DEGENERATE SINGULAR KIRCHHOFF PROBLEMS
IN MUSIELAK-ORLICZ SPACES

UMBERTO GUARNOTTA AND PATRICK WINKERT

ABSTRACT. In this paper we study quasilinear elliptic Kirchhoff equations
driven by a non-homogeneous operator with unbalanced growth and right-
hand sides that consist of sub-linear, possibly singular, and super-linear reac-
tion terms. Under very general assumptions we prove the existence of at least
two solutions for such problems by using the fibering method along with an
appropriate splitting of the associated Nehari manifold. In contrast to other
works our treatment is very general, with much easier and shorter proofs as
it was done in the literature before. Furthermore, the results presented in
this paper cover a large class of second-order differential operators like the p-
Laplacian, the (p, g)-Laplacian, the double phase operator, and the logarithmic
double phase operator.

1. INTRODUCTION

Given a bounded domain Q C RN, N > 2, with Lipschitz boundary 0f2, this
paper deals with general Kirchhoff problems involving singular and super-linear
reaction terms of the form

—m </Q H(z, |Vul) d:c) L(u) = Af(u) + g(u) in Q,
u>0 in Q, (Px)
u=0 on 012,

where A > 0 is a parameter, f,g: (0,+00) — (0,+00) are continuously differen-
tiable functions, m: [0, +00) — [0, 400) is the so-called Kirchhoff function, H: Q x
[0, +00) — [0, +00) is a generalized N-function, while £: Wy 7 (Q) — W (Q)*
is an operator (possibly non-homogeneous and with unbalanced growth) satisfy-
ing certain structure conditions. To be more precise, we suppose the following
assumptions on the data of problem (P)):

(H) (Hy,) The function m: [0,4+00) — [0,400) is continuously differentiable,

non-decreasing, and m(s) > 0 for all s > 0. In particular,
!
m/(s) > 0.

7 := sup smAs)
5>0 m(s)

(Hz) The function H: Q x [0, +00) — [0, 400) is a generalized N-function
such that H(z,-) € C?(0,+o0) for a.a.z € Q and
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) sOsH(z, s)
= — > 1
@ p (w,s)efllri(o,-‘roo) H(z,s) '
(i) q: sup 7885%(% ) < p*;

(z,5)€Q%(0,400) ’H(m,s)
502, H(x, s)

(w,s)eég(O,-l-oo) OsH(x,s)

$0% H(z,s)
iv) Iy = sup ==
( ) * (2,8)€Qx(0,4+00) asH(Ia S)

(iii) I_ := > 0;

< +00,

with the Sobolev conjugate p* of p. Moreover, L: WOH-L(Q) —
W H(Q)* is defined as

L(u) :=div <85H(l‘, |Vu|)|§z|> . (1.1)
In addition, we suppose that
WLH(Q) — L*(Q) compactly. (1.2)

(Hf) The function f: (0,4+00) — (0,400) is continuously differentiable
and satisfies

o sf(s) B
Vo= sy T
. sf(s)
T+ '__;2% f(s) <L

(Hy) The function g: (0,+00) — (0,400) is continuously differentiable
and satisfies

!/
B AC Y
s>0 g(s)
sg'(s) _ .
ry:=1+su <p.
* s>g g9(s) P

(H¢) The following condition holds true:
an+ly<r-—1,
where ¢, are defined in (H), n is given in (H,,), and r_ comes
from (H,).
The following conclusions can be made from hypotheses (H):

e the condition 0 < [ < I} < 400 in (Hz) makes £ a uniformly elliptic
operator;

e (Hy) ensures that f is sub-linear, possibly singular;

e (H,) guarantees that g is sub-critical;

e (H¢) is a super-linearity condition on g.

First, we mention that hypotheses (H) includes the standard Kirchhoff function

m(s) = a+ bs" with a,b € R?\ {(0,0)}, that means we allow degenerate Kirchhoff
problems which create the most interesting models in applications. The following
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operators are included in hypotheses (H), whereby we suppose in all cases that

1<p<N,p<gq,and 0 < u(-) € L>=(Q), while we assume ¢ < p* := N_pp for
(i) and ¢ + r < p* for (ii)-(iii), where x := 5= € (0,1) and ¢o > 0 is the unique

solution of t = elog(e + t):
(i) Double phase operator:
div (|VulP7*Vu + p(z)|Vul|?*Vu)
generated by the generalized N-function
H(x,s) = sP + u(x)s? for all (x,s) € Q x [0,00), (1.3)

see Crespo-Blanco—Gasinski-Harjulehto-Winkert [11];
(ii) Logarithmic double phase operator:

Vul
div ( |VulP2Vu + p(x [lo e+ |Vul|) + |} Vu q2Vu> 14
(1929 -+ o) [ogte + (9 + L] vl (14)
generated by the generalized N-function
H(z,s) = sP 4+ p(x)s?log(e +s) for all (z,s) € Q x [0,00), (1.5)

where e is the Euler number, see Arora—Crespo-Blanco—Winkert [2];
(iii) Double phase operator with logarithmic perturbation:

Vul
div ( (|VulP72Vu + pu(2)|Vul|!2Vu [lo e+ |Vul|) + I}) , 1.6
((vur=29u+ w(@Tur=>v0) [logte+ (vul) + L) )
generated by the generalized N-function
H(x,s) = [s? + u(x)s!|logle +s) for all (x,s) € Q x [0,00), (1.7)
where e is the Euler number, see Lu—Vetro—Zeng [22].

We point out that, in the examples above, we do not need that 0 < u(-) € C%1(Q)
and

q 1

- <14+ = 1.8

PR (1.8)
as required quite often in the double phase setting. Note that (1.2) holds for
(1.3), (1.5), and (1.7), see [L1, Proposition 2.18], [2, Proposition 3.9], and [22,

Proposition 2.24], respectively, without supposing (1.8). Sufficient conditions for
the compact embedding in (1.2) to be true can be found in the book by Harjulehto—
Histo [18, see Chapter 6.3] or the recent paper by Cianchi-Diening [9, Theorem
3.7]. Concerning the nonlinearities on the right-hand side of (P,), the choices
f(s) =577 and g(s) = s""! are allowed for 0 <y <1< ¢ <71 < p*.

Our main result is the following theorem.

Theorem 1.1. Let (H) be satisfied. Then there exists A > 0 such that, for any
A€ (0,A), problem (P)) admits two weak solutions with opposite energy sign.

The proof of Theorem 1.1 is based on the fibering method along with the corre-
sponding Nehari manifold related to problem (P,). Indeed, even though the energy
functional J: Wol’H () — R associated with (P,) is not C* (due to the presence of
the singular term f), one can define the Nehari manifold to (P,) as

N = {ue Wy (2) \ {0}: (1) = 0},
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where 1,,: (0,400) — R is the fibering map defined for any u € W(}H(Q) \ {0} by
Py (t) := J(tu) for all t > 0.

