <0and z > 1.

Proposition 4.5. Let S* and M} be the functions defined in (3.22) and (4.10). Then, for every
(2,t) € Q x [1,00) and z > 0, we have

S*(x,tz) > S (z, t)Mi(x, 2).

Proof. By Proposition 4.4 (i) for (z,t) € {x € Q: s(x) > 0} x [0,00) we deduce that

(2)q* (x) (log(2) log(1 + t))S(z)El*)(m) if z>1
s(z)g* (z alx .
log q(z) (1 + tz) > Ogs(z)q*(()zg) *’z) He= (411)

s(x)a™ (
log~ @ (1+2)log” «@ (1+1¢), ifz<1,

and by Proposition 4.4 (i) for (z,t) € {z € Q: s(z) < 0} x [1,00)
log(1+2) LT s@e e
s(@)q* (= ogllTz * 3 i
log S )(1 +tz) > ( 10(‘5()2)*(2 g <= (1+9), #z21,
s(2)q* (&

log™ a@  (1+1), if z < 1.

(4.12)

Note that for § > 0 the inequality
log(1+2) < C(8)2° for z>1

holds. Now, by using (4.11) and (4.12) in the definition of S* and choosing § = EW in the
above inequality, we obtain

*

*(z) * 1 (x) s(z)qg* (z
S*(at2) = ((a(@) 7 1) 2@+ (b)) T2)" log T (14 12) > S (2, M (2, 2).

Now, we can state the main result of this section.
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Theorem 4.6. Let hypothesis (Hy) and (Hy) be satisfied and {vi }ren be a weakly convergent sequence
in WHS(Q) with weak limit v such that

S*(z, |vg]) = © and S(x,|Vug|) = 0 weakly-* in the sense of measures,

where © and 0 are signed Radon measures with finite mass. Then there exists a countable index set I,
positive numbers {O;}icr and {6;}icr, and C* > 0 such that

O =S*(x,[v)) + Y _Oila,, 0> S(x,|Vo|)+ ) 0:da,

el el
and

min{0 gigy ,0; Rig] } < C*max{6;" =) RS

Vg
To prove the above result, first we set ug := vi — v such that ux — 0 in I/Vol"S (©) and
v = S*(x, lug]) = v and S(z,|Vug|) = ¢ weakly- * in the sense of measures
and prove some crucial Lemmas involving the measures p and v.

Lemma 4.7. Let {v;}ren be a non-negative and finite radon measure in 0 such that vy, — vweakly- x
in the sense of measures. Then,

@l e = |l as k — o0
for any ¢ € C(Q).
Proof. The proof follows by repeating the same arguments as in Ferndndez Bonder—Silva [17, Lemma
3.1]. O

Next, we prove the following reverse Holder type inequality between the measures p and v.

Lemma 4.8. Let M* and M. be the functions defined in (4.10). Then, for every ¢ € C=(Q) the
following inequality holds:

[0lln.0 < Cl[Bllm, - (4.13)

Proof. Let ¢ € C>°(Q). Tt is easy to see that ¢u € Wol’S(Q) for every u € Wol’S(Q). Using the Sobolev
embedding in Proposition 3.8, we obtain

[puklls- < CIV(dur)lls- (4.14)
M vk for k € N and 0 := [|¢ M- Then, by Lemma 4.7, it holds
lim 6k =94.
k—o0

Set (Sk; = H(b

If § =0, (4.13) holds. Without any loss of generality, we can assume that 0 # 0 for k¥ € N. Using
Proposition 4.5, we have

o 1Pukl 9] “(
/QS (CE7 Ok >dm2~/|7tk>1M6( 516)8 7|u}€|)d$
_ |¢|> ( |¢> .
_/QM ( 5 ) e /|uk§1M€ T 5 S*(x, lug|) dz (4.15)

:1_/ ME< qz")5*( ug]) dz
Juk|<1 "9
It is easy that

e e D)
/IuklglM (x 5t S (:E,|Uk|)dx§/QMg z, A S*(z, |ug|) dz

Applying Vitali’s convergence theorem in light of (4.16) and ug — 0 a.e.in , we deduce that

lim M: < |¢|>S*( , Juk]) de = 0. (4.17)
luk|<1

k—o0 )

¢

5 =1. (4.16)

MZ vk



LOGARITHMIC DOUBLE PHASE PROBLEMS WITH GENERALIZED CRITICAL GROWTH 27

Now, by using (4.17) in (4.15) and Lemma 4.1, there exists ko (independent of the choice of ¢) such

that for k > kg
1
/ S* (x |¢“’“|) dz > = (4.18)
9] (Sk 2

Applying Proposition 2.18 (ii), Lemma 4.1 and passing k — oo in (4.18) gives
52 Clim inf [l = Cllél: o (1.19)

for some C' > 0 independent of k. Next, we set A\, = ||¢pVu|ls and

lim inf ||¢ug]
k—r o0

M:=1 +sup/ S (z,|Vuygl|) dz.
keN Jo

Because of Proposition 3.8 and the fact that uy — 0 in Wy'® (), we have uj, — 0 in LS(2). From
Lemma 4.1 (i), we know that for £ > 0 and z > 0, there exists K. > 0 such that S(z,tz) < t**)S(x, 2)
for (z,t) € Q x (K.,00). Therefore, applying Lemma 4.1 (i), (ii) and Young’s inequality, it follows

that
1= / S (w,w> dzx
Q Ak
:/ S (z,'vuk”(’b) dx
Qn{|¢|<Ax} Ak

+/ S <x, |Vuk||¢>|> dx+/ S <x, |Vuk||¢|> dz
QN{Ar<|p|<AL K} A QN{|p|>A K.} Ak

S (z, [Vug|) Me (x, |¢> dz

<)
Qn{|¢|<Ar, [$I>AeE} Ak

o]\
+f () s@iva a
n<|dl <K} \ Ak

1

m/gS(x,\VukD dx—!—C’(s,]\/[)/QM8 (1:,|;i> duy
1

§+C(€’M)/QME (w,l;éj) duy.

Again, applying Proposition 2.18 (ii) and passing to the limsup,,_, . in the above estimate, we obtain
lim sup [6Vurlls < Cll6lu..o- (4.20)
k—oco

IN

Note that,
[V (oun)lls < [ueVolls + [[#Vuk|s.
Since u, — 0 in LS(Q), we have |u,Vé| — 0 in LS (Q). Now, by passing to the lim sup in the above

k—o0
inequality and using (4.20), we get
lim sup [V(gur)lls < Cllglw. .- (421)
k— o0
Finally, combining (4.14),(4.19) and (4.21), we complete the proof. O

Remark 4.9. The continuity of p and q and the oscillation condition (Hy)(ii) imply that M. < M for
€ small enough. In order to see this, observe that the following inequality

M (z,2) > C2"<®)  for (x,2) € Q x (1,00) (4.22)
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holds for some C' > 1. In light of the above inequality, to prove our claim it is enough to show that
n.(z) <m* _(z) for all z € Q and for some € > 0. Then, by using the continuity of p and q in £, we
can find € > 0 such that

n.(z)  max{p(x),q(r)+ e} 1+ 1 in Q
~ .

m—s(x) rnln{p(x), Q(x) - 5}
This gives
m_.(r) Nm_.(z) * 0
= Q. 4.23
N <N_ 2 (2) n*_(x) in (4.23)
Lemma 4.10. Let v be a non-negative, bounded Borel measure and

[l 0 < Cllllm.. (4.24)
for every ¢ € C°(Q) and for some constant C > 0. Then, the following hold:

(i) There exists § > 0 such that for all Borel sets U C Q, either v(U) =0 or v(U) > 6.
(ii) There exists a countable index set I, scalars {v;}icr and points {x;}icr such that

V= ZVi‘Szr

i€l

n.(z) <m_.(z)+

Proof. 1t is easy to see that the inequality (4.24) holds for characteristic functions on Borel sets. Since
Q is bounded, p,q € C(Q) and (4.23) holds true, there exists a finite cover {Q;};c; of Q such that

m; := minm* _(x) > n; := maxn.(z) forallie I (4.25)
Qi Qi

For any U C Q being a Borel set, denote V; := Q; NU for i € I. If v(U) > 1, we are done. Suppose
v(U) < 1. By taking ¢(x) = xv, (x)v(V;)™ for i € I in (4.24) and using (4.22), we deduce that

_iyn'(2) -1\ " (@)
/ Mi(x,¢)dv > C/ (Xw (SC)U(W)TT) dv > C/ (Xvi (x)u(Vi)‘"E(”) dv=C>1.
) Q )

It follows that |[xv; [[uz,, > C’V(Vi)m%. Analogously, we get ||xv;|u.,» < V(Vi)"%' for i € I. Combining
the above estimates with (4.24), we arrive at

(Vi)™ < Cru(Vi)7i.
From (4.25), we know that m; > n; for every ¢ € I, then either v(V;) =0 or

v(V;) > max {1, C’lmi_l"z } .

