
LOGARITHMIC DOUBLE PHASE PROBLEMS WITH GENERALIZED

CRITICAL GROWTH
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Abstract. In this paper we study logarithmic double phase problems with variable exponents in-
volving nonlinearities that have generalized critical growth. We first prove new continuous and com-

pact embedding results in order to guarantee the well-definedness by studying the Sobolev conjugate

function of our generalized N -function. In the second part we prove the concentration compactness
principle for Musielak-Orlicz Sobolev spaces having logarithmic double phase modular function struc-

ture. Based on this we are going to show multiplicity results for the problem under consideration for
superlinear and sublinear growth, respectively.

1. Introduction

Recently, the authors [2] introduced a new class of logarithmic double phase operators given by

div

(
|∇u|p(x)−2 ∇u+ µ(x)

[
log(e+ |∇u|) + |∇u|

q(x)(e+ |∇u|)

]
|∇u|q(x)−2 ∇u

)
, (1.1)

whose energy functional is given by

u 7→
ˆ
Ω

(
|∇u|p(x)

p(x)
+ µ(x)

|∇u|q(x)

q(x)
log(e+ |∇u|)

)
dx, (1.2)

where Ω ⊆ RN , N ≥ 2, is a bounded domain with Lipschitz boundary ∂Ω, e stands for Euler’s number,
p, q ∈ C(Ω) with 1 < p(x) ≤ q(x) for all x ∈ Ω and µ ∈ L1(Ω). The related Musielak-Orlicz Sobolev
space is generated by the function

Hlog(x, t) = tp(x) + µ(x)tq(x) log(e+ t) for all (x, t) ∈ Ω× [0,∞).

In [2] it is shown that the spacesW 1,Hlog(Ω) andW
1,Hlog

0 (Ω) are separable, reflexive Banach spaces and
the operator (1.1) turns out to be bounded, continuous, strictly monotone and of type (S+). Note that
similar functionals as in (1.2) for constant exponents have been studied by Baroni–Colombo–Mingione
[4] in order to prove the local Hölder continuity of the gradient of local minimizers of the functional

w 7→
ˆ
Ω

[|Dw|p + a(x) |Dw|p log(e+ |Dw|)] dx (1.3)

whenever 1 < p < ∞ and 0 ≤ a(·) ∈ C0,α(Ω). We point out that the functionals in (1.2) and (1.3)
coincide in case p = q are constant. In this direction we also mention the paper by De Filippis–Mingione
[11] who proved the local Hölder continuity of the gradients of local minimizers of the functional

w 7→
ˆ
Ω

[
|Dw| log(1 + |Dw|) + a(x)|Dw|q

]
dx (1.4)

provided 0 ≤ a(·) ∈ C0,α(Ω) and 1 < q < 1 + α
n . Note that (1.4) originates from functionals with

nearly linear growth given by

w 7→
ˆ
Ω

|Dw| log(1 + |Dw|) dx, (1.5)
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see the works by Fuchs–Mingione [20] and Marcellini–Papi [34]. Functionals as given in (1.5) appear,
for example, in the theory of plasticity with logarithmic hardening, see, Seregin–Frehse [41] and Fuchs–
Seregin [21].

In this paper we are going to deepen the study of the operator (1.1) and consider generalized
N -functions given by

S(x, t) = a(x)tp(x) + b(x)tq(x) logs(x)(1 + t) for (x, t) ∈ Ω× (0,∞), (1.6)

where p, q ∈ C(Ω) with 1 < p(x), q(x) < N for a.a.x ∈ Ω, s ∈ L∞(Ω) such that q(x)+s(x) ≥ r > 1 and
0 ≤ a, b ∈ L1(Ω) such that a(x)+b(x) ≥ d > 0 for all x ∈ Ω, see (H0) for the precise assumptions. First
we are interested in continuous and compact embeddings from W 1,S(Ω) into suitable Musielak-Orlicz
Lebesgue spaces. In particular, we prove that W 1,S(Ω) is continuously embedded into LS∗

(Ω), where
S∗ : Ω× [0,∞) → [0,∞) is defined as

S∗(x, t) :=
(
(a(x))

1
p(x) t

)p∗(x)
+

((
b(x) logs(x)(1 + t)

) 1
q(x)

t

)q∗(x)
,

see Proposition 3.8. Such type of embedding is sharp in the sense that, for each fixed x, it coincides
with the sharp Sobolev conjugate in classical Orlicz spaces. Here we use ideas from the papers by
Arora–Crespo-Blanco–Winkert [2], Cianchi–Diening [7], Colasuonno–Squassina [9], Crespo-Blanco–
Gasiński–Harjulehto–Winkert, [10], Fan [13], and Ho–Winkert [28]. Furthermore, we point out that
the new logarithmic double phase operator generated by S given in (1.6) is defined by

div

(
a(x)|∇u|p(x)−2∇u

+ b(x)|∇u|q(x)−2 logs(x)−1(1 + |∇u|)
(
log(1 + |∇u|) + s(x)

q(x)

|∇u|
1 + |∇u|

)
∇u
)
.

(1.7)

The study of problems involving the new logarithmic double phase operator (1.7) (see problem (1.9)
below) has two different features in contrast to the known works. The first different feature is the
degeneracy or singularity of the operator at ∇u = 0 which is of polynomial type perturbed with a
logarithmic term, which again has degeneracy or singularity at ∇u = 0 depending upon the exponent
s(·). The second different feature is the exponent s(·) itself on the logarithmic term which may change
sign depending upon the space variable x ∈ Ω. This sign-changing nature of the exponent s(·) creates
several challenges and technical difficulties in our analysis. In particular, it leads to losing the convexity
of the corresponding generalized N -function (1.6), which is essential in setting up the corresponding
Banach spaces. Another difficulty arises in finding the suitable structure of the generalized (critical)
N -function for continuous and compact embeddings which takes the form of non-trivial estimates. To
handle these issues, we introduce a balance condition between the sign-changing exponent s(·) and q(·),
which together preserves the convexity of the generalized N -function (1.6) and several other properties
of the new logarithmic double phase operator (1.7). This makes the study of the new logarithmic
double phase operator (1.7) more challenging and interesting. In general, there are only few works
for the double phase operator with a logarithmic perturbation, see the papers by the authors [2], Lu–
Vetro–Zeng [33], Vetro–Winkert [43] and Vetro–Zeng [42]. In particular, in [33] the authors introduced
the operator

u 7→ ∆HL
u = div

(
H′
L(x, |∇u|)
|∇u|

∇u
)
, u ∈W 1,HL(Ω) (1.8)

where HL : Ω××[0,∞) → [0,∞) is given by

HL(x, t) = [tp(x) + µ(x)tq(x)] log(e+ αt)

with α ≥ 0. Note that (1.8) is a different operator than the one in this paper and also the one in (1.1).
Moreover, the work in [33] can be seen as the extension of Vetro–Zeng [42] from the constant exponent
case to the variable one while the paper by Vetro–Winkert [43] uses the same operator as in (1.1).
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In the second part of this paper we prove a concentration compactness principle of Lions type for the

Musielak-Orlicz Sobolev space W 1,S
0 (Ω) having logarithmic double phase modular function structure.

Such result is of independent interest and can be also used for other types of logarithmic double phase
problems. Our result extends the works by Fernández Bonder–Silva [17, 18] for variable exponent
spaces and Orlicz spaces, respectively and Ha–Ho [23] (see also [24] by the same authors for the entire
space) for Musielak-Orlicz Sobolev spaces having double phase modular function structure without
logarithmic perturbation who proved a concentration compactness principle by extending the classical
work of Lions [31]. Other versions of the concentration compactness principle have been proved, among
others, by Fernández Bonder–Saintier–Silva [16], Fu–Zhang [19], Ho–Kim [26] and Palatucci–Pisante
[36]. In contrast to the cases just mentioned, for the logarithmic double phase operator, the same
ideas cannot be extended easily due to the non-uniform limit (with respect to the space variable)
of the Matuszewska index of the generalized N -function S defined in (1.6) (compared to Fernández
Bonder–Silva [18]) and the lack of appropriate scaling and homogeneity because of the logarithmic
perturbation (compared to Ho–Kim [26]). In order to handle this issue, we introduce suitable sub-
homogeneous functions perturbed with logarithmic growth, which plays a crucial role in our analysis.
This approach can also be extended to prove the concentration compactness principle for a larger
class of Musielak-Orlicz Sobolev spaces. In addition, we also prove a Brézis-Lieb lemma and a reverse
Hölder type inequality.

In the last part of the paper, based on the continuous embedding W 1,S(Ω) ↪→ LS∗
(Ω) and the

concentration compactness principle both developed before, we are going to study quasilinear elliptic
equations driven by the logarithmic double phase operator and with right-hand sides having the new
critical growth perturbed with superlinear and sublinear growth nonlinearities

−div (M(x,∇u)) = ΛM∗(x, u) + λM⋆(x, u) in Ω,

u = 0 on ∂Ω,
(1.9)

where Ω ⊂ RN , N ≥ 2, is a bounded domain with Lipschitz boundary ∂Ω, λ,Λ > 0 are parameters to
be specified and M : Ω× RN → R is given by

M(x, ξ) = ∂ξ(M(x, ξ)), M(x, ξ) :=

(
a(x)

p(x)
|ξ|p(x) + b(x)

q(x)
|ξ|q(x) logs(x)(1 + |ξ|)

)
while M∗,M∗ are Carathéodory functions on Ω× R defined by

M∗(x, t) = ∂t(M∗(x, t)), M⋆(x, t) = ∂t(M⋆(x, t)),

where

M∗(x, t) =
1

p∗(x)

(
(a(x))

1
p(x) |t|

)p∗(x)
+

1

q∗(x)

((
b(x) logs(x)(1 + |t|)

) 1
q(x) |t|

)q∗(x)
,

M⋆(x, t) =
1

p⋆(x)

(
(a(x))

1
p(x) |t|

)p⋆(x)
+

1

q⋆(x)

((
b(x) logs⋆(x)(1 + |t|)

) 1
q(x) |t|

)q⋆(x)
,

with p⋆(·), q⋆(·) and p∗(·), q∗(·) being the subcritical and critical Sobolev variable exponents of p(·)
and q(·), respectively, that is, p⋆(·) < p∗(·) and q⋆(·) < q∗(·), see (H⋆) below. We consider the cases of
superlinear and sublinear growth separately and get multiplicity results in the Theorems 6.8 and 6.17.
In the case of superlinear growth, by extending the ideas of Komiya–Kajikiya [29, Theorem 2.2] via
genus theory and the deformation lemma, for each n ∈ N, we show the existence of at least n-pairs
of solutions for Λ ∈ (0,Λn). In case of the sublinear growth, using Krasnosel’skii genus theory (see
Krasnosel’skii [30]) along with appropriate truncation technique following ideas by Garćıa Azorero–
Peral Alonso [22] and Farkas–Fiscella–Winkert [15], the existence of infinitely many weak solutions
with negative energy sign has been shown. Note that the appearance of the logarithmic term in our
operator makes the treatment much more complicated than in the known works.

In general, there are only few existence results for critical double phase problems without loga-
rithmic perturbation in case of constant or variable exponents, see the papers by Arora–Fiscella–
Mukherjee–Winkert [3], Farkas–Fiscella–Winkert [15], Ho–Kim–Zhang [27], Liu–Papageorgiou [32] and
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Papageorgiou–Vetro–Winkert [37, 38]. All these works have just terms like |u|p∗−2u or |u|p∗(x)−2u on
the right-hand side of their problems without any term likes µ(x)|u|q∗−2u. In the recent paper by
Colasuonno–Perera [8] the authors study double phase problems in the local and in the nonlocal
Kirchhoff case by allowing a growth on the right-hand side given by

|u|p
∗−2u+ b(x)|u|q

∗−2 (1.10)

with a suitable weight function b(·). Moreover, Ha–Ho [23] studied Kirchhoff double phase problems
with variable exponents via a new concentration compactness principle (we already mentioned this
fact above) and with a growth like

|u|p
∗(x)−2u+ a(x)

q∗(x)
q(x) |u|q

∗(x)−2u, (1.11)

see also a paper by the same authors [24] for the case in RN . For the use of a growth as in (1.11),
the authors in [23] have used general embedding results for variable exponent double phase problem
proved by Ho–Winkert [28], see also the work by Cianchi–Diening [7] for a general Sobolev embedding
theorem in Musielak-Orlicz Sobolev spaces. In contrast to (1.10) and (1.11) we allow a growth of the
form

1

p∗(x)

(
(a(x))

1
p(x) |t|

)p∗(x)
+

1

q∗(x)

((
b(x) logs(x)(1 + |t|)

) 1
q(x) |t|

)q∗(x)
.

The study of the above generalized critical growth nonlinearity is motivated by embeddings of the

corresponding Musielak-Orlicz-Sobolev space W 1,S
0 (Ω) and the above concentration compactness prin-

ciple. Such types of nonlinearities have not yet been investigated in the literature. In this direction, the
current work presents new multiplicity results for quasilinear elliptic problems involving the logarithmic
double phase operator given in (1.7) and generalized critical growth with logarithmic perturbation.

The paper is organized as follows. In Section 2 we present the general theory about Musielak-Orlicz
spaces and introduce our special N -function S including the proofs of some properties of it. Section 3 is
devoted to the new continuous and compact embedding results (see Proposition 3.8) while in Section
4 we are going to develop and prove a concentration compactness principle adapted to logarithmic
double phase structures as presented before in this paper, see Theorem 4.6. In Section 5 we discuss
the properties of the energy functional and the logarithmic double phase operator in (1.9). Finally,
in Section 6 we prove our main multiplicity results for problem (1.9) in the case of superlinear and
sublinear growth, respectively, Theorems 6.8 and 6.17.

2. The function spaces

We begin with a brief description of Lebesgue and Sobolev spaces with variable exponents and
introduce then the necessary definitions for introducing the required Musielak-Orlicz Sobolev spaces.
We refer to the monographs of Chlebicka–Gwiazda–Świerczewska-Gwiazda–Wróblewska-Kamińska [5],
Diening–Harjulehto–Hästö–Růžička [12], Harjulehto–Hästö [25], Musielak [35], Papageorgiou–Winkert
[39] and the paper Fan–Zhao [14].

Given a bounded domain Ω ⊆ RN with N ≥ 2 and Lipschitz boundary ∂Ω, we denote by Lr(Ω) the

usual Lebesgue space for 1 ≤ r ≤ ∞ equipped with the norm ∥ · ∥r. Moreover, W 1,r(Ω) and W 1,r
0 (Ω)

stand for the related Sobolev spaces with the norm ∥ · ∥1,r = ∥ · ∥r + ∥∇ · ∥r and if 1 ≤ r < ∞, then

W 1,r
0 (Ω) can be endowed with the equivalent norm ∥∇ · ∥r.
For any function f : Ω → R we write

⌈f⌉(x) := max{f(x), 0} and ⌊f⌋(x) := min{f(x), 0}.

For r ∈ C(Ω), we set r− = minx∈Ω r(x) and r
+ = maxx∈Ω r(x) and we define

C+(Ω) = {r ∈ C(Ω): 1 < r−}.
Note that for any bounded function g : Ω → R we use the same notation, that is, we set

g+ := max
x∈Ω

g(x) and g− := min
x∈Ω

g(x).
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Now, for r ∈ C+(Ω) and M(Ω) being the set of all measurable functions u : Ω → R, we denote by
Lr(·)(Ω) the Lebesgue space with variable exponent given by

Lr(·)(Ω) =
{
u ∈M(Ω): ϱr(·)(u) <∞

}
,

equipped with the norm

∥u∥r(·) = inf
{
λ > 0: ϱr(·)

(u
λ

)
≤ 1
}
,

whereby the modular associated with r is

ϱr(·)(u) =

ˆ
Ω

|u|r(x) dx.

It is well known that Lr(·)(Ω) is a separable and reflexive Banach space and its norm is uniformly

convex. Also, it holds
[
Lr(·)(Ω)

]∗
= Lr

′(·)(Ω), where r′ ∈ C+(Ω) is the conjugate variable exponent of

r given by r′(x) = r(x)/[r(x) − 1] for all x ∈ Ω. Furthermore, we also have a Hölder type inequality
of the formˆ

Ω

|uv|dx ≤
[
1

r−
+

1

r′−

]
∥u∥r(·)∥v∥r′(·) ≤ 2∥u∥r(·)∥v∥r′(·) for all u, v ∈ Lr(·)(Ω).

If r1, r2 ∈ C+(Ω) and r1(x) ≤ r2(x) for all x ∈ Ω, we have the continuous embedding Lr2(·)(Ω) ↪→
Lr1(·)(Ω).

The next proposition shows the relation between the norm and its modular, see Fan-Zhao [14,
Theorems 1.2 and 1.3].

Proposition 2.1. Let r ∈ C+(Ω), λ > 0, and u ∈ Lr(·)(Ω), then

(i) ∥u∥r(·) = λ if and only if ϱr(·)
(
u
λ

)
= 1 with u ̸= 0;

(ii) ∥u∥r(·) < 1 (resp. = 1, > 1) if and only if ϱr(·)(u) < 1 (resp. = 1, > 1);

(iii) if ∥u∥r(·) < 1, then ∥u∥r+r(·) ≤ ϱr(·)(u) ≤ ∥u∥r−r(·);
(iv) if ∥u∥r(·) > 1, then ∥u∥r−r(·) ≤ ϱr(·)(u) ≤ ∥u∥r+r(·);
(v) ∥u∥r(·) → 0 if and only if ϱr(·)(u) → 0;
(vi) ∥u∥r(·) → +∞ if and only if ϱr(·)(u) → +∞.

Next, we introduce the corresponding variable exponent Sobolev space W 1,r(·)(Ω) which is defined
by

W 1,r(·)(Ω) =
{
u ∈ Lr(·)(Ω): |∇u| ∈ Lr(·)(Ω)

}
endowed with the norm

∥u∥1,r(·) = inf
{
λ > 0: ϱ1,r(·)

(u
λ

)
≤ 1
}
,

where

ϱ1,r(·)(u) = ϱr(·)(u) + ϱr(·)(∇u),
with ϱr(·)(∇u) = ϱr(·)(|∇u|). Moreover, we denote

W
1,r(·)
0 (Ω) = C∞

0 (Ω)
∥·∥1,r(·)

.

We know that the spaces W 1,r(·) and W
1,r(·)
0 (Ω) are both separable and reflexive Banach spaces and

the norm ∥ · ∥1,r is uniformly convex. Furthermore, we have the Poincaré inequality, that is

∥u∥r(·) ≤ c0∥∇u∥r(·) for all u ∈W
1,r(·)
0 (Ω).

for some c0 > 0. Therefore, we can equip the spaceW
1,r(·)
0 (Ω) with the equivalent norm ∥u∥

W
1,r(·)
0 (Ω)

=

∥∇u∥r(·) which turns out to be uniformly convex as well.
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For r ∈ C+(Ω) we introduce the critical Sobolev variable exponents r∗ and r∗ with the following
expression

r∗(x) =

{
Nr(x)
N−r(x) if r(x) < N

any number s ∈ (r(x),∞) if r(x) ≥ N
, for all x ∈ Ω,

r∗(x) =

{
(N−1)r(x)
N−r(x) if r(x) < N

any number s ∈ (r(x),∞) if r(x) ≥ N
, for all x ∈ Ω.

Let us denote the space C0, 1
| log t| (Ω) by the set of all functions h : Ω → R which are log-Hölder

continuous, i.e. there exists C > 0 such that

|h(x)− h(y)| ≤ C

| log |x− y||
for all x, y ∈ Ω with |x− y| < 1

2
.

If r ∈ C0, 1
| log t| (Ω), then the set C∞

c (Ω) of smooth functions with finite support is dense inW
1,r(·)
0 (Ω).

Given a function u ∈ W
1,r(·)
0 (Ω) with r ∈ C0, 1

| log t| (Ω), the smooth approximations of u in W
1,r(·)
0 (Ω)

can be obtained by means of the Friedrichs mollifiers.
The following analog of the Sobolev embedding theorem holds. Given p, q ∈ C+(Ω) with infΩ(p

∗(x)−
q(x)) > 0, then for every u ∈W

1,p(·)
0 (Ω)

∥u∥q(·),Ω ≤ C∥u∥
W

1,p(·)
0 (Ω)

, with C = C(p±, q±, |Ω|, N),

and the embedding W
1,p(·)
0 (Ω) ⊂ Lq(·)(Ω) is compact.

Next, we begin by recalling some definitions and preliminary results from Fan [13], Harjulehto–Hästö
[25] and Musielak [35] in order to introduce Musielak-Orlicz Sobolev spaces and its properties. First,
let us denote by (X,Σ, µ) a σ-finite, complete measure space with µ ̸≡ 0.

Definition 2.2. Let φ : X × (0,+∞) → R. We say that

(i) φ is almost increasing in the second variable if there exists a ≥ 1 such that φ(x, s) ≤ aφ(s, t)
for all 0 < s < t and for a.a.x ∈ X;

(ii) φ is almost decreasing in the second variable if there exists a ≥ 1 such that aφ(x, s) ≥ φ(x, t)
for all 0 < s < t and for a.a.x ∈ X.

Definition 2.3. Let φ : X × (0,+∞) → R and p, q > 0. We say that φ satisfies the property

(Inc)p if t−pφ(x, t) is increasing in the second variable;
(aInc)p if t−pφ(x, t) is almost increasing in the second variable;
(Dec)q if t−qφ(x, t) is decreasing in the second variable;
(aDec)q if t−qφ(x, t) is almost decreasing in the second variable.

Without subindex, that is (Inc), (aInc), (Dec) and (aDec), it indicates that there exists some p > 1 or
q <∞ such that the condition holds.

Next, we give the definition of a generalized Φ-function.

Definition 2.4. A function φ : X × [0,+∞) → [0,+∞] is said to be a generalized φ-function if
φ is measurable in the first variable, increasing in the second variable and satisfies φ(x, 0) = 0,
limt→0+ φ(x, t) = 0 and limt→+∞ φ(x, t) = +∞ for a.a.x ∈ X. Moreover, we say that

(i) φ is a generalized weak φ-function if it satisfies (aInc)1 on X × (0,+∞);
(ii) φ is a generalized convex φ-function if φ(x, ·) is left-continuous and convex for a.a.x ∈ X;
(iii) φ is a generalized strong φ-function if φ(x, ·) is continuous in the topology of [0,∞] and convex

for a.a.x ∈ X.

The set of all generalized strong Φ-function is denoted by Φ(Ω).

Now we define the conjugate of a generalized φ-function and its left-inverse.
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Definition 2.5. Let φ : X × [0,+∞) → [0,+∞]. We denote by φ♯ the conjugate function of φ which
is defined for x ∈ X and s ≥ 0 by

φ♯(x, s) = sup
t≥0

(ts− φ(x, t)).

We denote by φ−1 the left-continuous inverse of φ, defined for x ∈ X and s ≥ 0 by

φ−1(x, s) = inf{t ≥ 0: φ(x, t) ≥ s}.

Definition 2.6. Let φ : X × [0,+∞) → [0,+∞], we say that

(i) φ is doubling (or satisfies the ∆2-condition) if there exists a constant K ≥ 2 such that

φ(x, 2t) ≤ Kφ(x, t)

for all t ∈ (0,+∞] and for a.a.x ∈ X;
(ii) φ satisfies the ∇2 condition if φ♯ satisfies the ∆2-condition.
(iii) Let ϕ1, ϕ2 ∈ Φ(Ω). We say ϕ1 is weaker than ϕ2, denoted by ϕ1 ≺ ϕ2, if there exist constants

C1, C2 > 0 and h ∈ L1(Ω), h ≥ 0 such that

ϕ1(x, t) ≤ C1ϕ2(x,C2t) + h(x) for a.a.x ∈ Ω and for all t ≥ 0.

We say that the functions ϕ1, ϕ2 are equivalent denoted by ϕ1 ≃ ϕ2, if there exists L ≥ 1 such
that

ϕ1(x, tL
−1) ≤ ϕ2(x, t) ≤ ϕ1(x, tL) for a.a.x ∈ Ω and for all t ≥ 0,

or weakly equivalent denoted by ϕ1 ∼ ϕ2 if there exists L ≥ 1 and h ∈ L1(Ω) such that

ϕ2(x, t) ≤ ϕ1(x, tL) + h(x)

and

ϕ1(x, t) ≤ ϕ2(x, tL) + h(x) for a.a.x ∈ Ω and for all t ≥ 0.

(iv) A function ψ : [0,∞) → [0,∞) is said to be a N -function (N stands for Nice function) if ψ is
a Φ(Ω) function and

lim
t→0+

ψ(t)

t
= 0 and lim

t→∞

ψ(t)

t
= ∞.

A function ψ : Ω× [0,∞) → [0,∞) is said to be a generalized N -function if ψ(·, t) is measurable
for all t ≥ 0 and ψ(x, ·) is a N -function for a.a.x ∈ Ω. We denote by NΦ(Ω) the class of all
generalized N -function on Ω.