The idea is then to split the Nehari manifold into three disjoint parts minimizing
J over two of them to get the required solutions with different energy sign. This
method is not new, but it is the first time that it is applied to a very general
setting and so no concrete, long calculations are needed. Indeed, we do not only
cover the results obtained by Papageorgiou—Repovs—Vetro [27] ((g¢, p)-Laplacian),
Papageorgion—Winkert [20] (weighted p-Laplace), Liu-Dai-Papageorgiou—Winkert
[20] (double phase operator) or Arora—Fiscella—Mukherjee-Winkert [4] (Kirchhoff
double phase operator), but we also have much easier and shorter proofs as in those
papers and we also cover new operators within our setting, like the logarithmic
double phase operators given in (1.4) and (1.6).

In general, the use of the fibering method along with the Nehari manifold is
a very powerful tool and has been further developed by the works of Drabek—
Pohozaev [13] and Sun-Wu-Long [28]. Subsequently, several authors have applied
this method to various problems of singular type and non-singular type. We refer to
works by Alves—Santos—Silva [1] (singular-superlinear Schrédinger equations with
indefinite-sign potential), Arora-Fiscella-Mukherjee-Winkert [3] (critical double
phase Kirchhoff problems with singular nonlinearity), Chen-Kuo-Wu [7] (Kirchhoff
Laplace equations), Fiscella—Mishra [15] (fractional singular Kirchhoff problems),
Kumar-Réadulescu—Sreenadh [19] (singular problems with unbalanced growth and
critical exponent), Liu-Winkert [21] (double phase problems in RY), Mukherjee—
Sreenadh [23] (fractional p-Laplace problems), Tang—Cheng [29] (ground state so-
lutions of Nehari-Pohozaev type for Kirchhoff-type problems with general poten-
tials), Wang—Zhao—Zhao [30] (critical Laplace equations with singular term), see
also the references therein. For a survey concerning singular problems, we address
the reader to the overview article by Guarnotta—Livrea—Marano [17]. It should be
mentioned that, in contrast to the results available in the literature (see the list
above and also Candito-Guarnotta—Perera [6] and Candito-Guarnotta—Livrea [5]),
our method does not require the use of Hardy-Sobolev’s inequality.

The paper is organized as follows. In Section 2 we introduce our function space
and recall some basic facts about generalized N-functions and related Musielak-
Orlicz Sobolev spaces. Further, we prove some auxiliary results and give the pre-
cise definition of the Nehari manifold to problem (P,) including its splitting into
three disjoint parts. Section 3 discusses some basic estimates which are needed in
the sequel while Section 4 gives a detailed study of the Nehari manifold and its
properties. Finally, in Section 5, we are able to prove Theorem 1.1.

2. PRELIMINARIES

In this section we recall some basic definitions about N-functions, Musielak-
Orlicz Sobolev spaces and its properties. These results are mainly taken from the
monographs by Chlebicka-Gwiazda-Swierczewska-Gwiazda—Wréblewska-Kamiriska
[8], Diening-Harjulehto-Hést6-Ruzicka [12], Harjulehto-Hésto [18], Musielak [24],
and Papageorgiou—Winkert [25]. We start with some definitions.

Definition 2.1.

(i) A continuous and convex function p: [0,00) — [0,00) is said to be a P-
function if ¢(0) =0 and p(t) > 0 for all t > 0.
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(ii) A function p: Q x [0,00) — [0,00) is said to be a generalized ®-function if
(-, t) is measurable for all t > 0 and (x,-) is a P-function for a.a.x € Q.
We denote the set of all generalized ®-functions on by ®(Q).

(iii) A function p € ®(Q) is locally integrable if @(-,t) € L1 () for all t > 0.

(iv) A function ¢ € ®(Q) satisfies the Ag-condition if there exist a positive
constant C' and a nonnegative function h € L*(Q) such that

o(x,2t) < Cp(x,t) + h(z)

for a.a.x € Q and for all t € [0,00).

(v) Given @, € ®(Q), we say that ¢ is weaker than 1, denoted by ¢ < 1,
if there exist two positive constants C1,Cy and a nonnegative function h €
LY(Q) such that

e(z,t) < Cry(z, Caot) + h(x)
for a.a.x € Q and for all t € [0,00).

For ¢ € ®(£2) we denote by p, the corresponding modular given by

polu) = /ng(a:, |ul) de.
Let M(€2) be the set of all measurable functions u: 2 — R. Then, the Musielak-
Orlicz space L¥(€2) is defined by
L?(Q) := {u € M(Q): there exists o > 0 such that p,(cu) < +oo}
equipped with the norm

lull, := inf {a >0: py (g) < 1} .
The next proposition is taken from Musielak [24, Theorem 7.7 and Theorem 8.5].

Proposition 2.2.

(i) Let ¢ € ®(Q). Then (L¥(2),] - ||,) is a Banach space.
(ii) Let ¢,v € ®(Q) be locally integrable with ¢ < 1. Then

LY(Q) < L?(Q).
The following proposition can be found in the books by Musielak [24, Theorem
8.13] and Diening-Harjulehto-Hé&st6-Ruzicka [12, Lemma 2.1.14].
Proposition 2.3. Let p € ().
(i) If ¢ satisfy the Ag-condition, then
LP(Q) ={u e M(Q): py(u) < +oo}.
(i) Furthermore, if u € L¥(Y), then py(u) < 1 (resp.= 1; > 1) if and only if
lull, <1 (resp.=1;>1).
Now we can state the definition of a N-function.

Definition 2.4. A function : [0,00) — [0,00) is called N-function if it is a ®-
function such that
o(t)

lim M:0 and lim —= = o0
t—0+ ¢ t—oo
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We call a function p: Q@ xR — [0,00) a generalized N -function if o(-,t) is measur-
able for all t € R and ¢(x,-) is a N-function for a.a.x € Q. We denote the class
of all generalized N -functions by N(Q).

Now, let ¢ € ®(9). The corresponding Sobolev space W# () is defined by
Whe(Q) := {u € L?(Q): |Vu| € L¥(Q)}
equipped with the norm
[ull1,e = llulle + [ Vull,
where ||Vull, = || [Vaul| ||,. If ¢ € N(Q) is locally integrable, we denote by Wy*#(2)
the completion of C§°(Q2) in Wh#(Q).
The next theorem gives a criterion when the Sobolev spaces are Banach spaces

and also reflexive. This result can be found in Musielak [24, Theorem 10.2] and
Fan [14, Proposition 1.7 and 1.8].