Therefore, either v(U) = 0 or

—m;n,;

v(U) = ZV(Vi) > Zmax{l,clmi_l"i} =4
il iel
Note that the constant § is independent from the choice U. g

Lemma 4.11. Let M and M. be the functions defined in (4.10). Then, there exist an at most countable
index set I, families {x;}icr of distinct points in Q and scalars v; € (0,00), such that

V= Z Vi, .
icl
Proof. The reverse Holder inequality in (4.13) implies that the measure v is absolutely continuous with

respect to the measure p, i.e.v < p. Thus, by applying the Radon-Nikodym theorem, there exists a
non-negative function f such that f € L,(Q) and

v=yplf ie v(E)= / fdu  for any Borel set E. (4.26)
E
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Let U be a Borel set. By repeating the same arguments as in the proof of Lemma 4.10 with the
covering {€;};es such that v(;) + () < 1 and taking ¢(z) = xv;(z), Vi = &, NU for i € I in
(4.13), we obtain

(Vi)™ < Cp(Vi)™, (4.27)
where m;, n; are defined in (4.25). Using (4.27) and the fact that n; < m;, we have
v(U) v(V;) mi_q + 4
fdp = < = pVi)m " < C(u(Q),p™, a7, N).
][U pU) = & Vi) ; '
w(Vi)#0 n(Vi)#0

Therefore, by Lebesgue’s differentiation theorem, f € Lﬁo(Q) On the other hand, we can decompose
the measure p as

p=pio+p1 such that po(E) = p(E N Xo) and p(E) = p(ENXy),
where
Xo:={zeQ: f(z) =0} and X;:={zxeQ: f(z)#0}

Observe that the measures pg and p; are singular and absolutely continuous with respect to v, respec-
tively. Indeed, the sets Xy and X are mutually disjoint and po(Xy) =0 = p1(Xo). Let E be a Borel
set such that v(E) = 0. Then, from (4.26) and using the fact that f > 0 in Xy, we get

O:V(E):/Efdu:/EX fdp = wm(E)=pENXs) =0.
nXy

Now, by applying the Radon-Nikodym theorem to the measures p; and v, there exists a non-negative
function g such that g € LL(Q) and p; = v|g , and using the fact that v(Xg) = 0, we get

(o) = [ gav= [ 9 [ adn with @) = gla)x, @

for any Borel set E. Finally, we have p(X;) = 0 and p = v[§ + po. Using the fact m* _(2) > n.(x)

proved in Remark 4.9, we define
t"y“}’“f(“’) ift <1,
<I>(x, t) = - 1
S

such that

(z,§) i= max { @(5)" @, &(5)" @} § = min { &(57*@, &5/} (4:28)
By setting 7y := Il(x, §)Xx{3<k}V, We are going to prove that 7 is given by a finite number of Dirac
masses and this will prove that vx(z<x; is a finite number of Dirac masses for all £ < oo and since
v({g = +oo}) = 0, the claim on v is true. Taking ¢ := ®(§)hx <k} With ¥ € CF(Q) as a test
function in the reverse Holder inequality, we get

D(9)Vx{g<k} - D(9)Vx{g<ky - D(9) X<k}
A O e A (o e L A G e BT

/M ;E?qu’)gdy

M. (x Zﬁ) ®(9)) Gxqs<ky dv
(5 e
A

T, §)X{5<k} AV,

(4.29)
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where the last two inequalities follow from the fact that M. is a sub-multiplicative function and the
definition of the function II in (4.28). Moreover, we have

P(g g " .
o (o 202 4y ¢ [ () i {00 (06) )} xgpei

. Y _
= C’/ M (m, Y H(z, §)xg<ky dv,
Q
where C' = C(e, s*, ¢, N). Combining (4.29) and (4.30) yields the following reverse inequality

[91lnz 0. < Cllellw. -
Using Lemma 4.10, there exist scalars { K; };e, and points {z; };cr, such that 7, = Zielk K;d5,. Notice
that, the sequence of measure 7, * I(z, §)v. Letting k — oo and using the fact that g € L. (), there

exists an at most countable set I, families {z;},c; of distinct points in € and scalars v; € (0, 00) such
that v = ), ; 0., and this concludes the proof. O

(4.30)

Now we are ready to give the proof of Theorem 4.6.
Proof of Theorem 4.6. From Lemmas 4.8-4.11, we know that
S*(z, lug)) = v = Z v;0;, weakly-* in the sense of measures.
iel
By applying the Brézis-Lieb lemma (Lemma 4.3) to S*, we get
lim (/ S*(x, |vg|)pdz — / S*(x, |uk)¢dx> = / S*(z,|v])¢dx  for every ¢ € L=(Q),
which further gives the following representation
S*(z, |lvg]) = © = S*(x, |v]) + Z v;0,,weakly- % in the sense of measures.
iel
Let ¢ € C2°(Q) such that ¢(0) =1, 0 < ¢ < 1 and supp(¢) C B1(0). Define ¢ ;(z) = ¢ (x_fl) for

each i € I, x € RY and v > 0. Taking ¢~,i as a test function in the reverse Holder inequality (4.13)
for measures p and v, we obtain

2w S Cllyilln - (4.31)
With the representation of the measure v and for any ¢ € I, we estimate the left- and right-hand terms
of the above inequality by

Oumx ((b%i) = /QMZ(xaqb'yz dV = ZVz -7317(1571 x])) >

iel

If ou:(¢+,i) <1, then

, > (4.32)
Analogously, if ou: (¢,:) > 1, then
||¢%i Wy 2V
Similarly,
i i 1
1= on, <¢'V’) = / M. <x7 W) S S/ M. <$7> du
([Pl Q [l B, (i) [ e
. " (4.33)
<l o mae ol ol |
where
e + . *
o Brg(lgg)mfe(x), oy = max, n;(z),
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~ = min m_(x),
& By (x:) @)

Now, by collecting the estimates in (4.32) and (4.33) in (4.31) and by letting v — 0, we get

+._
‘= ma z).
¥ Bw(wf)ns( )

N % # ﬁ
min{y;" 7, v} < Cmax {Nj(“]) oy } ;
where p; = p(x;) = limo,u(B%. (x;)). In particular, {z;};c; are atoms of v. Note that for any
Vi

¢ € C(Q), ¢ >0, the functional

u— / (a(x)|Vu|p(””) + b()| V|7 log*®) (1 + |Vu|)) $dz
Q
is convex and continuous in VVO1 S (Q). Hence, it is weakly lower semicontinuous and therefore,

/ (a(x)|Vu\p(z) + b(2) | V|7 ® 1og*@ (1 + |Vu|)) édz
Q

t—o0

< lim inf/ (a(x)|Vuk|p(x) + b() | Vg 1@ log* @ (1 + |Vuk|)> ¢dz = / ddp.
Q Q
Thus, u > S(x, |Vu|). Finally, by extracting p to its atoms, we conclude our result. O

5. PROPERTIES OF THE ENERGY FUNCTIONAL AND THE DOUBLE PHASE OPERATOR

In this section we investigate the properties of the associated energy functional and the logarithmic
operator given in (1.9). We begin by defining the energy functional &4 : WO1 $(Q) — R corresponding
to our new logarithmic double phase operator as

Ean(u) = Ei(u) — Aéz(u) — As(u),

where
El(u):/g/\/l(% Vu|) da, 52(u):/QM*(x,|vu|)dx, 53(u):/9j\/l*(x,|Vu|)dx.

Furthermore we introduce J : Wol’S(Q) — (WOIS(Q))* which is given by
(T (1), $)s = (J1(u), d)s — M(Ta(u), d)s — MTs(u), d)s for u,¢ € Wy (€), (5.1)
where
(AW )s = [ ala)[TuP 290 Vods
Q
s(x) _[Vul

+ [ b(@)|Vu|" 2 1og* @11 4 |Vu (lo 1+ |Vu|) + —_—
| b2 108114 (T (o1 + V) + 50T

) Vu-Vodr,
RE
(Fa(u), )5 = /Q (a(2)) 5 Jul?" @ 2ug dz

oz T @2 s(x)q* (z) Jul
+ [ (o108t pu) " a0 (” 4@ log<1+|u><1+|u|>>“¢’dx’

(w0 = [ (o) 5 ulr ) 2ups
Q
ax ()
sS4 () a(@) L (z)—2 Sx(2)qx () | >
+/9 (b(x) gL |U|)> luf* <1 * q(z)  log(1 4+ |u|)(1 + |ul) ug 4z,

where (-,-)s denotes the duality paring between the space Wol’S(Q) and its dual space (WOIS(Q))*
Here J; is the new logarithmic double phase operator.

Proposition 5.1. Let (Hy) and (Hy) be satisfied. Then, the energy functional &1 is well-defined and
belongs to the class C* with £ (u) = J1(u).
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Proof. Observe that, for any u € Wol’S(Q), we have

0< M <& (u) < M < oo with nf := maxng(z) and my := minmg(z).
ng mg, z€Q €N

Hence, the functional & is well defined. Let u,¢ € Wol’S (). By using the mean-value theorem, we
get
Ei(uttd) —&i(u)
t

=Ji+ Jo + J3.

where

Jy = / a(2) |V + 1, tVSP 2 (Vs + 1, 1V 6) - Vb da,
Q

Jo

/ b(2)|Vu + 1, 1tV 1® 2 1og* @ (1 + |V + 1, V) (Vu + 0,1tV ) - Vé da,
Q

Ty = / ba)s(x) [Vu + 124t V|7~
o @) 1+ [Vutn, Ve
for some t € R and 7, € (0,1).
Claim: lim Ji + J> +Js = (T (u), ).