(v) Given ϕ1, ϕ2 ∈ NΦ(Ω), we say ϕ1 increases essentially slower than ϕ2 near infinity, denoted
by ϕ1 ≪ ϕ2, if for any ℓ > 0

lim
t→∞

ϕ1(x, ℓt)

ϕ2(x, t)
= 0 uniformly for a.a.x ∈ Ω.

Definition 2.7. Let φ : Ω × [0,+∞) → [0,+∞] be a generalized φ-function, we say that it satisfies
the condition

(A0) if there exists 0 < β ≤ 1 such that β ≤ φ−1(x, 1) ≤ β−1 for a.a.x ∈ Ω;
(A0)’ if there exists 0 < β ≤ 1 such that φ(x, β) ≤ 1 ≤ φ(x, β−1) for a.a.x ∈ Ω;
(A1) if there exists 0 < β < 1 such that βφ−1(x, t) ≤ φ−1(y, t) for every t ∈ [1, 1/|B|] and for

a.a.x, y ∈ B ∩ Ω with every ball B such that |B| ≤ 1;
(A1)’ if there exists 0 < β < 1 such that φ(x, βt) ≤ φ(y, t) for every t ≥ 0 such that φ(y, t) ∈

[1, 1/|B|] and for a.a.x, y ∈ B ∩ Ω with every ball B such that |B| ≤ 1;
(A2) if for every s > 0 there exists 0 < β ≤ 1 and h ∈ L1(Ω) ∩ L∞(Ω) such that βφ−1(x, t) ≤

φ−1(y, t) for every t ∈ [h(x) + h(y), s] and for a.a.x, y ∈ Ω;
(A2)’ if there exists s > 0, 0 < β ≤ 1, φ∞ weak φ-function (that is, constant in the first variable)

and h ∈ L1(Ω) ∩ L∞(Ω) such that φ(x, βt) ≤ φ∞(t) + h(x) and φ∞(βt) ≤ φ(x, t) + h(x) for
a.a.x ∈ Ω and for all t ≥ 0 such that φ∞(t) ≤ s and φ(x, t) ≤ s.
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The following result can be found in Harjulehto–Hästö [25].

Lemma 2.8. Let φ : Ω× [0,+∞) → [0,+∞] be a generalized weak φ-function, then

(i) φ satisfies the ∆2-condition if and only if φ satisfies (aDec)q for some q > 1;
(ii) if φ is a generalized convex φ-function, φ satisfies the ∆2-condition if and only if φ satisfies

(Dec)q for some q > 1;
(iii) φ satisfies the ∇2 condition if and only if φ satisfies (aInc)q for some q > 1;
(iv) φ satisfies the (A0) condition if and only if φ satisfies the (A0)’ condition;
(v) if φ satisfies the (A0) condition, the (A1) condition holds if and only if the (A1)’ condition

holds;
(vi) φ satisfies the (A2) condition if and only if φ satisfies the (A2)’ condition.

For the next result we refer again to Harjulehto–Hästö [25].

Proposition 2.9. Let φ : X×[0,+∞) → [0,+∞] be a generalized weak φ-function and let its associated
modular be

ϱφ(u) =

ˆ
X

φ(x, |u(x)|) dµ(x).

Then, the set

Lφ(X) = {u ∈M(X) : ϱφ(λu) <∞ for some λ > 0}
equipped with the associated Luxemburg quasi-norm

∥u∥φ = inf
{
λ > 0: ϱφ

(u
λ

)
≤ 1
}

is a quasi Banach space. Furthermore, if φ is a generalized convex φ-function, it is a Banach space;
if φ satisfies (aDec)q for some q > 1, it holds that

Lφ(X) = {u ∈M(X) : ϱφ(u) <∞};
if φ satisfies (aDec)q for some q > 1 and µ is separable, then Lφ(X) is separable; and if φ satisfies
(aInc)p and (aDec)q for some p, q > 1 it possesses an equivalent, uniformly convex norm, hence it is
reflexive.

The relation of the modular and the norm is stated in the following proposition.

Proposition 2.10. Let φ : X × [0,+∞) → [0,+∞] be a generalized weak φ-function that satisfies
(aInc)p and (aDec)q, with 1 ≤ p ≤ q <∞. Then

1

a
min

{
∥u∥pφ, ∥u∥qφ

}
≤ ϱφ(u) ≤ amax

{
∥u∥pφ, ∥u∥qφ

}
for all measurable functions u : X → R, where a is the maximum of the constants of (aInc)p and
(aDec)q.

The following characterization of suitable embeddings has been proven by Musielak [35, Theorems
8.4 and 8.5].

Proposition 2.11. Let φ,ψ : X × [0,+∞) → [0,+∞] be generalized weak φ-functions and let µ be
atomless. Then Lφ(X) ↪→ Lψ(X) if and only if there exists K > 0 and a non-negative integrable
function h such that for all t ≥ 0 and for a.a.x ∈ X

ψ (x, t) ≤ Kφ(x, t) + h(x).

We also have the following Hölder inequality in Musielak-Orlicz spaces, see Harjulehto–Hästö [25].

Proposition 2.12. Let φ : X × [0,+∞) → [0,+∞] be a generalized weak φ-function, thenˆ
X

|u| |v| dµ(x) ≤ 2∥u∥φ∥v∥φ♯ for all u ∈ Lφ(X), v ∈ Lφ
♯

(X).

Moreover, the constant 2 is sharp.
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Proposition 2.13. Let φ : X × [0,+∞) → [0,+∞] be a generalized weak φ-function such that φ ∈
∆2 ∩∇2, then

φ♯
(
x,
φ(x, t)

t

)
≤ φ(x, t) ≤ φ♯

(
x,

2φ(x, t)

t

)
for all t > 0.

Finally, we can also define associated Sobolev spaces to these Musielak-Orlicz spaces analogously
to the classical case. We refer to Harjulehto–Hästö [25].

Proposition 2.14. Let φ : Ω×[0,+∞) → [0,+∞] be a generalized weak φ-function such that Lφ(Ω) ⊆
L1
loc(Ω) and k ≥ 1. Then, the set

W k,φ(Ω) = {u ∈ Lφ(Ω): ∂αu ∈ Lφ(Ω) for all |α| ≤ k},
where we consider the modular

ϱk,φ(u) =
∑

0≤|α|≤k

ϱφ(∂αu)

and the associated Luxemburg quasi-norm

∥u∥k,φ = inf
{
λ > 0: ϱk,φ

(u
λ

)
≤ 1
}

is a quasi Banach space. Analogously, the set

W k,φ
0 (Ω) = C∞

0 (Ω)
∥·∥k,φ

,

where C∞
0 (Ω) are the C∞(Ω) functions with compact support, equipped with the same modular and

norm is also a quasi Banach space. Furthermore, if φ is a generalized convex φ-function, both spaces

W k,φ(Ω) andW k,φ
0 (Ω) are Banach spaces; if φ satisfies (aDec)q for some q > 1, then they are separable;

and if φ satisfies (aInc)p and (aDec)q for some p, q > 1 they possess an equivalent, uniformly convex
norm, hence they are reflexive.

The next proposition summarizes the relation between the norm in W k,φ(Ω) and its modular.

Proposition 2.15. Let φ : Ω × [0,+∞) → [0,+∞] be a generalized weak φ-function that satisfies
(aInc)p and (aDec)q, with 1 ≤ p ≤ q <∞. Then

1

a
min

{
∥u∥pk,φ, ∥u∥

q
k,φ

}
≤ ϱk,φ(u) ≤ amax

{
∥u∥pk,φ, ∥u∥

q
k,φ

}
for all u ∈W k,φ(Ω), where a is the maximum of the constants of (aInc)p and (aDec)q.

Now we can give our precise assumptions:

(H0) (i) Ω ⊂ RN , N ≥ 2, is a bounded domain with Lipschitz boundary ∂Ω;
(ii) p, q ∈ C(Ω) with 1 < p(x), q(x) < N for all x ∈ Ω and s ∈ L∞(Ω) such that q(x)+ s(x) ≥

r > 1 for a.a.x ∈ Ω;
(iii) 0 ≤ a, b ∈ L1(Ω) and a(x) + b(x) ≥ d > 0 for a.a.x ∈ Ω.

We define the function S : Ω× [0,∞) 7→ [0,∞) by

S(x, t) = a(x)tp(x) + b(x)tq(x) logs(x)(1 + t) for (x, t) ∈ Ω× (0,∞) (2.1)

and denote

α(x) = min{p(x), q(x)} and β(x) = max{p(x), q(x)}.
The following lemma summarizes the main properties of the Φ-function S.

Lemma 2.16. Let (H0) be satisfied. Then S is a generalized strong Φ-function and satisfy (Inc)ℓ−
and (Dec)ℓ+ for 1 < ℓ− = min{p−, (q + ⌊s⌋)−} and for ℓ+ = max{p+, (q + ⌈s⌉)+}.
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Proof. Observe that in light of (H0), we have{
the map x 7→ S(x, t) is a locally integrable for all t ≥ 0

the map t 7→ S(x, t) is increasing and continuous for a.a.x ∈ Ω.

For all t > 0 and for a.a.x ∈ Ω, we have

∂t
2S(x, t) = a(x)p(x)(p(x)− 1)tp(x)−2 + b(x)tq(x)−2 logs(x)−2(1 + t)×

[
q(x)(q(x)− 1) log2(1 + t)

+ 2q(x)s(x) log(1 + t)
t

1 + t
+ s(x)(s(x)− 1)

t2

(1 + t)2
− s(x) log(1 + t)

t2

(1 + t)2

]
:= a(x)p(x)(p(x)− 1)tp(x)−2 + b(x)tq(x)−2 logs(x)−2(1 + t)×M.

The convexity of the function S(x, ·) follows from the sign of its second derivative. From the above
estimate, it is enough to prove that M > 0.
Case 1: s(x) ≥ 0

It holds

M = q(x)(q(x)− 1) log2(1 + t) + s(x)
t

(1 + t)
log(1 + t)

[
q(x)− t

1 + t

]
+ s(x)

t

1 + t

[
q(x) log(1 + t) + (s(x)− 1)

t

1 + t

]
≥ q(x)(q(x)− 1) log2(1 + t) + s(x)

t

(1 + t)
log(1 + t)

[
1− t

1 + t

]
+ s(x)q(x)

t

1 + t

[
log(1 + t)− t

1 + t

]
> 0,

where in the last inequality we have used the fact that q(x) + s(x) ≥ 1.
Case 2: s(x) < 0

For a fixed x such that s(x) < 0, we define

hx(t) := 2q(x)(1 + t) log(1 + t)− t log(1 + t) + 2(s(x)− 1)t

and

zx(t) :=
2s(x)q(x)t

(1 + t) log(1 + t)
+

s(x)(s(x)− 1)t2

(1 + t)2(log(1 + t))2
− s(x)t2

(1 + t)2 log(1 + t)

=
s(x)t

(1 + t) log(1 + t)

[
2q(x) +

(s(x)− 1)t

(1 + t)(log(1 + t))
− t

(1 + t)

]
.

Note that

lim
t→0

t2

(1 + t)2(log(1 + t))2
= lim
t→0

t

(1 + t) log(1 + t)
= 1, lim

t→0

t2

(1 + t)2 log(1 + t)
= 0

and

M = log2(1 + t) [q(x)(q(x)− 1) + zx(t)] .

Since q(x) + s(x) ≥ 1 and s(x) < 0, we have

zx(0) = lim
t→0

zx(t) = s(x) [(s(x)− 1) + 2q(x)] ≤ 0 and hx(0) = 0.

Next, we claim that both hx(·) and zx(·) are increasing functions and achieves their infimums hx(0)
and zx(0) at 0, respectively. Differentiating with respect to t and using

(1 + t) log(1 + t) ≥ t ≥ ln(1 + t), q(x) + s(x) ≥ 1, q(x) ≥ 1,

we obtain

h′x(t) = 2q(x)[1 + log(1 + t)]− t

1 + t
− log(1 + t) + 2(s(x)− 1)
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= 2(q(x) + s(x)− 1) + (2q(x)− 1) log(1 + t)− t

1 + t
≥ 2(q(x) + s(x)− 1) + 2(q(x)− 1) ≥ 0

and

z′x(t) =
s(x)t

(1 + t) log(1 + t)

[
(1− s(x))[t− log(1 + t)]

(1 + t)2(log2(1 + t))
− 1

(1 + t)2

]
− s(x)[t− log(1 + t)]

(1 + t)2 log2(1 + t)

[
2q(x) +

(s(x)− 1)t

(1 + t)(log(1 + t))
− t

(1 + t)

]
= −s(x)[t− log(1 + t)]

(1 + t)3 log3(1 + t)
[2q(x)(1 + t) log(1 + t)− t log(1 + t) + 2(s(x)− 1)t]

− s(x)t

(1 + t)3 log(1 + t)
≥ 0.

This implies

M = log2(1 + t) [q(x)(q(x)− 1) + zx(t)] ≥ log2(1 + t) [q(x)(q(x)− 1) + zx(0)]

= log2(1 + t) [q(x)(q(x)− 1) + s(x) [(s(x)− 1) + 2q(x)]]

= log2(1 + t) [(q(x) + s(x))(q(x) + s(x)− 1)] ≥ 0.

Note that, for any ℓ ∈ {ℓ−, ℓ+} and x ∈ Ω, we have

d

dt

(
tq(x)−ℓ logs(x)(1 + t)

)
= tq(x)−ℓ−1 logs(x)−1(1 + t)

(
(q(x)− ℓ) log(1 + t) + s(x)

t

1 + t

)
For ℓ = ℓ− = min{p−, (q + ⌊s⌋)−}

(q(x)− ℓ−) log(1 + t) + s(x)
t

1 + t
≥

{
(q(x)− ℓ− + s(x)) t

(1+t) if s(x) ≥ 0

0 if s(x) < 0

≥ 0.

(2.2)

For ℓ = ℓ+ = max{p+, (q + ⌈s⌉)+}

(q(x)− ℓ+) log(1 + t) + s(x)
t

1 + t
≤

{
(q(x)− ℓ+ + s(x)) log(1 + t) if s(x) ≥ 0

0 if s(x) < 0

≤ 0.

(2.3)

Therefore, in the view of the condition q(x) + s(x) ≥ r > 1 in (H0)(ii) as well as (2.2) and (2.3), it is
easy to verify that, for 1 < ℓ− = min{p−, (q + ⌊s⌋)−} and ℓ+ = max{p+, (q + ⌈s⌉)+},

S(x, t)
tℓ−

= a(x)tp(x)−ℓ
−
+ b(x)tq(x)−ℓ

−
logs(x)(1 + t),

S(x, t)
tℓ+

= tp(x)−ℓ
+

+ µ(x)tq(x)−ℓ
+

logs(x)(1 + t)

are increasing and decreasing functions, respectively. □

As a consequence of the previous Lemma, we obtain the following.

Proposition 2.17. Let the assumption (H0) hold. Then, the spaces LS(Ω), W 1,S(Ω) and W 1,S
0 (Ω)

are reflexive Banach spaces.

Proof. Using Lemma 2.16 and Propositions 2.9 and 2.14, we know that the spaces LS(Ω), W 1,S(Ω)

and W 1,S
0 (Ω) are separable Banach spaces. To prove the remaining claim, it is enough to prove that

LS(Ω) is reflexive. From Lemma 2.16, we know that the map t 7→ S(x,t)

tℓ−
is increasing and the map

t 7→ S(x,t)

tℓ+
is decreasing, i.e., S satisfies (Inc)ℓ− and (Dec)ℓ+ . Now, by using Harjulehto–Hästö [25,

Proposition 3.6.2, Theorem 3.6.6 and Lemma 2.1.8], there exists a uniformly convex function ϕ ∈ Φ(Ω)
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such that S ≃ ϕ and ϕ satisfies (Dec)ℓ+ . Hence, using again Harjulehto–Hästö [25, Propositions 3.2.4
and 3.6.6], Lϕ(Ω) is uniformly convex, LS(Ω) = Lϕ(Ω) and by the Milman-Pettis Theorem it follows
that LS(Ω) is reflexive. □

Now we denote, for all u ∈ LS(Ω),

ϱS(u) =

ˆ
Ω

(
a(x)|u|p(x) + b(x)|u|q(x) logs(x)(1 + |u|)

)
dx,

∥u∥S = inf
{
λ > 0: ϱS

(u
λ

)
≤ 1
}
.

The following proposition shows the relation between ϱS(·) and ∥ · ∥S .

Proposition 2.18. Assume (H0) holds true and u ∈ LS(Ω). Then the following hold:

(i) If u ̸= 0, then ∥u∥S = η if and only if ϱS

(
u
η

)
= 1.

(ii) ϱS(u) < 1 (or = 1 or > 1) ⇔ ∥u∥S < 1 (or = 1 or > 1).

(iii) If ∥u∥S < 1, then ∥u∥max{p+,(q+⌈s⌉)+}
S ≤ ϱS(u) ≤ ∥u∥min{p−,(q+⌊s⌋)−}

S .

(iv) If ∥u∥S > 1, then ∥u∥min{p−,(q+⌊s⌋)−}
S ≤ ϱS(u) ≤ ∥u∥max{p+,(q+⌈s⌉)+}

S .
(v) ∥un∥S → 0 (or 1 or ∞) in LS(Ω) ⇔ ϱS(un) → 0 (or 1 or ∞).

Proof. For any u ∈ LS(Ω), define

ξu : [0,∞) → R, ξu(η) := ϱS(ηu).

Let ∥u∥S = η. Now, by using the definition of the norm, the continuity and the strict monotonicity of
the map ξu because of (H0), we have for ε ∈ (0, η)

ξu

(
1

η − ε

)
> 1 and ξu

(
1

η

)
≤ 1 =⇒ ξu

(
1

η

)
= 1 i.e. ϱS

(
u

η

)
= 1.

The converse part holds trivially from the definition of the norm and the strict monotonicity of the
map ξu. Hence, (i) follows. Using the continuity of the function S and Harjulehto–Hästö [25, Lemma
3.2.3], we get (ii). Moreover, (iii) and (iv) follow from Proposition 2.10 and Lemma 2.16. Moreover,
from (ii)–(iv), for any v ∈ LS(Ω), we have

min

{
1, ∥v∥min{p−,(q+⌊s⌋)−}

S , ∥v∥max{p+,(q+⌈s⌉)+}
S

}
≤ ϱS(v) ≤ max

{
1, ∥v∥min{p−,(q+⌊s⌋)−}

S , ∥v∥max{p+,(q+⌈s⌉)+}
S

}
and

min

{
1, (ϱS(v))

1/min{p−,(q+⌊s⌋)−}, (ϱS(v))
1/max{p+,(q+⌈s⌉)+}

}
≤ ∥v∥S ≤ max

{
1, (ϱS(v))

1/min{p−,(q+⌊s⌋)−}, (ϱS(v))
1/max{p+,(q+⌈s⌉)+}

}
.

Finally, by taking v = un in the above estimates, we obtain the required claim in (v). □

For our purposes, we further need to work on the associated Sobolev space, whose properties are
summarized in the following statement. Its proof is completely analogous to the proof of Proposition
2.18 except that now we use Proposition 2.14 (instead of Proposition 2.9) and Proposition 2.15 (instead
of Proposition 2.10).

Proposition 2.19. Let (H0) be satisfied, Then the following hold:

(i) If u ̸= 0, then ∥u∥1,S = η if and only if ϱ1,S

(
u
η

)
= 1.

(ii) ϱ1,S(u) < 1(resp.= 1; > 1) ⇔ ∥u∥1,S < 1 (resp.= 1; > 1).

(iii) If ∥u∥1,S < 1, then ∥u∥max{p+,(q+⌈s⌉)+}
1,S ≤ ϱ1,S(u) ≤ ∥u∥min{p−,(q+⌊s⌋)−}

1,S .



LOGARITHMIC DOUBLE PHASE PROBLEMS WITH GENERALIZED CRITICAL GROWTH 13

(iv) If ∥u∥1,S > 1, then ∥u∥min{p−,(q+⌊s⌋)−}
1,S ≤ ϱ1,S(u) ≤ ∥u∥max{p+,(q+⌈s⌉)+}

1,S .

(v) un → 0 (or 1 or ∞) in W 1,S(Ω) ⇔ ϱ1,S(un) → 0 (or 1 or ∞) respectively as n→ ∞.

The next lemma will be useful to prove Sobolev embeddings of Musielak-Orlicz Sobolev spaces. We
define

Bθ,Θ,Γ(x, t) = a(x)tθ(x) + b(x)tΘ(x) logΓ(x)(1 + t).

where θ,Θ are positive continuous function on Ω and Γ is a bounded function on Ω.

Proposition 2.20. Let (H0) be satisfied. Then the embeddings

LS(Ω) ↪→ LBp,j,m(Ω) ↪→ Lℓ(·)(Ω)

are continuous, where p, j, ℓ ∈ C+(Ω), m ∈ L∞(Ω), ℓ(x) ≤ min{p(x), j(x)} for all x ∈ Ω, and j(·) and
m(·) are given by

m(x) ≤ s(x), j(x) +m(x) ≥ 0 for a.a. x ∈ Ω and j(x) =

{
q(x) if s(x) > 0,

< q(x) otherwise,
for all x ∈ Ω.

(2.4)

Proof. We will prove the embeddings by applying Proposition 2.11 to the corresponding Φ-functions.
For j ∈ C(Ω) and m ∈ L∞(Ω) satisfying (2.4), we have

Bp,j,m (x, t)

= a(x)tp(x) + b(x)tj(x) logm(x)(1 + t)

≤ a(x)tp(x) + b(x)tj(x) logm(x)(1 + t)χ{s(x)≥0}(x) + b(x)tj(x) logm(x)(1 + t)χ{s(x)<0}(x).

(2.5)

Now, we estimate the terms in the right-hand side of the above inequality separately. Note that the

condition j(x) +m(x) ≥ 0 implies that tj(x) logm(x)(1 + t) is an increasing function.
Case 1: x ∈ {s(x) > 0}

It holds

tj(x) logm(x)(1 + t) ≤

{
(e− 1)j(x) if t ≤ e− 1,

tq(x) logs(x)(1 + t) if t ≥ e− 1,

≤ (e− 1)j
+

+ tq(x) logs(x)(1 + t),

(2.6)

where in the above inequalities we have used m(x) ≤ s(x) and j(x) +m(x) ≥ 0 in {s(x) > 0}.
Case 2: x ∈ {s(x) ≤ 0}
By the continuity of j(·) and q(·), there exists ε > 0 such that

tq(x)−j(x) ≥ tε for all t ≥ 1 and for all x ∈ {s(x) ≤ 0}.
It is easy to show that for the above choice of ε > 0 there exists t∗ = t∗(ε) > e− 1 (independent of x)
such that

log(−s)
+

(1 + t) ≤ tε for all t ≥ t∗. (2.7)

Combining the above estimates, we deduce that

tq(x) ≥ tj(x) log−s(x)(1 + t) for all t ≥ t∗ and for a.a.x ∈ {x ∈ Ω: s(x) < 0}. (2.8)

Again, by using m(x) ≤ s(x) and j(x) +m(x) ≥ 0 for a.a.x ∈ {x ∈ Ω: s(x) ≤ 0}, we obtain

tj(x) logm(x)(1 + t) ≤ tj(x) logm(x)(1 + t)χ{t≤t∗}(t) + tj(x) logm(x)(1 + t)χ{t≥t∗}(t)

≤
(
(t∗)j

+

log(−m)+(1 + t∗)
)
+ tq(x) logs(x)(1 + t).

(2.9)

Using the estimates (2.6), (2.7), (2.8) and (2.9) in (2.5), it follows that

Bp,j,m (x, t) ≤ S(x, t) + h(x),
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where

h(x) := log(−m)+(1 + t∗)(t∗)j
+

+ (e− 1)j
+

.

This concludes the proof. □

As a consequence of the previous result, we have the following embeddings.

Proposition 2.21. Under the assumption (H0) the following embeddings hold:

(i) W 1,S(Ω) ↪→ W 1,Bp,j,m(Ω) ↪→ W 1,ℓ(·)(Ω), W 1,S
0 (Ω) ↪→ W

1,Bp,j,m

0 (Ω) ↪→ W
1,ℓ(·)
0 (Ω) are continu-

ous with 1 ≤ ℓ(x) ≤ min{p(x), j(x)} for all x ∈ Ω and j(·) and m(·) are given by (2.4).

(ii) if min{p(·), j(·)} ∈ C0, 1
| log t| (Ω), W 1,S(Ω) ↪→ Lℓ

∗(·)(Ω), W 1,S
0 (Ω) ↪→ Lℓ

∗(·)(Ω) are continuous

for all ℓ ∈ C(Ω) with 1 ≤ ℓ(x) ≤ min{p(x), j(x)} for all x ∈ Ω.

