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Abstract. In this paper we study quasilinear elliptic Kirchhoff equations

driven by a non-homogeneous operator with unbalanced growth and right-
hand sides that consist of sub-linear, possibly singular, and super-linear reac-

tion terms. Under very general assumptions we prove the existence of at least

two solutions for such problems by using the fibering method along with an
appropriate splitting of the associated Nehari manifold. In contrast to other

works our treatment is very general, with much easier and shorter proofs as

it was done in the literature before. Furthermore, the results presented in
this paper cover a large class of second-order differential operators like the p-

Laplacian, the (p, q)-Laplacian, the double phase operator, and the logarithmic

double phase operator.

1. Introduction

Given a bounded domain Ω ⊆ RN , N ≥ 2, with Lipschitz boundary ∂Ω, this
paper deals with general Kirchhoff problems involving singular and super-linear
reaction terms of the form

−m
(∫

Ω

H(x, |∇u|) dx
)
L(u) = λf(u) + g(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(Pλ)

where λ > 0 is a parameter, f, g : (0,+∞) → (0,+∞) are continuously differen-
tiable functions, m : [0,+∞) → [0,+∞) is the so-called Kirchhoff function, H : Ω×
[0,+∞) → [0,+∞) is a generalized N -function, while L : W 1,H

0 (Ω) → W 1,H
0 (Ω)∗

is an operator (possibly non-homogeneous and with unbalanced growth) satisfy-
ing certain structure conditions. To be more precise, we suppose the following
assumptions on the data of problem (Pλ):

(H) (Hm) The function m : [0,+∞) → [0,+∞) is continuously differentiable,
non-decreasing, and m(s) > 0 for all s > 0. In particular,

η := sup
s>0

sm′(s)

m(s)
≥ 0.

(HL) The function H : Ω× [0,+∞) → [0,+∞) is a generalized N -function
such that H(x, ·) ∈ C2(0,+∞) for a.a.x ∈ Ω and
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(i) p := inf
(x,s)∈Ω×(0,+∞)

s∂sH(x, s)

H(x, s)
> 1;

(ii) q := sup
(x,s)∈Ω×(0,+∞)

s∂sH(x, s)

H(x, s)
< p∗;

(iii) l− := inf
(x,s)∈Ω×(0,+∞)

s∂2ssH(x, s)

∂sH(x, s)
> 0;

(iv) l+ := sup
(x,s)∈Ω×(0,+∞)

s∂2ssH(x, s)

∂sH(x, s)
< +∞,

with the Sobolev conjugate p∗ of p. Moreover, L : W 1,H
0 (Ω) →

W 1,H
0 (Ω)∗ is defined as

L(u) := div

(
∂sH(x, |∇u|) ∇u

|∇u|

)
. (1.1)

In addition, we suppose that

W 1,H(Ω) ↪→ LH(Ω) compactly. (1.2)

(Hf ) The function f : (0,+∞) → (0,+∞) is continuously differentiable
and satisfies

lim inf
s→0+

f(s) ∈ (0,+∞],

γ− := − sup
s>0

sf ′(s)

f(s)
> 1− p,

γ+ := − inf
s>0

sf ′(s)

f(s)
< 1.

(Hg) The function g : (0,+∞) → (0,+∞) is continuously differentiable
and satisfies

r− := 1 + inf
s>0

sg′(s)

g(s)
> 1,

r+ := 1 + sup
s>0

sg′(s)

g(s)
< p∗.

(HC) The following condition holds true:

qη + l+ < r− − 1,

where q, l+ are defined in (HL), η is given in (Hm), and r− comes
from (Hg).

The following conclusions can be made from hypotheses (H):

• the condition 0 < l− ≤ l+ < +∞ in (HL) makes L a uniformly elliptic
operator;

• (Hf ) ensures that f is sub-linear, possibly singular;
• (Hg) guarantees that g is sub-critical;
• (HC) is a super-linearity condition on g.

First, we mention that hypotheses (H) includes the standard Kirchhoff function
m(s) = a+ bsη with a, b ∈ R2 \ {(0, 0)}, that means we allow degenerate Kirchhoff
problems which create the most interesting models in applications. The following
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operators are included in hypotheses (H), whereby we suppose in all cases that

1 < p < N , p < q, and 0 ≤ µ(·) ∈ L∞(Ω), while we assume q < p∗ := Np
N−p for

(i) and q + κ < p∗ for (ii)–(iii), where κ := e
e+t0

∈ (0, 1) and t0 > 0 is the unique

solution of t = e log(e+ t):

(i) Double phase operator:

div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
generated by the generalized N -function

H(x, s) = sp + µ(x)sq for all (x, s) ∈ Ω× [0,∞), (1.3)

see Crespo-Blanco–Gasiński–Harjulehto–Winkert [11];
(ii) Logarithmic double phase operator:

div

(
|∇u|p−2∇u+ µ(x)

[
log(e+ |∇u|) + |∇u|

q(e+ |∇u|)

]
|∇u|q−2∇u

)
(1.4)

generated by the generalized N -function

H(x, s) = sp + µ(x)sq log(e+ s) for all (x, s) ∈ Ω× [0,∞), (1.5)

where e is the Euler number, see Arora–Crespo-Blanco–Winkert [2];
(iii) Double phase operator with logarithmic perturbation:

div

((
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

) [
log(e+ |∇u|) + |∇u|

q(e+ |∇u|)

])
, (1.6)

generated by the generalized N -function

H(x, s) = [sp + µ(x)sq] log(e+ s) for all (x, s) ∈ Ω× [0,∞), (1.7)

where e is the Euler number, see Lu–Vetro–Zeng [22].

We point out that, in the examples above, we do not need that 0 ≤ µ(·) ∈ C0,1(Ω)
and

q

p
< 1 +

1

N
, (1.8)

as required quite often in the double phase setting. Note that (1.2) holds for
(1.3), (1.5), and (1.7), see [11, Proposition 2.18], [2, Proposition 3.9], and [22,
Proposition 2.24], respectively, without supposing (1.8). Sufficient conditions for
the compact embedding in (1.2) to be true can be found in the book by Harjulehto–
Hästö [18, see Chapter 6.3] or the recent paper by Cianchi–Diening [9, Theorem
3.7]. Concerning the nonlinearities on the right-hand side of (Pλ), the choices
f(s) = s−γ and g(s) = sr−1 are allowed for 0 < γ < 1 < q < r < p∗.

Our main result is the following theorem.

Theorem 1.1. Let (H) be satisfied. Then there exists Λ > 0 such that, for any
λ ∈ (0,Λ), problem (Pλ) admits two weak solutions with opposite energy sign.

The proof of Theorem 1.1 is based on the fibering method along with the corre-
sponding Nehari manifold related to problem (Pλ). Indeed, even though the energy

functional J : W 1,H
0 (Ω) → R associated with (Pλ) is not C

1 (due to the presence of
the singular term f), one can define the Nehari manifold to (Pλ) as

N = {u ∈W 1,H
0 (Ω) \ {0} : ψ′

u(1) = 0},
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where ψu : (0,+∞) → R is the fibering map defined for any u ∈W 1,H
0 (Ω) \ {0} by

ψu(t) := J(tu) for all t > 0.

The idea is then to split the Nehari manifold into three disjoint parts minimizing
J over two of them to get the required solutions with different energy sign. This
method is not new, but it is the first time that it is applied to a very general
setting and so no concrete, long calculations are needed. Indeed, we do not only
cover the results obtained by Papageorgiou–Repovš–Vetro [27] ((q, p)-Laplacian),
Papageorgiou–Winkert [26] (weighted p-Laplace), Liu–Dai–Papageorgiou–Winkert
[20] (double phase operator) or Arora–Fiscella–Mukherjee–Winkert [4] (Kirchhoff
double phase operator), but we also have much easier and shorter proofs as in those
papers and we also cover new operators within our setting, like the logarithmic
double phase operators given in (1.4) and (1.6).