To prove the above claim, we have to find integrable functions dominating the integrand of J;,
i =1,2,3 and use Lebesgue’s dominated convergence theorem. For 0 < |t| < ¢y < 1, we have

‘a(sc)|Vu + et VPO "2 (Vu + 1y 1tV ) - V| < a(2)|Vau + 101tV P@ 1 V|

log* ™™ (1 + |V + 1,4tV 9|) (Vtu + 17,4tV ) - Vo da

< 27" a() (|ulr @1 + 1| Vo) Vo)
and

/a(:c)|vu|P<ff>—1|v¢|dxg/
Q

a(m)|Vu|p(z)_1|V¢|dx+/ a(a:)|Vu|p(””)_1|V¢|dm
{IVu|>|V[}

{IVul<|V[}
< / a(;v)|Vu|p(“') dz —|—/ a(x)|V¢\p(”) dz < 0s5(|Vu|) + 0s(|V¢]) < o0.
Q Q

To estimate the integrands in Jo and J3, we use condition ¢(x) + s(z) > r > 1 in (Hp). In particular,
this implies that

1@ =1 16g%@) (1 4-¢) s increasing for t > 0, (5.2)
because
0<s(z)t+ (q(z) —1)(1+t)log(l+¢t) forallt>0and z € Q. (5.3)
Now, by using (5.3) and Proposition 2.18, we obtain the estimate
b(z)s(@) [Vu + 12,4tV |2
q(x) 14+ [Vu+10,:tVe|
< b(@)ls(@)] (Ve + 199D log™ (1 + [T+ 12,19 9)) | V|
< 0(@)|s(@)] [Vl + 724t Vo])" ™ og™ ™ (1+ [Vl + 110,11V ])| V|
< OOt Js|)b() (IVulto) 71 4 ()7 1V |01 ) [V

log* ™ (1 4 |Vu) + log® @ (1 + 1, 4t|Ve|)  if s(z) >0,
x < 1og® @ (1 + n,,4t|V|) if s(z) <0 and |Vu| < n,,t|V|,
log®™@ (1 4 |Vu|) if s(z) < 0 and |Vu| > n, .tV

< O 5yl 1V 108" (L [ Vul) i [Vl 2 |V,
- V|") log* @ (1 +[Ve|) if [Vu| < |Vg],

log™ ™™ (1 + [V + 1,4tV ¢]) (Vu + 0y 1tV ) - Vb
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and

/ b(z)|Vul7®) log® @ (1 4 |Vu|) dz +/ b(2)| V|7 log* @ (1 + |V¢|) dx
|Vul>|Ve| |Vul<|Vg|

< os(IVul) + 0s(|V]) < oo.
Finally, by using
a(2)| VU + 10 VPO 2 (Vu + 1, 1tV @) - Vo — a(z)|VulP P2V - V¢  a.e.in

and Lebesgue’s dominated convergence theorem, we obtain the required claim.
For the C'-property, let u, — u in Wy°(Q) and ¢ € W*°(Q) with |[Vé|s <1 and we claim that

(T (up) — T (u),d) =0 asn— oco.
For the following computations, we define
Qo = {z € Q: |Vu| =0},
o(u2)) = {[1og(1+|vU|)+M] log® ™ L (1 + | Vu|)|Vul1®) =2V, if @\ Qo
0 if x € Qp,
on(2) = g(un) — g(u)
(@) = log 7 (1 + max{[Vul, [Vu,|}),
Q2 = {z € Q\ Q: s(z) > 0,max{|Ve|,|Vul,|Vu,|} = |Vul},
Qs ={z € Q\ Q: s(z) < 0,max{|Ve|, |Vul|,|Vu,|} = |[Vul},
Qfﬂ ={z € Q\Qo: s(z) >0, |Vu| < max{|Ve|,|Vul|, |Vu,|} = |Vu,|},
Q5 ={zeQ\Q: s(z) <0, |Vu| <max{|Ve|,|Vul,|Vup|} = [Vun|},
QZ = {2z €Q\ Q: s(x) >0, |Vul,|Vu,| < max{|Ve|,|Vul,|Vu,|} = [Vo|},
(z)
1

S
S

Qd<> ={r e Q\Q: s(x) <0, [Vu|, |Vu,| < max{|Ve|, |[Vu|, |Vu,|} = |Vé|}.

Using (5.2), inequality (1 +t)log(1 +1t) > ¢ for t > 0 and Young’s inequality, we have

\s(m)HVun\ s(z)—1 (z)—1
gt Vol < o) [tog(1-+ ¥ + I 100114 190, 7,162 vl

< Cob(a) 1og* @ (1 + |Vuy|) |V, |1® 1 Vel
< C1b(x) log™ ™ (1 + |V, )| Ve, |17 + Cob(z) log® ™ (1 + |Ve|)|[Ve|?™) € L1(9Q),
where C; are independent of n. Therefore, using Vu,, — Vu a.e., it is easy to see that

/ b(z)v, - Vépdx — 0.
Qo

By Holder’s inequality in L90)(Q\ Qq), we have
q(z)—1 |’Un‘
q(z)  ——

ha,

|(b@) /476,

<20

/ b(z)v, - Vodx
2\

q(-) q(-
a(- (

=1

The second factor is uniformly bounded in n and v by Proposition 2.18 (v) and

(z)
[ (@ @ven,)" a < | (&) [ V[ log"@) (1 + | V] da
Q\ Qo Q7 uQsUQs,
+ / b(2)| V|9 1og* @ (1 + |Vuy|) da
QsuQz,

+ / b(z)| V|1 log* @ (1 4 |V¢|) dz
5
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< 0s(Vu) + 05(Vun) + 0s(V¢) < +o0.
Therefore, we only need to prove that the first factor converges to zero. By Proposition 2.18 (v), it is
©
enough to see that this happens in the modular of Lt (2\ Qp), that is

q(z) q(z)
o) T T T T e
/ ((b(m))qmlw) dz — / b(z) ('””') dz "% .
Q\Qo h’n Q\QO h’n

We prove this convergence by using Vitali’s convergence theorem. For the uniform integrability, using
(5.2) and the inequality (1 + t)log(1+¢) > ¢ for ¢ > 0 note that

q(x) q(x)
a@) -1 s(z) q(z)—1 s(z) a(z)—1Y 7T
e () < ot <1°g (4 [FenhIPml =+ log™ (1 1 [VulI 7l )
" log 7@ (1 + max{|Vul, |Vu,|})
< Cbh(x) (|Vun|qm 1og* ™ (1 + |V, ) + [Vu|?®) log"™® (1 + |Vu\)) :
As Vu,, — Vu in measure and u,, — u in Wol"S(Q), we know that b(z)|Vu,,|?®) 10g5(1)(1 + |Vuy]) is

uniformly integrable, hence we also know that our sequence is uniformly integrable and this finishes
the proof. 0

We suppose the following assumptions:
(Hy) pu, s € C(Q), 55 € L®(Q), 1 < pu(2), gu(z) < N, pulz) < p*(z) and gu(z) < ¢*(x) for all
xz € Q, and s, () < s(x), ¢(x) + sx(x) > 7 > 1 for a.a.x € Q.

Proposition 5.2. Let (Hy), (Hy) and (H,) be satisfied. Then, the functionals E and & are well-
defined and belong to class C* with E(u) = J2(u) and E4(u) = T3(u).

Proof. By Young’s inequality with exponents Z *Ezg and 383

((a(,’L‘))p(ll) t)l’*(x) < ((a(m))ﬁt)p*(w) 1

and its conjugates, we get

and by (2.9),

) o (@)
((b(x) 1ogs*(m)(1 + t)) " t)

1 ¢+ ()

7" (») 1
< ((b(m) logs*(x)(l + t)) (@) t) X{s,(z)>0} T 1+ ((b(x) logs*(m)(l + t)) (@) t) X(o.(2)<0}

s q" (x) L q" ()
< ((b(m) log*™® (1 + t)) o t) +C ((b(x) log®™® (1 + t)) o t) + h(z).
This gives

Si(z,t) < CS8*(x,t) + h(x) for all ¢ >0, for a.a.z € Q and for some C > 0 (5.4)

with
9+ ()

Si(z,t) = ((a(x))ﬁ t)p*(x) + ((b(x) log* () (1 H))ﬁ t>

Therefore, by Propositions 2.20, 2.21 and 3.8, we have WOI’S(Q) s L7 (Q) = L5+(Q). Then, for any
u e WS (Q), it holds

0< Qs+(f) < &(u) < 937(7;6) < oo with ng™:=maxnj(z) and my"" := minmf(z)
ng mg z€Q 2€Q
and
0< 2 gy < 20 o
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where
n] = maxmax{p,(z),¢(z)} and m} := minmin{p,(v),q.(z)}.
e EQ

Hence, the functionals & and &3 are well-defined. The remaining proof can be done by adopting the
same arguments as in Proposition 5.1. O

Combining Proposition 5.1 and Proposition 5.2, we assert that the energy functional £ is well-defined
and belong to class C* with &} , (u) = J (u).

Next, we are concerned with the properties of the operator [J;. For this purpose, we need the
following two lemmas. The first one is concerned with the monotonicity of terms that are not power
laws and the second lemma is concerned with a version of Young’s inequality specially tailored for our
line of work.

Lemma 5.3. Let ¢ > 1 and s € R such that q+s > 2—6 for some § € (1,2). Then, for any £,n € RV,
we have the following inequalities:
If s >0,
(I€l7€log® (1 + [¢]) — [nl"*nlog™ (L + |n])) - (€ = n) = Cyl¢ —n|"log™ (1 + |m|) ifg=>2.  (5.5)
and . ) )
(1€l + D)™ (1€177¢ log™ (1 + [€]) — In]**nlog™ (L + [n])) - (€ — n)
> Cyl€ —nf*log® (1 +|m|) if1<q<2

where m = min{|¢|, ||} and

(5.6)

B {min{22_q,2_1} if g > 2,

T g1 ifl<q<?2.

If s<0andqg>1
(1€ + D)’ (1€1°~>€ log” (1 + [€1) — [n|**nlog*(1 + [n])) - (€ = n)
= (1€ + In])° (1] 7°€l€]T= 2+ log® (1 + [€]) — In|~*nlnl® =2 log® (1 + [nl)) - (€ — n) (5.7)
> Cs |¢ —nf* [m|"">" log® (1 + |m)

for any 1 < § < 2 where

o min{27%,27'} if§ >0,
" Vo+1 if —1<6<0.

Proof. The proof follows from Arora—Crespo-Blanco-Winkert [2, Lemma 4.3] by taking h(t) = log®(1+
t) if s > 0. If s < 0, consider h(t) = 729 log®(1 + t) for § € (1,2) in Arora-Crespo-Blanco-Winkert
[2, Lemma 4.3]. O

Lemma 5.4. Let w,t >0, ¢ > 1 and s € R such that ¢+ s > 1. Then

q—1 s—1 st
wt?™ log® (1 4+ t) {log(l +1t) + e t)]

q—1

a
<Z log®(1 4+ w) + t?log® ' (1 + 1) [ log(1+1¢) +
q

st }
qg+t)]°
Proof. The proof follows by repeating the same arguments as in Arora—Crespo-Blanco-Winkert [2,
Lemma 4.4] by taking the function h: Rt — R defined as

h(t) = 7" og™ (1 + 1) {log(l T+ q(lsit)] '

Note that the condition ¢ + s > 1 implies that the above function h is positive, continuous, strictly
increasing, and vanishes at zero. In particular, the arguments in Case 1 and 2 in the proof of Lemma
2.16 imply that the function h is strictly increasing. O
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Now we can state the main properties of the operator ;.