(iii) W 1,S(Ω) ↪→ Lℓ
∗(·)(Ω), W 1,S

0 (Ω) ↪→ Lℓ
∗(·)(Ω) are compact for all ℓ ∈ C(Ω) with 1 ≤ ℓ(x) <

min{p(x), j(x)} for all x ∈ Ω.

Proof. The embeddings are straightforward to verify via Proposition 2.20 and the Sobolev embeddings
in variable exponent spaces by finding a weaker Φ function and comparing the variable exponents in
the modular function. □

Under some additional conditions, we prove the following Poincaré inequality in W 1,S
0 (Ω).

Proposition 2.22. Let (H0) be satisfied and suppose

a, b ∈ L∞(Ω) and max{p(x), q(x)} < min{p∗(x), q∗(x)} for all x ∈ Ω. (2.10)

Then W 1,S(Ω) ↪→ LS(Ω) is a compact embedding and there exists a constant S > 0 such that

∥u∥S ≤ S∥∇u∥S for all u ∈W 1,S
0 (Ω),

where S is independent of u and so ∥∇ · ∥S is an equivalent norm on W 1,S
0 (Ω).

Proof. Note that S(x, ·) is an increasing and continuous function for a.a.x ∈ Ω and for ε > 0 there
exists t∗ = t∗(ε) (independent of x) such that

logs(x)(1 + t) ≤ logs
+

(1 + t) ≤ tε for all t ≥ t∗ and for a.a.x ∈ {x ∈ Ω: s(x) ≥ 0}. (2.11)

This directly implies that

S(x, t) ≤ C1 + a(x)tp(x) + b(x)tq(x)+ε for a.a.x ∈ {x ∈ Ω: s(x) ≥ 0} (2.12)

and
S(x, t) = S(x, t)χ{t<e−1}(t) + S(x, t)χ{t≥e−1}(t)

≤ C2 + a(x)tp(x) + b(x)tq(x) for a.a x ∈ {x ∈ Ω: s(x) < 0}.
(2.13)

where C1 and C2 depend on t∗ and L∞-norms of q, b and s. The uniform continuity of p and q and
the sharp inequality in (2.10) gives the choice of ε in (2.11) such that

max{p(x), q(x)}+ 2ε < min{p∗(x), q∗(x)} for all x ∈ Ω. (2.14)

Now, by combining the estimates in (2.12) and (2.13) with the inequality in (2.14), we obtain

S(x, t) ≤ C3t
min{p∗(x),q∗(x)}−ε + C4.

Finally, by applying Proposition 2.11 and Proposition 2.21 (iii), we obtain the required embedding. □
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3. Musielak-Orlicz Sobolev embeddings

For a parameter ℓ ≥ 1, we denote

Ŝ(x, t) =

{
tS(x,ℓ)

ℓ if 0 ≤ t ≤ ℓ,

S(x, t) if t > ℓ.
for all (x, t) ∈ Ω ∈ [0,∞). (3.1)

Since Ω ⊂ RN is bounded and Ŝ(x, t) = S(x, t) for all (x, t) ∈ Ω× [ℓ,∞), we get LS(Ω) = LŜ(Ω) and

W 1,S(Ω) = W 1,Ŝ(Ω) and their norms are comparable. Therefore, in light of the embedding results,

we may use Ŝ in place of S. For the sake of brevity, we write S instead of Ŝ. Now, we define the
Sobolev conjugate function of S in order to study the continuous and compact embeddings of certain
Musielak-Orlicz Sobolev spaces into Musielak-Orlicz Lebesgue spaces.

Definition 3.1. A function S∗ is called the Sobolev conjugate function of S if the inverse of the Sobolev
conjugate function S−1

∗ : Ω× [0,∞) → [0,∞) is given by

S−1
∗ (x, s) =

ˆ s

0

S−1(x, τ)

τ
N+1
N

dτ for all (x, s) ∈ Ω× [0,∞), (3.2)

where S∗ : (x, t) ∈ Ω× [0,∞) → s ∈ [0,∞) is such that S−1
∗ (x, s) = t and S−1(x, ·) : [0,∞) → [0,∞) is

the inverse function of S(x, ·) for all x ∈ Ω.

In addition to the assumption (H0), we suppose the following regularity and oscillation conditions:

(H1) (i) p, q, s ∈ C0,1(Ω) and a, b ∈ C0,1(Ω);

(ii) max{p(x),q(x)}
min{p(x),q(x)} < 1 + 1

N in Ω.

Now, we prove some continuous and compact embedding results using ideas from the papers by
Cianchi–Diening [7], Colasuonno–Perera [9], Crespo-Blanco–Gasiński–Harjulehto–Winkert [10], Fan
[13], and Ho–Winkert [28].

Proposition 3.2. Let (H0) and (H1) be satisfied. Then, the following hold:

(i) W 1,S(Ω) ↪→ LS∗(Ω) is a continuous embedding.
(ii) Suppose L ∈ Φ(Ω) and L ≪ S∗, then there exists a compact embedding W 1,S(Ω) ↪→ LL(Ω).

Proof. The proof follows from Fan [13, Theorem 1.1 and 1.2] provided S satisfy the condition (P4)
and condition (2) in [13, Proposition 3.1], i.e.

lim
t→∞

S−1
∗ (x, t) = ∞ for all x ∈ Ω

and there exist positive constants c, t0 and δ < 1
N such that for each j = 1, 2, . . . , N∣∣∣∣∂S(x, t)∂xj

∣∣∣∣ ≤ c (S(x, t))1+δ for all x ∈ Ω and for all t ≥ t0

for which ∇a(x),∇b(x),∇p(x),∇q(x),∇s(x) exist and so
∣∣∣∂S(x,t)

∂xj

∣∣∣ does.
For (x, t) ∈ Ω× [1,∞), note that for any ε > 0 and x ∈ Ω,

lim
t→∞

a(x)tp(x) + b(x)tq(x) logs(x)(1 + t)

tβ(x)+ε
= 0 with β(x) = max{p(x), q(x)},

that is, for any η > 0, there exists a constant m1 > 0 (independent of x) such that

S(x, t) = a(x)tp(x) + b(x)tq(x) logs(x)(1 + t) ≤ ηtβ(x)+ε for all x ∈ Ω and for all t ≥ m1.

Replacing t by S−1(x, t) in the above inequality gives

S−1(x, t) ≥
(
t

η

) 1
β(x)+ε

for all x ∈ Ω and for all t ≥ S(x,m1).
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Hence, by choosing ε small enough such that β(x) + ε < N for all x ∈ Ω, we obtain

S−1
∗ (x, t) ≥ S−1

∗ (x,S(x,m1)) +
1

η
1

β(x)+ε

ˆ t

S(x,m1)

τ
1

β(x)+ε
−N+1

N dτ

≥ C(η, β±, N)
(
t

1
β(x)+ε

− 1
N − (S(x,m1))

1
β(x)+ε

− 1
N

)
→ ∞ as t→ ∞.

For ζ > 0 there exists t0 = t0(ζ) ≫ 1 large enough such that

1 ≤ log(log(1 + t)) ≤ log(t) ≤ log(1 + t) ≤ c0t
ζ

max{2,2∥s∥∞} ≤ c0t
ζ
2 for t ≥ t0. (3.3)

Differentiating the function S with respect to xj , we get∣∣∣∣∂S(x, t)∂xj

∣∣∣∣ ≤ a(x)tp(x)
∣∣∣∣ ∂p∂xj

∣∣∣∣ log(t) + ∣∣∣∣ ∂a∂xj
∣∣∣∣ tp(x) + ∣∣∣∣ ∂b∂xj

∣∣∣∣ tq(x) logs(x)(1 + t)

+ b(x)tq(x) log(t)

∣∣∣∣ ∂q∂xj
∣∣∣∣ logs(x)(1 + t)

+ b(x)tq(x)| log(log(1 + t))|
∣∣∣∣ ∂s∂xj

∣∣∣∣ logs(x)(1 + t).

(3.4)

Now by using (3.3) multiple times in (3.4) for t ≥ t0 > 1, we obtain∣∣∣∣∂S(x, t)∂xj

∣∣∣∣ ≤ C1

(
tp(x)+

ζ
2 + tp(x)

)
+ C2

{
tq(x)+

ζ
2 logs

+

(1 + t) if s(x) ≥ 0

tq(x)+
ζ
2 logs

−
(1 + t) if s(x) < 0

≤ C3

{
tmax{p(x),q(x)}+ζ if s(x) ≥ 0

tmax{p(x),q(x)}+ζ if s(x) < 0

≤ C4

(
a(x)tp(x) + b(x)tq(x) + b(x)tq(x)

)max{p(x),q(x)}+ζ
min{p(x),q(x)}

.

(3.5)

Now, by using the uniform continuity of the functions p(·), q(·) in Ω and (H1) (ii), we can find ζ = ζ(δ)
such that

max{p(x), q(x)}+ ζ

min{p(x), q(x)}
< 1 + δ < 1 +

1

N
in Ω. (3.6)

Using (3.6) in (3.5), we get∣∣∣∣∂S(x, t)∂xj

∣∣∣∣ ≤ C (S(x, t))1+δ for (x, t) ∈ Ω× (t0,∞).

This shows the assertions of the proposition. □

Remark 3.3. With a similar argumentation as in Arora–Crespo-Blanco-Winkert [2, Lemma 3.10 and
Theorem 3.12], it can be concluded that the function S satisfies (A0) and (A1), provided the conditions

b ∈ C0,γ(Ω) and

(
q

p

)
+

< 1 +
γ

N
(3.7)

hold true with a(x) ≡ 1, 1 < p(x) < q(x), and s(x) ≡ 1. Consequently, this embedding result is a
specific instance of Cianchi–Diening [7, Theorem 3.5], assuming the more stringent conditions stated
in (3.7) compared to those in (H0) and (H1).

Next, we provide estimates for the Sobolev conjugate function S∗ of S, which is crucial for studying
the concentration-compactness principle in the next section. Specifically, we intend to look for a func-
tion S∗ weaker than S∗ and of polynomial growth or polynomial growth perturbed with a logarithmic
function governed by the support of the modulating coefficients a(·) and b(·). In the following we
assume that (H0) and (H1) hold.

Proposition 3.4. Let S∗ be the Sobolev conjugate function of S given by (3.2). Then, the following
hold:
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(i) For (x, s) ∈ Ω× [0,S(x, ℓ)]

S−1(x, s) =
sℓ

S(x, ℓ)
and S−1

∗ (x, s) =
Nℓ

(N − 1)S(x, ℓ)
s

N−1
N .

(ii) For (x, t) ∈ Ω× [0,S−1
∗ (x,S(x, ℓ))]

S∗(x, t) =

(
S(x, ℓ)(N − 1)

Nℓ

) N
(N−1)

t
N

N−1

where S−1
∗ (x,S(x, ℓ)) = Nℓ

N−1 (S(x, ℓ))
−1
N .

Proof. From the definition of the Sobolev conjugate function S∗ of S defined in (3.1), we get

S−1(x, s) =
sℓ

S(x, ℓ)
and S−1

∗ (x, s) =
Nℓ

(N − 1)S(x, ℓ)
s

N−1
N for (x, s) ∈ Ω× [0,S(x, ℓ)].

By taking the inverse of the function S−1
∗ , we get

S∗(x, t) =

(
S(x, ℓ)(N − 1)

Nℓ

) N
(N−1)

t
N

N−1 for (x, t) ∈ Ω× [0,S−1
∗ (x,S(x, ℓ))].

□

Now, we prove a series of results offering the lower estimates of the Sobolev conjugate function S∗
in the components {Ai}i=1,2 ⊂ Ω where Ai, i = 1, 2 is defined as

A1 := {x ∈ Ω: a(x) ̸= 0} and A2 := {x ∈ Ω: b(x) ̸= 0}.

Proposition 3.5. Let S∗ be the Sobolev conjugate function given by (3.2). Then, for (x, t) ∈ A1 ×[
S−1
∗ (x,S(x, ℓ)),∞

)
, we have

S∗(x, t) ≥

[
a(x)

1
p(x)

p∗(x)

(
t+ (S(x, ℓ))

−1
N

(
p∗(x)

(
S(x, ℓ)
a(x)

) 1
p(x)

− Nℓ

N − 1

))]p∗(x)
≥

[
a(x)

1
p(x)

p∗(x)
t

]p∗(x)
,

where equality holds in the region A0
1 ⊂ A1 with A0

1 := {x ∈ Ω: b(x) = 0}.

Proof. From (3.1), we know that for (x, t) ∈ Ω× [ℓ,∞), the function S is given by

S(x, t) = a(x)tp(x) + b(x)tq(x) logs(x)(1 + t).

By taking t = S−1(x, y) for y ≥ S(x, ℓ) and x ∈ Ω, we get

y = a(x)
(
S−1(x, y)

)p(x)
+ b(x)

(
S−1(x, y)

)q(x)
logs(x)(1 +

(
S−1(x, y)

)
(3.8)

and

S−1(x, y) ≥ ℓ for all (x, y) ∈ Ω× [S(x, ℓ),∞).

The non-negativity of the modulating coefficient b(·) implies

S−1(x, y) ≤
(

y

a(x)

) 1
p(x)

for (x, y) ∈ A1 × [S(x, ℓ),∞), (3.9)

where equality holds in A0
1 × [S(x, ℓ),∞). Now, by using (3.9) and Proposition 3.4 in the definition of

the inverse of the Sobolev conjugate function S∗ for (x, z) ∈ A1 × [S(x, ℓ),∞), we obtain

S−1
∗ (x, z) = S−1

∗ (x,S(x, ℓ)) +
ˆ z

S(x,ℓ)

S−1(x, y)

y
N+1
N

dy

≤ S−1
∗ (x,S(x, ℓ)) +

ˆ z

S(x,ℓ)

(
y

a(x)

) 1
p(x) 1

y1+
1
N

dy



18 R. ARORA, Á. CRESPO-BLANCO, AND P. WINKERT

=
p∗(x)

(a(x))
1

p(x)

z
1

p∗(x) +
1

(S(x, ℓ)) 1
N

[
Nℓ

N − 1
− p∗(x)

(
S(x, ℓ)
a(x)

) 1
p(x)

]
.

Replacing z = S∗(x, τ) for x ∈ A1 and τ ≥ S−1
∗ (x,S(x, ℓ)), we get

τ ≤ p∗(x)

(a(x))
1

p(x)

(S∗(x, τ))
1

p∗(x) +
1

(S(x, ℓ)) 1
N

[
Nℓ

N − 1
− p∗(x)

(
S(x, ℓ)
a(x)

) 1
p(x)

]
.

This further gives

S∗(x, τ) ≥

[
a(x)

1
p(x)

p∗(x)

(
τ + (S(x, ℓ))

−1
N

(
p∗(x)

(
S(x, ℓ)
a(x)

) 1
p(x)

− Nℓ

N − 1

))]p∗(x)

≥

[
a(x)

1
p(x)

p∗(x)
τ

]p∗(x)
,

where the last inequality follows from the fact that S(x, ℓ) ≥ a(x)ℓp(x) and p∗(x) ≥ N
N−1 for x ∈ A1. □

The non-negativity of the modulating coefficient a(·) in (3.8) and S−1(x, y) ≥ ℓ ≥ 1 for (x, y) ∈
A2 × [S(x, ℓ),∞) gives

S−1(x, y) ≤

(
y

b(x) logs(x)(1 + S−1(x, y))

) 1
q(x)

. (3.10)

Now, depending upon the sign of s(·), we further partition the set A2 into two disjoint components
and estimate the Sobolev conjugate function over the following disjoint components

A
(1)
2 := A2 ∩ {s(x) > 0} and A

(2)
2 := A2 ∩ {s(x) ≤ 0}

Proposition 3.6. Let S∗ be the Sobolev conjugate function given by (3.2). Then, there exist l0 ≫ 1

and C > 0 such that for ℓ ≥ ℓ0 and for x ∈ A
(1)
2 the following estimates hold true:

(i) S−1(x, y) ≤
(

y
b(x)

) 1
q(x)

log
−s(x)
q(x)

(
1 +

(
y

h(x)

) 1
h1(x)

)
for any y ∈ [S(x, ℓ),∞) where

h(x) := a(x) + b(x) and h1(x) := max{p(x), q(x) + ε}, ε > 0.

(ii) S−1
∗ (x, z) ≤ q∗(x)

ζ(b(x))
1

q(x)

z
1

q∗(x)

log
s(x)
q(x)

(
1+( z

h(x) )
1

h1(x)

) + (S(x, ℓ))−1
N ℓ
(

N
N−1 − q∗(x)

ζ

)
for any ζ ∈ (0, 1)

and z ∈ [S(x, ℓ),∞).

(iii) S∗(x, t) ≥ C

(
(b(x))

1
q(x)

q∗(x) log
s(x)
q(x) (1 + t)

)q∗(x)
tq

∗(x) for any t ∈
[
S−1
∗ (x,S(x, ℓ)),∞

)
.

Proof. For any δ > 0, we know that log(1 + t) ≤ tδ for t ≥ t0(δ). Then, by taking δ = ε
⌈s⌉+ for some

ε > 0 and ℓ large enough such that ℓ ≥ ℓ0(ε, |s|+) ≥ 1 gives that

logs(x)(1 + S−1(x, y)) ≤ (S−1(x, y))
ε

s(x)

⌈s⌉+ ≤ (S−1(x, y))ε,

which further implies

y ≤ a(x)
(
S−1(x, y)

)p(x)
+ b(x)

(
S−1(x, y)

)q(x)+ε ≤ h(x)
(
S−1(x, y)

)h1(x)
. (3.11)

Now, by using the fact that h(x) > d for all x ∈ Ω in (3.11), we get(
y

h(x)

) 1
h1(x)

≤ S−1(x, y) and logs(x)

(
1 +

(
y

h(x)

) 1
h1(x)

)
≤ logs(x)(1 + S−1(x, y)). (3.12)
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Combining (3.10) and (3.12) for (x, y) ∈ A
(1)
2 × [S(x, ℓ),∞) it follows that

S−1(x, y) ≤
(

y

b(x)

) 1
q(x)

log
−s(x)
q(x)

(
1 +

(
y

h(x)

) 1
h1(x)

)
. (3.13)

Using (3.13) and Proposition 3.4 in the definition of the inverse of the Sobolev conjugate function S∗

for (x, z) ∈ A
(1)
2 × [S(x, ℓ),∞), we have

S−1
∗ (x, z) ≤ S−1

∗ (x,S(x, ℓ)) + 1

(b(x))
1

q(x)

ˆ z

S(x,ℓ)

y
1

q∗(x)
−1 log

−s(x)
q(x)

(
1 +

(
y

h(x)

) 1
h1(x)

)
dy

:= S−1
∗ (x,S(x, ℓ)) + 1

(b(x))
1

q(x)

g(x, z).

(3.14)

By applying integration by parts formula for (x, z) ∈ A
(1)
2 × [S(x, ℓ),∞), we estimate

g(x, z) ≤ q∗(x)

 z
1

q∗(x)

log
s(x)
q(x)

(
1 +

(
z

h(x)

) 1
h1(x)

) − (S(x, ℓ))
1

q∗(x)

log
s(x)
q(x)

(
1 +

(
S(x,ℓ)
h(x)

) 1
h1(x)

)


+
s(x)q∗(x)

q(x)h1(x)

ˆ z

S(x,ℓ)

y
1

q∗(x)
−1

(
y

h(x)

) 1
h1(x)

1 +
(

y
h(x)

) 1
h1(x)

log−(
s(x)
q(x)

+1)

(
1 +

(
y

h(x)

) 1
h1(x)

)
dy

≤ q∗(x)

 z
1

q∗(x)

log
s(x)
q(x)

(
1 +

(
z

h(x)

) 1
h1(x)

) − (S(x, ℓ))
1

q∗(x)

log
s(x)
q(x)

(
1 +

(
S(x,ℓ)
h(x)

) 1
h1(x)

)


+
s(x)q∗(x)

q(x)h1(x) log

(
1 +

(
S(x,ℓ)
h(x)

) 1
h1(x)

)g(x, z).

Taking ℓ≫ 1 such that ℓ ≥

(
e

s+(q∗)+

r−h
−
1 (1−ζ) − 1

)h+
1

(where the precise value of ζ ∈ (0, 1) is chosen later),

we get

s(x)q∗(x)

q(x)h1(x)
≤ s+(q∗)+

q−h−1
≤ (1− ζ) log

(
1 + (ℓ)

1

h
+
1

)
≤ (1− ζ) log

(
1 +

(
S(x, ℓ)
h(x)

) 1
h1(x)

)
and

g(x, z) ≤ q∗(x)

ζ

 z
1

q∗(x)

log
s(x)
q(x)

(
1 +

(
z

h(x)

) 1
h1(x)

) − (S(x, ℓ))
1

q∗(x)

log
s(x)
q(x)

(
1 +

(
S(x,ℓ)
h(x)

) 1
h1(x)

)
 . (3.15)

Using (3.15) in (3.14) and the fact that b(x) ̸= 0 for x ∈ A
(1)
2 implies

S−1
∗ (x, z) ≤ q∗(x)

ζ(b(x))
1

q(x)

z
1

q∗(x)

log
s(x)
q(x)

(
1 +

(
z

h(x)

) 1
h1(x)

)

+ (S(x, ℓ))
−1
N

 Nℓ

N − 1
− q∗(x)

ζ(b(x))
1

q(x)

(S(x, ℓ))
1

q(x)

log
s(x)
q(x)

(
1 +

(
S(x,ℓ)
h(x)

) 1
h1(x)

)

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≤ q∗(x)

ζ(b(x))
1

q(x)

z
1

q∗(x)

log
s(x)
q(x)

(
1 +

(
z

h(x)

) 1
h1(x)

) + (S(x, ℓ))
−1
N ℓ

(
N

N − 1
− q∗(x)

ζ

)
,

where in the last inequality we have used b(x)ℓq(x) lns(x)(1 + ℓ) ≤ S(x, ℓ) ≤ h(x)ℓh1(x). Now, by

choosing ℓ≫ 1 large enough and 0 < ζ < 1 small enough such that ζ < q−(N−1)
N−q− , we rewrite the above

estimate. Now by replacing z = S∗(x, τ) for x ∈ A
(1)
2 and τ ≥ S−1

∗ (x,S(x, ℓ)), we get

S∗(x, τ)

≥

[
ζ(b(x))

1
q(x)

q∗(x)
log

s(x)
q(x)

(
1 +

(
S∗(x, τ)

h(x)

) 1
h1(x)

)[
τ + (S(x, ℓ))

−1
N ℓ

(
q∗(x)

ζ
− N

N − 1

)]]q∗(x)

≥

[
ζ(b(x))

1
q(x)

q∗(x)
τ

]q∗(x)
log

s(x)q∗(x)
q(x)

(
1 +

(
S∗(x, τ)

h(x)

) 1
h1(x)

)
.

(3.16)

To estimate S∗(x, τ) in the logarithmic term in the right-hand side of the above estimate, we use the
fact that S−1(x, y) ≥ ℓ≫ 1 in (3.10) and obtain

y ≥ (a(x) + b(x))
(
S−1(x, y)

)min{p(x),q(x)}
= h(x)

(
S−1(x, y)

)α(x)
.

This yields

S−1(x, y) ≤
(

y

h(x)

) 1
α(x)

for (x, y) ∈ A2 ∩ {s(x) ≥ 0} × [S(x, ℓ),∞). (3.17)

Now, by repeating the arguments for estimating the upper bound of inverse of the Sobolev conjugate
function S−1

∗ (x, y) in the light of (3.17), we obtain

S−1
∗ (x, z) ≤ S−1

∗ (x,S(x, ℓ)) + 1

(h(x))
1

α(x)

ˆ z

S(x,ℓ)

y
1

α∗(x)
−1 dy

=
Nℓ

N − 1
(S(x, ℓ))

−1
N +

α∗(x)

(h(x))
1

α(x)

(
z

1
α∗(x) − (S(x, ℓ))

1
α∗(x)

)
.

Replacing z = S∗(x, τ) for x ∈ A2 ∩{s(x) ≥ 0} and τ ≥ S−1
∗ (x,S(x, ℓ)), and using S(x, ℓ) ≥ h(x)ℓα(x),

we have

S∗(x, τ) ≥

[
(h(x))

1
α(x)

α∗(x)

(
τ + (S(x, ℓ))

−1
N

(
α∗(x)

(
S(x, ℓ)
h(x)

) 1
α(x)

− Nℓ

N − 1

))]α∗(x)

≥

(
(h(x))

1
α(x)

α∗(x)

)α∗(x)

τα
∗(x).