In general, the use of the fibering method along with the Nehari manifold is
a very powerful tool and has been further developed by the works of Drábek–
Pohozaev [13] and Sun–Wu–Long [28]. Subsequently, several authors have applied
this method to various problems of singular type and non-singular type. We refer to
works by Alves–Santos–Silva [1] (singular-superlinear Schrödinger equations with
indefinite-sign potential), Arora–Fiscella–Mukherjee–Winkert [3] (critical double
phase Kirchhoff problems with singular nonlinearity), Chen–Kuo–Wu [7] (Kirchhoff
Laplace equations), Fiscella–Mishra [15] (fractional singular Kirchhoff problems),
Kumar–Rădulescu–Sreenadh [19] (singular problems with unbalanced growth and
critical exponent), Liu–Winkert [21] (double phase problems in RN ), Mukherjee–
Sreenadh [23] (fractional p-Laplace problems), Tang–Cheng [29] (ground state so-
lutions of Nehari-Pohozaev type for Kirchhoff-type problems with general poten-
tials), Wang–Zhao–Zhao [30] (critical Laplace equations with singular term), see
also the references therein. For a survey concerning singular problems, we address
the reader to the overview article by Guarnotta–Livrea–Marano [17]. It should be
mentioned that, in contrast to the results available in the literature (see the list
above and also Candito–Guarnotta–Perera [6] and Candito–Guarnotta–Livrea [5]),
our method does not require the use of Hardy-Sobolev’s inequality.

The paper is organized as follows. In Section 2 we introduce our function space
and recall some basic facts about generalized N -functions and related Musielak-
Orlicz Sobolev spaces. Further, we prove some auxiliary results and give the pre-
cise definition of the Nehari manifold to problem (Pλ) including its splitting into
three disjoint parts. Section 3 discusses some basic estimates which are needed in
the sequel while Section 4 gives a detailed study of the Nehari manifold and its
properties. Finally, in Section 5, we are able to prove Theorem 1.1.

2. Preliminaries

In this section we recall some basic definitions about N -functions, Musielak-
Orlicz Sobolev spaces and its properties. These results are mainly taken from the
monographs by Chlebicka–Gwiazda–Świerczewska-Gwiazda–Wróblewska-Kamińska
[8], Diening–Harjulehto–Hästö–Růžička [12], Harjulehto–Hästö [18], Musielak [24],
and Papageorgiou–Winkert [25]. We start with some definitions.

Definition 2.1.

(i) A continuous and convex function φ : [0,∞) → [0,∞) is said to be a Φ-
function if φ(0) = 0 and φ(t) > 0 for all t > 0.



DEGENERATE SINGULAR KIRCHHOFF PROBLEMS IN MUSIELAK-ORLICZ SPACES 5

(ii) A function φ : Ω× [0,∞) → [0,∞) is said to be a generalized Φ-function if
φ(·, t) is measurable for all t ≥ 0 and φ(x, ·) is a Φ-function for a.a.x ∈ Ω.
We denote the set of all generalized Φ-functions on Ω by Φ(Ω).

(iii) A function φ ∈ Φ(Ω) is locally integrable if φ(·, t) ∈ L1(Ω) for all t > 0.
(iv) A function φ ∈ Φ(Ω) satisfies the ∆2-condition if there exist a positive

constant C and a nonnegative function h ∈ L1(Ω) such that

φ(x, 2t) ≤ Cφ(x, t) + h(x)

for a.a.x ∈ Ω and for all t ∈ [0,∞).
(v) Given φ,ψ ∈ Φ(Ω), we say that φ is weaker than ψ, denoted by φ ≺ ψ,

if there exist two positive constants C1, C2 and a nonnegative function h ∈
L1(Ω) such that

φ(x, t) ≤ C1ψ(x,C2t) + h(x)

for a.a.x ∈ Ω and for all t ∈ [0,∞).

For φ ∈ Φ(Ω) we denote by ρφ the corresponding modular given by

ρφ(u) :=

∫
Ω

φ (x, |u|) dx.

Let M(Ω) be the set of all measurable functions u : Ω → R. Then, the Musielak-
Orlicz space Lφ(Ω) is defined by

Lφ(Ω) := {u ∈M(Ω): there exists α > 0 such that ρφ(αu) < +∞}
equipped with the norm

∥u∥φ := inf
{
α > 0: ρφ

(u
α

)
≤ 1
}
.

The next proposition is taken from Musielak [24, Theorem 7.7 and Theorem 8.5].

Proposition 2.2.

(i) Let φ ∈ Φ(Ω). Then (Lφ(Ω), ∥ · ∥φ) is a Banach space.
(ii) Let φ,ψ ∈ Φ(Ω) be locally integrable with φ ≺ ψ. Then

Lψ(Ω) ↪→ Lφ(Ω).

The following proposition can be found in the books by Musielak [24, Theorem
8.13] and Diening–Harjulehto–Hästö-Růžička [12, Lemma 2.1.14].

Proposition 2.3. Let φ ∈ Φ(Ω).

(i) If φ satisfy the ∆2-condition, then

Lφ(Ω) = {u ∈M(Ω): ρφ(u) < +∞} .
(ii) Furthermore, if u ∈ Lφ(Ω), then ρφ(u) < 1 (resp.= 1; > 1) if and only if

∥u∥φ < 1 (resp.= 1; > 1).

Now we can state the definition of a N -function.

Definition 2.4. A function φ : [0,∞) → [0,∞) is called N -function if it is a Φ-
function such that

lim
t→0+

φ(t)

t
= 0 and lim

t→∞

φ(t)

t
= ∞.
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We call a function φ : Ω×R → [0,∞) a generalized N -function if φ(·, t) is measur-
able for all t ∈ R and φ(x, ·) is a N -function for a.a.x ∈ Ω. We denote the class
of all generalized N -functions by N(Ω).

Now, let φ ∈ Φ(Ω). The corresponding Sobolev space W 1,φ(Ω) is defined by

W 1,φ(Ω) := {u ∈ Lφ(Ω): |∇u| ∈ Lφ(Ω)}
equipped with the norm

∥u∥1,φ = ∥u∥φ + ∥∇u∥φ

where ∥∇u∥φ = ∥ |∇u| ∥φ. If φ ∈ N(Ω) is locally integrable, we denote by W 1,φ
0 (Ω)

the completion of C∞
0 (Ω) in W 1,φ(Ω).

The next theorem gives a criterion when the Sobolev spaces are Banach spaces
and also reflexive. This result can be found in Musielak [24, Theorem 10.2] and
Fan [14, Proposition 1.7 and 1.8].

Theorem 2.5. Let φ ∈ N(Ω) be locally integrable such that

inf
x∈Ω

φ(x, 1) > 0.

Then the spaces W 1,φ(Ω) and W 1,φ
0 (Ω) are separable Banach spaces. Moreover,

they are reflexive if Lφ(Ω) is reflexive.

Let us now consider the generalized N -function H satisfying hypotheses (HL).

First note, that from Lemma 2.3.16 in Chlebicka–Gwiazda–Świerczewska-Gwiazda–
Wróblewska-Kamińska [8], we know that H satisfies the ∆2-condition and so, by
Proposition 2.3, the space LH(Ω) can be given by

LH(Ω) = {u ∈M(Ω): ρH(u) < +∞}
with the associated modular ρH(·). Also, Corollary 3.5.5 in [8] guarantees that

LH(Ω) is reflexive and so, by Theorem 2.5, the spaces W 1,H(Ω) and W 1,H
0 (Ω)

are separable and reflexive. Note that (1.2) implies the validity of the Poincaré
inequality, i.e.,

∥u∥H ≤ C∥∇u∥H for all u ∈W 1,H
0 (Ω). (2.1)

We refer to the proof of Proposition 2.18 in [11] which can be done for any gener-

alized N -function in the same way. Using (2.1), we can equip the space W 1,H
0 (Ω)

with the equivalent norm

∥u∥ = ∥∇u∥H for all u ∈W 1,H
0 (Ω).

Note that the requirement to suppose (1.2) is very general. Indeed, in Harjulehto–
Hästö [18, see Chapter 6.3] or Cianchi–Diening [9, Theorem 3.7] one can find suffi-
cient conditions for (1.2) to hold and one key assumption is condition (A1), which
says the following:

• A generalized N -function φ : Ω × [0,∞) → [0,∞) satisfies (A1) if there
exists β ∈ (0, 1) such that

βφ−1(x, t) ≤ φ−1(y, t)

for every t ∈ [1, 1
|B| ], for a. a.x, y ∈ B∩Ω and for every ball B with |B| ≤ 1.
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We avoided to suppose conditions like (A1) because the embedding (1.2) is more
general than assumption (A1). In fact, in [2], [11], and [22] the validity of (1.2)
for the logarithmic double phase operator, the double phase operator, and the
double phase operator with logarithmic perturbation have been proved without
condition (A1). For (A1) to be true for these operators we have to require that
0 ≤ µ(·) ∈ C0,1(Ω) and

q

p
< 1 +

1

N
, (2.2)

see [2, Theorem 3.12], [11, Theorem 2.23], and [22, Proposition 2.27]. However, the
compactness of (1.2) still holds when 0 ≤ µ(·) ∈ L∞(Ω) without supposing (2.2),
see [2, Proposition 3.9], [11, Proposition 2.18], and [22, Proposition 2.24].