Theorem 2.5. Let ¢ € N() be locally integrable such that
inf 1 .
inf o(z,1) >0

Then the spaces Wh?(Q) and Wy'?(Q) are separable Banach spaces. Moreover,
they are reflexive if L?(Q) is reflexive.

Let us now consider the generalized N-function H satisfying hypotheses (H.).
First note, that from Lemma 2.3.16 in Chlebicka—Gwiazda—Swierczewska-Gwiazda—
Wréblewska-Kaminska [3], we know that H satisfies the As-condition and so, by
Proposition 2.3, the space L* () can be given by

LH(Q) = {u € M(Q): py(u) < +o0}
with the associated modular py(-). Also, Corollary 3.5.5 in [8] guarantees that
L*(Q) is reflexive and so, by Theorem 2.5, the spaces W1 *(Q) and WolH(Q)
are separable and reflexive. Note that (1.2) implies the validity of the Poincaré
inequality, i.e.,
ull3 < C|[Vully for all u € Wy Q). (2.1)

We refer to the proof of Proposition 2.18 in [11] which can be done for any gener-
alized N-function in the same way. Using (2.1), we can equip the space Wol’H Q)
with the equivalent norm

lul = [Vullz for all u e Wy ().

Note that the requirement to suppose (1.2) is very general. Indeed, in Harjulehto—
Hasto [18, see Chapter 6.3] or Cianchi-Diening [9, Theorem 3.7] one can find suffi-
cient conditions for (1.2) to hold and one key assumption is condition (A1), which
says the following:
e A generalized N-function ¢: Q x [0,00) — [0,00) satisfies (A1) if there
exists 8 € (0,1) such that

B (x,t) < o (y,t)
1

for every t € [1, W]’ for a.a.z,y € BNQ and for every ball B with |B| < 1.
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We avoided to suppose conditions like (A1) because the embedding (1.2) is more
general than assumption (Al). In fact, in [2], [11], and [22] the validity of (1.2)
for the logarithmic double phase operator, the double phase operator, and the
double phase operator with logarithmic perturbation have been proved without
condition (Al). For (Al) to be true for these operators we have to require that
0 < pu(-) e C%(Q) and

q 1

- <14+ —, 2.2
see [2, Theorem 3.12], [11, Theorem 2.23], and [22, Proposition 2.27]. However, the
compactness of (1.2) still holds when 0 < u(-) € L°°(Q) without supposing (2.2),
see [2, Proposition 3.9], [11, Proposition 2.18], and [22, Proposition 2.24].

Next, we introduce the following functions, useful to compare generalized N-
functions with suitable power functions. To this end, for given —oco < a < 8 < 400,
we define

WE(t) = min{t*,t*} and W (t) := max{t®,¢"}. (2.3)
The next proposition summarizes the information carried by the so-called ‘in-
dices’, i.e., the quantities appearing in (2.5) below. Although the result is well-

known for N-functions, for the sake of completeness we will sketch its proof in a
more general case, where no convexity of functions is required.

Proposition 2.6. Let K: [0,+00) — [0,+00) be of class C?, strictly increasing,
and such that K(0) = 0. Set k := K’ and suppose

li k(s)=0 2.4
Jim s (s) =0, (2.4)
as well as K(s) K(s)
sk'(s sk'(s
— ) = < = . .
0o < i ig% i) =S ) Sk < 400 (2.5)
Then K(s) K(s)
sk(s sk(s
< < < . .
WIS R) SR ST 20
Moreover, o
KW (5) < k(s) < k()W (s) (2.7)
and it
KMW;HE (s) < K(s) < KW (5) (2.8)
for all s > 0.
Proof. By (2.5) we have
irk(t) < tk'(t) < spk(t) for all t > 0. (2.9)
Integrating by parts, along with K(0) = 0 and (2.4), yields
1K (s) < sk(s) — K(s) < spK(s) forall s> 0, (2.10)

ensuring (2.6).
Taking any s > 1 and integrating (2.9) in [1, s] we infer

NENE I




8 U. GUARNOTTA AND P. WINKERT

Recalling that & > 0 because of the monotonicity of K, we deduce

; k
log s** < log kEi; < log s°F,
which implies (2.7) for s > 1. Now suppose s € (0,1). Integrating (2.9) in [s,1]
leads to
1 1 1
, dt K (¢) dt
— < dt < —.
wf T s
Thus,
; k(1
log s™* < log kgsi < log s~ %%, (2.11)
which gives (2.7) for s € (0,1). The proof of (2.8) is analogous, taking (2.10) into
account. ]

Remark 2.7. It is worth noticing that (2.4) is automatically satisfied when iy >
—1, due to (2.11). This is the case of the N-function K := H(z,-) (since (H.)(i)
forces i, > 0) and of the singular term k := f (see (Hy)).

Adapting standard arguments for N-functions (see, e.g., Fukagai-Ito-Narukawa
[16, Lemma 2.1]), it is readily seen that the following result holds true.
Proposition 2.8. Let ® be a generalized N -function of class C*. Suppose that

S@ ) 5@ 5
a:= inf L(xs) >1, b:= sup M < +00.
(z,s)€Q2X(0,+00) ‘b(.’lﬁ, 8) (%,5)€Q%(0,+00) @(.’Iﬁ, S)
Then

Wo(lulle) < /be(x, [ul) dz < We(llulle)  for all u e L¥(9).

Next, we are going to prove the properties of the operator.

Lemma 2.9. Let (H;) be satisfied. Then £: Wy(Q) — Wi TH(Q)* defined in
(1.1) is a strictly monotone operator and fulfills the (Sy)-property.

Proof. The result is a consequence of Proposition 3.12 by Crespo-Blanco [10]. The
only nontrivial condition to verify is

lim 92 H(x,c+s)(c—s)? =+oo forall c> 0.

s——+00

To this aim, it suffices to prove that
lim s20%,H(x,s) = +o0, (2.12)

s—+o0

since the change of variable 7 = s + ¢ yields

T —2¢

s—+oo T—+00 T

2
lim 02, H(x,c+s)(c—s)? = lim 120%,H(x,T) ( > for all ¢ > 0.
Proposition 2.6 (applied with k = 0, H(z,-)), (Hz)(i), (H,)(iii), and (2.8) entail

s02,H(x, s)

SEI‘POO 828825H(x, s) - sggloo 637'[(% S) SaSIH(x’ 8)
>1_0H(z,1) lim s'-T! = 4o,
s—+o00

ensuring (2.12). O
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Next, we will make use of this simple real-analysis result.

Proposition 2.10. Let ¢: (0,400) — R be a differentiable function such that
(i) limsupp(t) < 0 and limsup ¢(t) < 0;
t—0+ t—4oc0
ii) ma t) > 0;
(i) max_ o0
(iii) each zero of ¢ is non-degenerate, i.e., p(t) = 0 implies ©'(t) # 0.