Merging the above lower estimate of S∗(x, τ) in (3.16) and using the assumption (H1) which implies
α∗(x)
h1(x)

> 1, we obtain

S∗(x, τ) ≥

[
ζ(b(x))

1
q(x)

q∗(x)

[
τ + (S(x, ℓ))

−1
N ℓ

(
q∗(x)

ζ
− N

N − 1

)]]q∗(x)

× log
s(x)q∗(x)

q(x)

1 +

(
(h(x))

1
α(x)

− 1
α∗(x)

α∗(x)

)α∗(x)
h1(x)

τ
α∗(x)
h1(x)


≥ C

[
(b(x))

1
q(x) log

s(x)
q(x) (1 + τ)

[
τ + (S(x, ℓ))

−1
N ℓ

(
q∗(x)

ζ
− N

N − 1

)]]q∗(x)
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≥ C
[
(b(x))

1
q(x) log

s(x)
q(x) (1 + τ)

]q∗(x)
τ q

∗(x),

where the constant C depends upon ζ, (q∗)±, (α
∗)±, h1±, h±. □

Proposition 3.7. Let S∗ be the Sobolev conjugate function given by (3.2). Then, there exist l0 ≫ 1

and C > 0 such that for ℓ ≥ ℓ0 and for x ∈ A
(2)
2 the following estimates hold true:

(i) S−1(x, y) ≤
(

y
b(x)

) 1
q(x)

log
−s(x)
q(x)

(
1 +

(
y

h(x)

) 1
h2(x)

)
for any y ∈ [S(x, ℓ),∞) where

h(x) := a(x) + b(x) and h2(x) := min{p(x), q(x)− ε}, ε > 0.

(ii) S−1
∗ (x, z) ≤ (S(x, ℓ))−1

N ℓ
[

N
N−1 − q∗(x)

]
+ q∗(x)

(b(x))
1

q(x)
z

1
q∗(x) log

−s(x)
q(x)

(
1 +

(
z

h(x)

) 1
h2(x)

)
for any

z ∈ [S(x, ℓ),∞).

(iii) S∗(x, t) ≥ C

(
(b(x))

1
q(x)

q∗(x) log
s(x)
q(x) (1 + t)

)q∗(x)
tq

∗(x) for any t ∈
[
S−1
∗ (x,S(x, ℓ)),∞

)
.

Proof. Using log(1 + t) ≤ t
ε

⌈−s⌉+ for t ≥ t0(ε, ⌈−s⌉+) and ε > 0 in (3.8), we get

S(x, ℓ) ≥ a(x)tp(x) + b(x)ℓq(x)−ε ≥ h(x)th2(x) for ℓ ≥ ℓ0 ≫ 1, (3.18)

which further implies, by replacing y = S(x, ℓ) in the above inequalities,

S−1(x, y) ≤
(

y

h(x)

) 1
h2(x)

for (x, y) ∈ A
(2)
2 × [S(x, ℓ),∞). (3.19)

where

h2(x) := min{p(x), q(x)− ε}.
From (3.10) and (3.19), we get

S−1(x, y) ≤
(

y

b(x)

) 1
q(x)

log
−s(x)
q(x)

(
1 +

(
y

h(x)

) 1
h2(x)

)
.

Now, by using the fact that x ∈ A
(2)
2 in the definition of the inverse of the Sobolev conjugate function,

we obtain

S−1
∗ (x, z) ≤ Nℓ

N − 1
(S(x, ℓ))

−1
N +

1

(b(x))
1

q(x)

ˆ z

S(x,ℓ)

y
1

q∗(x)
−1 log

−s(x)
q(x)

(
1 +

(
y

h(x)

) 1
h2(x)

)
dy

≤ (S(x, ℓ))
−1
N

[
Nℓ

N − 1
− q∗(x)

(b(x))
1

q(x)

(S(x, ℓ))
1

q(x) log
−s(x)
q(x)

(
1 +

(
S(x, ℓ)
h(x)

) 1
h2(x)

)]

+
q∗(x)

(b(x))
1

q(x)

z
1

q∗(x) log
−s(x)
q(x)

(
1 +

(
z

h(x)

) 1
h2(x)

)

≤ (S(x, ℓ))
−1
N ℓ

[
N

N − 1
− q∗(x)

]
+

q∗(x)

(b(x))
1

q(x)

z
1

q∗(x) log
−s(x)
q(x)

(
1 +

(
z

h(x)

) 1
h2(x)

)
,

where in the last inequality we have used (3.18) and S(x, ℓ) ≥ b(x)ℓq(x) logs(x)(1+ℓ). Now, by replacing
z = S∗(x, τ) for x ∈ A2 ∩ {s(x) ≤ 0} and τ ≥ S−1

∗ (x,S(x, ℓ)), we get

S∗(x, τ) ≥

(
(b(x))

1
q(x)

q∗(x)
log

s(x)
q(x)

(
1 +

(
S∗(x, τ)

h(x)

) 1
h2(x)

))q∗(x)

×
[
τ + (S(x, ℓ))

−1
N ℓ

[
q∗(x)− N

N − 1

]]q∗(x)
.
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Next, by repeating the above arguments for the lower bound, we get

S(x, ℓ) ≤ h(x)ℓh3(x) for ℓ ≥ e− 1, where h3(x) = max{p(x), q(x)}.

By replacing y = S(x, ℓ), we have S−1(x, y) ≥
(

y
h(x)

) 1
h3(x)

and

S−1
∗ (x, z) ≥ Nℓ

N − 1
(S(x, ℓ))

−1
N +

1

(h(x))
1

h3(x)

ˆ z

S(x,ℓ)

y
1

h∗
3(x)

−1
dy

≥ (S(x, ℓ))
−1
N

[
Nℓ

N − 1
− h∗3(x)

(
S(x, ℓ)
(h(x))

) 1
h3(x)

]
+

h∗3(x)

(h(x))
1

h3(x)

z
1

h∗
3(x)

≥ h∗3(x)

(h(x))
1

h3(x)

z
1

h∗
3(x) .

(3.20)

Again, by replacing z = S∗(x, τ) for x ∈ A
(2)
2 and τ ≥ S−1

∗ (x,S(x, ℓ)) and using d ≤ a(x) + b(x), we
get

S∗(x, τ) ≤

[
(h(x))

1
h3(x)

h∗3(x)

]h∗
3(x)

τh
∗
3(x) ≤ Ch(x)τh

∗
3(x),

where C depends upon d, h±, h3±, (h
∗
3)±. The above estimate and the fact that

h∗
3(x)
h2(x)

> 1 implies

log

(
1 +

(
S∗(x, τ)

h(x)

) 1
h2(x)

)
≤ log

(
1 +

(
C3τ

h∗
3(x)
) 1

h2(x)

)
≤ C log(1 + τ). (3.21)

Finally, by using (3.21) in (3.20) shows that

S∗(x, τ) ≥ C

(
(b(x))

1
q(x)

q∗(x)
log

s(x)
q(x) (1 + τ)

)q∗(x) [
τ + (S(x, ℓ))

−1
N ℓ

[
q∗(x)− N

N − 1

]]q∗(x)

≥ C

(
(b(x))

1
q(x)

q∗(x)
log

s(x)
q(x) (1 + τ)

)q∗(x)
τ q

∗(x).

□

For (x, t) ∈ Ω× [0,∞), we define

S∗(x, t) :=
(
(a(x))

1
p(x) t

)p∗(x)
+

((
b(x) logs(x)(1 + t)

) 1
q(x)

t

)q∗(x)
. (3.22)

Now we obtain the following embedding results.

Proposition 3.8. Let (H0) and (H1) be satisfied. Then, the Musielak-Orlicz Sobolev space W 1,S(Ω)
is continuously embedded into the Musielak-Orlicz Lebesgue space LS∗

(Ω). Moreover, the Musielak-
Orlicz Sobolev space W 1,S(Ω) is compactly embedded into the Musielak-Orlicz Lebesgue space LN∗

(Ω)
if N ∗ ≪ S∗.

Proof. Combining the lower estimates of the Sobolev conjugate function S∗ in Propositions 3.4-3.7,
the continuity of the function S∗ and Propositions 2.11 and 3.2 we obtain the required claim. □

Remark 3.9. Note that the embedding W 1,S(Ω) ↪→ LS∗
(Ω) is sharp is the sense that, for each fixed x,

it coincides with the sharp Sobolev conjugate in classical Orlicz spaces. The sharpness in the case when
x is fixed and s(x) ≡ 0 can be justified by using the arguments by Cianchi–Diening [7, Example 3.11]
and Ho–Winkert [28, Proposition 3.5] while the case s(x) ̸≡ 0 can be justified by using the arguments
by Cianchi [6, Example 1.2] and Cianchi–Diening [7, Example 3.11].



LOGARITHMIC DOUBLE PHASE PROBLEMS WITH GENERALIZED CRITICAL GROWTH 23

4. Concentration-compactness principle

In this section, we prove the concentration compactness principle for the Musielak-Orlicz Sobolev

space W 1,S
0 (Ω) having logarithmic double phase modular function structure. For this, we set

m−(x) := min
{
p(x), q(x) + s−(x)

}
, n+(x) := max

{
p(x), q(x) + s+(x)

}
,

mε(x) := min {p(x), q(x) + ε} , nε(x) := max {p(x), q(x) + ε} ,
m∗ε(x) := min {p∗(x), q∗(x) + ε} , n∗ε(x) := max {p∗(x), q∗(x) + ε} forε ∈ R,

m∗−(x) := min

{
p∗(x), q∗(x)

(
1 +

s−(x)

q(x)

)}
, n∗+(x) := max

{
p∗(x), q∗(x)

(
1 +

s+(x)

q(x)

)}
.

Straightforward computations give directly the following lemma.

Lemma 4.1. Let S and S∗ be the functions defined in (2.1) and (3.22). Then, the following hold:

(i) for x ∈ Ω and t, z ∈ (0,∞)

m−(x) ≤
tS′(x, t)

S(x, t)
≤ n+(x),

and

min{tm−(x), tn+(x)}S(x, z) ≤ S(x, tz) ≤ max{tm−(x), tn+(x)}S(x, z)
where S′ represents the partial derivative of S with respect to the second variable t.

(ii) for ε > 0, there exists t = t(ε, s±) > 1 such that

tS′(x, t)

S(x, t)
≤ nε(x) and S(x, tz) ≤ tnε(x)S(x, z)

for (x, t) ∈ Ω× (tε,∞) and z > 0.

The same estimates hold for the function S∗ by replacing m−, n+ and nε with m∗−, n
∗
+ and n∗ε, respec-

tively.

Proposition 4.2. Let g ∈ C(Ω) and N ∈ Φ(Ω) satisfies the ∆2-condition,

N (x, tw) ≤ wg(x)N (x, t) for w ≥ 1 and for all (x, t) ∈ Ω× (0,∞), (4.1)

and for a.a.x ∈ Ω, the map t → N (x, t) is non-decreasing. Then, for every ε > 0 there exists Cε > 0
such that

|N (x, |t+m|)−N (x, |t|)| ≤ CεN (x, |m|) + εN (x, |t|) (4.2)

for every t,m ≥ 0 and for a.a.x ∈ Ω.

Proof. Let t,m ≥ 0 and δ > 0. If m ≥ δt, then the monotonicity of the map t → N (x, t) and the
∆2-condition give

N (x, t+m) ≤ N (x,mδ−1 +m) ≤ N (x, 2km) ≤ CkN (x,m) (4.3)

where k = k(δ) > 0 and C is the constant obtained in the ∆2-condition. If m ≤ δt, then using (4.1),
we get

N (x, t+m) ≤ N (x, (1 + δ)t) ≤ (1 + δ)g(x)N (x, t). (4.4)

Combining (4.3) and (4.4) yields

N (x, t+m) ≤ (1 + δ)g(x)N (x, t) + CδN (x,m).

Replacing t by |t| and m by |m| and using the triangle inequality and the monotonicity of the map
s→ N (x, s), we obtain

N (x, |t+m|)−N (x, |t|) ≤ ((1 + δ)g(x) − 1)N (x, |t|) + CδN (x, |m|)
≤ εN (x, |t|) + CεN (x, |m|) for all t, s ∈ R and for a.a.x ∈ Ω.

(4.5)
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Replacing t by t−m and then m by −m in (4.5), it follows

N (x, |t|)−N (x, |t+m|)

≤ ((1 + δ)g(x) − 1)N (x, |t+m|) + CδN (x, |m|)

≤ ((1 + δ)g(x) − 1)(1 + δ)g(x)N (x, |t|) + Cδ(1 + δ)g(x)N (x, |m|)
(4.6)

for all t, s ∈ R and for all a.a.x ∈ Ω. Then, for given ε > 0, choosing δ small enough such that

((1 + δ)g
+ − 1)(1 + δ)g

+ ≤ ε in (4.5) and (4.6), we obtain

|N (x, |t+m|)−N (x, |t|)| ≤ CεN (x, |m|) + εN (x, |t|).
□

Lemma 4.3 (Brézis-Lieb Lemma). Let N ∈ Φ(Ω) satisfies (4.2). Then, for fn → f a.e. in Ω and
fn ⇀ f in LN (Ω), we have

lim
n→∞

(ˆ
Ω

N (x, |fn|)ϕdx−
ˆ
Ω

N (x, |f − fn|)ϕdx
)

=

ˆ
Ω

N (x, |f |)ϕdx for every ϕ ∈ L∞(Ω).

Proof. Define a sequence of functions Bε,n : Ω → R+ as

Bε,n(x) =

[
(1− ε)N (x, |fn(x)|)−N (x, |f(x)− fn(x)|)−N (x, |f(x)|)

]+
.

From (4.2), we note that

|N (x, |fn(x)|)−N (x, |f(x)− fn(x)|)−N (x, |f(x)|)| − εN (x, |fn(x)|)
≤ |N (x, |fn(x)|)−N (x, |f(x)− fn(x)|)|+N (x, |f(x)|)− εN (x, |fn(x)|)
≤ (Cε + 1)N (x, |f(x)|).

It follows that

0 ≤ Bε,n(x) ≤ (Cε + 1)N (x, |f(x)|).
Now, by using Bε,n(x) → 0 a.e. in Ω and Lebesgue’s dominated convergence theorem, we get

lim
n→∞

ˆ
Ω

Bε,n(x)ϕ(x) dx = 0 for any ϕ ∈ L∞(Ω). (4.7)

On the other hand, fn ⇀ f in LN (Ω) implies∣∣∣∣ˆ
Ω

N (x, |fn(x)|)ϕ(x) dx−
ˆ
Ω

N (x, |f(x)− fn(x)|)ϕ(x) dx−
ˆ
Ω

N (x, |f(x)|)ϕ(x) dx
∣∣∣∣

≤
ˆ
Ω

Bε,n(x)|ϕ(x)|dx+ ε

ˆ
Ω

N (x, |fn(x)|)|ϕ(x)|dx.

≤
ˆ
Ω

Bε,n(x)|ϕ(x)|dx+ ε∥ϕ∥∞,ΩC

(4.8)

for some constant C > 0. Hence, the claim follows by combining (4.7) and (4.8). □

Proposition 4.4. The following inequalities hold true:

(i) log(1 + tz) ≥ log(1 + t) log(1 + z) for z ∈ [0, 1] and t ≥ 0.
(ii) log(1 + t) log(1 + z) ≥ log(2) log(1 + tz) for z ≥ 1 and t ≥ 1.

Proof. For a fixed z ∈ [0, 1], define hz : R+ → R given by

hz(t) = log(1 + tz)− log(1 + t) log(1 + z).

Note that h(0) = 0 and

h′z(t) =
z

1 + tz
− log(1 + z)

1 + t
≥ 0 for all t ≥ 0 and z ∈ [0, 1].
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Hence, the claim in (i) follows. Observe that the function k : [1,∞) → R given by

k(z) = z (log(1 + z)− log(2)) + log(1 + z)− z log(2) is non-negative for all z ∈ [1,∞). (4.9)

Now, to prove (ii), we fix z ≥ 1 and define gz : [1,∞) → R given by

gz(t) = log(1 + t) log(1 + z)− log(2) log(1 + tz).

Clearly gz(1) = 0 and

g′z(t) =
(log(1 + z)− z log(2)) + (log(1 + z)− log(2))tz

(1 + t)(1 + tz)

≥ (log(1 + z)− z log(2)) + (log(1 + z)− log(2))z

(1 + t)(1 + tz)
≥ 0 for z, t ≥ 1,

where in the last inequality, we have used (4.9). This further implies gz ≥ 0 in [1,∞) and for all z ≥ 1,
and hence the claim in (ii) is shown. □

For ε ∈ (0, 1), we define sub-multiplicative functions as follows:

M∗ε(x, z) := min{zp
∗(x), zq

∗(x)Mε,log(x, z)} and Mε(x, z) :=

{
zm−(x) if z < 1,

znε(x) if z ≥ 1,
(4.10)

where

Mε,log(x, z) :=



(log(1 + z))
s(x)q∗(x)

q(x) if s(x) ≥ 0 and z ≤ 1,

(log(2))
s(x)q∗(x)

q(x) zε if s(x) ≥ 0 and z ≥ 1,

1 if s(x) < 0 and z ≤ 1,(
C(ε)
log(2)

) s(x)q∗(x)
q(x)

z−ε if s(x) < 0 and z ≥ 1.

Proposition 4.5. Let S∗ and M∗ε be the functions defined in (3.22) and (4.10). Then, for every
(x, t) ∈ Ω× [1,∞) and z ≥ 0, we have

S∗(x, tz) ≥ S∗(x, t)M∗ε(x, z).

Proof. By Proposition 4.4 (i) for (x, t) ∈ {x ∈ Ω: s(x) ≥ 0} × [0,∞) we deduce that

log
s(x)q∗(x)

q(x) (1 + tz) ≥

(log(2) log(1 + t))
s(x)q∗(x)

q(x) , if z ≥ 1.

log
s(x)q∗(x)

q(x) (1 + z) log
s(x)q∗(x)

q(x) (1 + t), if z < 1,
(4.11)

and by Proposition 4.4 (ii) for (x, t) ∈ {x ∈ Ω: s(x) < 0} × [1,∞)

log
s(x)q∗(x)

q(x) (1 + tz) ≥


(

log(1+z)
log(2)

) s(x)q∗(x)
q(x)

log
s(x)q∗(x)

q(x) (1 + t), if z ≥ 1.

log
s(x)q∗(x)

q(x) (1 + t), if z < 1.

(4.12)

Note that for δ > 0 the inequality

log(1 + z) ≤ C(δ)zδ for z ≥ 1

holds. Now, by using (4.11) and (4.12) in the definition of S∗ and choosing δ = ε r+

(|s|)+(r∗)+ in the

above inequality, we obtain

S∗(x, tz) =
(
(a(x))

1
p(x) t

)p∗(x)
zp

∗(x) +
(
(b(x))

1
q(x) tz

)q∗(x)
log

s(x)q∗(x)
q(x) (1 + tz) ≥ S∗(x, t)M∗ε(x, z).

□

Now, we can state the main result of this section.
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Theorem 4.6. Let hypothesis (H0) and (H1) be satisfied and {vk}k∈N be a weakly convergent sequence
in W 1,S(Ω) with weak limit v such that

S∗(x, |vk|)⇀ Θ and S(x, |∇vk|)⇀ θ weakly- ∗ in the sense of measures,

where Θ and θ are signed Radon measures with finite mass. Then there exists a countable index set I,
positive numbers {Θi}i∈I and {θi}i∈I , and C∗ > 0 such that

Θ = S∗(x, |v|) +
∑
i∈I

Θiδxi , θ ≥ S(x, |∇v|) +
∑
i∈I

θiδxi

and

min{Θ
1

n∗ε(xj)

j ,Θ
1

m∗0(xj)

j } ≤ C∗ max{θ
1

m−(xj)

j , θ
1

nε(xj)

j }.

To prove the above result, first we set uk := vk − v such that uk ⇀ 0 in W 1,S
0 (Ω) and

νk := S∗(x, |uk|)⇀ ν and S(x, |∇uk|)⇀ µ weakly- ∗ in the sense of measures

and prove some crucial Lemmas involving the measures µ and ν.

Lemma 4.7. Let {νk}k∈N be a non-negative and finite radon measure in Ω such that νk ⇀ νweakly- ∗
in the sense of measures. Then,

∥ϕ∥M∗ε ,νk → ∥ϕ∥M∗ε ,ν as k → ∞

for any ϕ ∈ C(Ω).

Proof. The proof follows by repeating the same arguments as in Fernández Bonder–Silva [17, Lemma
3.1]. □

Next, we prove the following reverse Hölder type inequality between the measures µ and ν.

Lemma 4.8. Let M∗ε and Mε be the functions defined in (4.10). Then, for every ϕ ∈ C∞(Ω) the
following inequality holds:

∥ϕ∥M∗ε ,ν ≤ C∥ϕ∥Mε,µ. (4.13)

Proof. Let ϕ ∈ C∞(Ω). It is easy to see that ϕu ∈W 1,S
0 (Ω) for every u ∈W 1,S

0 (Ω). Using the Sobolev
embedding in Proposition 3.8, we obtain

∥ϕuk∥S∗ ≤ C∥∇(ϕuk)∥S . (4.14)

Set δk = ∥ϕ∥M∗ε ,νk for k ∈ N and δ := ∥ϕ∥M∗ε ,ν . Then, by Lemma 4.7, it holds

lim
k→∞

δk = δ.

If δ = 0, (4.13) holds. Without any loss of generality, we can assume that δk ̸= 0 for k ∈ N. Using
Proposition 4.5, we haveˆ

Ω

S∗
(
x,

|ϕuk|
δk

)
dx ≥

ˆ
|uk|>1

M∗ε

(
x,

|ϕ|
δk

)
S∗(x, |uk|) dx

=

ˆ
Ω

M∗ε

(
x,

|ϕ|
δk

)
dνk −

ˆ
|uk|≤1

M∗ε

(
x,

|ϕ|
δk

)
S∗(x, |uk|) dx

= 1−
ˆ
|uk|≤1

M∗ε

(
x,

|ϕ|
δk

)
S∗(x, |uk|) dx.

(4.15)

It is easy thatˆ
|uk|≤1

M∗ε

(
x,

|ϕ|
δk

)
S∗(x, |uk|) dx ≤

ˆ
Ω

M∗ε

(
x,

|ϕ|
δk

)
S∗(x, |uk|) dx =

∥∥∥∥ ϕδk
∥∥∥∥
M∗ε ,νk

= 1. (4.16)

Applying Vitali’s convergence theorem in light of (4.16) and uk → 0 a.e. in Ω, we deduce that

lim
k→∞

ˆ
|uk|≤1

M∗ε

(
x,

|ϕ|
δk

)
S∗(x, |uk|) dx = 0. (4.17)
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Now, by using (4.17) in (4.15) and Lemma 4.1, there exists k0 (independent of the choice of φ) such
that for k ≥ k0 ˆ

Ω

S∗
(
x,

|ϕuk|
δk

)
dx ≥ 1

2
. (4.18)

Applying Proposition 2.18 (ii), Lemma 4.1 and passing k → ∞ in (4.18) gives

lim inf
k→∞

∥ϕuk∥S∗ ≥ C lim inf
k→∞

∥ϕ∥M∗ε ,νk = C∥ϕ∥M∗ε ,ν (4.19)

for some C > 0 independent of k. Next, we set λk = ∥ϕ∇uk∥S and

M := 1 + sup
k∈N

ˆ
Ω

S (x, |∇uk|) dx.

Because of Proposition 3.8 and the fact that uk ⇀ 0 in W 1,S
0 (Ω), we have uk → 0 in LS(Ω). From

Lemma 4.1 (ii), we know that for ε > 0 and z > 0, there existsKε > 0 such that S(x, tz) ≤ tnε(x)S(x, z)
for (x, t) ∈ Ω × (Kε,∞). Therefore, applying Lemma 4.1 (i), (ii) and Young’s inequality, it follows
that

1 =

ˆ
Ω

S
(
x,

|∇uk||ϕ|
λk

)
dx

=

ˆ
Ω∩{|ϕ|≤λk}

S
(
x,

|∇uk||ϕ|
λk

)
dx

+

ˆ
Ω∩{λk<|ϕ|≤λkKε}

S
(
x,

|∇uk||ϕ|
λk

)
dx+

ˆ
Ω∩{|ϕ|>λkKε}

S
(
x,

|∇uk||ϕ|
λk

)
dx

≤
ˆ
Ω∩{|ϕ|≤λk, |ϕ|>λkKε}

S (x, |∇uk|) Mε
(
x,

|ϕ|
λk

)
dx

+

ˆ
Ω∩{λk<|ϕ|≤λkKε}

(
|ϕ|
λk

)n+(x)

S (x, |∇uk|) dx

≤ 1

2M

ˆ
Ω

S (x, |∇uk|) dx+ C(ε,M)

ˆ
Ω

Mε

(
x,

|ϕ|
λk

)
dνk

≤ 1

2
+ C(ε,M)

ˆ
Ω

Mε

(
x,

|ϕ|
λk

)
dνk.