Next, we introduce the following functions, useful to compare generalized N -
functions with suitable power functions. To this end, for given −∞ < α ≤ β < +∞,
we define

W β
α(t) := min{tα, tβ} and W

β

α(t) := max{tα, tβ}. (2.3)

The next proposition summarizes the information carried by the so-called ‘in-
dices’, i.e., the quantities appearing in (2.5) below. Although the result is well-
known for N -functions, for the sake of completeness we will sketch its proof in a
more general case, where no convexity of functions is required.

Proposition 2.6. Let K : [0,+∞) → [0,+∞) be of class C2, strictly increasing,
and such that K(0) = 0. Set k := K ′ and suppose

lim
s→0+

sk(s) = 0, (2.4)

as well as

−∞ < ik := inf
s>0

sk′(s)

k(s)
≤ sup

s>0

sk′(s)

k(s)
=: sk < +∞. (2.5)

Then

ik + 1 ≤ inf
s>0

sk(s)

K(s)
≤ sup

s>0

sk(s)

K(s)
≤ sk + 1. (2.6)

Moreover,
k(1)W sk

ik
(s) ≤ k(s) ≤ k(1)W

sk
ik
(s) (2.7)

and
K(1)W sk+1

ik+1 (s) ≤ K(s) ≤ K(1)W
sk+1

ik+1 (s) (2.8)

for all s > 0.

Proof. By (2.5) we have

ikk(t) ≤ tk′(t) ≤ skk(t) for all t > 0. (2.9)

Integrating by parts, along with K(0) = 0 and (2.4), yields

ikK(s) ≤ sk(s)−K(s) ≤ skK(s) for all s > 0, (2.10)

ensuring (2.6).
Taking any s ≥ 1 and integrating (2.9) in [1, s] we infer

ik

∫ s

1

dt

t
≤
∫ s

1

k′(t)

k(t)
dt ≤ sk

∫ s

1

dt

t
.
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Recalling that k > 0 because of the monotonicity of K, we deduce

log sik ≤ log
k(s)

k(1)
≤ log ssk ,

which implies (2.7) for s ≥ 1. Now suppose s ∈ (0, 1). Integrating (2.9) in [s, 1]
leads to

ik

∫ 1

s

dt

t
≤
∫ 1

s

k′(t)

k(t)
dt ≤ sk

∫ 1

s

dt

t
.

Thus,

log s−ik ≤ log
k(1)

k(s)
≤ log s−sk , (2.11)

which gives (2.7) for s ∈ (0, 1). The proof of (2.8) is analogous, taking (2.10) into
account. □

Remark 2.7. It is worth noticing that (2.4) is automatically satisfied when ik >
−1, due to (2.11). This is the case of the N -function K := H(x, ·) (since (HL)(i)
forces ik > 0) and of the singular term k := f (see (Hf )).

Adapting standard arguments for N -functions (see, e.g., Fukagai–Ito–Narukawa
[16, Lemma 2.1]), it is readily seen that the following result holds true.

Proposition 2.8. Let Φ be a generalized N -function of class C1. Suppose that

a := inf
(x,s)∈Ω×(0,+∞)

s∂sΦ(x, s)

Φ(x, s)
> 1, b := sup

(x,s)∈Ω×(0,+∞)

s∂sΦ(x, s)

Φ(x, s)
< +∞.

Then

W b
a(∥u∥Φ) ≤

∫
Ω

Φ(x, |u|) dx ≤W
b

a(∥u∥Φ) for all u ∈ LΦ(Ω).

Next, we are going to prove the properties of the operator.

Lemma 2.9. Let (HL) be satisfied. Then L : W 1,H
0 (Ω) → W 1,H

0 (Ω)∗ defined in
(1.1) is a strictly monotone operator and fulfills the (S+)-property.

Proof. The result is a consequence of Proposition 3.12 by Crespo-Blanco [10]. The
only nontrivial condition to verify is

lim
s→+∞

∂2ssH(x, c+ s)(c− s)2 = +∞ for all c > 0.

To this aim, it suffices to prove that

lim
s→+∞

s2∂2ssH(x, s) = +∞, (2.12)

since the change of variable τ = s+ c yields

lim
s→+∞

∂2ssH(x, c+ s)(c− s)2 = lim
τ→+∞

τ2∂2ssH(x, τ)

(
τ − 2c

τ

)2

for all c > 0.

Proposition 2.6 (applied with k = ∂sH(x, ·)), (HL)(i), (HL)(iii), and (2.8) entail

lim
s→+∞

s2∂2ssH(x, s) = lim
s→+∞

s∂2ssH(x, s)

∂sH(x, s)
s∂sH(x, s)

≥ l−∂sH(x, 1) lim
s→+∞

sl−+1 = +∞,

ensuring (2.12). □
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Next, we will make use of this simple real-analysis result.

Proposition 2.10. Let φ : (0,+∞) → R be a differentiable function such that

(i) lim sup
t→0+

φ(t) < 0 and lim sup
t→+∞

φ(t) < 0;

(ii) max
t∈(0,+∞)

φ(t) > 0;

(iii) each zero of φ is non-degenerate, i.e., φ(t) = 0 implies φ′(t) ̸= 0.

Then there exist 0 < t1 < t2 such that φ(t1) = φ(t2) = 0 and φ′(t1) > 0 > φ′(t2).

Proof. Set

t1 = inf{t > 0: φ(t) > 0} and t2 = sup{t > 0: φ(t) > 0}.
The sets are non-empty by hypothesis and since φ is continuous, we have t1 < t2.
We will only reason for t1, the argument for t2 is analogous. By assumption we have
t1 > 0, and by continuity of φ we infer φ(t1) ≥ 0. If φ(t1) > 0, then there exists
δ > 0 such that φ(t1 − δ) > 0, contradicting the minimality of t1. Thus φ(t1) = 0
and so φ′(t1) ̸= 0 by the non-degeneracy hypothesis. Suppose by contradiction that
φ′(t1) < 0. Then there exists δ > 0 such that φ(t1 − δ) > 0, again in contradiction
with the minimality of t1. Hence φ′(t1) > 0. □

In order to define an energy functional associated with (Pλ), we consider the
following odd extensions of f and g:

f̃(s) :=


f(s) if s > 0,

0 if s = 0,

−f(−s) if s < 0,

g̃(s) :=


g(s) if s > 0,

0 if s = 0,

−g(−s) if s < 0.

For simplification, we still call this extensions as f and g, respectively. We also
introduce the functions F,G : R → R defined as

F (s) :=

∫ s

0

f(t) dt, G(s) :=

∫ s

0

g(t) dt for all s ∈ R.

We set

M(s) =

∫ s

0

m(t) dt for all s ∈ R

and

θ := sup
s>0

sm(s)

M(s)
, (2.13)

as well as

ϕ(ξ) :=

∫
Ω

H(x, |ξ|) dx for all ξ ∈ LH(Ω;RN ).

The energy functional J : W 1,H
0 (Ω) → R associated with (Pλ) is

J(u) :=M(ϕ(∇u))− λ

∫
Ω

F (u) dx−
∫
Ω

G(u) dx for all u ∈W 1,H
0 (Ω).

Due to the symmetries chosen in the construction of F andG, we have J(u) = J(|u|)
for all u ∈ W 1,H

0 (Ω). Moreover, due to (H), J turns out to be weakly sequentially
lower semi-continuous.
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For any u ∈W 1,H
0 (Ω) we define the fibering map ψu : (0,+∞) → R as

ψu(t) := J(tu) =M(ϕ(t∇u))− λ

∫
Ω

F (tu) dx−
∫
Ω

G(tu) dx for all t > 0.

Note that F is even and F (0) = 0, so∫
Ω

F (tu) dx =

∫
Ω∩{u>0}

F (tu) dx+

∫
Ω∩{u<0}

F (−tu) dx

for all t > 0 and u ∈ W 1,H
0 (Ω). Thus, exploiting (Hf ), Proposition 2.6, and

Lebesgue’s dominated converge theorem, besides recalling f(0) = 0, one has

∂t

[∫
Ω

F (tu) dx

]
=

∫
Ω

f(tu)udx for all t > 0.