Then there exist 0 < t1 < ta such that p(t1) = @(t2) =0 and ¢'(t1) > 0> ¢'(t2).
Proof. Set
t; =inf{t > 0: p(t) >0} and ¢y =sup{t>0: ¢(t) > 0}.

The sets are non-empty by hypothesis and since ¢ is continuous, we have t; < ts.
We will only reason for ¢, the argument for 5 is analogous. By assumption we have
t1 > 0, and by continuity of ¢ we infer p(¢1) > 0. If p(¢1) > 0, then there exists
0 > 0 such that ¢(t; — d) > 0, contradicting the minimality of ¢;. Thus ¢(t1) =0
and so ¢'(t1) # 0 by the non-degeneracy hypothesis. Suppose by contradiction that
©'(t1) < 0. Then there exists § > 0 such that ¢(¢t; — ) > 0, again in contradiction
with the minimality of ¢;. Hence ¢'(t1) > 0. O

In order to define an energy functional associated with (P,), we consider the
following odd extensions of f and g:

f(s) if s >0, g(s) if s >0,
f(s):=<o0 if s =0, g(s) =140 if s =0,
—f(—s) if s <0, —g(—s) if s <0.

For simplification, we still call this extensions as f and g, respectively. We also
introduce the functions F,G: R — R defined as

F(s) := /OS f@)ydt, G(s):= /OS g(t)dt for all s € R.

We set
M(s) = / m(t)dt for all s e R
0
and
0 = sup ) (2.13)
N0 M(s)’ '
as well as

(&) = /QH(x, |¢[)dz  for all € € L*(Q;RY).
The energy functional J: W, *(€2) — R associated with (P,) is
T = Mo(Vu) = [
Due to the symmetries chosen in the construction of F' and G, we have J(u) = J(|u|)

for all u € W, Q). Moreover, due to (H), J turns out to be weakly sequentially
lower semi-continuous.

F(u)dz —/ G(u)dz for all u € Wy (Q).
Q
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For any u € Wol’H (Q) we define the fibering map v,,: (0,400) — R as

Va(t) = J(tu) = M(6(EVt)) — A /Q Ftu) dz — /Q G(tu)de for all £ > 0.

Note that F' is even and F'(0) = 0, so

/ F(tu)dx = / F(tu)dx + / F(—tu)dx
Q QN{u>0} QN{u<0}

for all ¢ > 0 and u € WOLH(Q). Thus, exploiting (Hy), Proposition 2.6, and
Lebesgue’s dominated converge theorem, besides recalling f(0) = 0, one has

O L/Q F(tu) dx} = /Qf(tu)udx for all t > 0.

Taking into account the fact that s — f(s)s is even and vanishes at the origin, one
can reason as above to obtain

i [/ F(tu) dx} = / f'(tu)u?dz  for all t > 0,
Q Q
where we set f/(0) := 0. Analogous arguments hold for G.

Accordingly,
WL(E) = (7 (t), )y gy = MUS(EV0)) (& (E0), Vi) )

—)\/Qf(tu)udx—/ﬂg(tu)udx
and

U (t) = m' (p(tVu)) (¢ (tVu), V)] e gy + m(¢(tVW))¢" (tVu) (Vu, Vi)
- "(tu)u? dz — "(tu)u? dz
3 [ s ds = [ o el da,

where ¢”(£)(-,-) represents the bilinear form on L*(Q;RN) x L™ (2;RY) induced
by ¢"(€). Owing to (H.), ¢”(€) is positive definite for all £ € L7 (Q2;RY). Notice
that

Yu(t) = Y1), 1, (t) = Ui, (1), and Y](t) = ¥p, (1) (2.14)
for all ¢ € (0, 400).

Remark 2.11. Using hypotheses (H), Proposition 2.6, and Lebesgue’s dominated
converge theorem, it is readily seen that the maps (t,u) — ¥, (t), (t,u) — ¥, (t),
and (t,u) — Pl (t) are continuous in (0,400) X Wol’H(Q).
The Nehari manifold A associated with J is
N = {u e Wy ™ (@) \ {0}: vy, (1) = 0},

which can be divided in the following sets:

NTi={ueN:yl(1) >0},

NV = {u e N:y!/(1) =0},

N~ i={ueN:yl(1) <0}
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Due to the symmetry of J, both u — 1/,(1) and u — ¥//(1) are even. Thus, if u € N
then |u| € A, and the same holds for N, A=, and N°. For any u € W, ™(2)\ {0}
we define

Ef = {t e (0,400): tu e N},
E% = {t € (0,400): tu € N},
E; ={te (0,400): tu e N }.
We will say that B} < E; if t¥ < t~ for all t* € EF. Furthermore, for all
e LM RY), we set
A(E) = m(¢(€))<¢/(f)75>LH(Q;RN)7
B(&) == m/(¢(£))(d'(€), )L m (my + m(0(€))8" () (&, 6),

which represent the principal parts of ¢,,(1) and 1./ (1), respectively.

To simplify matters, we will omit the subscripts in the duality brackets when the
context is clear. As usual, the generic constants ¢, C' > 0 may change their value
at each place.

3. BASIC ESTIMATES

In this section we will discuss some basic estimates which are needed in the
sequel. We start with the following lemma.

Lemma 3.1. Suppose (H,,) and (H) to be satisfied. Then, for all ¢ € L*(Q;RYN),
the following hold:

(a1) pM(6(S)) < A(S) < q0M((8));

(az2) 1-A(&) < B(§) < (qn +14)A(S);
(as) MOWEZ([€]l2) < M(6(€)) < M)Wy ([I€]l20).
where EZQ,WZQ are as in (2.3), while 0 is defined in (2.13).

Proof. We fix £ € L*(£;RY). Reasoning as in the proof of (2.6), the monotonicity
of m gives

20 M{(s)
Proposition 2.6, (H.), and (2.13) yield

m((£)){(¢'(€),€) =m(¢(€))/9<937{(33, [EDI¢] da
< qm((£))o(§) < gIM(4())-

> 1. (3.1)

Hence, using (H,) and (3.1),

m($()(¢'(£), ) = pm((£))d(€) = pM(¢(S)). (3-3)
Putting together (3.2) and (3.3) yields (a;).
Reasoning as above, from (H.) and (H,,) we infer

m’($(§))(¢'(£), ) < am/(¢(£))p (&) < anm(é(€)), (3-4)

an

(6)(6,€) = /0 z, €] |«£|2dw<l+/8% JEDIEl dz = 1 (#(6).6). (3.5)
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Summing (3.4) multiplied by (¢’(£), &) with (3.5) multiplied by m(¢(&)) yields
B(&) < (qn+14+)A(E).
On the other hand, arguing as in (3.5),
B(£) = m(¢(£))8"(§)(€,€) = 1-

which concludes the proof of (az).
Let us show (a3). According to Proposition 2.8 and (H.) we have