Theorem 5.5. Let (Hy) and (Hy) be satisfied and {upn }nen C WOI’S(Q) be a sequence such that

Uy —u in WyS(Q) and limsup (Ji (un), upn — u) < 0.
n—oQ

Then, the following hold:
(i) Vu, = Vu a.e.in Q.
(i) wp — u in W5 (Q).
In particular, the operator Jy is of type (S4).

Proof. By the strict monotonicity of J; and the weak convergence of u,,, we obtain

0< liniinf (T (un) — T1(w), up, — u) < limsup (J1 (un) — J1(0), u, — u)

n—oo

= limsup (J1 (un), un —u) <0,
n— o0

which means
lim (J1(un) — J1(w), u, —u) = 0.
n— oo

Claim: Vu, — Vu in measure.

(5.8)

(5.9)

In particular, as the previous expression can be decomposed in the sum of nonnegative terms, it

follows
lim a(z) (|Vun|p(w)_2Vun — \Vu\p(”)_QVu) - (Vu, — Vu) dz =0,
e J{p>2}
lim a(x) (|Vun|p(‘”)*2Vun - \Vu\p(z)*QVu) - (Vuy, — Vu) dz = 0.

lim [ b(x) (|Vun|'I(m)_2Vun 10g* @ (1 + [V, |)

n—oo Q

— V|2V log* @ (1 + |Vu|)) - (Vu, — Vu) dz = 0.

(5.10)

(5.11)

(5.12)

By repeating the same arguments as in the proof of Arora—Crespo-Blanco-Winkert [2, Theorem 4.4]

for the integrals (5.10) and (5.11), we obtain

Vunlia>0y = Vulgsso) in measure.

Now, in order to prove our claim in 1550y, we partition the domain of the integral in (5.12) as

o Jel ER EP B

EW = {Vu, #0,Vu #0}, E® ={Vu, #0,Vu =0},
E® = {Vu, =0,Vu #0}, EWY ={Vu, =0,Vu=0}.
It is easy to see that J; — 0 for ¢ = 2, 3,4, which also implies

1

where

»Vu, =0 a.e.in Q.
Ui, B Y

On the other hand, we partition the domain of the integral J; as

/ :/ +/ +/ =L+ 1+ 13
EY {5>0,g>2,b>0}nE {5>0,g<2,b>0}nE {5<0,b6>0}NELY

and using (5.5)-(5.7) and (5.9), we get

I, -0 asn—oofori=1,23.

Step 1: Convergence in {s > 0,¢ >2,b> 0} N E,(LU:

(5.13)
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From (5.5), for any € > 0 we know that

{1{q22,b>o,szo}(q_ - D|Vu, — Vu|qlEq<®1> log*™) (1 + t(x)) > 5}

c {1{} (IVun 772V 0, 10g™ ") (1 4 |V ]) = |Vul"*) 7 Vulog ™ (1 + |Vul)

(V= V) 2 e,

where t(z) = min{|Vu,(x)],|Vu(z)|}. From (5.13) and the previous expression we obtain that
Lig>2.6>0,s>01 (¢~ — 1)[Vu, — Vu|q1E5L1) log*@ (1 + #(z)) — 0 in measure.
This implies (up to a subsequence)
either 1{q227b>07520}mE511)Vun — 1{q227b>07520}Vu or 1{q>2,b>07520}r‘1E511)vu” — 0 a.e.in €.

We claim the latter part does not hold. Suppose it holds. Then,
Haz250,20) (|7 72V, 10g" ) (1 + [Vun|) = [Vl 1) 7% Vulog (1 + [Vu]) ) - (Vup — Vu)
= 1{4>26>0,5>0} |Vu|q(m) log* @ (1 +|Vu|) a.e.in Q.

Since u,, is a bounded sequence in VVO1 S (Q), by Vitali’s convergence theorem

L= V") 1og*®@) (1 4 [Vu]) dar,
lig>2,>0,5>0}
which is a contradiction to (5.13). Hence, by the subsequence principle, the following is true for the
whole sequence uy,,

1{q22,b>0,s20}nE,Ef)vu” = 1{g>20>0,s>0) VU a.e.in (. (5.14)

Step 2: Convergence in {s > 0,9 < 2,b>0} N EWY;
From (5.6), for any € > 0 we know that

{Lacaim0.201(a™ = DIVn = Tul2(Fun| + [Vu) 9210 105" (14 () > ¢

S {1{q<2,b>o,szo} (IVun |20, 10g™ ) (1 4 [Vun]) — [Vul*™~* Tulog™™ (1 + [ Vul))

(Y, — Vu) > s}.

From (5.13) and the previous expression we obtain that

Lo b50.5s50)0EY (¢~ = 1)|Vun — Vul?(|[Vun| + |Vu|) @2 10g*® (1 4 t(z)) — 0  in measure.

This implies (up to a subsequence), either 1 szo}nEﬁ)vu" 4 0 a.e.in Q and

{g<2,b>0,

1{q<27b>07520}mE£}>(q_ — )|V, — Vul2(|Vuy| + [Vu) 1@ 2 10g* @ (1 + t(z)) = 0 a.e.in

or
1{q<2,6>0,6>0) VUn — 0 a.e.in Q.

By repeating the same argument as above, we can show that the latter part gives a contradiction to

(5.13). Hence, 1{q<2’b>0’520}mE7(11)Vun 4 0 a.e.in Q and

Ly <0m0.550)m (67 — DIVt — Va2([ V| 4 [Vu]) 72 log"®(1 4+ t(x)) - 0 ac.in Q.

Then for a.e.z €  there exists M (z) > 0 such that for all k € N

2 x)—2 s(x
M) 2 1 o0 snne® Vi = Vol 1g, (V| +[Va)) 97 10g*®) (1 4 t(x))
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2 T)—2 s(x
> 1 opmosm0ynet) IV = [Vul[* 1g, (V| + Va2 1og* ™) (1 4 t(x)).

Note that, given any ¢ >0 and 0 < Q < 1 and S € S, the function h(t) = [t — ¢|* (t + )22 1log® (1 +
min{t, c}) satisfies lim;_, ;o h(t) = +o00. Therefore, there exists m(z) > 0 such that |Vuy,,| < m(z)
for a.a.z € Q and for all £ € N. As a consequence

2 x)—2
Lycansonsopnp® [ Vin, = Vul* L, (V| + Va2 1og"® (1 4 t(x))

2 x)—2
> 1y syt Vi, — Vol L, (n(@) + [Va]) ) log ™) (1 + 1(2)

and the convergence a.e. to zero of the left-hand side and by the subsequence principle, this yields

1{q<2’b>0’520}mE;1>Vun — 1{q<27b>0,320}Vu a.e.in (515)

since 1{q<2¢b>0’520}mE7(11)Vun 4 0 a.e.in Q.

Step 3: Convergence in {s < 0,b > 0} N EY:
Now by replacing 2 — ¢ by 0 in Step 2 and using (5.7) in place of (5.6) with 2 —r < 6 < 2, we
obtain

{b>0 s<0}ﬁE(1)vun — 1{b>0 S<0}VU a.e.in € (516)

Finally, combining (5.14), (5.15) and (5.16), we obtain the required claim (i). From Young’s inequality
and Lemma 5.4 it follows that

a(z)|Vun |P®2Vu, - V(u, — u)dz
I s(x)|[Vuy| ] 9 -1
+b(z) |log(1 + |Vaup,|) + ——2 72| 17y, 199294, 1og® @1 (1 + |[Vau,|) - V(u, — ) dz
(@) loB(1 + V1) + S| [V &7 (14 [Vual) - Vo )
= a(z)|Vun, |P® dz — a(z)|Vu, [P 2V, - Vudz

s(x)|[Vu,| ] o) s(m)—

A vun - x)— s(x)—
q(gc)((l)L_Wu) [V |72V, 1og® @1 (1 + |Vu,|) - Vuda

> a(z)|Vu,|P™ dz — a(z)|Vu, [P~ |V dz

+b(z) |log(1 + |Vuy|) +

—b(z) [log(1+ |Vu,|) +

vun ] T s(x)—
+ b(x) |log(1 + |Vuy,|) + (x)((1|+|W) [Vt |7 10g* @ =11 4 |V, |) da
_ 8(@)|Vun| ] a(@) =117 s(z)—1
—b(z) log(l + |Vu,|) + P EOREINN) —I- Vi) | [V log (14 |Vuyl) |Vu| dz
(@) V) dz — a(@) (PO, 10 L oup)) d
plz) p(z)
s(2)| V|

+ b(x) {log(l + |Vun|) + ] [V |9 1og* @1 (1 + |Vu,|) dz

() (1 + [Vun|)
s(2)[Vun|

—b(x) ([q(w) —1 log(1 + |Vu,|) + @0+ Vu]

q(x)
+ L [Vt ® 105 @ (1 4 |Vu|)> dz

] [V 1og® @1 (1 + |Vuy,|)

q(x)
a(x) a(x) (z)
YV, |P® dr — —2 |VulP'*™) dz
= o) pla) 1V
b(.’l?) q(x) s(z) (LU) q(z) s(x)
+ —= @ |Vun| 9% log™ ™ (1 + |Vuy,|) dz ) [Vu|"* log®™ (1 + |Vu|) dz
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As a consequence, by (5.8) and Fatou’s Lemma, we obtain

lim (‘I(I)|Vun|p(z) + Mwun‘q(z) logs(m)(l + |Vun|)> dz
o \p(z) q(x)

n—oo

_ a(x) IP@) b(z) w7 165@) u x
_/Q(p(m)W' oy Ve o (H'v'))d'

By the previous Claim, passing to a.e.convergence along a subsequence and using the subsequence
principle, we can prove that the integrand of the left-hand side converges in measure to the integrand
of the right-hand side. Finally by applying the Brézis-Lieb Lemma (Lemma 4.3) and by Proposition
2.18 (iv), we obtain u, — u in W)"°(Q). O

6. APPLICATION OF CONCENTRATION COMPACTNESS PRINCIPLE

In this section, we show multiplicity results for the (A, \)-parametrized problem (1.9) with critical
and sublinear /superlinear growth.