Again, applying Proposition 2.18 (ii) and passing to the lim supk→∞ in the above estimate, we obtain

lim sup
k→∞

∥ϕ∇uk∥S ≤ C∥ϕ∥Mε,ν . (4.20)

Note that,

∥∇(ϕuk)∥S ≤ ∥uk∇ϕ∥S + ∥ϕ∇uk∥S .

Since uk → 0 in LS(Ω), we have |uk∇ϕ| → 0 in LS(Ω). Now, by passing to the lim sup
k→∞

in the above

inequality and using (4.20), we get

lim sup
k→∞

∥∇(ϕuk)∥S ≤ C∥ϕ∥Mε,ν . (4.21)

Finally, combining (4.14),(4.19) and (4.21), we complete the proof. □

Remark 4.9. The continuity of p and q and the oscillation condition (H1)(ii) imply that Mε ≪ M∗ε for
ε small enough. In order to see this, observe that the following inequality

M∗ε(x, z) ≥ Czm
∗
−ε(x) for (x, z) ∈ Ω× (1,∞) (4.22)
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holds for some C > 1. In light of the above inequality, to prove our claim it is enough to show that
nε(x) < m∗−ε(x) for all x ∈ Ω and for some ε > 0. Then, by using the continuity of p and q in Ω, we
can find ε > 0 such that

nε(x)

m−ε(x)
=

max{p(x), q(x) + ε}
min{p(x), q(x)− ε}

< 1 +
1

N
in Ω.

This gives

nε(x) < m−ε(x) +
m−ε(x)

N
<

Nm−ε(x)

N − m−ε(x)
= m∗−ε(x) in Ω. (4.23)

Lemma 4.10. Let ν be a non-negative, bounded Borel measure and

∥ϕ∥M∗ε ,ν ≤ C∥ϕ∥Mε,ν (4.24)

for every ϕ ∈ C∞
c (Ω) and for some constant C > 0. Then, the following hold:

(i) There exists δ > 0 such that for all Borel sets U ⊂ Ω, either ν(U) = 0 or ν(U) ≥ δ.
(ii) There exists a countable index set I, scalars {νi}i∈I and points {xi}i∈I such that

ν =
∑
i∈I

νiδxi
.

Proof. It is easy to see that the inequality (4.24) holds for characteristic functions on Borel sets. Since
Ω is bounded, p, q ∈ C(Ω) and (4.23) holds true, there exists a finite cover {Ωi}i∈I of Ω such that

mi := min
Ωi

m∗−ε(x) > ni := max
Ωi

nε(x) for all i ∈ I. (4.25)

For any U ⊂ Ω being a Borel set, denote Vi := Ωi ∩ U for i ∈ I. If ν(U) ≥ 1, we are done. Suppose

ν(U) < 1. By taking ϕ(x) = χVi
(x)ν(Vi)

−1
mi for i ∈ I in (4.24) and using (4.22), we deduce that

ˆ
Ω

M∗ε(x, ϕ) dν ≥ C

ˆ
Ω

(
χVi

(x)ν(Vi)
−1
mi

)m∗−ε(x)

dν ≥ C

ˆ
Ω

(
χVi

(x)ν(Vi)
−1

m∗−ε
(x)

)m∗−ε(x)

dν = C > 1.

It follows that ∥χVi
∥M∗ε ,ν ≥ Cν(Vi)

1
mi . Analogously, we get ∥χVi

∥Mε,ν ≤ ν(Vi)
1
ni for i ∈ I. Combining

the above estimates with (4.24), we arrive at

ν(Vi)
1

mi ≤ C1ν(Vi)
1
ni .

From (4.25), we know that mi > ni for every i ∈ I, then either ν(Vi) = 0 or

ν(Vi) ≥ max

{
1, C

−mini
mi−ni
1

}
.

Therefore, either ν(U) = 0 or

ν(U) =
∑
i∈I

ν(Vi) ≥
∑
i∈I

max{1, C
−mini
mi−ni
1 } := δ.

Note that the constant δ is independent from the choice U . □

Lemma 4.11. Let M∗ε and Mε be the functions defined in (4.10). Then, there exist an at most countable
index set I, families {xi}i∈I of distinct points in Ω and scalars νi ∈ (0,∞), such that

ν =
∑
i∈I

νiδxi
.

Proof. The reverse Hölder inequality in (4.13) implies that the measure ν is absolutely continuous with
respect to the measure µ, i.e. ν ≪ µ. Thus, by applying the Radon-Nikodym theorem, there exists a
non-negative function f such that f ∈ L1

µ(Ω) and

ν = µ⌊f i.e. ν(E) =

ˆ
E

f dµ for any Borel set E. (4.26)
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Let U be a Borel set. By repeating the same arguments as in the proof of Lemma 4.10 with the
covering {Ωi}i∈I such that ν(Ωi) + µ(Ωi) < 1 and taking ϕ(x) = χVi

(x), Vi = Ωi ∩ U for i ∈ I in
(4.13), we obtain

ν(Vi)
1

mi ≤ Cµ(Vi)
1
ni , (4.27)

where mi, ni are defined in (4.25). Using (4.27) and the fact that ni < mi, we have 
U

f dµ =
ν(U)

µ(U)
≤

∑
i∈I

µ(Vi) ̸=0

ν(Vi)

µ(Vi)
=

∑
i∈I

µ(Vi )̸=0

µ(Vi)
mi
ni

−1 ≤ C(µ(Ω), p±, q±, N).

Therefore, by Lebesgue’s differentiation theorem, f ∈ L∞
µ (Ω). On the other hand, we can decompose

the measure µ as

µ = µ0 + µ1 such that µ0(E) = µ(E ∩X0) and µ1(E) = µ(E ∩Xf ),

where

X0 := {x ∈ Ω: f(x) = 0} and Xf := {x ∈ Ω: f(x) ̸= 0}.
Observe that the measures µ0 and µ1 are singular and absolutely continuous with respect to ν, respec-
tively. Indeed, the sets X0 and Xf are mutually disjoint and µ0(Xf ) = 0 = µ1(X0). Let E be a Borel
set such that ν(E) = 0. Then, from (4.26) and using the fact that f > 0 in Xf , we get

0 = ν(E) =

ˆ
E

f dµ =

ˆ
E∩Xf

f dµ =⇒ µ1(E) = µ(E ∩Xf ) = 0.

Now, by applying the Radon-Nikodym theorem to the measures µ1 and ν, there exists a non-negative
function g such that g ∈ L1

ν(Ω) and µ1 = ν⌊g , and using the fact that ν(X0) = 0, we get

µ1(E) =

ˆ
E

g dν =

ˆ
E∩Xf

g dν =

ˆ
E

g̃ dν, with g̃(x) := g(x)χXf
(x)

for any Borel set E. Finally, we have µ0(Xg̃) = 0 and µ = ν⌊g̃ + µ0. Using the fact m∗−ε(x) > nε(x)
proved in Remark 4.9, we define

Φ(x, t) :=

t
1

n∗ε(x)−m−(x) if t ≤ 1,

t
1

m∗−ε
(x)−nε(x) if t > 1,

such that

Π(x, g̃) := max
{
Φ(g̃)nε(x),Φ(g̃)m−(x)

}
g̃ = min

{
Φ(g̃)n

∗
ε(x),Φ(g̃)m

∗
−ε(x)

}
. (4.28)

By setting ν̃k := Π(x, g̃)χ{g̃≤k}ν, we are going to prove that ν̃k is given by a finite number of Dirac
masses and this will prove that νχ{g̃≤k} is a finite number of Dirac masses for all k < ∞ and since
ν({g̃ = +∞}) = 0, the claim on ν is true. Taking ϕ := Φ(g̃)ψχ{g̃≤k} with ψ ∈ C∞

c (Ω) as a test
function in the reverse Hölder inequality, we getˆ

Ω

Mε

(
x,

Φ(g̃)ψχ{g̃≤k}

λ

)
dµ =

ˆ
Ω

Mε

(
x,

Φ(g̃)ψχ{g̃≤k}

λ

)
g̃ dν +

ˆ
Ω

Mε

(
x,

Φ(g̃)ψχ{g̃≤k}

λ

)
dµ0

=

ˆ
Ω

Mε

(
x,

Φ(g̃)ψχ{g̃≤k}

λ

)
g̃ dν

≤
ˆ
Ω

Mε

(
x,
ψ

λ

)
Mε (x,Φ(g̃)) g̃χ{g̃≤k} dν

≤
ˆ
Ω

Mε

(
x,
ψ

λ

)
Π(x, g̃)χ{g̃≤k} dν,

(4.29)
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where the last two inequalities follow from the fact that Mε is a sub-multiplicative function and the
definition of the function Π in (4.28). Moreover, we haveˆ

Ω

M∗ε

(
x,

Φ(g̃)ψχ{g̃≤k}

λ

)
dν ≥ C

ˆ
Ω

M∗ε

(
x,
ψ

λ

)
min

{
(Φ(g̃))

n∗ε(x) , (Φ(g̃))
m∗−ε(x)

}
χ{g̃≤k} dν

= C

ˆ
Ω

M∗ε

(
x,
ψ

λ

)
Π(x, g̃)χ{g̃≤k} dν,

(4.30)

where C = C(ε, s±, q±, N). Combining (4.29) and (4.30) yields the following reverse inequality

∥ψ∥M∗ε ,ν̃k ≤ C∥ψ∥Mε,ν̃k .
Using Lemma 4.10, there exist scalars {Ki}i∈Ik and points {xi}i∈Ik such that ν̃k =

∑
i∈Ik Kiδxi

. Notice

that, the sequence of measure ν̃k ↗ Π(x, g̃)ν. Letting k → ∞ and using the fact that g̃ ∈ L1
ν(Ω), there

exists an at most countable set I, families {xi}i∈I of distinct points in Ω and scalars νi ∈ (0,∞) such
that ν =

∑
i∈I νiδxi

and this concludes the proof. □

Now we are ready to give the proof of Theorem 4.6.

Proof of Theorem 4.6. From Lemmas 4.8–4.11, we know that

S∗(x, |uk|)⇀ ν =
∑
i∈I

νiδxi
weakly- ∗ in the sense of measures.

By applying the Brézis-Lieb lemma (Lemma 4.3) to S∗, we get

lim
k→∞

(ˆ
Ω

S∗(x, |vk|)ϕdx−
ˆ
Ω

S∗(x, |uk|)ϕ dx
)

=

ˆ
Ω

S∗(x, |v|)ϕdx for every ϕ ∈ L∞(Ω),

which further gives the following representation

S∗(x, |vk|)⇀ Θ = S∗(x, |v|) +
∑
i∈I

νiδxiweakly- ∗ in the sense of measures.

Let ϕ ∈ C∞
c (Ω) such that ϕ(0) = 1, 0 ≤ ϕ ≤ 1 and supp(ϕ) ⊂ B1(0). Define ϕγ,i(x) = ϕ

(
x−xi

γ

)
for

each i ∈ I, x ∈ RN and γ > 0. Taking ϕγ,i as a test function in the reverse Hölder inequality (4.13)
for measures µ and ν, we obtain

∥ϕγ,i∥M∗ε ,ν ≤ C∥ϕγ,i∥Mε,µ. (4.31)

With the representation of the measure ν and for any i ∈ I, we estimate the left- and right-hand terms
of the above inequality by

ϱM∗ε (ϕγ,i) :=

ˆ
Ω

M∗ε(x, ϕγ,i(x)) dν =
∑
i∈I

νiM
∗
ε(xi, ϕγ,i(xj)) ≥ νi

If ϱM∗ε (ϕγ,i) ≤ 1, then

∥ϕγ,i∥M∗ε ,ν ≥ ν

1

α
−
γ

i (4.32)

Analogously, if ϱM∗ε (ϕγ,i) > 1, then

∥ϕγ,i∥M∗ε ,ν ≥ ν

1

α
+
γ

i .

Similarly,

1 = ϱMε

(
ϕγ,i

∥ϕγ,i∥Mε,µ

)
:=

ˆ
Ω

Mε

(
x,

ϕγ,i(x)

∥ϕγ,i∥Mε,µ

)
dµ ≤

ˆ
Bγ(xi)

Mε

(
x,

1

∥ϕγ,i∥Mε,ν

)
dµ

≤ µ(Bγ(xi))max

{
∥ϕγj ,j∥

−β−
γj

Mε,µ , ∥ϕγj ,j∥
−β+

γj

Mε,µ

} (4.33)

where

α−
γ := min

Bγ(xi)
m∗−ε(x), α+

γ := max
Bγ(xi)

n∗ε(x),
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β−
γ := min

Bγ(xi)
m−(x), β+

γ := max
Bγ(xi)

nε(x).

Now, by collecting the estimates in (4.32) and (4.33) in (4.31) and by letting γ → 0, we get

min{ν
1

n∗ε(xj)

j , ν
1

m∗−ε
(xj)

j } ≤ Cmax

{
µ

1
m−(xj)

j , µ
1

nε(xj)

j

}
,

where µj := µ(xj) = lim
γj→0

µ(Bγj (xj)). In particular, {xi}i∈I are atoms of ν. Note that for any

ϕ ∈ C(Ω), ϕ ≥ 0, the functional

u→
ˆ
Ω

(
a(x)|∇u|p(x) + b(x)|∇u|q(x) logs(x)(1 + |∇u|)

)
ϕ dx

is convex and continuous in W 1,S
0 (Ω). Hence, it is weakly lower semicontinuous and therefore,ˆ

Ω

(
a(x)|∇u|p(x) + b(x)|∇u|q(x) logs(x)(1 + |∇u|)

)
ϕ dx

≤ lim inf
t→∞

ˆ
Ω

(
a(x)|∇uk|p(x) + b(x)|∇uk|q(x) logs(x)(1 + |∇uk|)

)
ϕ dx =

ˆ
Ω

ϕ dµ.

Thus, µ ≥ S(x, |∇u|). Finally, by extracting µ to its atoms, we conclude our result. □

5. Properties of the energy functional and the double phase operator

In this section we investigate the properties of the associated energy functional and the logarithmic

operator given in (1.9). We begin by defining the energy functional EΛ,λ : W 1,S
0 (Ω) → R corresponding

to our new logarithmic double phase operator as

EΛ,λ(u) = E1(u)− ΛE2(u)− λE3(u),
where

E1(u) =
ˆ
Ω

M(x, |∇u|) dx, E2(u) =
ˆ
Ω

M∗(x, |∇u|) dx, E3(u) =
ˆ
Ω

M⋆(x, |∇u|) dx.

Furthermore we introduce J : W 1,S
0 (Ω) → (W 1,S

0 (Ω))∗ which is given by

⟨J (u), ϕ⟩S := ⟨J1(u), ϕ⟩S − Λ⟨J2(u), ϕ⟩S − λ⟨J3(u), ϕ⟩S for u, ϕ ∈W 1,S
0 (Ω), (5.1)

where

⟨J1(u), ϕ⟩S :=

ˆ
Ω

a(x)|∇u|p(x)−2∇u · ∇ϕdx

+

ˆ
Ω

b(x)|∇u|q(x)−2 logs(x)−1(1 + |∇u|)
(
log(1 + |∇u|) + s(x)

q(x)

|∇u|
1 + |∇u|

)
∇u · ∇ϕ dx,

⟨J2(u), ϕ⟩S :=

ˆ
Ω

(a(x))
p∗(x)
p(x) |u|p

∗(x)−2uϕdx

+

ˆ
Ω

(
b(x) logs(x)(1 + |u|)

) q∗(x)
q(x) |u|q

∗(x)−2

(
1 +

s(x)q∗(x)

q(x)

|u|
log(1 + |u|)(1 + |u|)

)
uϕdx,

⟨J3(u), ϕ⟩S :=

ˆ
Ω

(a(x))
p⋆(x)
p(x) |u|p⋆(x)−2uϕdx

+

ˆ
Ω

(
b(x) logs⋆(x)(1 + |u|)

) q⋆(x)
q(x) |u|q⋆(x)−2

(
1 +

s⋆(x)q⋆(x)

q(x)

|u|
log(1 + |u|)(1 + |u|)

)
uϕ dx,

where ⟨·, ·⟩S denotes the duality paring between the space W 1,S
0 (Ω) and its dual space (W 1,S

0 (Ω))∗.
Here J1 is the new logarithmic double phase operator.

Proposition 5.1. Let (H0) and (H1) be satisfied. Then, the energy functional E1 is well-defined and
belongs to the class C1 with E ′

1(u) = J1(u).



32 R. ARORA, Á. CRESPO-BLANCO, AND P. WINKERT

Proof. Observe that, for any u ∈W 1,S
0 (Ω), we have

0 ≤ ϱS(|∇u|)
n+0

≤ E1(u) ≤
ϱS(|∇u|)

m−
0

<∞ with n+0 := max
x∈Ω

n0(x) and m−
0 := min

x∈Ω
m0(x).

Hence, the functional E1 is well defined. Let u, ϕ ∈ W 1,S
0 (Ω). By using the mean-value theorem, we

get

E1(u+ tϕ)− E1(u)
t

= J1 + J2 + J3.

where

J1 :=

ˆ
Ω

a(x)|∇u+ ηx,tt∇ϕ|p(x)−2(∇u+ ηx,tt∇ϕ) · ∇ϕ dx,

J2 :=

ˆ
Ω

b(x)|∇u+ ηx,tt∇ϕ|q(x)−2 logs(x)(1 + |∇u+ ηx,tt∇ϕ|)(∇u+ ηx,tt∇ϕ) · ∇ϕdx,

J3 :=

ˆ
Ω

b(x)s(x)

q(x)

|∇u+ ηx,tt∇ϕ|q(x)−1

1 + |∇u+ ηx,tt∇ϕ|
logs(x)−1 (1 + |∇u+ ηx,tt∇ϕ|) (∇u+ ηx,tt∇ϕ) · ∇ϕdx

for some t ∈ R and ηx,t ∈ (0, 1).
Claim: lim

t→0
J1 + J2 + J3 = ⟨J (u), ϕ⟩.

To prove the above claim, we have to find integrable functions dominating the integrand of Ji,
i = 1, 2, 3 and use Lebesgue’s dominated convergence theorem. For 0 < |t| ≤ t0 ≤ 1, we have∣∣∣a(x)|∇u+ ηx,tt∇ϕ|p(x)−2(∇u+ ηx,tt∇ϕ) · ∇ϕ

∣∣∣ ≤ a(x)|∇u+ ηx,tt∇ϕ|p(x)−1|∇ϕ|

≤ 2p
+−1a(x)

(
|∇u|p(x)−1 + t0|∇ϕ|p(x)−1

)
|∇ϕ|

andˆ
Ω

a(x)|∇u|p(x)−1|∇ϕ|dx ≤
ˆ
{|∇u|≥|∇ϕ|}

a(x)|∇u|p(x)−1|∇ϕ|dx+

ˆ
{|∇u|<|∇ϕ|}

a(x)|∇u|p(x)−1|∇ϕ|dx

≤
ˆ
Ω

a(x)|∇u|p(x) dx+

ˆ
Ω

a(x)|∇ϕ|p(x) dx ≤ ϱS(|∇u|) + ϱS(|∇ϕ|) <∞.

To estimate the integrands in J2 and J3, we use condition q(x) + s(x) ≥ r > 1 in (H0). In particular,
this implies that

tq(x)−1 logs(x)(1 + t) is increasing for t ≥ 0, (5.2)

because
0 ≤ s(x)t+ (q(x)− 1)(1 + t) log(1 + t) for all t ≥ 0 and x ∈ Ω. (5.3)

Now, by using (5.3) and Proposition 2.18, we obtain the estimate∣∣∣∣b(x)s(x)q(x)

|∇u+ ηx,tt∇ϕ|q(x)−1

1 + |∇u+ ηx,tt∇ϕ|
logs(x)−1 (1 + |∇u+ ηx,tt∇ϕ|) (∇u+ ηx,tt∇ϕ) · ∇ϕ

∣∣∣∣
≤ b(x)|s(x)| (|∇u+ ηx,tt∇ϕ|)q(x)−1

logs(x)(1 + |∇u+ ηx,tt∇ϕ|)|∇ϕ|

≤ b(x)|s(x)| (|∇u|+ ηx,tt|∇ϕ|)q(x)−1
logs(x)(1 + |∇u|+ ηx,tt|∇ϕ|)|∇ϕ|

≤ C(r+, |s|+)b(x)
(
|∇u|q(x)−1 + (ηx,tt)

q(x)−1|∇ϕ|q(x)−1
)
|∇ϕ|

×


logs(x)(1 + |∇u|) + logs(x)(1 + ηx,tt|∇ϕ|) if s(x) ≥ 0,

logs(x)(1 + ηx,tt|∇ϕ|) if s(x) < 0 and |∇u| ≤ ηx,tt|∇ϕ|,
logs(x)(1 + |∇u|) if s(x) < 0 and |∇u| ≥ ηx,tt|∇ϕ|.

≤ C ′(r+, s+)b(x)

{
|∇u|q(x) logs(x)(1 + |∇u|) if |∇u| ≥ |∇ϕ|,
|∇ϕ|q(x) logs(x)(1 + |∇ϕ|) if |∇u| ≤ |∇ϕ|,
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and ˆ
|∇u|≥|∇ϕ|

b(x)|∇u|q(x) logs(x)(1 + |∇u|) dx+

ˆ
|∇u|≤|∇ϕ|

b(x)|∇ϕ|q(x) logs(x)(1 + |∇ϕ|) dx

≤ ϱS(|∇u|) + ϱS(|∇ϕ|) <∞.

Finally, by using

a(x)|∇u+ ηx,tt∇ϕ|p(x)−2(∇u+ ηx,tt∇ϕ) · ∇ϕ→ a(x)|∇u|p(x)−2∇u · ∇ϕ a.e. in Ω

and Lebesgue’s dominated convergence theorem, we obtain the required claim.

For the C1-property, let un → u in W 1,S
0 (Ω) and ϕ ∈W 1,S

0 (Ω) with ∥∇ϕ∥S ≤ 1 and we claim that

⟨J1(un)− J1(u), ϕ⟩ → 0 as n→ ∞.

For the following computations, we define

Ω0 = {x ∈ Ω: |∇u| = 0},

g(u(x)) =

{[
log(1 + |∇u|) + s(x)|∇u|

q(x)(1+|∇u|)

]
logs(x)−1(1 + |∇u|)|∇u|q(x)−2∇u, if Ω \ Ω0,

0 if x ∈ Ω0,

vn(x) = g(un)− g(u)

hn(x) = log
s(x)
q(x) (1 + max{|∇u|, |∇un|}),

Ω≥
u = {x ∈ Ω \ Ω0 : s(x) ≥ 0,max{|∇ϕ|, |∇u|, |∇un|} = |∇u|},

Ω<u = {x ∈ Ω \ Ω0 : s(x) < 0,max{|∇ϕ|, |∇u|, |∇un|} = |∇u|},
Ω≥
un

= {x ∈ Ω \ Ω0 : s(x) ≥ 0, |∇u| < max{|∇ϕ|, |∇u|, |∇un|} = |∇un|},
Ω<un

= {x ∈ Ω \ Ω0 : s(x) < 0, |∇u| < max{|∇ϕ|, |∇u|, |∇un|} = |∇un|},

Ω≥
ϕ = {x ∈ Ω \ Ω0 : s(x) ≥ 0, |∇u|, |∇un| < max{|∇ϕ|, |∇u|, |∇un|} = |∇ϕ|},

Ω<ϕ = {x ∈ Ω \ Ω0 : s(x) < 0, |∇u|, |∇un| < max{|∇ϕ|, |∇u|, |∇un|} = |∇ϕ|}.
Using (5.2), inequality (1 + t) log(1 + t) ≥ t for t ≥ 0 and Young’s inequality, we have

|b(x)g(un)∇ϕ| ≤ |b(x)|
[
log(1 + |∇un|) +

|s(x)||∇un|
q(x)(1 + |∇un|)

]
logs(x)−1(1 + |∇un|)|∇un|q(x)−1|∇ϕ|

≤ C0b(x) log
s(x)(1 + |∇un|)|∇un|q(x)−1|∇ϕ|

≤ C1b(x) log
s(x)(1 + |∇un|)|∇un|q(x) + C2b(x) log

s(x)(1 + |∇ϕ|)|∇ϕ|q(x) ∈ L1(Ω),

where Ci are independent of n. Therefore, using ∇un → ∇u a.e., it is easy to see thatˆ
Ω0

b(x)vn · ∇ϕ dx→ 0.

By Hölder’s inequality in Lq(·)(Ω \ Ω0), we have∣∣∣∣∣
ˆ
Ω\Ω0

b(x)vn · ∇ϕdx

∣∣∣∣∣ ≤ 2

∥∥∥∥(b(x)) q(x)−1
q(x)

|vn|
hn

∥∥∥∥
q(·)

q(·)−1

∥∥∥(b(x))1/q(x)|∇ϕ|hn∥∥∥
q(·)

.