Taking into account the fact that s 7→ f(s)s is even and vanishes at the origin, one
can reason as above to obtain

∂2tt

[∫
Ω

F (tu) dx

]
=

∫
Ω

f ′(tu)u2 dx for all t > 0,

where we set f ′(0) := 0. Analogous arguments hold for G.
Accordingly,

ψ′
u(t) = ⟨J ′(tu), u⟩W 1,H

0 (Ω) = m(ϕ(t∇u))⟨ϕ′(t∇u),∇u⟩LH(Ω;RN )

− λ

∫
Ω

f(tu)udx−
∫
Ω

g(tu)udx

and

ψ′′
u(t) = m′(ϕ(t∇u))⟨ϕ′(t∇u),∇u⟩2LH(Ω;RN ) +m(ϕ(t∇u))ϕ′′(t∇u)(∇u,∇u)

− λ

∫
Ω

f ′(tu)u2 dx−
∫
Ω

g′(tu)u2 dx,

where ϕ′′(ξ)(·, ·) represents the bilinear form on LH(Ω;RN ) × LH(Ω;RN ) induced
by ϕ′′(ξ). Owing to (HL), ϕ

′′(ξ) is positive definite for all ξ ∈ LH(Ω;RN ). Notice
that

ψu(t) = ψtu(1), tψ′
u(t) = ψ′

tu(1), and t2ψ′′
u(t) = ψ′′

tu(1) (2.14)

for all t ∈ (0,+∞).

Remark 2.11. Using hypotheses (H), Proposition 2.6, and Lebesgue’s dominated
converge theorem, it is readily seen that the maps (t, u) 7→ ψu(t), (t, u) 7→ ψ′

u(t),

and (t, u) 7→ ψ′′
u(t) are continuous in (0,+∞)×W 1,H

0 (Ω).

The Nehari manifold N associated with J is

N = {u ∈W 1,H
0 (Ω) \ {0} : ψ′

u(1) = 0},
which can be divided in the following sets:

N+ := {u ∈ N : ψ′′
u(1) > 0},

N 0 := {u ∈ N : ψ′′
u(1) = 0},

N− := {u ∈ N : ψ′′
u(1) < 0}.
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Due to the symmetry of J , both u 7→ ψ′
u(1) and u 7→ ψ′′

u(1) are even. Thus, if u ∈ N
then |u| ∈ N , and the same holds for N+, N−, and N 0. For any u ∈W 1,H

0 (Ω)\{0}
we define

E+
u := {t ∈ (0,+∞) : tu ∈ N+},
E0
u := {t ∈ (0,+∞) : tu ∈ N 0},

E−
u := {t ∈ (0,+∞) : tu ∈ N−}.

We will say that E+
u < E−

u if t+ < t− for all t± ∈ E±
u . Furthermore, for all

ξ ∈ LH(Ω;RN ), we set

A(ξ) := m(ϕ(ξ))⟨ϕ′(ξ), ξ⟩LH(Ω;RN ),

B(ξ) := m′(ϕ(ξ))⟨ϕ′(ξ), ξ⟩2LH(Ω;RN ) +m(ϕ(ξ))ϕ′′(ξ)(ξ, ξ),

which represent the principal parts of ψ′
u(1) and ψ

′′
u(1), respectively.

To simplify matters, we will omit the subscripts in the duality brackets when the
context is clear. As usual, the generic constants c, C > 0 may change their value
at each place.

3. Basic estimates

In this section we will discuss some basic estimates which are needed in the
sequel. We start with the following lemma.

Lemma 3.1. Suppose (Hm) and (HL) to be satisfied. Then, for all ξ ∈ LH(Ω;RN ),
the following hold:

(a1) pM(ϕ(ξ)) ≤ A(ξ) ≤ qθM(ϕ(ξ));

(a2) l−A(ξ) ≤ B(ξ) ≤ (qη + l+)A(ξ);

(a3) M(1)W qθ
p (∥ξ∥H) ≤M(ϕ(ξ)) ≤M(1)W

qθ

p (∥ξ∥H),

where W qθ
p ,W

qθ

p are as in (2.3), while θ is defined in (2.13).

Proof. We fix ξ ∈ LH(Ω;RN ). Reasoning as in the proof of (2.6), the monotonicity
of m gives

inf
s>0

sm(s)

M(s)
≥ 1. (3.1)

Proposition 2.6, (HL), and (2.13) yield

m(ϕ(ξ))⟨ϕ′(ξ), ξ⟩ = m(ϕ(ξ))

∫
Ω

∂sH(x, |ξ|)|ξ| dx

≤ qm(ϕ(ξ))ϕ(ξ) ≤ qθM(ϕ(ξ)).

(3.2)

Hence, using (HL) and (3.1),

m(ϕ(ξ))⟨ϕ′(ξ), ξ⟩ ≥ pm(ϕ(ξ))ϕ(ξ) ≥ pM(ϕ(ξ)). (3.3)

Putting together (3.2) and (3.3) yields (a1).
Reasoning as above, from (HL) and (Hm) we infer

m′(ϕ(ξ))⟨ϕ′(ξ), ξ⟩ ≤ qm′(ϕ(ξ))ϕ(ξ) ≤ qηm(ϕ(ξ)), (3.4)

and

ϕ′′(ξ)(ξ, ξ) =

∫
Ω

∂2ssH(x, |ξ|)|ξ|2 dx ≤ l+

∫
Ω

∂sH(x, |ξ|)|ξ| dx = l+⟨ϕ′(ξ), ξ⟩. (3.5)
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Summing (3.4) multiplied by ⟨ϕ′(ξ), ξ⟩ with (3.5) multiplied by m(ϕ(ξ)) yields

B(ξ) ≤ (qη + l+)A(ξ).

On the other hand, arguing as in (3.5),

B(ξ) ≥ m(ϕ(ξ))ϕ′′(ξ)(ξ, ξ) ≥ l−m(ϕ(ξ))⟨ϕ′(ξ), ξ⟩ = l−A(ξ),

which concludes the proof of (a2).
Let us show (a3). According to Proposition 2.8 and (HL) we have

W q
p(∥ξ∥H) ≤ ϕ(ξ) ≤W

q

p(∥ξ∥H), (3.6)

while Proposition 2.6, (Hm), and (3.1) ensure

M(1)W θ
1(s) ≤M(s) ≤M(1)W

θ

1(s) for all s > 0. (3.7)

Thus, (3.6) and (3.7) together lead to

M(ϕ(ξ)) ≤M(1)W
θ

1(ϕ(ξ)) ≤M(1)W
θ

1(W
q

p(∥ξ∥H)) =M(1)W
qθ

p (∥ξ∥H)

and

M(ϕ(ξ)) ≥M(1)W θ
1(ϕ(ξ)) ≥M(1)W θ

1(W
q
p(∥ξ∥H)) =M(1)W qθ

p (∥ξ∥H),

which gives (a3). □

Note that the estimates contained in Lemma 3.1 will allow us to have controls
of type

B(ξ) ≃ A(ξ) ≃M(ϕ(ξ)), W qθ
p (∥ξ∥H) ≲M(ϕ(ξ)) ≲W

qθ

p (∥ξ∥H),

with W qθ
p ,W

qθ

p as in (2.3).

Lemma 3.2. Under the hypotheses (H), for all u ∈W 1,H
0 (Ω) one has

(b1)

∫
Ω

F (u) dx ≤ CW
1−γ−
1−γ+ (∥∇u∥H),

(b2) cW
r+
r−

(∥u∥H) ≤
∫
Ω

G(u) dx ≤ CW
r+
r−(∥∇u∥H),

for some c, C > 0 independent of u.

Proof. Fix any u ∈W 1,H
0 (Ω). Exploiting Proposition 2.6 and (Hf ) we have

iF := inf
s>0

sf(s)

F (s)
≥ 1− γ+ > 0, sF := sup

s>0

sf(s)

F (s)
≤ 1− γ− < p.