(B(NP(€), &) =1-A(S),

3

Wi(l€lln) < 6(€) < W (l€ll0), (3.6)
while Proposition 2.6, (H,,), and (3.1) ensure
M(D)W(s) < M(s) < M(1)Wi(s) for all 5 > 0. (3.7)

Thus, (3.6) and (3.7) together lead to
M(6(€)) < M)W (6(€)) < MW, (WE(Iw)) = MOTL (€]l)

and

M((€)) > M)W (¢(€)) > MW WE(|1€]l3)) = M (L)W ([[€]l3).
which gives (as). O

Note that the estimates contained in Lemma 3.1 will allow us to have controls
of type

B(&) ~ A€) =~ M(8(€), WL (|€l2) S M((6)) S Wy ([€]l30):
with EZQ,WW as in (2.3).

p

Lemma 3.2. Under the hypotheses (H), for all u € W(}H(Q) one has
() [ Flu)da < (19,

(b2) eW* ([lulln) < / G(uw)de < OW, " (|| Vulls),
Q
for some ¢,C > 0 independent of u.

Proof. Fix any u € Wy " (Q). Exploiting Proposition 2.6 and (H;) we have

e sf(s) sf(s)
ip = ;I;%F<> ()§1—7_<p.

>1—v4 >0, sp:=sup
S>OF

Thus, using Proposition 2.6 again, besides Holder’s inequality and WO1 H(Q) —
L*(Q) < LP(Q) (see (H,) and Proposition 2.2), we get

/ F(u)dx <C / u®r dx—|—/ u'Fdr | < C(llull" + ||U||;F)
Q fu>1} {u<1}

SF ip 55 =—=1—7_
< O(IVull3f + IVull5) < W3 (IVully) < W, 20 (IVull),

for a suitable C' > 0 changing at each place. Hence (b;) is established.
In order to show (by), observe that Proposition 2.6 and (H,) entail

sg(s) sg(s)
ig = inf >r_>1, sg:=su
“TS0GE) T ¢ ENGH)

<T+<p
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In particular, G is a generalized N-function satisfying the hypotheses of Proposition
2.8. Moreover, owing to (3.1), one has § > 1. Then (H¢) and Proposition 2.6 yield
r->qn+li+1>qn+1) 2490 >q>p. (3.8)

Since p < ¢ < r— < ry < p*, by Sobolev’s embedding and Proposition 2.2 one

has Wy (Q) < WyP(Q) < LP"(Q) — LY(Q) — L*(Q). Thus, Proposition 2.8
ensures

| Gwds < T2 (Jullo) < € (Vall).
Analogously,
/QG(U) dz > Wot (lulle) = W3 (Jlulls)-
establishing (bs). O
4. ANALYSIS OF THE NEHARI MANIFOLD
In this section we study the Nehari manifold and its properties.

Lemma 4.1. Let hypotheses (H) be satisfied. Then J|r is coercive.
Proof. Let {uy}neny C N be such that ||u,|| — co. By definition of N we have

/Q o1 o = m(O(T)) (6 (F). Vi) = A [ fluJugde (@)

for all n € N. Thus Proposition 2.6, (H,), (4.1), and Lemmas 3.1 as well as 3.2
imply that, whenever ||Vu,|% is sufficiently large,

T(n) = M(6(Vuy)) — A /Q Fluy)dz — /ﬂ (%) g da
> M(6(Tu) - [

1
F(uy) dx——/ g(up)u, dz
Q r- Ja

= M(9(Vun)) ~ —m(&(Vun)) (6 (Vun), Vun)

_a VQ Fluy)dz — T%/Qf(un)un dx}

> (12 2) 2(6(T) = A [ Flun)do 2 |Vl = AC Va3
Q

with ¢, C' > 0, where we also used that r_ > ¢, owing to (3.8). Recalling 1—vy_ < p
yields J(up) = +o0. O

Lemma 4.2. Let hypotheses (H) be satisfied. Then there exist Dy = Dy(\) > 0
and Dy > 0 such that

[ut < D1 and |ju”|| > D2 (4.2)

for all u™ € Nt UN and for allu= € N~ UN°. Moreover,
lim Dy(A) =0 4.3
Jim D1(A) =0, (4.3)

so there exists Ay > 0 such that Dy < Dy and N° =0 for any X € (0,Ay).
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Proof. We take u™ € NTUN? and v~ € N~ UN?P. Then, by the definitions of N/,
N*, and N9 one has

A(Vu®) =/\/Qf(ui)ui dx—!—/gg(ui)ui dz, (4.4)
as well as
B(Vu™ >,\/ f'(u dx+/ "(u)(uh)? dz (4.5)
Q
and
B(Vu—) < A /Q F ) ()2 d + / o (u=) ()2 da. (4.6)

Let us reason for u™. According to (H,), along with (4.4) and (4.5), we get
(r— —1)A(Vu") — B(Vu™)

Jf(uh)u®
< [ (ro 1 T ) 0

+ /Qg(uJ’)uJr (r -1- g/(U+)u+) dz

g(u't)

< )\/Qf(u'*')u"r (r —-1- W) dz.

Thus, owing to Lemma 3.1, (Hy), Proposition 2.6, and Lemma 3.2, we have

WL (|Vut|n) < (r- = 1= aqn = L) A(Vu®) < (r- = DA(Vu™) - B(Vu™)

1oVt
<A A fluwut (7“_ —1- W) de < A(r— —1474) f(u+)u+ dx
<A — 141 — / Flut)dz < \CTW~ §+(|\w+||ﬂ)

for suitable ¢, C > 0. Since 1 —v_ < p, {Vut} is bounded in L*(€), whence {u*}
is bounded in W17 (). Moreover, |[u®| — 0 as A — 0, ensuring (4.3).

Now we focus on u~, reasoning as above. Hypothesis (Hy), besides (4.4) and
(4.6), yields

- A(Vu~)+ B(Vu™)

< /Qg(u_)u_ <v + %) dz.

Exploiting Lemma 3.1, (H,), Proposition 2.6, and Lemma 3.2, we deduce
WL ([Vu~|l30) < 7-A(Vu™) < 7-A(Vu™) + B(Vu’)

<(ry—1 +7—)/QQ(U’)U’ da

<(ry—1+7 m/G )de < CWL (V™ [13).
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Since ¢f < r_ by (3.8), there exists a positive lower bound for |[Vu~ |3, namely
|lu~||. Hence, (4.2) is established.