6.1. Superlinear growth. In this subsection, we assume that A = 1 and A > 0. For the sake of
simplicity, we write €4, as Eo. We suppose the following assumptions:

(H3'™) pa,qx € C(), 54 € L=®(Q), 1 < pi(2),qx(z) < N, p(z) < py(z) and q(x) < g, (z) for all z € 0,
and ¢, () + si(x) > r > 1, s, (x) < s(z) for a.a.x € Q.

Lemma 6.1. Let (Hy), (Hy), (Hy) and (H3"") be satisfied and suppose that
max{p*, (¢ + [s])"} < min {p*‘, (q* + [54) 2*) } : (6.1)

Then, every Palais-Smale sequence {up fnen C WOI’S(Q) 1s bounded.
Proof. By the definition of the Palais-Smale sequence {uy }nen, we have

Ex(up) = ¢ and  (Eh(un),d) — 0 for every ¢ € Wy°(Q), for some ¢ € R. (6.2)
We set

max{p*, (¢ + [s])*} + min {p;, (q* + L&J%)}

2
Now, by taking “= as a test function, and by using the Palais-Smale condition (6.2) for n > ng, we
obtain,

g =

¢+12 Ealun) = (T (wn), ) = iexun) ~ (Tilun), ) = imun), (6.3)
where
Ty (up) = /Q (p(lx) - (17) a(z)|Vu, |P® dz
L
[ )
and

> b(2)| Vi |7®) 1og* @ (1 + |Vu,|) dz
)

X
Y O R S L, )
Aol

d
1+ |V v
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|un| Ls(@)]q" ()
* A/ ( log(l + [un]) (1 + |un) q(z)o )

*(x)
x (b(x) logs(x)(l + lun) ) ™,

11 ™ [5.(2) . ()
+/Q(a @@ gl (A + ) a(@)o )

ax ()
x (b()10g™ @1+ [ua)) 7 Ju| ) da.

Estimate for Z; (u,,) : By the choice of o, we can choose § > 0 small enough such that

1 { 1 11 1 }
0 < —maxmax{ — — —, — — ———
z€Q plx) oo  p*()

a" (=) Qg

and

1(up) > 5/ )|V, [P@) dz. (6.4)
Estimate for Zy(uy,) : For every § > 0 there exists a constant M (4, sT) > 0 such that m <
" + i for t > M, therefore we have the following estimates: By splitting the domain depending upon
the size of |Vu,|, we get

JREECIE log" ™1 (1 + [Vuu) dx‘
Q

q(x)o 14 [Vuy| (6.5)
<CW)+v / b(@) [Vt |7 1og* @ (1 + [V, |) d
Q
Now, again by choice of o, choosing § > 0 small enough such that
1 1 1 1 1 " «
(5§maxmax{——y,— —|—LS (z)]a (x)}
veQ gz) o o q*(x) q(x)o
By using estimates in (6.5) in light of (6.1) and (H;""), we obtain
Ty (uy) > 6 / b(2)|Vun |9 1og* @ (1 + |Vu,|) dz — C(6). (6.6)
Finally, inserting the estimates (6.4) and (6.6) in (6.3) and using Proposition 2.18, we deduce
c+ci(6 >(5/ )|V, [P@ d
o B (6.7)
+5/ b(2)|Vun 1) Log* @ (1 + |V, |) dz > 8|V, |57 @F D
Q
which implies that the sequence {uy, }nen is bounded in WO1 S(Q) O
We set
* : c; *\Cj — : — « —1)—1
c'(A) = min (5(C4(A)*(C)Y) — e, Cy(A) = A7 min{1,r(¢") "} 1+ Islg"a |

i=1,2;j=1,2
where C* and ¢, are the constants obtained in Theorem 4.6 and (6.7), respectively and the constants
0 and ¢;, c; depend on the given data.

Lemma 6.2. Let (Hy), (Hy), (Hy), (HY"") and (6.1) be satisfied. Then the energy functional Ex
satisfy the (PS). condition for ¢ < ¢*(A).
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Proof. Let {uy}nen be a Palais-Smale sequence satisfying (6.2). Then, by Lemma 6.1 and Theorem
4.6, there exists a weakly convergent subsequence, a countable index set I, positive numbers ©;, ; for
each ¢ € I and C* > 0 such that

Up, — U a.e.in £,

Up, =~ u in Wol’S(Q)

S |[Vuy|) = 0 > S8(-, |Vu|) + Z 0;6,, weakly-#* in the sense of measures
i€l (6.8)
S* (- up) = S*(-,u) + Z ©,0,, weakly-* in the sense of measures
iel

1 1 1
min{0"7, 07} < C*max{0]~"7, 0] e } forjel

We claim that I = (. Suppose that there exists j € I. Let v > 0 and define ¢, ; as in the proof of
Theorem 4.6. Taking ¢ ju, € Wol’S(Q) as a test function in (6.2), we get

mm{ } | S Vo sds < (). )

= (T (un), Py,5u >S+A<«72(Un)a¢%J >S+<«73(Un)v¢mj )s
/ )|V, [P =2V, - Vo, ju, da

/ 2)| V|72 1og* @=L (1 4 |Vu,)|)

X (log(l + [Vug|) + ;8%)

By applying Young’s inequality and Lemma 5.4 for § > 0, we obtain

‘/a(m)|Vun|p(w)2Vun -V jun da
Q

Vu, - Vo, ju, dz.

s(z)  |Vug|
q(z) 1+ [Vuy|

+ / b(2)|Vun 9™ 2 10g* @11 + [Vu,|) <log(1—|—|Vun|)—|— )vun-w%jun dz
Q

§5/ S(;E,|Vun|)dx—|—0(5)/S(x,|V¢%jun|)dm.
Q Q

Since {@ jun tnen is a bounded sequence in W&’S(Q) and (6.2) holds,

HILH()IO@//\(Un), by jun) = 0. (6.10)
By Proposition 3.8, it follows from (6.8) that u,, — u in LS(£2). From this, we obtain
Jim / (2, [V stn]) dar = / S(, [V sul) da. (6.11)

The fact that u,, is bounded in Wy'®(Q) and W, *° () — L5+ (Q) implies

(1t B gt} < ||¢7,j||oo( [ (alep

ax(2) . se(x)]gu(x Un
[ (oo 04 ) 7 e (1 R e L) )

] [ el b <
q()

where (] is independent of n and by Vitali’s convergence theorem, we get
lim hrrolo(jg(un) Gry,jUn)S = hm (Jg( )s Py, ju)s = 0.

y—0t n—

|un|p*(z) dz

< ly,slloo

i
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Following the same arguments as above, we obtain

p*(x) "
(o utn), b gun)s| < /Q (a(@)) 55 [un P @ da

o B e |s(2)|q" (x) Jun
+/Q(b(x)log”(1+lun|)) | ”(1 @) 1og(1+|un)(1+|un|))¢’”dx
[s()la"()

Q

and
lim (o (tn), b tin)s] < 02/ (S*(:E,u) + Z@iawi> 6., du. (6.12)
n—oo Q 161
Again by using Proposition 2.22 and passing as v — 07, it follows
lim [ S(z,|V¢y jul)de = lim (J5(u), ¢, ju)s = 0. (6.13)
v—0t Jo y—0+
Passing to the limits n — oo and v — 07 in (6.9) and applying (6.9), (6.10), (6.11), (6.12), (6.13),
(6.2), and (6.8), we get
min{1,7(¢g")"'}0; < CoAO; + 6Cy,
where

Co=sup [ S(z,|Vuy|)dz
neNJQ
Since § > 0 is chosen arbitrarily, we obtain
min{1,r(¢*)""}

From this and (6.8), we deduce

1 1 1w y n z
min{(Cy6;) =), (Cyh;)"0) } < C* max{@}n’( 3 E( ])} for j € I. (6.14)
The condition (H;) implies that there exists € > 0 small enough such that

¢ = mig [min{n?(z),n{(z)} — max{m_(z),n.(z)}] > 0.

[AS
Combining this with (6.14), we can find ¢; depending on (, p, ¢ and independent of j such that

Cﬂel (C*)éz < Qj with ¢ € {01,02} and /5 € {63,64}. (615)
Using (6.7) and (6.15), we obtain
c>680; —ci > 5C’§1(C’*)Z2 — ¢y =",

which is a contradiction. Hence I = () and by virtue of (6.8), Lemma 4.3 and Proposition 2.18, we
obtain

up —u in LS (Q).