Thus, using Proposition 2.6 again, besides Hölder’s inequality and W 1,H
0 (Ω) ↪→

LH(Ω) ↪→ Lp(Ω) (see (HL) and Proposition 2.2), we get∫
Ω

F (u) dx ≤ C

(∫
{u≥1}

usF dx+

∫
{u<1}

uiF dx

)
≤ C(∥u∥sFp + ∥u∥iFp )

≤ C(∥∇u∥sFH + ∥∇u∥iFH ) ≤ CW
sF
iF (∥∇u∥H) ≤ CW

1−γ−
1−γ+ (∥∇u∥H),

for a suitable C > 0 changing at each place. Hence (b1) is established.
In order to show (b2), observe that Proposition 2.6 and (Hg) entail

iG := inf
s>0

sg(s)

G(s)
≥ r− > 1, sG := sup

s>0

sg(s)

G(s)
≤ r+ < p∗.
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In particular, G is a generalized N -function satisfying the hypotheses of Proposition
2.8. Moreover, owing to (3.1), one has θ ≥ 1. Then (HC) and Proposition 2.6 yield

r− > qη + l+ + 1 ≥ q(η + 1) ≥ qθ ≥ q ≥ p. (3.8)

Since p ≤ q < r− ≤ r+ < p∗, by Sobolev’s embedding and Proposition 2.2 one

has W 1,H
0 (Ω) ↪→ W 1,p

0 (Ω) ↪→ Lp
∗
(Ω) ↪→ LG(Ω) ↪→ LH(Ω). Thus, Proposition 2.8

ensures ∫
Ω

G(u) dx ≤W
r+
r−(∥u∥G) ≤ CW

r+
r−(∥∇u∥H).

Analogously, ∫
Ω

G(u) dx ≥W r+
r−

(∥u∥G) ≥ cW r+
r−

(∥u∥H).

establishing (b2). □

4. Analysis of the Nehari manifold

In this section we study the Nehari manifold and its properties.

Lemma 4.1. Let hypotheses (H) be satisfied. Then J |N is coercive.

Proof. Let {un}n∈N ⊆ N be such that ∥un∥ → ∞. By definition of N we have∫
Ω

g(un)un dx = m(ϕ(∇un))⟨ϕ′(∇un),∇un⟩ − λ

∫
Ω

f(un)un dx (4.1)

for all n ∈ N. Thus Proposition 2.6, (Hg), (4.1), and Lemmas 3.1 as well as 3.2
imply that, whenever ∥∇un∥H is sufficiently large,

J(un) =M(ϕ(∇un))− λ

∫
Ω

F (un) dx−
∫
Ω

(
g(un)un
G(un)

)−1

g(un)un dx

≥M(ϕ(∇un))− λ

∫
Ω

F (un) dx− 1

r−

∫
Ω

g(un)un dx

=M(ϕ(∇un))−
1

r−
m(ϕ(∇un))⟨ϕ′(∇un),∇un⟩

− λ

[∫
Ω

F (un) dx− 1

r−

∫
Ω

f(un)un dx

]
≥
(
1− qθ

r−

)
M(ϕ(∇un))− λ

∫
Ω

F (un) dx ≥ c∥∇un∥pH − λC∥∇un∥1−γ−H ,

with c, C > 0, where we also used that r− > qθ, owing to (3.8). Recalling 1−γ− < p
yields J(un) → +∞. □

Lemma 4.2. Let hypotheses (H) be satisfied. Then there exist D1 = D1(λ) > 0
and D2 > 0 such that

∥u+∥ ≤ D1 and ∥u−∥ ≥ D2 (4.2)

for all u+ ∈ N+ ∪N 0 and for all u− ∈ N− ∪N 0. Moreover,

lim
λ→0+

D1(λ) = 0, (4.3)

so there exists Λ1 > 0 such that D1 < D2 and N 0 = ∅ for any λ ∈ (0,Λ1).
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Proof. We take u+ ∈ N+ ∪N 0 and u− ∈ N− ∪N 0. Then, by the definitions of N ,
N±, and N 0, one has

A(∇u±) = λ

∫
Ω

f(u±)u± dx+

∫
Ω

g(u±)u± dx, (4.4)

as well as

B(∇u+) ≥ λ

∫
Ω

f ′(u+)(u+)2 dx+

∫
Ω

g′(u+)(u+)2 dx (4.5)

and

B(∇u−) ≤ λ

∫
Ω

f ′(u−)(u−)2 dx+

∫
Ω

g′(u−)(u−)2 dx. (4.6)

Let us reason for u+. According to (Hg), along with (4.4) and (4.5), we get

(r− − 1)A(∇u+)−B(∇u+)

≤ λ

∫
Ω

f(u+)u+
(
r− − 1− f ′(u+)u+

f(u+)

)
dx

+

∫
Ω

g(u+)u+
(
r− − 1− g′(u+)u+

g(u+)

)
dx

≤ λ

∫
Ω

f(u+)u+
(
r− − 1− f ′(u+)u+

f(u+)

)
dx.

Thus, owing to Lemma 3.1, (Hf ), Proposition 2.6, and Lemma 3.2, we have

cW qθ
p (∥∇u+∥H) ≤ (r− − 1− qη − l+)A(∇u+) ≤ (r− − 1)A(∇u+)−B(∇u+)

≤ λ

∫
Ω

f(u+)u+
(
r− − 1− f ′(u+)u+

f(u+)

)
dx ≤ λ(r− − 1 + γ+)

∫
Ω

f(u+)u+ dx

≤ λ(r− − 1 + γ+)(1− γ−)

∫
Ω

F (u+) dx ≤ λCW
1−γ−
1−γ+ (∥∇u

+∥H),

for suitable c, C > 0. Since 1− γ− < p, {∇u+} is bounded in LH(Ω), whence {u+}
is bounded in W 1,H(Ω). Moreover, ∥u+∥ → 0 as λ→ 0, ensuring (4.3).

Now we focus on u−, reasoning as above. Hypothesis (Hf ), besides (4.4) and
(4.6), yields

γ−A(∇u−) +B(∇u−)

≤ λ

∫
Ω

f(u−)u−
(
γ− +

f ′(u−)u−

f(u−)

)
dx+

∫
Ω

g(u−)u−
(
γ− +

g′(u−)u−

g(u−)

)
dx

≤
∫
Ω

g(u−)u−
(
γ− +

g′(u−)u−

g(u−)

)
dx.

Exploiting Lemma 3.1, (Hg), Proposition 2.6, and Lemma 3.2, we deduce

cW qθ
p (∥∇u−∥H) ≤ γ−A(∇u−) ≤ γ−A(∇u−) +B(∇u−)

≤
∫
Ω

g(u−)u−
(
γ− +

g′(u−)u−

g(u−)

)
dx

≤ (r+ − 1 + γ−)

∫
Ω

g(u−)u− dx

≤ (r+ − 1 + γ−)r+

∫
Ω

G(u−) dx ≤ CW
r+
r−(∥∇u

−∥H).
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Since qθ < r− by (3.8), there exists a positive lower bound for ∥∇u−∥H, namely
∥u−∥. Hence, (4.2) is established.

To conclude, observe that (4.3) provides Λ1 > 0 such that D1 < D2 for all
λ ∈ (0,Λ1), with D1, D2 as in (4.2). Let λ ∈ (0,Λ1). If, by contradiction, there
exists u ∈ N 0, then applying (4.2) with u+ = u− = u entails ∥u∥ < D1 < D2 < ∥u∥,
which is a contradiction. Accordingly, N 0 = ∅ for all λ ∈ (0,Λ1). □

Lemma 4.3. Let hypotheses (H) be satisfied. Then there exists Λ2 > 0 such that

for all λ ∈ (0,Λ2) the following statement holds true: for any u ∈ W 1,H
0 (Ω) \ {0}

there exist unique 0 < t+u < t−u such that t+u u ∈ N+ and t−u u ∈ N−.

Proof. Fix any u ∈ W 1,H
0 (Ω) \ {0}. We are going to apply Proposition 2.10 to the

function ψ′
u. To this end, using Lebesgue’s dominated convergence theorem and

Fatou’s lemma, along with (Hm), (HL), (Hg), (Hf ), and the symmetry of f , ensure

lim sup
t→0+

ψ′
u(t) = lim

t→0+

[
m(ϕ(t∇u))⟨ϕ′(t∇u),∇u⟩ −

∫
Ω

g(tu)udx

]
− λ lim inf

t→0+

∫
Ω

f(tu)udx

= −λ lim inf
t→0+

∫
Ω

f(t|u|)|u|dx ≤ −λ
(
lim inf
t→0+

f(t)

)∫
Ω

|u| dx < 0.