To conclude, observe that (4.3) provides A; > 0 such that D; < Dy for all
A € (0,A1), with Dq,Dy as in (4.2). Let A € (0,A1). If, by contradiction, there
exists u € NV, then applying (4.2) with ut = u~ = wentails ||u|| < D; < Dy < ||ull,
which is a contradiction. Accordingly, N° = ) for all A € (0,A;). O

Lemma 4.3. Let hypotheses (H) be satisfied. Then there exists Ao > 0 such that

for all A € (0,As) the following statement holds true: for any u € WOM{(Q) \ {0}
there exist unique 0 <t <t such that ttu e Nt and t;u e N~.

Proof. Fix any u € Wol’H(Q) \ {0}. We are going to apply Proposition 2.10 to the
function ¢],. To this end, using Lebesgue’s dominated convergence theorem and
Fatou’s lemma, along with (H,,), (H), (Hy), (Hy), and the symmetry of f, ensure

limsup v, (t) = lim [m(qﬁ(tVu))(W(tVu), Vu) — / g(tu)u dx}
t—0+ t—0+ Q
- Alitrgérlf/ﬂ ftuw)ude

= —Aliminf t dr < =X [ liminf f(¢ dr < 0.
mint [ flulula < - (tmint 1)) [ julao

Exploiting (H,), Proposition 2.6, and Lemmas 3.1 as well as 3.2 we get, for all ¢
sufficiently large,

A(tVu) — /

g(tu)tude < A(tVu) —r_ / G(tu)dz
Q Q

< e(t|Vulla)® = C(tllull2)"~,
for some ¢,C' > 0. Hence, recalling (2.14) and ¢f < r_ (see (3.8)),

1 1
lim sup ¢, (¢) = limsup ~},,(1) < limsup ~ [A(tVu) - / g(tu)tu dx}
Q

t—+o0 t—doo T t—+00
< lim sup [ctq"*luvuugf - Ctr—*1||u||;;] = 0.
t—4o0

Reasoning as above, (2.14), (H;), (H,), Proposition 2.6, and Lemmas 3.1-3.2
imply
thy, (1) = ¥, (1)
. . . @)
> W (HIVulln) — € XWL L (UVull) + W, (¢ V)|

for all t > 0 and opportune ¢, C > 0. In order to have max;~q ¢, (t) > 0, from (4.7)
it suffices that

B W (@I Vullz) — CW,. (@] Vull)
11—~ _
CW, 3, ({lIVullz)
with p € (0, 1) such that

for some t = t(u) > 0.

To this aim we choose t 1= =2—
[Vl

A _ Cpqo _ Cpr,

e
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This choice is possible since ¢ < r_. In particular, max;~q ., (t) > 0 whenever
A <A Moreover, note that ¢ depends on u, but A does not.

Set Ay 1= min{A17A}. Assuming A < Ay, Lemma 4.2 ensures N° = (), so that
each zero of v, is not a zero of ¢!/. Indeed, if t € (0,+00) is a zero of ¢, then
(2.14) yields

WD) =0, (0) =0 and () = Yl g
tu u u t2 .
Hence Proposition 2.10 provides 0 < ¢} < ¢ such that tfu € N'E.

Next we show the uniqueness. The argument above ensures that the sets EX are
non-empty. We show that E;" < E, . By contradiction suppose that there exist
t~ < t* such that t* € EF. Then, by Lemma 4.2,

Dy < t™ ||ul| < t¥||ull < Dy,
contradicting Dy < D, which holds for all A < A;.

Now we prove that E is a singleton. An analogous argument guarantees the
same property for E, . By contradiction, let 1", t3 € E; fulfill ] < ¢5. Then there
exists § € (0, 3(t5 — t)) such that ¢} (¢ + ) > 0 > ¢, (t7 — §). By Bolzano’s
theorem there exists ¢y € (7,3 ) such that tou € . Consider

t=sup{te (tf +6,t§ —0):tuecN}.
By continuity of ¥/, we deduce that tu € N, so t € E}f UE, UE?. Since N0 =
one has £ ¢ E2. On the other hand, again by Bolzano’s theorem, ¢ € E; would

contradict the maximality of Z. Hence f € E;. Since f < t5, we get a contradiction
with E} < E;. We deduce E} = {t]}. O

Lemma 4.4. Let hypotheses (H) be satisfied and Ay be as in Lemma 4.5. Then
J(u) < 0 for all u € N provided A < Ay. Moreover, there exists A3 > 0 such
that for all A € (0,As3) the following assertion is true: there exists o > 0 such that
J(v) > o forallve N~.

Proof. Suppose A < Ag, where Ay is from Lemma 4.3. Pick any u € N'*. Owing
to Lemma 4.3, one has ¢/ (t) < 0 for all ¢t € (0,1). Indeed, ¥, (t) < 0 near t = 0
and, if ¢/ (t) = 0 for some t € (0,1), then ¢t ¢ E;f U E, U EY, according to the fact
that B = {1}, E} < E,, and E? = (), respectively. Hence

J(u) = (1) < 9, (0) = J(0) = 0.

Now consider an arbitrary v € N'~. Reasoning as in (4.7) we get
—1—y_ =T
T(tv) = i (1) = WL (][ Voll2) — C | AW (#[ Vo) + W, (tHVUHH)}
for all t+ > 0 with some ¢,C > 0. We take p € (0,1) such that cp?® — Cp"™~ > 0,
which is possible since ¢f < r_ (see (3.8)). Then there exists o > 0 such that
. cp?® —Cpr- -0
Cpl—'er
Thus, choosing ¢ := W, for all A < A one has J(fv) > o. Notice that o is

independent of uw. Since A < Ay, Lemma 4.3 ensures that v, has a unique global
maximizer at ¢ = 1. Hence

> 0.

Jw) > J(tv) >0 >0
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whenever A\ < Az := min{Ay, A}. O
5. PROOF OF THE MAIN RESULT

We set A := min{Aj, A, As} with A;, i = 1,2, 3, defined in the Lemmas 4.2, 4.3,
and 4.4, respectively.

Proposition 5.1. Let hypotheses (H) be satisfied and let A € (0,A). Then there
exists u € Nt such that u > 0 a.e. in Q and

J(u) = min J.
N+

Proof. Let {up}neny be a minimizing sequence of J|p+. The coercivity of J|a+
(see Lemma 4.1) forces u, — u for some u € Wy (Q), passing to a sub-sequence
if necessary. We may assume also u, — u in L*(Q) for all x € (1,p*). The
weak sequential lower semi-continuity of J, along with Lemma 4.4, implies J(u) <
infr+ J < 0 and so u # 0. Owing to Lemma 4.3, there exists a unique ¢ > 0 such
that fu € N T. It remains to prove that u € N'T.

Reasoning as in the first part of the proof of Lemma 4.4, v, is strictly decreasing
in (0,1).