The second factor is uniformly bounded in n and v by Proposition 2.18 (v) andˆ
Ω\Ω0

(
(b(x))1/q(x)|∇ϕ|hn

)q(x)
dx ≤

ˆ
Ω

≥
u ∪Ω<

ϕ ∪Ω<
un

b(x)|∇ϕ|q(x) logs(x)(1 + |∇u|) dx

+

ˆ
Ω<

u ∪Ω
≥
un

b(x)|∇ϕ|q(x) logs(x)(1 + |∇un|) dx

+

ˆ
Ω

≥
ϕ

b(x)|∇ϕ|q(x) logs(x)(1 + |∇ϕ|) dx
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≤ ϱS(∇u) + ϱS(∇un) + ϱS(∇ϕ) < +∞.

Therefore, we only need to prove that the first factor converges to zero. By Proposition 2.18 (v), it is

enough to see that this happens in the modular of L
q(·)

q(·)−1 (Ω \ Ω0), that is

ˆ
Ω\Ω0

(
(b(x))

q(x)−1
q(x)

|vn|
hn

) q(x)
q(x)−1

dx =

ˆ
Ω\Ω0

b(x)

(
|vn|
hn

) q(x)
q(x)−1

dx
n→∞−−−−→ 0.

We prove this convergence by using Vitali’s convergence theorem. For the uniform integrability, using
(5.2) and the inequality (1 + t) log(1 + t) ≥ t for t ≥ 0 note that

b(x)

(
|vn|
hn

) q(x)
q(x)−1

≤ C0b(x)

(
logs(x)(1 + |∇un|)|∇un|q(x)−1 + logs(x)(1 + |∇u|)|∇u|q(x)−1

log
s(x)
q(x) (1 + max{|∇u|, |∇un|})

) q(x)
q(x)−1

≤ Cb(x)
(
|∇un|q(x) logs(x)(1 + |∇un|) + |∇u|q(x) logs(x)(1 + |∇u|)

)
.

As ∇un → ∇u in measure and un → u in W 1,S
0 (Ω), we know that b(x)|∇un|q(x) logs(x)(1 + |∇un|) is

uniformly integrable, hence we also know that our sequence is uniformly integrable and this finishes
the proof. □

We suppose the following assumptions:

(H⋆) p⋆, q⋆ ∈ C(Ω), s⋆ ∈ L∞(Ω), 1 < p⋆(x), q⋆(x) < N , p⋆(x) < p∗(x) and q⋆(x) < q∗(x) for all
x ∈ Ω, and s⋆(x) < s(x), q⋆(x) + s⋆(x) ≥ r > 1 for a.a.x ∈ Ω.

Proposition 5.2. Let (H0), (H1) and (H⋆) be satisfied. Then, the functionals E2 and E3 are well-
defined and belong to class C1 with E ′

2(u) = J2(u) and E ′
3(u) = J3(u).

Proof. By Young’s inequality with exponents p∗(x)
p⋆(x)

and q∗(x)
q⋆(x)

and its conjugates, we get(
(a(x))

1
p(x) t

)p⋆(x)
≤
(
(a(x))

1
p(x) t

)p∗(x)
+ 1

and by (2.9),((
b(x) logs⋆(x)(1 + t)

) 1
q(x)

t

)q⋆(x)
≤
((

b(x) logs⋆(x)(1 + t)
) 1

q(x)

t

)q∗(x)
χ{s⋆(x)>0} + 1 +

((
b(x) logs⋆(x)(1 + t)

) 1
q(x)

t

)q⋆(x)
χ{s⋆(x)≤0}

≤
((

b(x) logs(x)(1 + t)
) 1

q(x)

t

)q∗(x)
+ C

((
b(x) logs(x)(1 + t)

) 1
q(x)

t

)q∗(x)
+ h(x).

This gives

S⋆(x, t) ≤ CS∗(x, t) + h(x) for all t ≥ 0, for a.a.x ∈ Ω and for some C > 0 (5.4)

with

S⋆(x, t) :=
(
(a(x))

1
p(x) t

)p⋆(x)
+

((
b(x) logs⋆(x)(1 + t)

) 1
q(x)

t

)q⋆(x)
.

Therefore, by Propositions 2.20, 2.21 and 3.8, we have W 1,S
0 (Ω) ↪→ LS∗

(Ω) ↪→ LS⋆(Ω). Then, for any

u ∈W 1,S
0 (Ω), it holds

0 ≤ ϱS∗(u)

n+,∗0

≤ E2(u) ≤
ϱS∗(u)

m−,∗
0

<∞ with n+,∗0 := max
x∈Ω

n∗0(x) and m−,∗
0 := min

x∈Ω
m∗

0(x)

and

0 ≤ ϱS⋆
(u)

n+⋆
≤ E3(u) ≤

ϱS⋆
(u)

m−
⋆

<∞
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where

n+⋆ := max
x∈Ω

max{p⋆(x), q⋆(x)} and m−
⋆ := min

x∈Ω
min{p⋆(x), q⋆(x)}.

Hence, the functionals E2 and E3 are well-defined. The remaining proof can be done by adopting the
same arguments as in Proposition 5.1. □

Combining Proposition 5.1 and Proposition 5.2, we assert that the energy functional E is well-defined
and belong to class C1 with E ′

Λ,λ(u) = J (u).
Next, we are concerned with the properties of the operator J1. For this purpose, we need the

following two lemmas. The first one is concerned with the monotonicity of terms that are not power
laws and the second lemma is concerned with a version of Young’s inequality specially tailored for our
line of work.

Lemma 5.3. Let q > 1 and s ∈ R such that q+s ≥ 2−δ for some δ ∈ (1, 2). Then, for any ξ, η ∈ RN ,
we have the following inequalities:
If s ≥ 0,(

|ξ|q−2ξ logs(1 + |ξ|)− |η|q−2η logs(1 + |η|)
)
· (ξ − η) ≥ Cq|ξ − η|q logs(1 + |m|) if q ≥ 2. (5.5)

and
(|ξ|+ |η|)2−q

(
|ξ|q−2ξ logs(1 + |ξ|)− |η|q−2η logs(1 + |η|)

)
· (ξ − η)

≥ Cq|ξ − η|2 logs(1 + |m|) if 1 < q < 2
(5.6)

where m = min{|ξ| , |η|} and

Cq =

{
min{22−q, 2−1} if q ≥ 2,

q − 1 if 1 < q < 2.

If s < 0 and q > 1

(|ξ + |η|)δ
(
|ξ|q−2ξ logs(1 + |ξ|)− |η|q−2η logs(1 + |η|)

)
· (ξ − η)

= (|ξ + |η|)δ
(
|ξ|−δξ|ξ|q−2+δ logs(1 + |ξ|)− |η|−δη|η|q−2+δ logs(1 + |η|)

)
· (ξ − η)

≥ Cδ |ξ − η|2 |m|q−2+δ logs(1 + |m|)

(5.7)

for any 1 < δ < 2 where

Cδ =

{
min{2−δ, 2−1} if δ ≥ 0,

δ + 1 if − 1 < δ < 0.

Proof. The proof follows from Arora–Crespo-Blanco–Winkert [2, Lemma 4.3] by taking h(t) = logs(1+
t) if s ≥ 0. If s < 0, consider h(t) = tq−2+δ logs(1 + t) for δ ∈ (1, 2) in Arora–Crespo-Blanco–Winkert
[2, Lemma 4.3]. □

Lemma 5.4. Let w, t ≥ 0, q > 1 and s ∈ R such that q + s > 1. Then

wtq−1 logs−1(1 + t)

[
log(1 + t) +

st

q(1 + t)

]
≤ wq

q
logs(1 + w) + tq logs−1(1 + t)

[
q − 1

q
log(1 + t) +

st

q(q + t)

]
.

Proof. The proof follows by repeating the same arguments as in Arora–Crespo-Blanco–Winkert [2,
Lemma 4.4] by taking the function h : R+ → R defined as

h(t) = tq−1 logs−1(1 + t)

[
log(1 + t) +

st

q(1 + t)

]
.

Note that the condition q + s > 1 implies that the above function h is positive, continuous, strictly
increasing, and vanishes at zero. In particular, the arguments in Case 1 and 2 in the proof of Lemma
2.16 imply that the function h is strictly increasing. □
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Now we can state the main properties of the operator J1.

Theorem 5.5. Let (H0) and (H1) be satisfied and {un}n∈N ⊆W 1,S
0 (Ω) be a sequence such that

un ⇀ u in W 1,S
0 (Ω) and lim sup

n→∞
⟨J1(un), un − u⟩ ≤ 0. (5.8)

Then, the following hold:

(i) ∇un → ∇u a.e. in Ω.

(ii) un → u in W 1,S
0 (Ω).

In particular, the operator J1 is of type (S+).

Proof. By the strict monotonicity of J1 and the weak convergence of un, we obtain

0 ≤ lim inf
n→∞

⟨J1(un)− J1(u), un − u⟩ ≤ lim sup
n→∞

⟨J1(un)− J1(u), un − u⟩

= lim sup
n→∞

⟨J1(un), un − u⟩ ≤ 0,

which means
lim
n→∞

⟨J1(un)− J1(u), un − u⟩ = 0. (5.9)

Claim: ∇un → ∇u in measure.
In particular, as the previous expression can be decomposed in the sum of nonnegative terms, it

follows

lim
n→∞

ˆ
{p≥2}

a(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· (∇un −∇u) dx = 0, (5.10)

lim
n→∞

ˆ
{p<2}

a(x)
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· (∇un −∇u) dx = 0. (5.11)

lim
n→∞

ˆ
Ω

b(x)
(
|∇un|q(x)−2∇un logs(x)(1 + |∇un|)

− |∇u|q(x)−2∇u logs(x)(1 + |∇u|)
)
· (∇un −∇u) dx = 0.

(5.12)

By repeating the same arguments as in the proof of Arora–Crespo-Blanco–Winkert [2, Theorem 4.4]
for the integrals (5.10) and (5.11), we obtain

∇un1{a>0} → ∇u1{a>0} in measure.

Now, in order to prove our claim in 1{b>0}, we partition the domain of the integral in (5.12) asˆ
Ω

=

ˆ
E

(1)
n

· · ·+
ˆ
E

(2)
n

· · ·+
ˆ
E

(2)
n

· · ·+
ˆ
E

(4)
n

· · · = J1 + J2 + J3 + J4

where

E(1)
n = {∇un ̸= 0,∇u ̸= 0}, E(2)

n = {∇un ̸= 0,∇u = 0},

E(3)
n = {∇un = 0,∇u ̸= 0}, E(4)

n = {∇un = 0,∇u = 0}.
It is easy to see that Ji → 0 for i = 2, 3, 4, which also implies

1∪4
i=2E

(i)
n
∇un → 0 a.e. in Ω.

On the other hand, we partition the domain of the integral J1 asˆ
E

(1)
n

· · · =
ˆ
{s≥0,q≥2,b>0}∩E(1)

n

· · ·+
ˆ
{s≥0,q<2,b>0}∩E(1)

n

· · ·+
ˆ
{s<0,b>0}∩E(1)

n

· · · = I1 + I2 + I3

and using (5.5)-(5.7) and (5.9), we get

Ii → 0 as n→ ∞ for i = 1, 2, 3. (5.13)

Step 1: Convergence in {s ≥ 0, q ≥ 2, b > 0} ∩ E(1)
n :
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From (5.5), for any ε > 0 we know that{
1{q≥2,b>0,s≥0}(q

− − 1)|∇un −∇u|q1
E

(1)
n

logs(x)(1 + t(x)) ≥ ε
}

⊆
{
1{q>2,b>0,s≥0}

(
|∇un|q(x)−2∇un logs(x)(1 + |∇un|)− |∇u|q(x)−2 ∇u logs(x)(1 + |∇u|)

)
· (∇un −∇u) ≥ ε

}
,

where t(x) = min{|∇un(x)|, |∇u(x)|}. From (5.13) and the previous expression we obtain that

1{q≥2,b>0,s≥0}(q
− − 1)|∇un −∇u|q1

E
(1)
n

logs(x)(1 + t(x)) → 0 in measure.

This implies (up to a subsequence)

either 1{q≥2,b>0,s≥0}∩E(1)
n

∇un → 1{q≥2,b>0,s≥0}∇u or 1{q>2,b>0,s≥0}∩E(1)
n

∇un → 0 a.e. in Ω.

We claim the latter part does not hold. Suppose it holds. Then,

1{q≥2,b>0,s≥0}

(
|∇un|q(x)−2∇un logs(x)(1 + |∇un|)− |∇u|q(x)−2 ∇u logs(x)(1 + |∇u|)

)
· (∇un −∇u)

→ 1{q>2,b>0,s≥0} |∇u|
q(x)

logs(x)(1 + |∇u|) a.e. in Ω.

Since un is a bounded sequence in W 1,S
0 (Ω), by Vitali’s convergence theorem

I1 →
ˆ
1{q≥2,b>0,s≥0}

|∇u|q(x) logs(x)(1 + |∇u|) dx,

which is a contradiction to (5.13). Hence, by the subsequence principle, the following is true for the
whole sequence un,

1{q≥2,b>0,s≥0}∩E(1)
n

∇un → 1{q≥2,b>0,s≥0}∇u a.e. in Ω. (5.14)

Step 2: Convergence in {s ≥ 0, q < 2, b > 0} ∩ E(1)
n :

From (5.6), for any ε > 0 we know that{
1{q<2,b>0,s≥0}(q

− − 1)|∇un −∇u|2(|∇un|+ |∇u|)q(x)−21
E

(1)
n

logs(x)(1 + t(x)) ≥ ε
}

⊆
{
1{q<2,b>0,s≥0}

(
|∇un|q(x)−2∇un logs(x)(1 + |∇un|)− |∇u|q(x)−2 ∇u logs(x)(1 + |∇u|)

)
· (∇un −∇u) ≥ ε

}
.

From (5.13) and the previous expression we obtain that

1{q<2,b>0,s≥0}∩E(1)
n

(q− − 1)|∇un −∇u|2(|∇un|+ |∇u|)q(x)−2 logs(x)(1 + t(x)) → 0 in measure.

This implies (up to a subsequence), either 1{q<2,b>0,s≥0}∩E(1)
n

∇un ̸→ 0 a.e. in Ω and

1{q<2,b>0,s≥0}∩E(1)
n

(q− − 1)|∇un −∇u|2(|∇un|+ |∇u|)q(x)−2 logs(x)(1 + t(x)) → 0 a.e. in Ω

or

1{q<2,b>0,s≥0}∇un → 0 a.e. in Ω.

By repeating the same argument as above, we can show that the latter part gives a contradiction to
(5.13). Hence, 1{q<2,b>0,s≥0}∩E(1)

n
∇un ̸→ 0 a.e. in Ω and

1{q<2,b>0,s≥0}∩E(1)
n

(q− − 1)|∇un −∇u|2(|∇un|+ |∇u|)q(x)−2 logs(x)(1 + t(x)) → 0 a.e. in Ω.

Then for a.e.x ∈ Ω there exists M(x) > 0 such that for all k ∈ N

M(x) ≥ 1{q<2,b>0,s≥0}∩E(1)
n

|∇unk
−∇u|2 1Enk

(|∇unk
|+ |∇u|)q(x)−2

logs(x)(1 + t(x))
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≥ 1{q<2,b>0,s≥0}∩E(1)
n

||∇unk
| − |∇u||2 1Enk

(|∇unk
|+ |∇u|)q(x)−2

logs(x)(1 + t(x)).

Note that, given any c > 0 and 0 < Q < 1 and S ∈ S, the function h(t) = |t− c|2 (t+ c)Q−2 logS(1 +
min{t, c}) satisfies limt→+∞ h(t) = +∞. Therefore, there exists m(x) > 0 such that |∇unk

| ≤ m(x)
for a.a.x ∈ Ω and for all k ∈ N. As a consequence

1{q<2,b>0,s≥0}∩E(1)
n

|∇unk
−∇u|2 1Enk

(|∇unk
|+ |∇u|)q(x)−2

logs(x)(1 + t(x))

≥ 1{q<2,b>0,s≥0}∩E(1)
n

|∇unk
−∇u|2 1Enk

(m(x) + |∇u|)q(x)−2
logs(x)(1 + t(x))

and the convergence a.e. to zero of the left-hand side and by the subsequence principle, this yields

1{q<2,b>0,s≥0}∩E(1)
n

∇un → 1{q<2,b>0,s≥0}∇u a.e. in Ω (5.15)

since 1{q<2,b>0,s≥0}∩E(1)
n

∇un ̸→ 0 a.e. in Ω.

Step 3: Convergence in {s < 0, b > 0} ∩ E(1)
n :

Now by replacing 2 − q by δ in Step 2 and using (5.7) in place of (5.6) with 2 − r < δ < 2, we
obtain

1{b>0,s<0}∩E(1)
n

∇un → 1{b>0,s<0}∇u a.e. in Ω (5.16)

Finally, combining (5.14), (5.15) and (5.16), we obtain the required claim (i). From Young’s inequality
and Lemma 5.4 it follows that

a(x)|∇un|p(x)−2∇un · ∇(un − u) dx

+ b(x)

[
log(1 + |∇un|) +

s(x)|∇un|
q(x)(1 + |∇un|)

]
|∇un|q(x)−2∇un logs(x)−1(1 + |∇un|) · ∇(un − u) dx

= a(x)|∇un|p(x) dx− a(x)|∇un|p(x)−2∇un · ∇udx

+ b(x)

[
log(1 + |∇un|) +

s(x)|∇un|
q(x)(1 + |∇un|)

]
|∇un|q(x) logs(x)−1(1 + |∇un|) dx

− b(x)

[
log(1 + |∇un|) +

s(x)|∇un|
q(x)(1 + |∇un|)

]
|∇un|q(x)−2∇un logs(x)−1(1 + |∇un|) · ∇udx

≥ a(x)|∇un|p(x) dx− a(x)|∇un|p(x)−1 |∇u| dx

+ b(x)

[
log(1 + |∇un|) +

s(x)|∇un|
q(x)(1 + |∇un|)

]
|∇un|q(x) logs(x)−1(1 + |∇un|) dx

− b(x)

[
log(1 + |∇un|) +

s(x)|∇un|
q(x)(1 + |∇un|)

]
|∇un|q(x)−1 logs(x)−1(1 + |∇un|) |∇u| dx

≥ a(x)|∇un|p(x) dx− a(x)

(
p(x)− 1

p(x)
|∇un|p(x) +

1

p(x)
|∇u|p(x)

)
dx

+ b(x)

[
log(1 + |∇un|) +

s(x)|∇un|
q(x)(1 + |∇un|)

]
|∇un|q(x) logs(x)−1(1 + |∇un|) dx

− b(x)

([
q(x)− 1

q(x)
log(1 + |∇un|) +

s(x)|∇un|
q(x)(1 + |∇un|)

]
|∇un|q(x) logs(x)−1(1 + |∇un|)

+
1

q(x)
|∇u|q(x) logs(x)(1 + |∇u|)

)
dx

=
a(x)

p(x)
|∇un|p(x) dx− a(x)

p(x)
|∇u|p(x) dx

+
b(x)

q(x)
|∇un|q(x) logs(x)(1 + |∇un|) dx− b(x)

q(x)
|∇u|q(x) logs(x)(1 + |∇u|) dx.
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As a consequence, by (5.8) and Fatou’s Lemma, we obtain

lim
n→∞

ˆ
Ω

(
a(x)

p(x)
|∇un|p(x) +

b(x)

q(x)
|∇un|q(x) logs(x)(1 + |∇un|)

)
dx

=

ˆ
Ω

(
a(x)

p(x)
|∇u|p(x) + b(x)

q(x)
|∇u|q(x) logs(x)(1 + |∇u|)

)
dx.

By the previous Claim, passing to a.e. convergence along a subsequence and using the subsequence
principle, we can prove that the integrand of the left-hand side converges in measure to the integrand
of the right-hand side. Finally by applying the Brézis-Lieb Lemma (Lemma 4.3) and by Proposition

2.18 (iv), we obtain un → u in W 1,S
0 (Ω). □

6. Application of concentration compactness principle

In this section, we show multiplicity results for the (Λ, λ)-parametrized problem (1.9) with critical
and sublinear/superlinear growth.

6.1. Superlinear growth. In this subsection, we assume that λ = 1 and Λ > 0. For the sake of
simplicity, we write EΛ,λ as EΛ. We suppose the following assumptions:

(Hsup
⋆ ) p⋆, q⋆ ∈ C(Ω), s⋆ ∈ L∞(Ω), 1 < p⋆(x), q⋆(x) < N , p(x) ≤ p⋆(x) and q(x) ≤ q⋆(x) for all x ∈ Ω,

and q⋆(x) + s⋆(x) > r > 1, s⋆(x) ≤ s(x) for a.a.x ∈ Ω.

Lemma 6.1. Let (H0), (H1), (H⋆) and (Hsup
⋆ ) be satisfied and suppose that

max{p+, (q + ⌈s⌉)+} < min

{
p−⋆ ,

(
q⋆ + ⌊s⋆⌋

q⋆
q

)−
}
. (6.1)

Then, every Palais-Smale sequence {un}n∈N ⊂W 1,S
0 (Ω) is bounded.

Proof. By the definition of the Palais-Smale sequence {un}n∈N, we have

EΛ(un) → c and ⟨E ′
Λ(un), ϕ⟩ → 0 for every ϕ ∈W 1,S

0 (Ω), for some c ∈ R. (6.2)

We set

σ :=

max{p+, (q + ⌈s⌉)+}+min

{
p−⋆ ,

(
q⋆ + ⌊s⋆⌋ q⋆q

)−}
2

.

Now, by taking un

σ as a test function, and by using the Palais-Smale condition (6.2) for n ≥ n0, we
obtain,

c+ 1 ≥ EΛ(un)− ⟨J (un),
un
σ
⟩ =

2∑
i=1

Ei(un)− ⟨Ji(un),
un
σ
⟩ =

2∑
i=1

Ii(un), (6.3)

where

I1(un) :=
ˆ
Ω

(
1

p(x)
− 1

σ

)
a(x)|∇un|p(x) dx

+ Λ

ˆ
Ω

(
1

σ
− 1

p∗(x)

)(
a(x)

1
p(x) |un|

)p∗(x)
dx

+

ˆ
Ω

(
1

σ
− 1

p⋆(x)

)(
a(x)

1
p(x) |un|

)p⋆(x)
dx,

and

I2(un) :=
ˆ
Ω

(
1

q(x)
− 1

σ

)
b(x)|∇un|q(x) logs(x)(1 + |∇un|) dx

−
ˆ
Ω

b(x)s(x)

q(x)σ
|∇un|q(x)+1 log

s(x)−1(1 + |∇un|)
1 + |∇un|

dx
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+ Λ

ˆ
Ω

(
1

σ
− 1

q∗(x)
+

|un|
log(1 + |un|)(1 + |un|)

⌊s(x)⌋q∗(x)
q(x)σ

)
×
(
b(x) logs(x)(1 + |un|)

) q∗(x)
q(x) |un|q

∗(x) dx

+

ˆ
Ω

(
1

σ
− 1

q⋆(x)
+

|un|
log(1 + |un|)(1 + |un|)

⌊s⋆(x)⌋q⋆(x)
q(x)σ

)
×
(
b(x) logs⋆(x)(1 + |un|)

) q⋆(x)
q(x) |un|q⋆(x) dx.

Estimate for I1(un) : By the choice of σ, we can choose δ > 0 small enough such that

δ ≤ 1

2
max
x∈Ω

max

{
1

p(x)
− 1

σ
,
1

σ
− 1

p∗(x)

}
and

I1(un) ≥ δ

ˆ
Ω

a(x)|∇un|p(x) dx. (6.4)

Estimate for I2(un) : For every δ > 0 there exists a constant M(δ, s+) > 0 such that t
log(1+t)(1+t) <

δ
s++1 for t ≥ M , therefore we have the following estimates: By splitting the domain depending upon

the size of |∇un|, we get ∣∣∣∣ˆ
Ω

b(x)s(x)

q(x)σ
|∇un|q(x)+1 log

s(x)−1(1 + |∇un|)
1 + |∇un|

dx

∣∣∣∣
≤ C(ν) + ν

ˆ
Ω

b(x)|∇un|q(x) logs(x)(1 + |∇un|) dx.
(6.5)

Now, again by choice of σ, choosing δ > 0 small enough such that

δ ≤ max
x∈Ω

1

4
max

{
1

q(x)
− 1

σ
− ν,

1

σ
− 1

q∗(x)
+

⌊s⋆(x)⌋q⋆(x)
q(x)σ

}
.