Exploiting (Hg), Proposition 2.6, and Lemmas 3.1 as well as 3.2 we get, for all t
sufficiently large,

A(t∇u)−
∫
Ω

g(tu)tudx ≤ A(t∇u)− r−

∫
Ω

G(tu) dx

≤ c(t∥∇u∥H)qθ − C(t∥u∥H)r−,

for some c, C > 0. Hence, recalling (2.14) and qθ < r− (see (3.8)),

lim sup
t→+∞

ψ′
u(t) = lim sup

t→+∞

1

t
ψ′
tu(1) ≤ lim sup

t→+∞

1

t

[
A(t∇u)−

∫
Ω

g(tu)tudx

]
≤ lim sup

t→+∞

[
ctqθ−1∥∇u∥qθH − Ctr−−1∥u∥r−H

]
= −∞.

Reasoning as above, (2.14), (Hf ), (Hg), Proposition 2.6, and Lemmas 3.1–3.2
imply

tψ′
u(t) = ψ′

tu(1)

≥ cW qθ
p (t∥∇u∥H)− C

[
λW

1−γ−
1−γ+ (t∥∇u∥H) +W

r+
r−(t∥∇u∥H)

] (4.7)

for all t > 0 and opportune c, C > 0. In order to have maxt>0 ψ
′
u(t) > 0, from (4.7)

it suffices that

λ <
cW qθ

p (t∥∇u∥H)− CW
r+
r−(t∥∇u∥H)

CW
1−γ−
1−γ+ (t∥∇u∥H)

for some t = t(u) > 0.

To this aim we choose t := ρ
∥∇u∥H

with ρ ∈ (0, 1) such that

Λ̂ :=
cρqθ − Cρr−

Cρ1−γ+
> 0.
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This choice is possible since qθ < r−. In particular, maxt>0 ψ
′
u(t) > 0 whenever

λ < Λ̂. Moreover, note that t depends on u, but Λ̂ does not.
Set Λ2 := min{Λ1, Λ̂}. Assuming λ < Λ2, Lemma 4.2 ensures N 0 = ∅, so that

each zero of ψ′
u is not a zero of ψ′′

u. Indeed, if t ∈ (0,+∞) is a zero of ψ′
u, then

(2.14) yields

ψ′
tu(1) = tψ′

u(t) = 0 and ψ′′
u(t) =

ψ′′
tu(1)

t2
̸= 0.

Hence Proposition 2.10 provides 0 < t+u < t−u such that t±u u ∈ N±.
Next we show the uniqueness. The argument above ensures that the sets E±

u are
non-empty. We show that E+

u < E−
u . By contradiction suppose that there exist

t− ≤ t+ such that t± ∈ E±
u . Then, by Lemma 4.2,

D2 ≤ t−∥u∥ ≤ t+∥u∥ ≤ D1,

contradicting D1 < D2, which holds for all λ < Λ1.
Now we prove that E+

u is a singleton. An analogous argument guarantees the
same property for E−

u . By contradiction, let t+1 , t
+
2 ∈ E+

u fulfill t+1 < t+2 . Then there
exists δ ∈ (0, 12 (t

+
2 − t+1 )) such that ψ′

u(t
+
1 + δ) > 0 > ψ′

u(t
+
2 − δ). By Bolzano’s

theorem there exists t0 ∈ (t+1 , t
+
2 ) such that t0u ∈ N . Consider

t = sup
{
t ∈ (t+1 + δ, t+2 − δ) : tu ∈ N

}
.

By continuity of ψ′
u we deduce that tu ∈ N , so t ∈ E+

u ∪ E−
u ∪ E0

u. Since N 0 = ∅
one has t /∈ E0

u. On the other hand, again by Bolzano’s theorem, t ∈ E+
u would

contradict the maximality of t. Hence t ∈ E−
u . Since t < t+2 , we get a contradiction

with E+
u < E−

u . We deduce E+
u = {t+1 }. □

Lemma 4.4. Let hypotheses (H) be satisfied and Λ2 be as in Lemma 4.3. Then
J(u) < 0 for all u ∈ N+ provided λ < Λ2. Moreover, there exists Λ3 > 0 such
that for all λ ∈ (0,Λ3) the following assertion is true: there exists σ > 0 such that
J(v) ≥ σ for all v ∈ N−.

Proof. Suppose λ < Λ2, where Λ2 is from Lemma 4.3. Pick any u ∈ N+. Owing
to Lemma 4.3, one has ψ′

u(t) < 0 for all t ∈ (0, 1). Indeed, ψ′
u(t) < 0 near t = 0

and, if ψ′
u(t) = 0 for some t ∈ (0, 1), then t /∈ E+

u ∪E−
u ∪E0

u, according to the fact
that E+

u = {1}, E+
u < E−

u , and E
0
u = ∅, respectively. Hence

J(u) = ψu(1) < ψu(0) = J(0) = 0.

Now consider an arbitrary v ∈ N−. Reasoning as in (4.7) we get

J(tv) = ψtv(1) ≥ cW qθ
p (t∥∇v∥H)− C

[
λW

1−γ−
1−γ+ (t∥∇v∥H) +W

r+
r−(t∥∇v∥H)

]
for all t > 0 with some c, C > 0. We take ρ ∈ (0, 1) such that cρqθ − Cρr− > 0,
which is possible since qθ < r− (see (3.8)). Then there exists σ > 0 such that

Λ̌ :=
cρqθ − Cρr− − σ

Cρ1−γ+
> 0.

Thus, choosing t := ρ
∥∇v∥H

, for all λ < Λ̌ one has J(tv) ≥ σ. Notice that σ is

independent of u. Since λ < Λ2, Lemma 4.3 ensures that ψv has a unique global
maximizer at t = 1. Hence

J(v) ≥ J(tv) ≥ σ > 0
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whenever λ < Λ3 := min{Λ2, Λ̌}. □

5. Proof of the main result

We set Λ := min{Λ1,Λ2,Λ3} with Λi, i = 1, 2, 3, defined in the Lemmas 4.2, 4.3,
and 4.4, respectively.

Proposition 5.1. Let hypotheses (H) be satisfied and let λ ∈ (0,Λ). Then there
exists u ∈ N+ such that u ≥ 0 a.e. in Ω and

J(u) = min
N+

J.

Proof. Let {un}n∈N be a minimizing sequence of J |N+ . The coercivity of J |N+

(see Lemma 4.1) forces un ⇀ u for some u ∈ W 1,H
0 (Ω), passing to a sub-sequence

if necessary. We may assume also un → u in Lκ(Ω) for all κ ∈ (1, p∗). The
weak sequential lower semi-continuity of J , along with Lemma 4.4, implies J(u) ≤
infN+ J < 0 and so u ̸= 0. Owing to Lemma 4.3, there exists a unique t > 0 such
that tu ∈ N+. It remains to prove that u ∈ N+.

Reasoning as in the first part of the proof of Lemma 4.4, ψu is strictly decreasing
in (0, t).

We claim that un → u inW 1,H
0 (Ω), up to sub-sequences. The claim is equivalent

to tun → tu in W 1,H
0 (Ω). We argue by contradiction, assuming that {tun}n∈N does

not converge to tu. We have

lim sup
n→∞

ϕ(tun) > ϕ(tu),

since the opposite inequality entails tun → tu by the uniform convexity ofW 1,H
0 (Ω).

Moreover, according to the convexity of H(x, ·) for a.a.x ∈ Ω, we get

0 ≤ lim inf
n→∞

⟨ϕ′(t∇un)− ϕ′(t∇u),∇un −∇u⟩

= lim inf
n→∞

⟨ϕ′(t∇un),∇un⟩ − ⟨ϕ′(t∇u),∇u⟩.

We deduce

lim sup
n→∞

⟨ϕ′(t∇un),∇un⟩ > ⟨ϕ′(t∇u),∇u⟩.