We claim that v, — u in I/VO1 ’H(Q), up to sub-sequences. The claim is equivalent
to fu, — tu in W, (€)). We argue by contradiction, assuming that {fu, }ney does
not converge to tu. We have

lim sup ¢(tuy,) > ¢(tu),

n—roo

since the opposite inequality entails tu,, — tu by the uniform convexity of WO1 e ().
Moreover, according to the convexity of H(z,-) for a.a.x € Q, we get

0< linrggf@’(fVun) — ¢ (tVu), Vu, — Vu)
= linn_1>i£f<¢'(fVun), Vuy) — (¢ (tVu), Vu).
We deduce
lim sup(¢’ (tVu,), Vu,) > (¢'(tVu), Vu).

n—oo
Indeed, if (¢'(tVu,), Vu,) — (¢ (tVu), Vu), then the weak-weak continuity of
L:WetQ) — wiH(Q)* yields
lim sup(L (tuy,), tun, — tu) = limsup(L(tu,,), tu,) — (L(tw), tu)

n— oo n—roo

= 1| lim (/(iVun), V) — (¢ (iV0), V)| =0,

n—oo
which forces tu,, — tu due to the (S, )-property of £, ensured by Lemma 2.9.
Hence, passing to a sub-sequence, we can assume

nan;o<¢’(fVun),Vun> > (¢'(tVu), Vu) and Jim. d(tuy,) > ¢(tu). (5.1)
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Exploiting Lebesgue’s dominated convergence theorem, the monotonicity of m,
and (5.1), we infer

lim inf Uy, (1)
= lim inf {m(qﬁ(tVun))(qS’(tVun), Vuy,) — / f(tup)uy, dz
Q

_/Qg(tun)undx] (5.2)
— liminf [m($(Vun)) (@ ((Vun), Veun)] — /Q FEwude — /Q g(Fu)udz

n—oo

> m($(EVU)) (& (EVu), Vu) — /Q FEuude — /Q g(Eu)udz = . (F) = 0,

which forces £ > 1. Indeed 7;, (1) = 0. Reasoning as in the first part of Lemma
4.4, from Ef = {t} and E} = {1} we deduce t; < 0 in (0,7) and ¢, < 0 in
(0,1). Hence, exploiting also the weak sequential lower semi-continuity of J yields

}\Ifl£ J < J(tu) = (1) < (1) = J(u) < lgglg(l}f J(up) = }\Ifl{ J,

which is a contradiction. This establishes u, — u in VVO1 - (©) up to sub-sequences,
as claimed.

Letting n — oo in both 4, (1) = 0 and wgn(l) > 0, besides recalling Remark
2.11, we get u € N*T UNP. Taking into account Lemma 4.2, we deduce u € N't.
By the symmetry of J and AN't, one can replace u with |u|, so that it is possible to
assume u© > 0 a.e.in €. |

Proposition 5.2. Let hypotheses (H) be satisfied and let A € (0,A). Then there
exists w € N~ such that v >0 a.e.in Q and

J(u) = %i}l J.

Proof. Take any minimizing sequence {uy}nen €N~ for J| . The proof is anal-
ogous to the one of Proposition 5.1, except the non-triviality of u (that is, the weak
limit of {u, }nen in W™ (€2)) and the strong convergence of {u, }nen in We ().

In order to prove that u # 0 we argue by contradiction, supposing that u, — 0
in W(}H(Q) Without any loss of generality, u, — 0 in L®(Q) for all x € (1, p*).
Since u,, € N~ for all n € N, we have

m(P(Vun)) (P (Vuy), Vg, ) = /\/Qf(un)un dx + /Q g(up)u, dz  for all n € N.

Letting n — oo, along with Lemma 3.1, reveals
lim KZS(HVunHH) < C lim m(¢(Vup)) (¢ (Vuy), Vu,) =0
n— 00 n—00

for some C' > 0, which entails u,, — 0 in W} *(€). According to Lemma 4.4,
0=J(0)= lim J(uy) > o,
n—oo
which is a contradiction.
Now we prove u, — u in Wol’H (Q). Since u # 0, Lemma 4.3 produces a unique
t € (0,+00) such that tu € N'~. Reasoning by contradiction as in Proposition 5.1,
namely supposing (5.1), we deduce 1, (f) > 0 for n sufficiently large (cf. (5.2)).
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This forces £ < 1, taking into account that, for any n € N, one has E, = {1} and
w, (t) < 0 for all t > 1. Moreover, ¢t = 1 is the unique global maximizer of 1, .
Indeed, it is the unique local maximizer, and 1, (t) < 0 for all t > 1 as well as
Yu, (1) = J(uyp) > o > 0 = J(0), due to Lemmas 4.3 and 4.4, respectively. This
information, together with (5.1) and the strict monotonicity of M, yields
. < I3 o TN i -
}\Iflf J < J(tu) < hnrr_1>1oréf J(tuy,) hnrr_1>1oréf Y, (F)
< Tim T _
< liminf 4, (1) = liminf J(u) = inf J,
which is a contradiction. O

Proposition 5.3. Let hypotheses (H) be satisfied and let v € N be such that
J(u) = minpr+ J. Then there exists € > 0 such that

J(u) < J(u+h) forall h € B(0).
Proof. Let us consider the function
F(h,t) = ¢, (1) for all (h,t) € Wy Q) x (0, +00).

Since u € N'* one has F(0,1) = ¢/,(1) = 0 and 9;F(0,1) = ¢!/(1) > 0. Hence
the implicit function theorem furnishes €; > 0 and ¢: B, (0) — (0, +00) such that
¢(0) = 1 and F(h,((h)) = 0, that is, ((h)(u + h) € N by (2.14). According to
Remark 2.11, 0, F is a continuous function. Thus there exist €5, 0 > 0 such that

Yy p(t) =0 F (h,t) >0 for all (h,t) € Be,(0) x (1 — 0,14 0). (5.3)
The function ¢ is continuous as well, so there exists €3 > 0 such that ((h) €
(1 —0,1+40) for all h € B, (0). Setting ¢ = min{ey,ez,£3}, we deduce that
C(h)(u+h) € NT for all h € B.(0). In particular, (5.3) implies also the convexity
of 1y 11 in the interval joining ¢t = ¢(h) and ¢ = 1. Hence, we have

Gurn(C(h) < oy n(C(R)(C(R) = 1) + Purn(1) = Yusn(1).
Accordingly,
J(u) =min J < J(C(R)(u + 1)) = Yurn(C(h) < Yurn(l) = J(u+h)
for all h € B.(0). d

Remark 5.4. The conclusion of Proposition 5.3 does not hold for the minimizers
of J constrained to N~ because they are not local minimizers of J on W(}H(Q)
Instead they are saddle points. Indeed, given any u such that J(u) = miny— J, u is
a strict local mazimizer along the direction of u, while (reasoning as in Proposition
5.3, that furnishes ¢ such that {(th)(u+th) € N~ for smallt) it is a local minimizer
along any curve of type t — C(th)(u + th) with h € W (Q) \ {0}.