Again, by taking w, —u as a test function in (6.2), we obtain

(T1(un); un —u)s = (T (un), un — u)s + ATz (tn), un — u)s + (T3(un), un — u)s. (6.16)
The condition in (H;) and (H"") imply
gx(2) g (x)

G5 () + s4(x) ) >1 and g.(z)+ s(x) ) >1

In light of the above implication along with Holder’s inequality as in Proposition 2.12, we obtain

|<jz<un>7un—u>s|s/< (@) 7 [P @, — ) da
Q
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a*(z)
C “(2)— |s(z)|g* (x) |un|
+/ bxlos(x)l—i—un @ un‘I(x)l(l—i- Uy, — u| dz
Q( ()10 1+ fual)) a@) g+ fun (A + T ) 4

(
s/<a< )T iy [P s, — ] da
Q

e a*(z) )
‘1—1—'8()'(1 O [ (o104 ) ™ el
00,0/

+
q(*)
<C/ |u"| —u|dx§CHS (@, [un|) i
|un| |un| (S*)t

where (S*)! denotes the Sobolev conjugate function of $* defined in Definition 2.5. Now, by using the
conjugate modular relation in Proposition 2.13 and Proposition 2.11, we get

(T2 (un), un — u)s| <CHS|Un|)

[|n
(S*)H (6.17)

< Chllunlls-llun —u

s+ — 0 asn— oo.
Following the same arguments as above, we deduce
|<~73(un)>un - “>5| < CIHUn”S;‘”un - u|
Moreover, the boundedness of {uy }nen in Wol’S(Q) and (6.2), gives
nh_}n;o (T (un),un —u)s| = 0. (6.19)
Collecting (6.17), (6.18) and (6.19) in (6.16), we obtain

<«71(Un),un —u)s — 0 asn— oco.

sz =0 asn—oo. (6.18)

Finally, Theorem 5.5 implies that u, — u in WOI’S(Q) by the (S;) property of the operator Ji. O

Lemma 6.3. There exists a sequence { Ry }ren independent of A such that 1 < Ry < Ryy1 for all
k € N and for each k € N

Ealu) <0 for all uw € Xy with ||ull1,s > Ry,
where X are k-dimensional subspaces of Wol’s (Q).

Proof. Let k € N. By the equivalence of norms in Xy, we find 7 > 1 such that
nk_l||u||1,5 < lullsx < mgllulli,s for all u € X. (6.20)
For any u € X}, with ||ull1,s > Rk > nr > 1, using Proposition 2.18 and (6.20), we have

max s+ min{p,,(q«+[s.] %) }
T AR At S ( )

€ _
A(U) = mln{p ,q~ } maX{pi‘,q;"}
max +, s _ min{p, ,(q«+[s« %\ 7
l[ullt,s ([ }_ (i ull1s) {r(aet1s.1%) 7}
min{p™, a7} max(p! . ¢}
max +5+—min :7 *+S*q7*,
mln{p*,(q*+LS*J ) 1 ”v || a {P J(g+Ts1)™} {» (q L Jq) }
< Va3 o
min{p~, ¢~}
—min{p, (g« +Ls+] %) "}
g (a )
max{py, ¢}
max{p™,(q+ (s})Jr}_min{p:,(q*_t,_Ls*J L*)*}
min{p; ,(g:+[s.]2=)"} [ R q
< a5 [ B

min{p—,q¢~}
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—min{p; ", (g +[s. %)}
e (0410 0%)

max{py, ¢ }

In view of (6.1), the exponent of Ry is negative. Therefore, by choosing Ry > 1 independent of A, we
have the required claim. O
For each k € N, we define
Yy = {ue Xy |Julli,s < Ri},
Zi = {g € C(Xp, W3°()): g is odd and g(u) = u on dX}}

and

di:= inf maxE(g(u)). (6.21)

Lemma 6.4. Let (Hy), (Hy), (Hy), (HY'™") and (6.1) be satisfied. Then, the following hold:

(i) There exist numbers R > 0 and r > 0 such that E(u) > r for every u € Sp = {v €

WES(@): | Vlls = R},

(ii) There exists w € W° (Q) with |w| > R such that &(w) < 0.
Proof. Let u € Wy°(Q) with |Vulls = R < 1. Using Propositions 3.8 and 2.18, we can choose
R € (0,1) such that ||Julls- + ||u|ls, <1 and

os(IVul) , es-(Jul) __0s.(Ju])
max{p*, ¢t} min{(p*)”,(¢*)"} min{ps, ¢}
min{(p") ", (a"+1s]%) "} min{(p.) "~ (qu+1s. ] 2) 7}
B HUHS*

E(u) = &1 (u) — A (u) — E3(u) >

max *} sPHT
Jull P s
max{p*, ¢t} min{(p*)~, (¢*)~} min{p; ,qx }
max{p™T, st min{(p”)~, q*+L5J% _} min{(px) ", q*+Ls*qu* )
> Oyl @Y gy ) gyt 7

Now, in view of (H,), (H;"") and (6.1), there exist numbers R € (0,1) and r > 0 such that &(u) > r.
To prove (ii), set w = Hu for some ¢ > 1 and v € Wol’s(Q). Note that if § > 1 we have the following
inequalities

su (@) ax (@)
ox(2)ax () log~ =) L+ [u))f) < 65@ 10g® @ (1 + |u]), if sy(z) >0,

log =55 (1 4 ojul) < {8, " (1 +u))?) < g™ (1 + [ul) | (z)
log~ a® (14 |ul), if s,(z) <0,

[sx1(z)ax (@) sx(®)gx (x)

<40 a(x) log™ «@® (1 + |u|)

and
log*@ (1 + |u), if s(x) >0,
log®* ™ (1 + [u)?) > 65 1og*®) (1 + |u]), if s(z) < 0.

> 0Ls1@ 10g5@) (1 4 Ju)).

1og*@ (1 + 0Ju]) > {

This further gives
gmin{e™ (et 13D 7} po(u) < ps(Au) and g, (Bu) < O H ST T ooy (6.22)

Let ||ull1,s = m and ||ulls, = n2 with 0 < 11,72 < 1. Then from (i), we have QLS< ) =1 and

i
0s, (i> = 1. Now, by taking 6 = n% >1land = n% > 1in (6.22), we obtain

2
01,5(u) u u 0s, (u)
: < —_ = N — < .
DR A (m) boand es. (nz) - T a5 %)
2

Ui
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Using the above estimate as well as (6.1), we get

E(w) = &E1(Ou) — A& (Ou) — E3(Ou)

< 9“‘3X{p+’(q+M)+}51(u) - Hmin{p:’(q*ﬂs*J%)7}6’3@) — —00  ast— oo.

Hence, by taking 6 large enough, we have ||Vw|s > R and £(w) < 0. O

Using Lemma 6.4, the deformation lemma from Ambrosetti-Rabinowitz [1, Lemma 1.3] and fol-
lowing the same arguments as in Theorem 2.1 by Ambrosetti-Rabinowitz [1], we obtain the following
result.

Lemma 6.5. For each k € N, dy, is the critical value of Ep provided Ex satisfies the (PS)dk condition.

Let {Tk}ren be a sequence of closed linear subspaces of WO1 S(Q) with finite codimensions and
{ex}ren be a Schauder basis of Wo*®(€2). For each n € N, let f,, € (W®(Q))* be defined as

fo(u) =a, foru= iajej € Wol’S(Q).
j=1
For each k € N, define
Up = {u e W3S(Q): fu(u) =0 for all n > k}
and
Vi i={u e Wy (Q): fu(u) =0 for all n < k —1}.
Then, Wy*°() = Uy @ Vi and Vj, has codimension k — 1. Define

ep = sup [v]ls, -

UEVk»”UHW&,S(Q)Sl

Lemma 6.6. The sequence {ey tren defined above satisfies 0 < ep11 < eg for k € N and limg_, e, =
0.

Proof. Because Vi1 C Vi, we have e, > ex41 > 0 for all k € N. Hence e, — e > 0. By the definition
of ey, for each k € N, we can choose uy € Vi with ||[Vug|s < 1, such that
1
0<er—|Vuills < T
Using Proposition 2.17, Wol’S(Q) is reflexive and {u}ren is bounded in WOI’S(Q). So, up to a sub-
sequence, we have up — u in Wol’S(Q). Then, by Proposition 3.8, ux — u in LS*(Q). Now, by the
definition of V}, and the fact that uy € Vi, for each n € N and n < k, we have f,,(ux) = 0 and by passing
to the limit as k — oo leads to f,,(u) =0 for all n € N. Hence v = 0 and limy_, e, = e = 0. O
Lemma 6.7. There exists C1,Cy > 0 such that
L(Ry) <di <U(Rg) for every k € N,
where
+ +
Rmax{p 7(Q+[5]) } Cl a(2)7oz(2>
d _ L 1 2
ey and U(Ry) 2 R,
Proof. Let A > 0, k € N and dy, is given in (6.21). First, we will find the upper and lower bound of
dy. Using Proposition 2.18 for all u € Y, it is easy to see that

EA(u)

1
= E1(1) ~ A8 ()~ Ex(u) € s /Q (e, Vu) da

L(Rk) =

(6.23)

Rmax{p J(g+[sD™}
min J(g+1s]) max ,(g+]|s
max{||VuH {p™ (a+Ls]) }7 Hvull {p™ (a+T[sT) }} < k

min{p—, ¢~}

1
~ min{p~, ¢~}
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()n lhe ()theI‘ hand, since Id S Zk, lhe deﬁnltl()n ()f dk gl\/es
(Ik < IaX(:/\ u). (’;24

Combining (6.23) and (6.24), we get

max{p™,(g+[s]) T}
di < i

=1L .
min{p~—, ¢~} ()
To get the lower bound of dj, we make use of the following fact, which is a consequence of Lemma 3.9
by Komiya—Kajikiya [29]

g(Yi)NOB, NV #£0 forall ge Zy and 7 € (0, Ry).
Thus, for any 7 € (0, Ry), we have

> i .
max Enl(g(u)) > uealflflfﬁvk En(u) for all g € Zg

Let 7 € (1, Ri) be arbitrary and fixed. The above inequality in view of definition of dj, gives

> i .
i 2 ueallglfmv SA(u)

By Lemma 6.6 we can find ky € N such that for & > kg, we have

lulls, < ekl|Vulls for all u € V.