Indeed, if ⟨ϕ′(t∇un),∇un⟩ → ⟨ϕ′(t∇u),∇u⟩, then the weak-weak continuity of

L : W 1,H
0 (Ω) →W 1,H

0 (Ω)∗ yields

lim sup
n→∞

⟨L(tun), tun − tu⟩ = lim sup
n→∞

⟨L(tun), tun⟩ − ⟨L(tu), tu⟩

= t
[
lim
n→∞

⟨ϕ′(t∇un),∇un⟩ − ⟨ϕ′(t∇u),∇u⟩
]
= 0,

which forces tun → tu due to the (S+)-property of L, ensured by Lemma 2.9.
Hence, passing to a sub-sequence, we can assume

lim
n→∞

⟨ϕ′(t∇un),∇un⟩ > ⟨ϕ′(t∇u),∇u⟩ and lim
n→∞

ϕ(tun) > ϕ(tu). (5.1)
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Exploiting Lebesgue’s dominated convergence theorem, the monotonicity of m,
and (5.1), we infer

lim inf
n→∞

ψ′
un

(t)

= lim inf
n→∞

[
m(ϕ(t∇un))⟨ϕ′(t∇un),∇un⟩ −

∫
Ω

f(tun)un dx

−
∫
Ω

g(tun)un dx

]
= lim inf

n→∞

[
m(ϕ(t∇un))⟨ϕ′(t∇un),∇un⟩

]
−
∫
Ω

f(tu)u dx−
∫
Ω

g(tu)u dx

> m(ϕ(t∇u))⟨ϕ′(t∇u),∇u⟩ −
∫
Ω

f(tu)u dx−
∫
Ω

g(tu)u dx = ψ′
u(t) = 0,

(5.2)

which forces t > 1. Indeed ψ′
un

(1) = 0. Reasoning as in the first part of Lemma

4.4, from E+
u = {t} and E+

un
= {1} we deduce ψ′

u < 0 in (0, t) and ψ′
un

< 0 in
(0, 1). Hence, exploiting also the weak sequential lower semi-continuity of J yields

inf
N+

J ≤ J(tu) = ψu(t) < ψu(1) = J(u) ≤ lim inf
n→∞

J(un) = inf
N+

J,

which is a contradiction. This establishes un → u in W 1,H
0 (Ω) up to sub-sequences,

as claimed.
Letting n → ∞ in both ψ′

un
(1) = 0 and ψ

′′

un
(1) > 0, besides recalling Remark

2.11, we get u ∈ N+ ∪ N 0. Taking into account Lemma 4.2, we deduce u ∈ N+.
By the symmetry of J and N+, one can replace u with |u|, so that it is possible to
assume u ≥ 0 a.e. in Ω. □

Proposition 5.2. Let hypotheses (H) be satisfied and let λ ∈ (0,Λ). Then there
exists u ∈ N− such that u ≥ 0 a.e. in Ω and

J(u) = min
N−

J.

Proof. Take any minimizing sequence {un}n∈N ⊆ N− for J|N− . The proof is anal-

ogous to the one of Proposition 5.1, except the non-triviality of u (that is, the weak

limit of {un}n∈N in W 1,H
0 (Ω)) and the strong convergence of {un}n∈N in W 1,H

0 (Ω).
In order to prove that u ̸= 0 we argue by contradiction, supposing that un ⇀ 0

in W 1,H
0 (Ω). Without any loss of generality, un → 0 in Lκ(Ω) for all κ ∈ (1, p∗).

Since un ∈ N− for all n ∈ N, we have

m(ϕ(∇un))⟨ϕ′(∇un),∇un⟩ = λ

∫
Ω

f(un)un dx+

∫
Ω

g(un)un dx for all n ∈ N.

Letting n→ ∞, along with Lemma 3.1, reveals

lim
n→∞

W qθ
p (∥∇un∥H) ≤ C lim

n→∞
m(ϕ(∇un))⟨ϕ′(∇un),∇un⟩ = 0

for some C > 0, which entails un → 0 in W 1,H
0 (Ω). According to Lemma 4.4,

0 = J(0) = lim
n→∞

J(un) ≥ σ,

which is a contradiction.
Now we prove un → u in W 1,H

0 (Ω). Since u ̸= 0, Lemma 4.3 produces a unique
t ∈ (0,+∞) such that tu ∈ N−. Reasoning by contradiction as in Proposition 5.1,
namely supposing (5.1), we deduce ψ′

un
(t) > 0 for n sufficiently large (cf. (5.2)).
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This forces t < 1, taking into account that, for any n ∈ N, one has E−
un

= {1} and
ψ′
un

(t) < 0 for all t > 1. Moreover, t = 1 is the unique global maximizer of ψun .
Indeed, it is the unique local maximizer, and ψ′

un
(t) < 0 for all t > 1 as well as

ψun
(1) = J(un) ≥ σ > 0 = J(0), due to Lemmas 4.3 and 4.4, respectively. This

information, together with (5.1) and the strict monotonicity of M , yields

inf
N−

J ≤ J(tu) < lim inf
n→∞

J(tun) = lim inf
n→∞

ψun(t)

≤ lim inf
n→∞

ψun(1) = lim inf
n→∞

J(un) = inf
N−

J,

which is a contradiction. □

Proposition 5.3. Let hypotheses (H) be satisfied and let u ∈ N+ be such that
J(u) = minN+ J . Then there exists ε > 0 such that

J(u) ≤ J(u+ h) for all h ∈ Bε(0).

Proof. Let us consider the function

F (h, t) = ψ′
u+h(t) for all (h, t) ∈W 1,H

0 (Ω)× (0,+∞).

Since u ∈ N+ one has F (0, 1) = ψ′
u(1) = 0 and ∂tF (0, 1) = ψ′′

u(1) > 0. Hence
the implicit function theorem furnishes ε1 > 0 and ζ : Bε1(0) → (0,+∞) such that
ζ(0) = 1 and F (h, ζ(h)) = 0, that is, ζ(h)(u + h) ∈ N by (2.14). According to
Remark 2.11, ∂tF is a continuous function. Thus there exist ε2, σ > 0 such that

ψ′′
u+h(t) = ∂tF (h, t) > 0 for all (h, t) ∈ Bε2(0)× (1− σ, 1 + σ). (5.3)

The function ζ is continuous as well, so there exists ε3 > 0 such that ζ(h) ∈
(1 − σ, 1 + σ) for all h ∈ Bε3(0). Setting ε = min{ε1, ε2, ε3}, we deduce that
ζ(h)(u+ h) ∈ N+ for all h ∈ Bε(0). In particular, (5.3) implies also the convexity
of ψu+h in the interval joining t = ζ(h) and t = 1. Hence, we have

ψu+h(ζ(h)) ≤ ψ′
u+h(ζ(h))(ζ(h)− 1) + ψu+h(1) = ψu+h(1).

Accordingly,

J(u) = min
N+

J ≤ J(ζ(h)(u+ h)) = ψu+h(ζ(h)) ≤ ψu+h(1) = J(u+ h)

for all h ∈ Bε(0). □

Remark 5.4. The conclusion of Proposition 5.3 does not hold for the minimizers

of J constrained to N− because they are not local minimizers of J on W 1,H
0 (Ω).

Instead they are saddle points. Indeed, given any u such that J(u) = minN− J , u is
a strict local maximizer along the direction of u, while (reasoning as in Proposition
5.3, that furnishes ζ such that ζ(th)(u+th) ∈ N− for small t) it is a local minimizer

along any curve of type t 7→ ζ(th)(u+ th) with h ∈W 1,H
0 (Ω) \ {0}.

Lemma 5.5. Let hypotheses (H) be satisfied and let u ∈ W 1,H
0 (Ω), u ≥ 0 a.e. in

Ω, be a local minimizer of J . Then u > 0 a.e. in Ω and

m(ϕ(∇u))⟨L(u), h⟩ ≥ λ

∫
Ω

f(u)hdx+

∫
Ω

g(u)hdx (5.4)

for all h ∈W 1,H
0 (Ω) with h ≥ 0 a.e. in Ω.
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Proof. Take any h ∈ W 1,H
0 (Ω) \ {0} fulfilling h ≥ 0 a.e. in Ω. Since u is a local

minimizer of J , then J(u) ≤ J(u+th) for all t sufficiently small. Take any sequence
{tn}n∈N with tn > 0 for all n ∈ N such that tn → 0 and set K = u−1(0). Then, for
any n large enough,

0 ≤ J(u+ tnh)− J(u)

tn

=
M(ϕ(∇(u+ tnh)))−M(ϕ(∇u))

tn
− λ

∫
Ω

F (u+ tnh)− F (u)

tn
dx

−
∫
Ω

G(u+ tnh)−G(u)

tn
dx

=
M(ϕ(∇(u+ tnh)))−M(ϕ(∇u))

tn
− λ

∫
K

F (tnh)

tn
dx

− λ

∫
Ω\K

F (u+ tnh)− F (u)

tn
dx−

∫
Ω

G(u+ tnh)−G(u)

tn
dx.