Lemma 5.5. Let hypotheses (H) be satisfied and let u € Wy (Q), u > 0 a.e.in
Q, be a local minimizer of J. Then u > 0 a.e.in Q and

m(d(Vu))(L(u),h) > )\/Qf(u)hdx—i—/ﬂg(u)hdx (5.4)

for all h € Wy ™ (Q) with h >0 a.e.in Q.
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Proof. Take any h € Wy*(Q) \ {0} fulfilling h > 0 a.e.in Q. Since u is a local
minimizer of J, then J(u) < J(u+th) for all ¢ sufficiently small. Take any sequence
{tn}nen with t,, > 0 for all n € N such that t,, — 0 and set K = u~*(0). Then, for
any n large enough,

0< J(u+tph) — J(u)

n

 MATat ) = M) [ Fttah) = Al
tn Q tn

/Gu+th G()d
Q

x

_ M (o( (u—|—tnh))) d(Vu)) )\/ (tnh)

B F(u+t h) — F(u) . u+t h) — G(u) .
)\/Q\K tn d /Q 129 e

From Lebesgue’s dominated convergence theorem we obtain

MGV (uttnh)) = MGV _ - sozayicu), by

dx:/g(u)hdx,
Q

while Fatou’s lemma and the monotonicity of F' yields
F tph) — F
lim inf/ (ut tnh) () dz > fwhdz.
O\K

lim

n—oo

lim
n—o0

/ G(u f tnh) — G(u)
t

Accordingly,
0 < lim sup J(uttah) = J()
n— oo tn
m(¢(Vu))(L(u), h) — A o f(u)hdz (5.5)
K

F(t,h
—/g(u)hdzf)\liminf/ de.
Q n—oo [ t

n
If K has positive measure, then (Hy) forces

F(t,h
lim / de:—l—oo,
n—oo J g t

n
which is a contradiction. Hence K has zero measure, that is, u > 0 a.e.in Q. So
(5.5) rewrites as

0 < m(o(Vu)){L / flwhdz — / g(u)hdz.
This inequality is obviously verified also for h = 0, which concludes the proof. [

Lemma 5.6. Let hypotheses (H) be satisfied and let w € N~ be such that u > 0
a.e.in Q and J(u) = minp—- J. Then u > 0 a.e. in Q and fulfills (5.4).

Proof. We only sketch this proof, which is similar to those of Proposition 5.3 and
Lemma 5.5.
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Reasoning as in Proposition 5.3, there exists € > 0 and a continuous function
¢: B:(0) = (0,400) such that ((0) =1 and

C(h)(u+h) e N~ for all h € B.(0).

In particular, owing to u € N'~, one has ¥, (C(th)) < ¥, (1) for all h € W, (Q)
and t sufficiently small. Take any sequence {t, }nen with ¢, > 0 for all n € N such
that t, — 0 and set K = u~1(0). For any n sufficiently large we get

J(C(Enh)(u+ tuh)) = J(w) _ J(C(Enh)(u+ tah)) = J(C(Enh)u)

0<
- tn - tn
_ M(o(VIC(tnh)(u+ tn h)])) — M(o(VIC(tnh)ul)
_)\/F thth (5.6)
o P+t — PlCCa "
Q tn
Fix any ¢ > 0 and consider the function
:[0,t] = R, T(s):= M(s(VIC(th)(u+ sh)])).

Lagrange’s mean value theorem produces s; € (0,¢) such that
M(o(V[C(th)(u+th)])) — M($(V[C(th)u]))
= tm(¢(V[C(th) (u + s:h)])) (& (VIC(th) (u + seh)]), VIC(Eh)h]).
Hence, recalling also ((th) — 1 as t — 0T,

T [M(S(VIC(ER)(u + h)])) — M(S(TIC(th)ul))]

= lm m(o(VC(th)(u + seh)]))(¢" (VIC(th) (u + s:h))), VIC(th)A])
= m(¢(Vu))(¢'(Vu), Vh) = m($(Vu))(L(u), h).

Arguing in the same way for the difference quotients involving F' and G, (5.6) yields

0 < limsup J(C(tnh)(u+tyh)) — J(u)

n—oo t’ﬂ

MGV L) by — A [ flu)hde — /Q g(u)h do

O\K

— )\liminf/ wdm
K

n— o0 tn ’

which parallels (5.5). The proof now follows exactly as in Proposition 5.5. (I

Proposition 5.7. Let hypotheses (H) be satisfied. Anyu € N satisfying both u > 0
a.e.in Q and (5.4) is a weak solution to (P)).

Proof. Let us consider the linear operator 7' WO1 H(Q) — R defined as

(T, h) = m(p(Vu))( /f hdx—/ g(u)hdz for all h e Wy (Q).
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According to (5.4), T is well-defined and non-negative (i.e., (T, h) > 0 for all h > 0
a.e.in ). Moreover, u € N is equivalent to (T, u) = 0. Hence, taking any ¢ €
Wol’H(Q) and £ > 0, we have

0<(T, (u+ep)™)
=T, ut+ep)+ (T, (utep)™)
= (T,u) +&(T, ) + (T, (u+ep)”)
=&(T,¢) + (T, (utep)7),

where (u+e)T and (u+e¢)~ stand for the positive and the negative part of u-+ep,
respectively. Recalling the definition of 7', u > 0 a.e.in , and 9sH(z,|Vu|) > 0
a.e.in €, we have

(T (u+ep)™) <m(¢(Vu))(L(w), (u+ep)™)

— —m(é(V) /{ T o [Vul) i (Vu+ £9'9) da
< —em(6(Vu)) /{ oy 2 V) Ve da.
Thus we get
0 (L) —mlo(Vu) [ o [V Ve

Notice that |{u +ep < 0} — 0 as ¢ — 0. Therefore, (T',p) > 0 forall p €
Wol’H(Q). Since ¢ is arbitrarily chosen, we have (T, ) = 0 for all ¢ € Wol’H(Q),
which means that u is a weak solution to (P). O

Now we can give the proof of our main result.

Proof of Theorem 1.1. Owing to Propositions 5.1 and 5.2, we can find functions
u,v € WOH{(Q) such that

J(w)=minJ and J(v)=minlJ.
N+ N—

By virtue of Lemma 5.3 (see also Remark 5.4), Lemma 5.5 is applicable to u. Thus,
Proposition 5.7 ensures that u is a weak solution of problem (P,). On the other
hand, Lemma 5.6 and Proposition 5.7 guarantee that v is a weak solution to (P)).
The conclusion follows by Lemma 4.4, since u € N and v € N~ imply

J(u) <0< J().
d
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