Combining this with Proposition 2.18 and Proposition 3.8 for any u € 0B, NV} for k > ky and
llulls =T > 1, we get

(1)
sl

e o® ad al®
enf > IVuls”  Amax{lju sty max{fulls? llulls? }
~ max{pT,¢"} min{(p*)~, (¢*)~ } min{p;, ¢ }

W@ PRGN ) o®
> Ci|[Vullgt = AG|[Vuls* — e [[Vuls®

(6.25)

(2) (2) o2 (@
= a a 3 LQ
CIT 1 — /\CQT 2 — €.’ T 3,

where a?) =min{p~, (¢ + [s])"},

ol = min {@*), (q* " Lst) } of?) = max {<p*>+, (q* ; qu*)+} 7 (6.26)
o = min {(za*), (0 1512 } o = max {<p*>+, (0.4 151%) +} (6.27)

and C; for i = 1,2 depend on the given data and the constants in Proposition 3.8. Note that for A > 0
satisfying

0<n< gt _ g
< <E " =: U(Ry)

we get

C
C2A7.a(22) < 717-0‘52) for all 7 € (1, Ry).

Using this with (6.1), (6.25) and (6.21) for any k > ko, we obtain
@) 42
Y3 %

QRN L@

> ﬁTaﬁz) _ BZS 7Y% = L(1) > L(19) > Be,, faTm (6.28)

dk_Q
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where
1 (2,2
o \ TP o I\ e /o )
Ciaf® | " C1\ o= (@)= (o) —
— d 5 — 1 3 1 1 3 1 > 0
o @) o A @ @) :
2057 e, * a3 a3

Now we can prove our multiplicity results in the superlinear case.

Theorem 6.8. Let (Hy), (Hy), (H,), (HI"") and (6.1) be satisfied. Then, for each n € N, there exists
A, > 0 such that for any A € (0,A,,) and X\ = 1, the problem (1.9) admits at least n pairs of non-trivial
weak solutions.

Proof. We choose the sequence {A, }nen as follows. By Lemma 6.6, we find for k > ko that e, > 0.
Then, take A; satisfying

Ay € (0,U(Ry,)) and di, < L(Rg,) < c"(A1) for kv > ko,

where the function U and V' are defined in Theorem 6.7. The above choice of A; implies that £y
satisfies the (PS) 4., condition thanks to Lemma 6.2. Inductively, we define {Aj }ren satisfying
1

An € (0,U(Ry,)) and di, < L(Rg,) <c"(An) for k, > k.

Now, let A € (0,A,,) for some n € N. Then, by using the definition of A,,, Lemma 6.6 and (6.28), we
have

0<dp, <dp, - <dg, <c"(A).

Thus, in the view of Lemma 6.2 and 6.5, di,, dk,, - - - ,dy, are distinct critical values of £€5. Therefore,
Ex has at least n distinct pairs of critical points. O

6.2. Sublinear growth. In this subsection, we assume that A = 1 and A > 0. For the sake of
simplicity, we write €4 as £y. We suppose the following conditions:

(HS"P) p,,qx € C(Q), s, € L¥(Q), 1 < pe(2),q(z) < N, pye(x) < p(x) and ¢, (z) < q(z) for all x € Q,
and ¢, () + s (x) > 7r > 1, s,(x) < s(z) for a.a.x € Q.

Lemma 6.9. Let (Hy), (Hy), (H,) and (H3") be satisfied and
+
max {p;", (q* + [8y] (i;) } <min{p~, (¢+ [s])" }. (6.29)
Then, there exists g > 0 such that for A € (0, ), every Palais-Smale sequence {uy, tnen C Wol’S(Q)

s bounded.

Proof. By the definition of the Palais-Smale sequence {uy, }nen, we have
Ex(up) — ¢ and  (E\(up),p) — 0 for every ¢ € Wol’S(Q), for some ¢ € R. (6.30)
Setting

max {p2, (. + 151%) "} + min o+ LoD )

2
Choosing “= as a test function in (5.1), and using (6.30) for n > ng, we obtain,

p =

“?”> = Eilun) — (Tilun), “?"> > Tifw), (6.31)

i=1

Iy (un) := /Q (p(lx) - ;) a(z)|Vun | da +/Q </1) —~ p}x)> (a(x)ﬁ|un|)p*(m) da

c+1 Z 8>\(un) - <k7(u71)7

where
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(b st o

2(un) / ( (:E ) b(x )|vun‘q (=) IOgS(w)(l + [Vu,|) dz

s(z)—1
/ b(x)s(x) Vu |q($)+110g (1—|—|Vun\)dx

and

Cqlx)p 1+ [Vuy,|
* a”(z)
[ (G ) )
ax ()

Estimate for 7;(u,) : By condition (6.29), we can choose 6 > 0 small enough such that
1 { 1 11 1 }
d<max_-maxq— — —,— — ——— ..
e plx) p'p  p(a)
This further leads to

“(a)
() >5/ )| Vatn|P I)dx+6/ (ata )ﬁw)p de

(6.32)
1 P ()
aco.p) [ (ale) 7 1unl)" .
Q
Estimate for Zy(uy,) : For every § > 0 we can find a constant M (§, s™) > 0 such that m <
+ T for t > M. Therefore we have the following estimates: By splitting the domain depending upon
the size of |Vu,|, we get
1 s(z)—1 1 "
‘/ |V n‘q o8 L+ [Vun]) dx‘
o q(z L+ [Vuy| (6.33)
<C)+ u/ b(2)| Van |7®) 10g* @ (1 + |Vu,|) do
Q
We choose 6§, v > 0 small enough such that
1 { 1 1 1 1 }
0< - max max{q ———— —VU,—— —— o.
4 wesupp(b) q(z) p o q(x)
By using the estimates in (6.33), Propositions 2.18 and 3.8, we obtain
To(un) > 8 / b(2) |V, |7 log* ™) (1 + |Vu,|) dz
Q
" (z) .
+6 / (5 08" (1 + fual)) ™ |7 s (6.34)
Q

ax (x)

—XCo / (bl tog™ @ (1 + fual)) 7 fua =) do — C(,9).
Q

Inserting the estimates (6.32) and (6.34) in (6.31) and using (5.4) with A < A\g := CLOO, we deduce

¢+ ci(9) Z5/S(x,|VunDdz+5/S*(x, |un|)dx—)\00/8*(x, |un|) da
Q Q Q
25/S(x,|Vun\)dz+(5f>\CC’o)/S*(x, |un|)dx—/\C’o/ h(z)dx (6.35)
Q Q Q

26/8(£,|Vun\)dx—£/h(a;)dx
Q C Q
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This shows the assertion of the lemma. O

Lemma 6.10. Let (Hy), (Hy), (H,), (HS"?) and (6.29) be satisfied. Then the energy functional Ex
satisfy the (PS). condition for ¢ < ¢** for all X\ € (0, ), where A is given in Theorem 6.9.

Proof. Let {un}nen be a Palais-Smale sequence, that is, (6.2) holds. Taking Lemma 6.1 and Theorem
4.6 into account, we can find a weakly convergent subsequence satisfying (6.8). We claim that I = 0.
Assume we can find j € I. By following the same arguments as in Lemma 6.2, we obtain

C{H(C™)* <6; with €1 € {c1,¢2} and €y € {c3, ¢4} (6.36)
Now, from (6.35) and (6.36), it follows that
c>4d0; — )\OCOHhHLl(Q) —Cy > (SC’fl (C*)@ — )\000||h||L1(Q) — ¢y =",

which is a contradiction. Therefore I = () and so, from (6.8), Lemma 4.3 and Proposition 2.18, we
conclude that

Up —u in LS ().

Using u,, — u as a test function in (6.2) gives

<\71(uﬂ)’un - u>3 = <t7(un)aun - U>S + <j2(un)7 Un — U>S + /\(Jg,(un)mn — u>3. (6.37)
From (H;) and (H5"") we conclude that
2() g (x)

>1

>1 and g.(z)+ s(x)

) e

From this along with Holder’s inequality as in Proposition 2.12, one has
™ (x) P
(Fatitn)t — s < [ (o) T Jun ", ] da
Q
* (@)

T et (4 ls@)le (@) 1
+/Q(b@c)l‘)g()“*'“”')) 7 1(” a() 1og<1+un><1+|un|>)'“"“'dx

Pr@ =Ly, — | da

* ()
Q

q(-)
§C/ S (x,lun|)|unu|dx§CHS (z, lun|)
Q

+H”|S()lq()H / (b6 108" (1 4 fua)) 7 a7, — ]
00,02/ Q

[un — ul|s+
(57t

with (S*)* being the Sobolev conjugate function of S* as defined in Definition 2.5. Now, applying the
conjugate modular relation in Proposition 2.13 and Proposition 2.11 yields

S*(x,|u
(T (ttn) 0 — )] < c\ St@lunD | s
[unl I (6.38)
< O ||tn|| s+ ||tin — s+ — Oasn — oco.

With the same arguments as above, it is concluded that
(Ts(un), un — w)s| < Cillunllss [lun — ul
Furthermore, by the boundedness of {u, }nen in Wy'°(Q) along with (6.2), we obtain
nh_}rr;o T (un), un —u)s| = 0. (6.40)
Collecting the estimates (6.38), (6.39) and (6.40) in (6.37), we have

(T (un), up, —uys =0 asn — oo.

s: =0 asn— oo. (6.39)

Then, using Theorem 5.5 gives u, — u in WOI’S(Q) due to the (S.) property of the operator J;. O
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Let u € Wol"S(Q) be such that ||Vu||s < 1. By Proposition 2.18, we have
1 1

—[|[Vu||3* —

maxp T a7 ) )
4 g s )

— min{||u )l ,

max{(p;)~, (¢;)~} S s

where o = max{p*, (¢ + [s])"}, and aéi), a:()f) for i = 1,2 are defined in (6.26) and (6.27). Now, by

using the Sobolev embedding in Proposition 3.8, there exists a constant C' > 0 such that

s} < C||Vulls for all u e Wg(Q).

Using the above inequality in (6.41) for ||u|| < 1, we obtain

1 Cos ACs
g u) > — VU aa VU Q2 VU s
A( ) = max{p*,q*}” ||8 max{(p*)*,(p*)*}” ||S max{(p*)*,(q*)*}‘l ||S (642)

= C1||Vulg® (Col Vullg' ™ = Cs[|Vul[g™* = ) == ha([|Vulls),

o®

st}

()
Ex(u) = st s llul

min{||u|

(6.41)

max{||ul|s,, [[u]

where aq € {agl),ag)}, as € {aél)aagz)}’
Cy = max{(p.)~, (q:) "} Oy = o

Cos © 2 max{(ps) ", (¢.) " max{p*, ¢t}
COt2+Ot3

max{(p.)~, (¢x)~ } max{(p*)~, (p*) "}
In order to study the behavior of hy, we define
g(t) = C2ta17a3 - Cgta27a3.