By using estimates in (6.5) in light of (6.1) and (Hsup
⋆ ), we obtain

I2(un) ≥ δ

ˆ
Ω

b(x)|∇un|q(x) logs(x)(1 + |∇un|) dx− C(δ). (6.6)

Finally, inserting the estimates (6.4) and (6.6) in (6.3) and using Proposition 2.18, we deduce

c+ c∗(δ) ≥ δ

ˆ
Ω

a(x)|∇un|p(x) d

+ δ

ˆ
Ω

b(x)|∇un|q(x) logs(x)(1 + |∇un|) dx ≥ δ∥∇un∥min{p−,(q+⌊s⌋)−}
S ,

(6.7)

which implies that the sequence {un}n∈N is bounded in W 1,S
0 (Ω). □

We set

c∗(Λ) := min
i=1,2;j=1,2

(δ(C♯(Λ))
ci(C∗)cj )− c∗, C♯(Λ) := Λ−1 min{1, r(q+)−1}

∥∥1 + |s|q∗q−1
∥∥−1

∞ ,

where C∗ and c∗ are the constants obtained in Theorem 4.6 and (6.7), respectively and the constants
δ and ci, cj depend on the given data.

Lemma 6.2. Let (H0), (H1), (H⋆), (Hsup
⋆ ) and (6.1) be satisfied. Then the energy functional EΛ

satisfy the (PS)c condition for c < c∗(Λ).
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Proof. Let {un}n∈N be a Palais-Smale sequence satisfying (6.2). Then, by Lemma 6.1 and Theorem
4.6, there exists a weakly convergent subsequence, a countable index set I, positive numbers Θi, θi for
each i ∈ I and C∗ > 0 such that

un → u a.e. in Ω,

un ⇀ u in W 1,S
0 (Ω)

S(·, |∇un|)⇀ θ ≥ S(·, |∇u|) +
∑
i∈I

θiδxi
weakly- ∗ in the sense of measures

S∗(·, un)⇀ S∗(·, u) +
∑
i∈I

Θiδxi
weakly- ∗ in the sense of measures

min{Θ
1

n∗ε(xj)

j ,Θ
1

m∗0(xj)

j } ≤ C∗ max{θ
1

m−(xj)

j , θ
1

nε(xj)

j } for j ∈ I.

(6.8)

We claim that I = ∅. Suppose that there exists j ∈ I. Let γ > 0 and define ϕγ,j as in the proof of

Theorem 4.6. Taking ϕγ,jun ∈W 1,S
0 (Ω) as a test function in (6.2), we get

min

{
1,

r

q+

} ˆ
Ω

S(x, |∇un|)ϕγ,j dx ≤ ⟨J1(un), ϕγ,ju⟩S

= ⟨J (un), ϕγ,ju⟩S + Λ⟨J2(un), ϕγ,ju⟩S + ⟨J3(un), ϕγ,ju⟩S

+

ˆ
Ω

a(x)|∇un|p(x)−2∇un · ∇ϕγ,jun dx

+

ˆ
Ω

b(x)|∇un|q(x)−2 logs(x)−1(1 + |∇un|)

×
(
log(1 + |∇un|) +

s(x)

q(x)

|∇un|
1 + |∇un|

)
∇un · ∇ϕγ,jun dx.

(6.9)

By applying Young’s inequality and Lemma 5.4 for δ > 0, we obtain∣∣∣∣ˆ
Ω

a(x)|∇un|p(x)−2∇un · ∇ϕγ,jun dx

+

ˆ
Ω

b(x)|∇un|q(x)−2 logs(x)−1(1 + |∇un|)
(
log(1 + |∇un|) +

s(x)

q(x)

|∇un|
1 + |∇un|

)
∇un · ∇ϕγ,jun dx

∣∣∣∣
≤ δ

ˆ
Ω

S(x, |∇un|) dx+ C(δ)

ˆ
Ω

S(x, |∇ϕγ,jun|) dx.

Since {ϕγ,jun}n∈N is a bounded sequence in W 1,S
0 (Ω) and (6.2) holds,

lim
n→∞

⟨E ′
Λ(un), ϕγ,jun⟩ = 0. (6.10)

By Proposition 3.8, it follows from (6.8) that un → u in LS(Ω). From this, we obtain

lim
n→∞

ˆ
Ω

S(x, |∇ϕγ,jun|) dx =

ˆ
Ω

S(x, |∇ϕγ,ju|) dx. (6.11)

The fact that un is bounded in W 1,S
0 (Ω) and W 1,S

0 (Ω) ↪→ LS⋆(Ω) implies

|⟨J3(un), ϕγ,jun⟩S | ≤ ∥ϕγ,j∥∞
(ˆ

Ω

(a(x))
p⋆(x)
p(x) |un|p⋆(x) dx

+

ˆ
Ω

(
b(x) logs⋆(x)(1 + |un|)

) q⋆(x)
q(x) |un|q⋆(x)

(
1 +

|s⋆(x)|q⋆(x)
q(x)

|un|
log(1 + |un|)(1 + |un|)

)
dx

)
≤ ∥ϕγ,j∥∞

∥∥∥∥1 + |s⋆(x)|q⋆(x)
q(x)

∥∥∥∥
∞

ˆ
Ω

S⋆(x, |un|) dx < C1,

where C1 is independent of n and by Vitali’s convergence theorem, we get

lim
γ→0+

lim
n→∞

⟨J3(un), ϕγ,jun⟩S = lim
γ→0+

⟨J3(u), ϕγ,ju⟩S = 0.
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Following the same arguments as above, we obtain

|⟨J2(un), ϕγ,jun⟩S | ≤
ˆ
Ω

(a(x))
p∗(x)
p(x) |un|p

∗(x)ϕγ,j dx

+

ˆ
Ω

(
b(x) logs(x)(1 + |un|)

) q∗(x)
q(x) |un|q

∗(x)

(
1 +

|s(x)|q∗(x)
q(x)

|un|
log(1 + |un|)(1 + |un|)

)
ϕγ,j dx

≤ C2

ˆ
Ω

S∗(x, |un|)ϕγ,j dx < C where C2 :=

∥∥∥∥1 + |s(·)|q∗(·)
q(·)

∥∥∥∥
∞

and

lim
n→∞

|⟨J2(un), ϕγ,jun⟩S | ≤ C2

ˆ
Ω

(
S∗(x, u) +

∑
i∈I

Θiδxi

)
ϕγ,j dx. (6.12)

Again by using Proposition 2.22 and passing as γ → 0+, it follows

lim
γ→0+

ˆ
Ω

S(x, |∇ϕγ,ju|) dx = lim
γ→0+

⟨J3(u), ϕγ,ju⟩S = 0. (6.13)

Passing to the limits n → ∞ and γ → 0+ in (6.9) and applying (6.9), (6.10), (6.11), (6.12), (6.13),
(6.2), and (6.8), we get

min{1, r(q+)−1}θj ≤ C2ΛΘj + δC0,

where

C0 = sup
n∈N

ˆ
Ω

S(x, |∇un|) dx.

Since δ > 0 is chosen arbitrarily, we obtain

C♯θj ≤ Θj , C♯ :=
min{1, r(q+)−1}

C2Λ
.

From this and (6.8), we deduce

min{(C♯θj)
1

n∗ε(xj) , (C♯θj)
1

m∗0(xj) } ≤ C∗ max{θ
1

m−(xj)

j , θ
1

nε(xj)

j } for j ∈ I. (6.14)

The condition (H1) implies that there exists ε > 0 small enough such that

ζ := min
x∈Ω

[min{n∗ε(x), m∗0(x)} −max{m−(x), nε(x)}] > 0.

Combining this with (6.14), we can find ci depending on ζ, p, q and independent of j such that

Cℓ1♯ (C∗)ℓ2 ≤ θj with ℓ1 ∈ {c1, c2} and ℓ2 ∈ {c3, c4}. (6.15)

Using (6.7) and (6.15), we obtain

c ≥ δθj − c∗ ≥ δCℓ1♯ (C∗)ℓ2 − c∗ := c∗,

which is a contradiction. Hence I = ∅ and by virtue of (6.8), Lemma 4.3 and Proposition 2.18, we
obtain

un → u in LS∗
(Ω).

Again, by taking un − u as a test function in (6.2), we obtain

⟨J1(un), un − u⟩S = ⟨J (un), un − u⟩S + Λ⟨J2(un), un − u⟩S + ⟨J3(un), un − u⟩S . (6.16)

The condition in (H1) and (Hsup
⋆ ) imply

q⋆(x) + s⋆(x)
q⋆(x)

q(x)
> 1 and q∗(x) + s(x)

q∗(x)

q(x)
> 1.

In light of the above implication along with Hölder’s inequality as in Proposition 2.12, we obtain

|⟨J2(un), un − u⟩S | ≤
ˆ
Ω

(a(x))
p∗(x)
p(x) |un|p

∗(x)−1|un − u|dx
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+

ˆ
Ω

(
b(x) logs(x)(1 + |un|)

) q∗(x)
q(x) |un|q

∗(x)−1

(
1 +

|s(x)|q∗(x)
q(x)

|un|
log(1 + |un|)(1 + |un|)

)
|un − u|dx

≤
ˆ
Ω

(a(x))
p∗(x)
p(x) |un|p

∗(x)−1|un − u|dx

+

∥∥∥∥1 + |s(·)|q∗(·)
q(·)

∥∥∥∥
∞,Ω

ˆ
Ω

(
b(x) logs(x)(1 + |un|)

) q∗(x)
q(x) |un|q

∗(x)−1|un − u|dx

≤ C

ˆ
Ω

S∗(x, |un|)
|un|

|un − u|dx ≤ C

∥∥∥∥S∗(x, |un|)
|un|

∥∥∥∥
(S∗)♯

∥un − u∥S∗ ,

where (S∗)♯ denotes the Sobolev conjugate function of S∗ defined in Definition 2.5. Now, by using the
conjugate modular relation in Proposition 2.13 and Proposition 2.11, we get

|⟨J2(un), un − u⟩S | ≤ C

∥∥∥∥S∗(x, |un|)
|un|

∥∥∥∥
(S∗)♯

∥un − u∥S∗

≤ C1∥un∥S∗∥un − u∥S∗ → 0 as n→ ∞.

(6.17)

Following the same arguments as above, we deduce

|⟨J3(un), un − u⟩S | ≤ C1∥un∥S∗
⋆
∥un − u∥S∗

⋆
→ 0 as n→ ∞. (6.18)

Moreover, the boundedness of {un}n∈N in W 1,S
0 (Ω) and (6.2), gives

lim
n→∞

|⟨J (un), un − u⟩S | = 0. (6.19)

Collecting (6.17), (6.18) and (6.19) in (6.16), we obtain

⟨J1(un), un − u⟩S → 0 as n→ ∞.

Finally, Theorem 5.5 implies that un → u in W 1,S
0 (Ω) by the (S+) property of the operator J1. □

Lemma 6.3. There exists a sequence {Rk}k∈N independent of Λ such that 1 < Rk < Rk+1 for all
k ∈ N and for each k ∈ N

EΛ(u) < 0 for all u ∈ Xk with ∥u∥1,S > Rk,

where Xk are k-dimensional subspaces of W 1,S
0 (Ω).

Proof. Let k ∈ N. By the equivalence of norms in Xk, we find ηk > 1 such that

η−1
k ∥u∥1,S ≤ ∥u∥S∗ ≤ ηk∥u∥1,S for all u ∈ Xk. (6.20)

For any u ∈ Xk with ∥u∥1,S ≥ Rk > ηk > 1, using Proposition 2.18 and (6.20), we have

EΛ(u) ≤
∥∇u∥max{p+,(q+⌈s⌉)+}

S
min{p−, q−}

−
∥u∥min{p−⋆ ,(q⋆+⌊s⋆⌋ q⋆

q )
−}

S⋆

max{p+⋆ , q+⋆ }

≤
∥u∥max{p+,(q+⌈s⌉)+}

1,S

min{p−, q−}
−
(
η−1
k ∥u∥1,S

)min{p−⋆ ,(q⋆+⌊s⋆⌋ q⋆
q )

−}

max{p+⋆ , q+⋆ }

≤ ∥∇u∥min{p−⋆ ,(q⋆+⌊s⋆⌋ q⋆
q )

−}
S

∥∇u∥max{p+,(q+⌈s⌉)+}−min{p−⋆ ,(q⋆+⌊s⋆⌋ q⋆
q )

−}
S

min{p−, q−}

−
η
−min{p−⋆ ,(q⋆+⌊s⋆⌋ q⋆

q )
−}

k

max{p+⋆ , q+⋆ }


≤ ∥∇u∥min{p−⋆ ,(q⋆+⌊s⋆⌋ q⋆

q )
−}

S

Rmax{p+,(q+⌈s⌉)+}−min{p−⋆ ,(q⋆+⌊s⋆⌋ q⋆
q )

−}
k

min{p−, q−}
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−
η
−min{p−⋆ ,(q⋆+⌊s⋆⌋ q⋆

q )
−}

k

max{p+⋆ , q+⋆ }

 .

In view of (6.1), the exponent of Rk is negative. Therefore, by choosing Rk ≫ 1 independent of Λ, we
have the required claim. □

For each k ∈ N, we define

Yk := {u ∈ Xk : ∥u∥1,S ≤ Rk},

Zk := {g ∈ C(Xk,W
1,S
0 (Ω)) : g is odd and g(u) = u on ∂Xk}

and
dk := inf

g∈Zk

max
u∈Yk

EΛ(g(u)). (6.21)

Lemma 6.4. Let (H0), (H1), (H⋆), (H
sup
⋆ ) and (6.1) be satisfied. Then, the following hold:

(i) There exist numbers R > 0 and r > 0 such that E(u) ≥ r for every u ∈ SR := {v ∈
W 1,S

0 (Ω): ∥∇v∥S = R}.
(ii) There exists w ∈W 1,S

0 (Ω) with ∥w∥ > R such that E(w) < 0.

Proof. Let u ∈ W 1,S
0 (Ω) with ∥∇u∥S = R < 1. Using Propositions 3.8 and 2.18, we can choose

R ∈ (0, 1) such that ∥u∥S∗ + ∥u∥S⋆
≤ 1 and

E(u) = E1(u)− ΛE2(u)− E3(u) ≥
ϱS(|∇u|)

max{p+, q+}
− Λ

ϱS∗(|u|)
min{(p∗)−, (q∗)−}

− ϱS⋆(|u|)
min{p−⋆ , q−⋆ }

≥
∥u∥max{p+,(q+⌈s⌉)+}

1,S

max{p+, q+}
− Λ

∥u∥
min{(p∗)−,

(
q∗+⌊s⌋ q∗

q

)−
}

S∗

min{(p∗)−, (q∗)−}
−

∥u∥min{(p⋆)−,(q⋆+⌊s⋆⌋ q⋆
q )

−}
S⋆

min{p−⋆ , q−⋆ }

≥ C1∥u∥max{p+,(q+⌈s⌉)+}
1,S − C2Λ∥u∥

min{(p∗)−,
(
q∗+⌊s⌋ q∗

q

)−
}

1,S − C3∥u∥
min{(p⋆)−,(q⋆+⌊s⋆⌋ q⋆

q )
−}

1,S .

Now, in view of (H⋆), (H
sup
⋆ ) and (6.1), there exist numbers R ∈ (0, 1) and r > 0 such that E(u) > r.

To prove (ii), set w = θu for some t > 1 and v ∈ W 1,S
0 (Ω). Note that if θ > 1 we have the following

inequalities

log
s⋆(x)q⋆(x)

q(x) (1 + θ|u|) ≤

{
log

s⋆(x)q⋆(x)
q(x)

(
(1 + |u|)θ

)
≤ θs(x) logs(x)(1 + |u|), if s⋆(x) > 0,

log
s⋆(x)q⋆(x)

q(x) (1 + |u|) , if s⋆(x) ≤ 0,

≤ θ
⌈s⋆⌉(x)q⋆(x)

q(x) log
s⋆(x)q⋆(x)

q(x) (1 + |u|)
and

logs(x)(1 + θ|u|) ≥

{
logs(x) (1 + |u|) , if s(x) ≥ 0,

logs(x)
(
(1 + |u|)θ

)
≥ θs(x) logs(x)(1 + |u|), if s(x) < 0.

≥ θ⌊s⌋(x) logs(x)(1 + |u|).
This further gives

θmin{p−,(q+⌊s⌋)−} ϱS(u) ≤ ϱS(θu) and ϱS⋆
(θu) ≤ θmax{p+⋆ ,(q⋆+⌈s⋆⌉ q⋆

q )+}ϱS(u). (6.22)

Let ∥u∥1,S = η1 and ∥u∥S⋆ = η2 with 0 < η1, η2 < 1. Then from (i), we have ϱ1,S

(
u
η1

)
= 1 and

ϱS⋆

(
u
η2

)
= 1. Now, by taking θ = 1

η1
> 1 and θ = 1

η2
> 1 in (6.22), we obtain

ϱ1,S(u)

η
min{p−,(q+⌊s⌋)−}
1

≤ ϱ1,S

(
u

η1

)
= 1 and ϱS⋆

(
u

η2

)
= 1 ≤ ϱS⋆

(u)

η
max{p+⋆ ,(q⋆+⌈s⋆⌉ q⋆

q )+}
2

.
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Using the above estimate as well as (6.1), we get

E(w) = E1(θu)− ΛE2(θu)− E3(θu)

≤ θmax{p+,(q+⌈s⌉)+}E1(u)− θ
min

{
p−⋆ ,(q⋆+⌊s⋆⌋ q⋆

q )
−
}
E3(u) → −∞ as t→ ∞.

Hence, by taking θ large enough, we have ∥∇w∥S > R and E(w) < 0. □

Using Lemma 6.4, the deformation lemma from Ambrosetti–Rabinowitz [1, Lemma 1.3] and fol-
lowing the same arguments as in Theorem 2.1 by Ambrosetti–Rabinowitz [1], we obtain the following
result.

Lemma 6.5. For each k ∈ N, dk is the critical value of EΛ provided EΛ satisfies the (PS)dk condition.

Let {Tk}k∈N be a sequence of closed linear subspaces of W 1,S
0 (Ω) with finite codimensions and

{ek}k∈N be a Schauder basis of W 1,S
0 (Ω). For each n ∈ N, let fn ∈ (W 1,S

0 (Ω))∗ be defined as

fn(u) = αn for u =

∞∑
j=1

αjej ∈W 1,S
0 (Ω).

For each k ∈ N, define
Uk := {u ∈W 1,S

0 (Ω): fn(u) = 0 for all n ≥ k}
and

Vk := {u ∈W 1,S
0 (Ω): fn(u) = 0 for all n ≤ k − 1}.

Then, W 1,S
0 (Ω) = Uk ⊕ Vk and Vk has codimension k − 1. Define

ek := sup
v∈Vk,∥v∥

W
1,S
0 (Ω)

≤1

∥v∥S⋆
.

Lemma 6.6. The sequence {ek}k∈N defined above satisfies 0 < ek+1 ≤ ek for k ∈ N and limk→∞ ek =
0.

Proof. Because Vk+1 ⊂ Vk, we have ek ≥ ek+1 ≥ 0 for all k ∈ N. Hence ek → e ≥ 0. By the definition
of ek, for each k ∈ N, we can choose uk ∈ Vk with ∥∇uk∥S ≤ 1, such that

0 ≤ ek − ∥∇uk∥S <
1

k
.

Using Proposition 2.17, W 1,S
0 (Ω) is reflexive and {uk}k∈N is bounded in W 1,S

0 (Ω). So, up to a sub-

sequence, we have uk ⇀ u in W 1,S
0 (Ω). Then, by Proposition 3.8, uk → u in LS⋆(Ω). Now, by the

definition of Vk and the fact that uk ∈ Vk, for each n ∈ N and n < k, we have fn(uk) = 0 and by passing
to the limit as k → ∞ leads to fn(u) = 0 for all n ∈ N. Hence u ≡ 0 and limk→∞ ek = e = 0. □

Lemma 6.7. There exists C1, C2 > 0 such that

L(Rk) ≤ dk ≤ U(Rk) for every k ∈ N,
where

L(Rk) :=
R

max{p+,(q+⌈s⌉)+}
k

min{p−, q−}
and U(Rk) =

C1

2C2
R
α

(2)
1 −α(2)

2

k .

Proof. Let Λ > 0, k ∈ N and dk is given in (6.21). First, we will find the upper and lower bound of
dk. Using Proposition 2.18 for all u ∈ Yk, it is easy to see that

EΛ(u)

= E1(u)− ΛE2(u)− E3(u) ≤
1

min{p−, q−}

ˆ
Ω

S(x,∇u) dx

≤ 1

min{p−, q−}
max{∥∇u∥min{p−,(q+⌊s⌋)−}

S , ∥∇u∥max{p+,(q+⌈s⌉)+}
S } ≤

R
max{p+,(q+⌈s⌉)+}
k

min{p−, q−}
.

(6.23)
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On the other hand, since Id ∈ Zk, the definition of dk gives

dk ≤ max
u∈Yk

EΛ(u). (6.24)

Combining (6.23) and (6.24), we get

dk ≤
R

max{p+,(q+⌈s⌉)+}
k

min{p−, q−}
:= L(Rk).

To get the lower bound of dk, we make use of the following fact, which is a consequence of Lemma 3.9
by Komiya–Kajikiya [29]

g(Yk) ∩ ∂Bτ ∩ Vk ̸= ∅ for all g ∈ Zk and τ ∈ (0, Rk).

Thus, for any τ ∈ (0, Rk), we have

max
u∈Yk

EΛ(g(u)) ≥ inf
u∈∂Bτ∩Vk

EΛ(u) for all g ∈ Zk.

Let τ ∈ (1, Rk) be arbitrary and fixed. The above inequality in view of definition of dk gives

dk ≥ inf
u∈∂Bτ∩Vk

EΛ(u).

By Lemma 6.6 we can find k0 ∈ N such that for k ≥ k0, we have

∥u∥S⋆ ≤ ek∥∇u∥S for all u ∈ Vk.

Combining this with Proposition 2.18 and Proposition 3.8 for any u ∈ ∂Bτ ∩ Vk for k ≥ k0 and
∥u∥S = τ > 1, we get

EΛ(u) ≥
∥∇u∥α

(2)
1

S
max{p+, q+}

−
Λmax{∥u∥α

(1)
2

S∗ , ∥u∥α
(2)
2

S∗ }
min{(p∗)−, (q∗)−}

−
max{∥u∥α

(1)
3

S⋆
, ∥u∥α

(2)
3

S⋆
}

min{p−⋆ , q−⋆ }

≥ C1∥∇u∥
α

(2)
1

S − ΛC2∥∇u∥
α

(2)
2

S − e
α

(2)
3

k ∥∇u∥α
(2)
3

S

= C1τ
α

(2)
1 − ΛC2τ

α
(2)
2 − e

α
(2)
3

k τα
(2)
3 ,

(6.25)

where α
(2)
1 = min{p−, (q + ⌊s⌋)−},

α
(1)
2 = min

{
(p∗)−,

(
q∗ + ⌊s⌋q

∗

q

)−
}

α
(2)
2 = max

{
(p∗)+,

(
q∗ + ⌈s⌉q

∗

q

)+
}
, (6.26)

α
(1)
3 = min

{
(p⋆)

−,

(
q⋆ + ⌊s⋆⌋

q⋆
q

)−
}

α
(2)
3 = max

{
(p⋆)

+,

(
q⋆ + ⌈s⋆⌉

q⋆
q

)+
}

(6.27)

and Ci for i = 1, 2 depend on the given data and the constants in Proposition 3.8. Note that for Λ > 0
satisfying

0 < Λ <
C1

2C2
R
α

(2)
1 −α(2)

2

k =: U(Rk)

we get

C2Λτ
α

(2)
2 ≤ C1

2
τα

(2)
1 for all τ ∈ (1, Rk).

Using this with (6.1), (6.25) and (6.21) for any k ≥ k0, we obtain

dk ≥ C1

2
τα

(2)
1 − e

α
(2)
3

k τα
(2)
3 := ℓ(τ) ≥ ℓ(τ0) ≥ βe

− α
(2)
3 α

(2)
1

α
(2)
3 −α

(2)
1

k , (6.28)
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where

τ0 :=

 C1α
(2)
1

2α
(2)
3 e

α
(2)
3

k

 1

α
(2)
3 −α

(2)
1

and β :=

(
C1

2

) α
(2)
3

α
(2)
3 −α

(2)
1

(
α
(2)
1

α
(2)
3

) α
(2)
1 α

(2)
1

α
(2)
3 −α

(2)
1

(
α
(2)
3 − α

(2)
1

α
(2)
3

)
> 0.

□

Now we can prove our multiplicity results in the superlinear case.

Theorem 6.8. Let (H0), (H1), (H⋆), (H
sup
⋆ ) and (6.1) be satisfied. Then, for each n ∈ N, there exists

Λn > 0 such that for any Λ ∈ (0,Λn) and λ = 1, the problem (1.9) admits at least n pairs of non-trivial
weak solutions.