From Lebesgue’s dominated convergence theorem we obtain

lim
n→∞

M(ϕ(∇(u+ tnh)))−M(ϕ(∇u))
tn

= m(ϕ(∇u))⟨L(u), h⟩,

lim
n→∞

∫
Ω

G(u+ tnh)−G(u)

tn
dx =

∫
Ω

g(u)hdx,

while Fatou’s lemma and the monotonicity of F yields

lim inf
n→∞

∫
Ω\K

F (u+ tnh)− F (u)

tn
dx ≥

∫
Ω\K

f(u)hdx.

Accordingly,

0 ≤ lim sup
n→∞

J(u+ tnh)− J(u)

tn

≤ m(ϕ(∇u))⟨L(u), h⟩ − λ

∫
Ω\K

f(u)hdx

−
∫
Ω

g(u)hdx− λ lim inf
n→∞

∫
K

F (tnh)

tn
dx.

(5.5)

If K has positive measure, then (Hf ) forces

lim
n→∞

∫
K

F (tnh)

tn
dx = +∞,

which is a contradiction. Hence K has zero measure, that is, u > 0 a.e. in Ω. So
(5.5) rewrites as

0 ≤ m(ϕ(∇u))⟨L(u), h⟩ − λ

∫
Ω

f(u)hdx−
∫
Ω

g(u)hdx.

This inequality is obviously verified also for h = 0, which concludes the proof. □

Lemma 5.6. Let hypotheses (H) be satisfied and let u ∈ N− be such that u ≥ 0
a.e. in Ω and J(u) = minN− J . Then u > 0 a.e. in Ω and fulfills (5.4).

Proof. We only sketch this proof, which is similar to those of Proposition 5.3 and
Lemma 5.5.
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Reasoning as in Proposition 5.3, there exists ε > 0 and a continuous function
ζ : Bε(0) → (0,+∞) such that ζ(0) = 1 and

ζ(h)(u+ h) ∈ N− for all h ∈ Bε(0).

In particular, owing to u ∈ N−, one has ψu(ζ(th)) ≤ ψu(1) for all h ∈ W 1,H
0 (Ω)

and t sufficiently small. Take any sequence {tn}n∈N with tn > 0 for all n ∈ N such
that tn → 0 and set K = u−1(0). For any n sufficiently large we get

0 ≤ J(ζ(tnh)(u+ tnh))− J(u)

tn
≤ J(ζ(tnh)(u+ tnh))− J(ζ(tnh)u)

tn

=
M(ϕ(∇[ζ(tnh)(u+ tnh)]))−M(ϕ(∇[ζ(tnh)u]))

tn

− λ

∫
K

F (ζ(tnh)tnh)

tn
dx

− λ

∫
Ω\K

F (ζ(tnh)(u+ tnh))− F (ζ(tnh)u)

tn
dx

−
∫
Ω

G(ζ(tnh)(u+ tnh))−G(ζ(tnh)u)

tn
dx.

(5.6)

Fix any t > 0 and consider the function

Γ: [0, t] → R, Γ(s) :=M(ϕ(∇[ζ(th)(u+ sh)])).

Lagrange’s mean value theorem produces st ∈ (0, t) such that

M(ϕ(∇[ζ(th)(u+ th)]))−M(ϕ(∇[ζ(th)u]))

= tm(ϕ(∇[ζ(th)(u+ sth)]))⟨ϕ′(∇[ζ(th)(u+ sth)]),∇[ζ(th)h]⟩.

Hence, recalling also ζ(th) → 1 as t→ 0+,

lim
t→0+

1

t
[M(ϕ(∇[ζ(th)(u+ th)]))−M(ϕ(∇[ζ(th)u]))]

= lim
t→0+

m(ϕ(∇[ζ(th)(u+ sth)]))⟨ϕ′(∇[ζ(th)(u+ sth)]),∇[ζ(th)h]⟩

= m(ϕ(∇u))⟨ϕ′(∇u),∇h⟩ = m(ϕ(∇u))⟨L(u), h⟩.
Arguing in the same way for the difference quotients involving F and G, (5.6) yields

0 ≤ lim sup
n→∞

J(ζ(tnh)(u+ tnh))− J(u)

tn

≤ m(ϕ(∇u))⟨L(u), h⟩ − λ

∫
Ω\K

f(u)hdx−
∫
Ω

g(u)hdx

− λ lim inf
n→∞

∫
K

F (ζ(tnh)tnh)

tn
dx,

which parallels (5.5). The proof now follows exactly as in Proposition 5.5. □

Proposition 5.7. Let hypotheses (H) be satisfied. Any u ∈ N satisfying both u > 0
a.e. in Ω and (5.4) is a weak solution to (Pλ).

Proof. Let us consider the linear operator T : W 1,H
0 (Ω) → R defined as

⟨T, h⟩ = m(ϕ(∇u))⟨L(u), h⟩ − λ

∫
Ω

f(u)hdx−
∫
Ω

g(u)hdx for all h ∈W 1,H
0 (Ω).
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According to (5.4), T is well-defined and non-negative (i.e., ⟨T, h⟩ ≥ 0 for all h ≥ 0
a.e. in Ω). Moreover, u ∈ N is equivalent to ⟨T, u⟩ = 0. Hence, taking any φ ∈
W 1,H

0 (Ω) and ε > 0, we have

0 ≤ ⟨T, (u+ εφ)+⟩
= ⟨T, u+ εφ⟩+ ⟨T, (u+ εφ)−⟩
= ⟨T, u⟩+ ε⟨T, φ⟩+ ⟨T, (u+ εφ)−⟩
= ε⟨T, φ⟩+ ⟨T, (u+ εφ)−⟩,

where (u+εφ)+ and (u+εφ)− stand for the positive and the negative part of u+εφ,
respectively. Recalling the definition of T , u > 0 a.e. in Ω, and ∂sH(x, |∇u|) ≥ 0
a.e. in Ω, we have

⟨T, (u+ εφ)−⟩ ≤ m(ϕ(∇u))⟨L(u), (u+ εφ)−⟩

= −m(ϕ(∇u))
∫
{u+εφ≤0}

∂sH(x, |∇u|) ∇u
|∇u|

(∇u+ ε∇φ) dx

≤ −εm(ϕ(∇u))
∫
{u+εφ≤0}

∂sH(x, |∇u|) ∇u
|∇u|

∇φ dx.

Thus we get

0 ≤ ⟨T, φ⟩ −m(ϕ(∇u))
∫
{u+εφ≤0}

∂sH(x, |∇u|) ∇u
|∇u|

∇φ dx.

Notice that |{u + εφ ≤ 0}| → 0 as ε → 0. Therefore, ⟨T, φ⟩ ≥ 0 for all φ ∈
W 1,H

0 (Ω). Since φ is arbitrarily chosen, we have ⟨T, φ⟩ = 0 for all φ ∈ W 1,H
0 (Ω),

which means that u is a weak solution to (Pλ). □

Now we can give the proof of our main result.

Proof of Theorem 1.1. Owing to Propositions 5.1 and 5.2, we can find functions

u, v ∈W 1,H
0 (Ω) such that

J(u) = min
N+

J and J(v) = min
N−

J.

By virtue of Lemma 5.3 (see also Remark 5.4), Lemma 5.5 is applicable to u. Thus,
Proposition 5.7 ensures that u is a weak solution of problem (Pλ). On the other
hand, Lemma 5.6 and Proposition 5.7 guarantee that v is a weak solution to (Pλ).
The conclusion follows by Lemma 4.4, since u ∈ N+ and v ∈ N− imply

J(u) < 0 < J(v).

□
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[27] N.S. Papageorgiou, D.D. Repovš, C. Vetro, Positive solutions for singular double phase prob-
lems, J. Math. Anal. Appl. 501 (2021), no. 1, Paper No. 123896, 13 pp.

[28] Y. Sun, S. Wu, Y. Long, Combined effects of singular and superlinear nonlinearities in some

singular boundary value problems, J. Differential Equations 176 (2001), no. 2, 511–531.
[29] X.H. Tang, S. Chen, Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type

problems with general potentials, Calc. Var. Partial Differential Equations 57 (2017), no. 4,

Paper No. 110, 25 pp.
[30] X. Wang, L. Zhao, P. Zhao, Combined effects of singular and critical nonlinearities in elliptic

problems, Nonlinear Anal. 87 (2013), 1–10.

(U. Guarnotta) Dipartimento di Ingegneria Industriale e Scienze Matematiche, Uni-
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