C3 =

, and the maximum

1
(a1 —a3)Cs | (a2—a3)
(aa—ag)Cs

It is easy to see that the function g has a maximum at ¢, = {

value is
@] —a3

Qg —a3 a3 — 2 ag—a
ap—o Py ap — Qg 27 o — o .
Al::g(t*):CQ"‘ YO | ——— ———— ] >0 ifaz<a; <as.
Qg — Q3 Qg — Q3

Then, for any A € (0, A1), the function hy has clearly two roots R;(A) and Rz(A) with 0 < R; () <
te < Ra(N),

if ¢ A A
Ri) =0 asA—0 and hyt)d >0 HEETO), Ba(A), (6.43)
<0 ifte(0,Ri(N)U(R2(N),00).
By (6.43), we find A2 > 0 such that for A € (0, A2)
o (s} 1 gmax{p’ (a+1s)) "}
min{p~ ,(g+|s : *
() < min 2max{pt,qT}}’ 2max{pt,qt} [’
Set
)\* = min{)\o, )\17 )\2} (644)

For each A € (0, \.), we define the truncated functional & : W(}’S(Q) — R such that
Ex(u) = & (u) — 7 (E1(u)) [E2(u) + AE3(u)],  u € WS (Q),
where 7 € C°(R) such that 0 <7 <1,
0 {1 it |t < Ry(\)min{e™ (atls) ™)
T )0 ¢ > 2Ry (\)min{p ot lsD 7Y
It is easy to see that £y € CI(WOI’S(Q),R) such that & (u) < Ex(u) for u € WOI’S(Q),
Ex(u) = & (u) for u e WS (Q) with & (u) > 2Ry (A)™n{p(a+lsD)7} (6.45)
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and
Ex(u) = Ex(u) for u € WS (Q) with & (u) < Ry(A)™in{p™(atlsh ™}
Lemma 6.11. Let A € (0, \,). Then, for u € Wol’s(Q) with Ex(u) <0,
Ex(u) =E\(u) and  E\(u) = EX(u).

Proof. Let A € (0,\,) and u € Wol’s(Q) with £,(u) < 0. First we claim that ||Vulls < 1. Suppose
that ||Vu|| > 1, then by Proposition 2.18 we have [, S(x, Vu)dz > 1. Thus,

1 1 - _
>_ - >_ - >9 min{p~,(q+[s])"}
Erlu) 2 max{p*, ¢} /5)8(x7VU) o= max{p*, ¢t} ~ )

The above inequality gives a contradiction as a virtue of (6.45) and £ (u) < 0. Furthermore, (6.42)
implies hyx(||Vulls) < 0, i.e., either |Vu|ls < Ri(A) or ||[Vulls > Ra(A) > t.. The latter inequality
with Proposition 2.18 and the upper bound of R;(\) gives

+ +
1 ”Vu”glax{l’ J(g+[s)™}
D —— dz >
E1(u) > S /QS(:L’,VU) x> —" =
tTaX{p+,(Q+LSJ)+}

> 2Ry (\)mindpT (a7

max{p*, ¢*}
This is a contradiction to &x(u) < 0 because of (6.45). Thus, it must hold ||Vuls < Ri()\) and
therefore by Proposition 2.18
||Vu||glln{P7,(Q+L5J)7}

<R, ()\)min{p_ (g+ls))7}

1
&1(u) L —F—— /Sx,Vudxg )
(u) min{p~—, ¢~} Jq ( ) min{p~, ¢~}
O
In order to prove our multiplicity results, we will use some topological results introduced by Kras-
nosel’skii [30]. To this end, let X be a Banach space and let 3 be the class of all closed subsets
A C X\ {0} that are symmetric with respect to the origin, that is, u € A implies —u € A.

Definition 6.12. Let A € ¥. The Krasnosel’skii genus v(A) of A is defined as being the least positive
integer k such that there is an odd mapping ¢ € C(A,R¥) such that ¢(z) # 0 for any x € A. If k does
not exist, we have v(A) = co. Furthermore, we set v() = 0.

The following proposition states the main properties of the Krasnosel’skii genus, see Rabinowitz
[10].
Proposition 6.13. Let A, B € 3. Then, the following hold:
(i) If there exists an odd continuous mapping from A to B, then v(A) < ~(B).
(ii) If there is an odd homomorphism from A to B, then v(A) = v(B).
(i) If v(B) < oo, then v(A\ B) > v(A) —y(B).
(iv) The k-dimensional sphere S* has a genus of k + 1 by the Borsuk-Ulam Theorem.
)

i
(v) If A is compact, then v(A) < oo and there exists 6 > 0 such that Ns(A) C ¥ and v(Ns(A)) =
v(A), where Ns(A) = {zx € X: dist(z, A) < d}.

Now, we are going to construct an appropriate mini-max sequence of negative critical values for the
functional &y.
Lemma 6.14. Let A € (0, \,). Then, for each k € N there exists ¢ > 0 such that

V(ET) Z k.
where €55 = {u e Wy °(Q): Ex(u) < —¢}.
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Proof. Let A € (0, As), k € N be fixed and X}, an k-dimensional subspace of Wol’S(Q). Since all norms
are equivalent on Xy, we find 05, > (Ry()\))~ ™n{r (@t} > 1 such that

6 ulls, < | Vulls < ok llulls, for all u € X. (6.46)
For any u € X} with |Vul|s <6, ' < 1, using Proposition 2.18 and (6.46), we have
min{p~ s|)™ max{p:r, Q*+|—s*~|q7* +}
i |Vl DTy ( )
Ex(u) < — - —
min{p~, ¢~} max{pJ, ¢}
min{p~, s|)™ — max{ *+7 *Jr"S*“qT* +}
B V) {r(a+ls) 7} _)\(5n1||Vu||5) pi(a )
min{p~, ¢~} max{py’, ¢ }

min{p~,(qg+ LsJ)’}—max{pj,(q*_,_(sJ qf*)Jr}
max{p}(q.+[5.12) "} [ ||Vl a
< |V 2 ) s

min{p~, ¢~}

—max{p},(q.+[5.1%) "}

Adn

max{p}, ¢ }

Now we choose t such that
1

"
A5 max{p}, (g +[s.1%)"} min{p=,(a+s))~ }—max{pT, (qx+Tsx] qT*)Jr}
k

0 <t < min 5k1, max{pi,qf}
and let
Sk = {u € X: [|Vu|ls =t}
Clearly, Sy, is homeomorphic to the (k — 1)-dimensional sphere S*~!. Hence, by Proposition 6.13 (iv),
we know that v(S;) = k. With the above choice of ¢, we obtain
gA(u) < —e<0 foralluesSy (6.47)
where

min{p~(a+(s]) " —max{p!,(q.+[s.1%) "} Aa}:max{pt(qwrs*]%*ﬁ}

o — _gmax{pl(a+[s.1%)"} _
min{p~, ¢~} max{p}, ¢}

Finally, by using (6.47) and Proposition 6.13 (i), we get
Sk C & and (E°) > y(Sk) = k.

Now, we define the following sets, for any k& € N,
Sk = {Ac Wr®(Q)\ {0}: Ais closed, A = —A and v(A) > k},
Ke={ueW;S@Q)\ {0}: & (u) = 0 and & (u) = ¢}
and the number

c = inf sup Ex(u).
AeZkueA

It is easy to see that ¢ < ¢x4q for any n € N.
Lemma 6.15. For each k € N, it holds that
—o0 < ¢ < 0.
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Proof. Iiet A € (0,2*) and k be fixed. From Lemma 6.14, we know that there exists € > 0 such
that y(€£5°) > k. Furthermore, because &£ is even and continuous, we know that £, ° € ¥;. From
€x(0) =0, we have 0 € £, ©. Since SUD, ¢ = Ex(u) < —e and &, is bounded from below, we obtain the

assertion. O
Lemma 6.16. Let A € (0,A*) and k € N. If ¢ = ¢t = Cgt1 = -+ = Ckym for some m € N, then
K. €1l and

Y(K.) > m+1.

Proof. The proof follows by repeating the same arguments as in Lemma 3.6 by Farkas—Fiscella—Winkert
[15]. O

Theorem 6.17. Let (Hy), (Hy), (H,), (H"®), and (6.29) be satisfied. Then, for A\ € (0,\*) and
A =1, problem (1.9) admits infinitely many weak solutions with negative energy values. Moreover, if
uy 1s a solution of (1.9) corresponding to A, then

lim ||u =0.
A—0+ ” AHLS

Proof. Let A € (0, \*), where \* is given in (6.44). By Lemma 6.15, £\ admits a sequence {uy }ren of
critical points with E’A(uk) < 0. We consider two situations. If —co < ¢1 < g <+ < c¢p < Cpt---,
then 8~>\ admits infinitely many critical values. If there exists k,l € N such that ¢y = cxy1 = -+ = 14,
then by Lemma 6.16 and Rabinowitz [10, Remark 7.3], v(K.) > [ + 1 and the set K. has infinitely
many points, which are infinitely many critical values of Ey.

By Lemma 6.11, {ux}ren are the critical points of £, and hence weak solutions of (1.9). Now, let
u be a solution of (1.9) corresponding to A. Then, again by Lemma 6.11 and (6.43)

1 - _
[ 1 13 S dx < d Ri()\ min{p~,(q+[s])" } 0 A O+.
IIlaX{er,qu} /Q (x,VU)\) T = /QM(-Z‘,VUA) r < 1( ) — as \ —
Finally, from Proposition 2.19, we get the required claim and the proof is complete. g
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