Proof. We choose the sequence {Λn}n∈N as follows. By Lemma 6.6, we find for k ≥ k0 that ek > 0.
Then, take Λ1 satisfying

Λ1 ∈ (0, U(Rk1)) and dk1 < L(Rk1) ≤ c∗(Λ1) for k1 > k0,

where the function U and V are defined in Theorem 6.7. The above choice of Λ1 implies that EΛ
satisfies the (PS)dk1

condition thanks to Lemma 6.2. Inductively, we define {Λk}k∈N satisfying

Λn ∈ (0, U(Rkn)) and dkn < L(Rkn) ≤ c∗(Λn) for kn > k0.

Now, let Λ ∈ (0,Λn) for some n ∈ N. Then, by using the definition of Λn, Lemma 6.6 and (6.28), we
have

0 < dk1 < dk2 · · · < dkn < c∗(Λ).

Thus, in the view of Lemma 6.2 and 6.5, dk1 , dk2 , · · · , dkn are distinct critical values of EΛ. Therefore,
EΛ has at least n distinct pairs of critical points. □

6.2. Sublinear growth. In this subsection, we assume that Λ = 1 and λ > 0. For the sake of
simplicity, we write EΛ,λ as Eλ. We suppose the following conditions:

(Hsub
⋆ ) p⋆, q⋆ ∈ C(Ω), s⋆ ∈ L∞(Ω), 1 < p⋆(x), q⋆(x) < N , p⋆(x) < p(x) and q⋆(x) < q(x) for all x ∈ Ω,

and q⋆(x) + s⋆(x) ≥ r > 1, s⋆(x) < s(x) for a.a.x ∈ Ω.

Lemma 6.9. Let (H0), (H1), (H⋆) and (Hsub
⋆ ) be satisfied and

max

{
p+⋆ ,

(
q⋆ + ⌈s⋆⌉

q⋆
q

)+
}
< min{p−, (q + ⌊s⌋)−}. (6.29)

Then, there exists λ0 > 0 such that for λ ∈ (0, λ0), every Palais-Smale sequence {un}n∈N ⊂ W 1,S
0 (Ω)

is bounded.

Proof. By the definition of the Palais-Smale sequence {un}n∈N, we have

Eλ(un) → c and ⟨E ′
λ(un), ϕ⟩ → 0 for every ϕ ∈W 1,S

0 (Ω), for some c ∈ R. (6.30)

Setting

ρ :=

max

{
p+⋆ ,

(
q⋆ + ⌈s⋆⌉ q⋆q

)+}
+min{p−, (q + ⌊s⌋)−}

2
.

Choosing un

ρ as a test function in (5.1), and using (6.30) for n ≥ n0, we obtain,

c+ 1 ≥ Eλ(un)− ⟨J (un),
un
ρ
⟩ =

2∑
i=1

Ei(un)− ⟨Ji(un),
un
ρ
⟩ ≥

2∑
i=1

Ii(un), (6.31)

where

I1(un) :=
ˆ
Ω

(
1

p(x)
− 1

ρ

)
a(x)|∇un|p(x) dx+

ˆ
Ω

(
1

ρ
− 1

p∗(x)

)(
a(x)

1
p(x) |un|

)p∗(x)
dx
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+ λ

ˆ
Ω

(
1

ρ
− 1

p⋆(x)

)(
a(x)

1
p(x) |un|

)p⋆(x)
dx,

and

I2(un) :=
ˆ
Ω

(
1

q(x)
− 1

ρ

)
b(x)|∇un|q(x) logs(x)(1 + |∇un|) dx

−
ˆ
Ω

b(x)s(x)

q(x)ρ
|∇un|q(x)+1 log

s(x)−1(1 + |∇un|)
1 + |∇un|

dx

+

ˆ
Ω

(
1

ρ
− 1

q∗(x)
+

⌊s(x)⌋q∗(x)
q(x)ρ

)(
b(x) logs(x)(1 + |un|)

) q∗(x)
q(x) |un|q

∗(x) dx

+ λ

ˆ
Ω

(
1

ρ
− 1

q⋆(x)
+

⌊s⋆(x)⌋q⋆(x)
q(x)ρ

)(
b(x) logs⋆(x)(1 + |un|)

) q⋆(x)
q(x) |un|q⋆(x) dx.

Estimate for I1(un) : By condition (6.29), we can choose δ > 0 small enough such that

δ ≤ max
x∈Ω

1

2
max

{
1

p(x)
− 1

ρ
,
1

ρ
− 1

p∗(x)

}
.

This further leads to

I1(un) ≥ δ

ˆ
Ω

a(x)|∇un|p(x) dx+ δ

ˆ
Ω

(
a(x)

1
p(x)) |un|

)p∗(x)
dx

− λC0(N, p)

ˆ
Ω

(
a(x)

1
p(x) |un|

)p⋆(x)
dx.

(6.32)

Estimate for I2(un) : For every δ > 0 we can find a constant M(δ, s+) > 0 such that t
log(1+t)(1+t) <

δ
s++1 for t ≥M . Therefore we have the following estimates: By splitting the domain depending upon

the size of |∇un|, we get ∣∣∣∣ ˆ
Ω

b(x)s(x)

q(x)ρ
|∇un|q(x)+1 log

s(x)−1(1 + |∇un|)
1 + |∇un|

dx

∣∣∣∣
≤ C(ν) + ν

ˆ
Ω

b(x)|∇un|q(x) logs(x)(1 + |∇un|) dx.
(6.33)

We choose δ, ν > 0 small enough such that

δ ≤ 1

4
max

x∈supp(b)
max

{
1

q(x)
− 1

ρ
− ν,

1

ρ
− 1

q∗(x)

}
.

By using the estimates in (6.33), Propositions 2.18 and 3.8, we obtain

I2(un) ≥ δ

ˆ
Ω

b(x)|∇un|q(x) logs(x)(1 + |∇un|) dx

+ δ

ˆ
Ω

(
b(x) logs(x)(1 + |un|)

) q∗(x)
q(x) |un|q

∗(x) dx

− λC0

ˆ
Ω

(
b(x) logs⋆(x)(1 + |un|)

) q⋆(x)
q(x) |un|q⋆(x) dx− C(M, δ).

(6.34)

Inserting the estimates (6.32) and (6.34) in (6.31) and using (5.4) with λ < λ0 := δ
CC0

, we deduce

c+ c∗(δ) ≥ δ

ˆ
Ω

S(x, |∇un|) dx+ δ

ˆ
Ω

S∗(x, |un|) dx− λC0

ˆ
Ω

S⋆(x, |un|) dx

≥ δ

ˆ
Ω

S(x, |∇un|) dx+ (δ − λCC0)

ˆ
Ω

S∗(x, |un|) dx− λC0

ˆ
Ω

h(x) dx

≥ δ

ˆ
Ω

S(x, |∇un|) dx− δ

C

ˆ
Ω

h(x) dx.

(6.35)
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This shows the assertion of the lemma. □

Lemma 6.10. Let (H0), (H1), (H⋆), (H
sub
⋆ ) and (6.29) be satisfied. Then the energy functional Eλ

satisfy the (PS)c condition for c < c∗∗ for all λ ∈ (0, λ0), where λ0 is given in Theorem 6.9.

Proof. Let {un}n∈N be a Palais-Smale sequence, that is, (6.2) holds. Taking Lemma 6.1 and Theorem
4.6 into account, we can find a weakly convergent subsequence satisfying (6.8). We claim that I = ∅.
Assume we can find j ∈ I. By following the same arguments as in Lemma 6.2, we obtain

Cℓ1♯ (C∗)ℓ2 ≤ θj with ℓ1 ∈ {c1, c2} and ℓ2 ∈ {c3, c4}. (6.36)

Now, from (6.35) and (6.36), it follows that

c ≥ δθj − λ0C0∥h∥L1(Ω) − c∗ ≥ δCℓ1♯ (C∗)ℓ2 − λ0C0∥h∥L1(Ω) − c∗ := c∗∗,

which is a contradiction. Therefore I = ∅ and so, from (6.8), Lemma 4.3 and Proposition 2.18, we
conclude that

un → u in LS∗
(Ω).

Using un − u as a test function in (6.2) gives

⟨J1(un), un − u⟩S = ⟨J (un), un − u⟩S + ⟨J2(un), un − u⟩S + λ⟨J3(un), un − u⟩S . (6.37)

From (H1) and (Hsub
⋆ ) we conclude that

q⋆(x) + s⋆(x)
q⋆(x)

q(x)
> 1 and q∗(x) + s(x)

q∗(x)

q(x)
> 1.

From this along with Hölder’s inequality as in Proposition 2.12, one has

|⟨J2(un), un − u⟩S | ≤
ˆ
Ω

(a(x))
p∗(x)
p(x) |un|p

∗(x)−1|un − u|dx

+

ˆ
Ω

(
b(x) logs(x)(1 + |un|)

) q∗(x)
q(x) |un|q

∗(x)−1

(
1 +

|s(x)|q∗(x)
q(x)

|un|
log(1 + |un|)(1 + |un|)

)
|un − u|dx

≤
ˆ
Ω

(a(x))
p∗(x)
p(x) |un|p

∗(x)−1|un − u|dx

+

∥∥∥∥1 + |s(·)|q∗(·)
q(·)

∥∥∥∥
∞,Ω

ˆ
Ω

(
b(x) logs(x)(1 + |un|)

) q∗(x)
q(x) |un|q

∗(x)−1|un − u|dx

≤ C

ˆ
Ω

S∗(x, |un|)
|un|

|un − u|dx ≤ C

∥∥∥∥S∗(x, |un|)
|un|

∥∥∥∥
(S∗)♯

∥un − u∥S∗

with (S∗)♯ being the Sobolev conjugate function of S∗ as defined in Definition 2.5. Now, applying the
conjugate modular relation in Proposition 2.13 and Proposition 2.11 yields

|⟨J2(un), un − u⟩S | ≤ C

∥∥∥∥S∗(x, |un|)
|un|

∥∥∥∥
(S∗)♯

∥un − u∥S∗

≤ C1∥un∥S∗∥un − u∥S∗ → 0asn→ ∞.

(6.38)

With the same arguments as above, it is concluded that

|⟨J3(un), un − u⟩S | ≤ C1∥un∥S∗
⋆
∥un − u∥S∗

⋆
→ 0 as n→ ∞. (6.39)

Furthermore, by the boundedness of {un}n∈N in W 1,S
0 (Ω) along with (6.2), we obtain

lim
n→∞

|⟨J (un), un − u⟩S | = 0. (6.40)

Collecting the estimates (6.38), (6.39) and (6.40) in (6.37), we have

⟨J1(un), un − u⟩S → 0 as n→ ∞.

Then, using Theorem 5.5 gives un → u in W 1,S
0 (Ω) due to the (S+) property of the operator J1. □
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Let u ∈W 1,S
0 (Ω) be such that ∥∇u∥S ≤ 1. By Proposition 2.18, we have

Eλ(u) ≥
1

max{p+, q+}
∥∇u∥α1

S − 1

max{(p∗)−, (q∗)−}
min{∥u∥α

(1)
2

S∗ , ∥u∥α
(2)
2

S∗ }

− λ

max{(p∗⋆)−, (q∗⋆)−}
min{∥u∥α

(1)
3

S⋆
, ∥u∥α

(2)
3

S⋆
},

(6.41)

where α1 = max{p+, (q + ⌈s⌉)+}, and α(i)
2 , α

(i)
3 for i = 1, 2 are defined in (6.26) and (6.27). Now, by

using the Sobolev embedding in Proposition 3.8, there exists a constant C > 0 such that

max{∥u∥S⋆ , ∥u∥S∗} ≤ C∥∇u∥S for all u ∈W 1,S
0 (Ω).

Using the above inequality in (6.41) for ∥u∥ ≤ 1, we obtain

Eλ(u) ≥
1

max{p+, q+}
∥∇u∥α1

S − Cα2

max{(p∗)−, (p∗)−}
∥∇u∥α2

S − λCα3

max{(p⋆)−, (q⋆)−}
∥∇u∥α3

S

= C1∥∇u∥α3

S
(
C2∥∇u∥α1−α3

S − C3∥∇u∥α2−α3

S − λ
)
:= hλ(∥∇u∥S),

(6.42)

where α2 ∈ {α(1)
2 , α

(2)
2 }, α3 ∈ {α(1)

3 , α
(2)
3 },

C1 :=
max{(p⋆)−, (q⋆)−}

Cα3
, C2 :=

Cα3

max{(p⋆)−, (q⋆)−}max{p+, q+}
,

C3 :=
Cα2+α3

max{(p⋆)−, (q⋆)−}max{(p∗)−, (p∗)−}
.

In order to study the behavior of hλ, we define

g(t) = C2t
α1−α3 − C3t

α2−α3 .

It is easy to see that the function g has a maximum at t∗ =
[
(α1−α3)C2

(α2−α3)C3

] 1
(α2−α3)

, and the maximum

value is

λ1 := g(t∗) = C
α2−α3
α2−α1
2 C

α3−α2
α2−α1
3

(
α1 − α3

α2 − α3

)α1−α3
α2−α1

(
α2 − α1

α2 − α3

)
> 0 if α3 < α1 < α2.

Then, for any λ ∈ (0, λ1), the function hλ has clearly two roots R1(λ) and R2(λ) with 0 < R1(λ) <
t∗ < R2(λ),

R1(λ) → 0 as λ→ 0 and hλ(t)

{
> 0 if t ∈ (R1(λ), R2(λ)),

< 0 if t ∈ (0, R1(λ)) ∪ (R2(λ),∞).
(6.43)

By (6.43), we find λ2 > 0 such that for λ ∈ (0, λ2)

R1(λ)
min{p−,(q+⌊s⌋)−} < min

{
1

2max{p+, q+}}
,
t
max{p+,(q+⌊s⌋)+}
∗

2max{p+, q+}

}
.

Set
λ∗ := min{λ0, λ1, λ2}. (6.44)

For each λ ∈ (0, λ∗), we define the truncated functional Ẽλ : W 1,S
0 (Ω) → R such that

Ẽλ(u) = E1(u)− τ (E1(u)) [E2(u) + λE3(u)] , u ∈W 1,S
0 (Ω),

where τ ∈ C∞
c (R) such that 0 ≤ τ ≤ 1,

τ(t) =

{
1 if |t| ≤ R1(λ)

min{p−,(q+⌊s⌋)−},

0 if |t| ≥ 2R1(λ)
min{p−,(q+⌊s⌋)−}.

It is easy to see that Ẽλ ∈ C1(W 1,S
0 (Ω),R) such that Eλ(u) ≤ Ẽλ(u) for u ∈W 1,S

0 (Ω),

Ẽλ(u) = E1(u) for u ∈W 1,S
0 (Ω) with E1(u) ≥ 2R1(λ)

min{p−,(q+⌊s⌋)−}, (6.45)
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and

Ẽλ(u) = Eλ(u) for u ∈W 1,S
0 (Ω) with E1(u) ≤ R1(λ)

min{p−,(q+⌊s⌋)−}.

Lemma 6.11. Let λ ∈ (0, λ∗). Then, for u ∈W 1,S
0 (Ω) with Ẽλ(u) < 0,

Ẽλ(u) = Eλ(u) and Ẽ ′
λ(u) = E ′

λ(u).

Proof. Let λ ∈ (0, λ∗) and u ∈ W 1,S
0 (Ω) with Ẽλ(u) < 0. First we claim that ∥∇u∥S < 1. Suppose

that ∥∇u∥ ≥ 1, then by Proposition 2.18 we have
´
Ω
S(x,∇u) dx ≥ 1. Thus,

E1(u) ≥
1

max{p+, q+}

ˆ
Ω

S(x,∇u) dx ≥ 1

max{p+, q+}
≥ 2R1(λ)

min{p−,(q+⌊s⌋)−}.

The above inequality gives a contradiction as a virtue of (6.45) and Ẽλ(u) < 0. Furthermore, (6.42)
implies hλ(∥∇u∥S) < 0, i.e., either ∥∇u∥S < R1(λ) or ∥∇u∥S > R2(λ) > t∗. The latter inequality
with Proposition 2.18 and the upper bound of R1(λ) gives

E1(u) ≥
1

max{p+, q+}

ˆ
Ω

S(x,∇u) dx ≥
∥∇u∥max{p+,(q+⌊s⌋)+}

S
max{p+, q+}

≥ t
max{p+,(q+⌊s⌋)+}
∗

max{p+, q+}
≥ 2R1(λ)

min{p−,(q+⌊s⌋)−}.

This is a contradiction to Ẽλ(u) < 0 because of (6.45). Thus, it must hold ∥∇u∥S < R1(λ) and
therefore by Proposition 2.18

E1(u) ≤
1

min{p−, q−}

ˆ
Ω

S(x,∇u) dx ≤
∥∇u∥min{p−,(q+⌊s⌋)−}

S
min{p−, q−}

≤ R1(λ)
min{p−,(q+⌊s⌋)−}.

□

In order to prove our multiplicity results, we will use some topological results introduced by Kras-
nosel’skii [30]. To this end, let X be a Banach space and let Σ be the class of all closed subsets
A ⊂ X \ {0} that are symmetric with respect to the origin, that is, u ∈ A implies −u ∈ A.

Definition 6.12. Let A ∈ Σ. The Krasnosel’skii genus γ(A) of A is defined as being the least positive
integer k such that there is an odd mapping ϕ ∈ C(A,Rk) such that ϕ(x) ̸= 0 for any x ∈ A. If k does
not exist, we have γ(A) = ∞. Furthermore, we set γ(∅) = 0.

The following proposition states the main properties of the Krasnosel’skii genus, see Rabinowitz
[40].

Proposition 6.13. Let A,B ∈ Σ. Then, the following hold:

(i) If there exists an odd continuous mapping from A to B, then γ(A) ≤ γ(B).
(ii) If there is an odd homomorphism from A to B, then γ(A) = γ(B).

(iii) If γ(B) <∞, then γ(A \B) ≥ γ(A)− γ(B).
(iv) The k-dimensional sphere Sk has a genus of k + 1 by the Borsuk-Ulam Theorem.
(v) If A is compact, then γ(A) <∞ and there exists δ > 0 such that Nδ(A) ⊂ Σ and γ(Nδ(A)) =

γ(A), where Nδ(A) = {x ∈ X : dist(x,A) ≤ δ}.

Now, we are going to construct an appropriate mini-max sequence of negative critical values for the
functional Ẽλ.

Lemma 6.14. Let λ ∈ (0, λ∗). Then, for each k ∈ N there exists ε > 0 such that

γ(Ẽ−ε
λ ) ≥ k.

where Ẽ−ε
λ = {u ∈W 1,S

0 (Ω): Ẽλ(u) ≤ −ε}.
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Proof. Let λ ∈ (0, λ∗), k ∈ N be fixed and Xk an k-dimensional subspace of W 1,S
0 (Ω). Since all norms

are equivalent on Xk, we find δk > (R1(λ))
−min{p−,(q+⌊s⌋)−} > 1 such that

δ−1
k ∥u∥S⋆

≤ ∥∇u∥S ≤ δk∥u∥S⋆
for all u ∈ Xk. (6.46)

For any u ∈ Xk with ∥∇u∥S ≤ δ−1
k < 1, using Proposition 2.18 and (6.46), we have

Ẽλ(u) ≤
∥∇u∥min{p−,(q+⌊s⌋)−}

S
min{p−, q−}

− λ
∥u∥max{p+⋆ ,(q⋆+⌈s⋆⌉ q⋆

q )
+}

S⋆

max{p+⋆ , q+⋆ }

≤
∥∇u∥min{p−,(q+⌊s⌋)−}

S
min{p−, q−}

− λ

(
δ−1
n ∥∇u∥S

)max{p+⋆ ,(q⋆+⌈s⋆⌉ q⋆
q )

+}

max{p+⋆ , q+⋆ }

< ∥∇u∥max{p+⋆ ,(q⋆+⌈s⋆⌉ q⋆
q )

+}
S

∥∇u∥min{p−,(q+⌊s⌋)−}−max{p+⋆ ,(q⋆+⌈s⋆⌉ q⋆
q )

+}
S

min{p−, q−}

−λδ
−max{p+⋆ ,(q⋆+⌈s⋆⌉ q⋆

q )
+}

n

max{p+⋆ , q+⋆ }

 .

Now we choose t such that

0 < t < min

δ−1
k ,

λδ−max{p+⋆ ,(q⋆+⌈s⋆⌉ q⋆
q )

+}
k

max{p+⋆ , q+⋆ }


1

min{p−,(q+⌊s⌋)−}−max{p+⋆ ,(q⋆+⌈s⋆⌉ q⋆
q )

+
}


and let

Sk := {u ∈ Xk : ∥∇u∥S = t}.

Clearly, Sk is homeomorphic to the (k− 1)-dimensional sphere Sk−1. Hence, by Proposition 6.13 (iv),
we know that γ(Sk) = k. With the above choice of t, we obtain

Ẽλ(u) ≤ −ε < 0 for all u ∈ Sk (6.47)

where

ε = −tmax{p+⋆ ,(q⋆+⌈s⋆⌉ q⋆
q )

+}

 tmin{p−,(q+⌊s⌋)−}−max{p+⋆ ,(q⋆+⌈s⋆⌉ q⋆
q )

+}

min{p−, q−}
−
λδ

−max{p+⋆ ,(q⋆+⌈s⋆⌉ q⋆
q )

+}
k

max{p+⋆ , q+⋆ }

 .

Finally, by using (6.47) and Proposition 6.13 (i), we get

Sk ⊂ Ẽ−ε
λ and γ(Ẽ−ε

λ ) ≥ γ(Sk) = k.

□

Now, we define the following sets, for any k ∈ N,
Σk = {A ⊂W 1,S

0 (Ω) \ {0} : A is closed, A = −A and γ(A) ≥ k},

Kc = {u ∈W 1,S
0 (Ω) \ {0} : Ẽ ′

λ(u) = 0 and Ẽλ(u) = c}
and the number

ck = inf
A∈Σk

sup
u∈A

Ẽλ(u).

It is easy to see that ck ≤ ck+1 for any n ∈ N.

Lemma 6.15. For each k ∈ N, it holds that

−∞ < ck < 0.
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Proof. Let λ ∈ (0, λ∗) and k be fixed. From Lemma 6.14, we know that there exists ε > 0 such

that γ(Ẽ−ε
λ ) ≥ k. Furthermore, because Ẽλ is even and continuous, we know that Ẽ−ε

λ ∈ Σk. From

Ẽλ(0) = 0, we have 0 ∈ Ẽ−ε
λ . Since supu∈Ẽ−ε

λ
Ẽλ(u) ≤ −ε and Ẽλ is bounded from below, we obtain the

assertion. □

Lemma 6.16. Let λ ∈ (0, λ∗) and k ∈ N. If c = ck = ck+1 = · · · = ck+m for some m ∈ N, then
Kc ∈ Π and

γ(Kc) ≥ m+ 1.

Proof. The proof follows by repeating the same arguments as in Lemma 3.6 by Farkas–Fiscella–Winkert
[15]. □

Theorem 6.17. Let (H0), (H1), (H⋆), (Hsub
⋆ ), and (6.29) be satisfied. Then, for λ ∈ (0, λ∗) and

Λ = 1, problem (1.9) admits infinitely many weak solutions with negative energy values. Moreover, if
uλ is a solution of (1.9) corresponding to λ, then

lim
λ→0+

∥uλ∥1,S = 0.

Proof. Let λ ∈ (0, λ∗), where λ∗ is given in (6.44). By Lemma 6.15, Ẽλ admits a sequence {uk}k∈N of

critical points with Ẽλ(uk) < 0. We consider two situations. If −∞ < c1 < c2 < · · · < cn < cn+1 . . . ,

then Ẽλ admits infinitely many critical values. If there exists k, l ∈ N such that ck = ck+1 = · · · = ck+l,
then by Lemma 6.16 and Rabinowitz [40, Remark 7.3], γ(Kc) ≥ l + 1 and the set Kc has infinitely

many points, which are infinitely many critical values of Ẽλ.
By Lemma 6.11, {uk}k∈N are the critical points of Eλ and hence weak solutions of (1.9). Now, let

uλ be a solution of (1.9) corresponding to λ. Then, again by Lemma 6.11 and (6.43)

1

max{p+, q+}

ˆ
Ω

S(x,∇uλ) dx ≤
ˆ
Ω

M(x,∇uλ) dx < R1(λ)
min{p−,(q+⌊s⌋)−} → 0 as λ→ 0+.

Finally, from Proposition 2.19, we get the required claim and the proof is complete. □
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(Á. Crespo-Blanco) Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623
Berlin, Germany

Email address: crespo@math.tu-berlin.de

(P. Winkert) Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623
Berlin, Germany

Email address: winkert@math.tu-berlin.de


	1. Introduction
	2. The function spaces
	3. Musielak-Orlicz Sobolev embeddings
	4. Concentration-compactness principle
	5. Properties of the energy functional and the double phase operator
	6. Application of concentration compactness principle
	6.1. Superlinear growth
	6.2. Sublinear growth

	Acknowledgments
	References

