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Abstract. In this paper we study the asymptotic behavior of solutions to the
(p, q)-equation

−∆pu−∆qu = f(x, u) in Ω, u = 0 on ∂Ω,

as p → 1+, where N ≥ 2, 1 < p < q < 1∗ := N/(N − 1) and f is a
Carathéodory function that grows superlinearly and subcritically. Based on

a Nehari manifold treatment, we are able to prove that the (1, q)-Laplace
problem given by

− div

(
∇u

|∇u|

)
−∆qu = f(x, u) in Ω, u = 0 on ∂Ω,

has at least two constant sign solutions and one sign-changing solution,

whereby the sign-changing solution has least energy among all sign-changing
solutions. Furthermore, the solutions belong to the usual Sobolev space

W 1,q
0 (Ω) which is in contrast with the case of 1-Laplacian problems, where the

solutions just belong to the space BV(Ω) of all functions of bounded variation.
As far as we know this is the first work dealing with (1, q)-Laplace problems

even in the direction of constant sign solutions.

1. Introduction

In the last three decades, problems involving the 1-Laplacian have gained great
interest and were subject of several research activities using different techniques.
This 1-Laplacian is formally defined as

∆1u = div

(
∇u

|∇u|

)
(1.1)

and was studied intensively in the groundbreaking works of Andreu-Ballester-
Caselles-Mazón [5, 6, 7], see also the monograph by Andreu-Vaillo-Caselles-Mazón
[8]. Among the very first works on this topic were the papers of Kawohl [24]
and Demengel [16]. However, the operator is not only of great interest from a
mathematical point of view, it also appears in several applications, see, for example,
the papers of Chen-Levine-Rao [14] and Rudin-Osher-Fatemi [34] in the field of
image restoration.

The natural function space in order to make (1.1) well-defined is the space BV(Ω)
of all functions of bounded variation. The main disadvantage of this space is the
lack of reflexivity which makes the proof of compactness conditions as the Cerami
or the Palais Smale conditions quite challenging. One possible approach can be
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done by dealing with a solution in the space BV(Ω) in which the subdifferential of
the energy functional vanishes. The advantage of this treatment is the fact that one
can apply variational methods in order to get solutions of corresponding equations
driven by the 1-Laplacian. We refer to the papers of Alves–Figueiredo-Pimenta [2]
and Figueiredo-Pimenta [17, 18, 21].

Another method to deal problem with the 1-Laplacian is the pairing theory
developed by Anzellotti [9] in order to give a meaning to the quotient Du/|Du| for
u ∈ BV(Ω). This approach has been applied, for example, by Mercaldo-Segura de
León-Trombetti [29] who studied the problem

− div

(
∇u

|∇u|

)
= f(x) in Ω, u = 0 on ∂Ω, (1.2)

with a function f ∈ L1(Ω) independent of u. The authors prove the existence of a
renormalized solution up of the corresponding p-Laplace problem which turns out
to be a solution of the limit problem (1.2). In 2018, Latorre-Segura de León [25]
have been considered the Dirichlet problem

−div

(
∇u

|∇u|

)
+ |Du| = f(x) in Ω, u = 0 on ∂Ω,

and proved existence results and a comparison principle when f ∈ L1(Ω), see
also Mazón-Segura de León [26] for the case f ∈ Lq(Ω) with q > N . Recently,
Figueiredo-Pimenta [19] treated the 1-Laplacian problem in RN defined by

−div

(
∇u

|∇u|

)
+

u

|u|
= f(u) in RN , (1.3)

with a continuous function f : R → R that has subcritical growth and satisfies the
Ambrosetti-Rabinowitz condition. By considering the associated Nehari manifold
to (1.3) the existence of a sign-changing solution with least energy has been proved.
In particular the authors apply ideas from the paper of Molina Salas-Segura de León
[30]. Finally, we mention further existence results in the direction of 1-Laplacian
problems which have been published within the last decades. We refer to the works
of Abdellaoui-Dall’Aglio-Segura de León [1] involving critical gradient terms, Alves-
Pimenta [3] for unbounded domains using the concentration-compactness principle,
Chang [12] for the spectrum of the 1-Laplacian, Demengel [15] for variational
problems, Figueiredo-Pimenta [20] involving gradient terms, Mercaldo-Rossi-Segura
de León-Trombetti [27, 28] for anisotropic and Neumann boundary values problems,
respectively, Parini [31] for the second eigenvalue of the p-Laplacian as p goes to
1 and Pimenta-dos Santos-Santos Júnior [32] for discontinuous problems, see also
the references therein.

In this work, we study the asymptotic behavior of the solutions of the following
(p, q)-Laplacian problem

−∆pu−∆qu = f(x, u) in Ω, u = 0 on ∂Ω, (1.4)

as p → 1+, where N ≥ 2, 1 < p < q < 1∗ and 1∗ = N/(N − 1). The nonlinearity
f : Ω×R → R is a Carathéodory function which is assumed to satisfy the following
conditions:

(f1) There exists c1 > 0 such that

|f(x, s)| ≤ c1
(
1 + |s|r−1

)
for a.a.x ∈ Ω and for all s ∈ R,

where q < r < 1∗.
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(f2)

lim
s→±∞

f(x, s)

|s|q−2s
= +∞ uniformly for a.a.x ∈ Ω.

(f3) There exists α > 0 such that

lim sup
s→0

|f(x, s)|
|s|α

< +∞ uniformly for a.a.x ∈ Ω.

(f4) s 7→ f(x, s)s − qF (x, s) is nondecreasing in R+ and nonincreasing in R−,
for a.a.x ∈ Ω, where

F (x, s) =

∫ s

0

f(x, t) dt.

(f5) s 7→ f(x, s) is increasing for a.a.x ∈ Ω.

As p → 1+, the solutions up of (1.4) are expected to converge to a function

u0 ∈ W 1,q
0 (Ω), which satisfies

− div

(
∇u

|∇u|

)
−∆qu = f(x, u) in Ω,

u = 0 on ∂Ω,

(1.5)

in the weak sense, that is,∫
Ω

∇u0 · ∇v

|∇u0|
dx+

∫
Ω

|∇u0|q−2∇u0 · ∇v dx =

∫
Ω

f(x, u0)v dx (1.6)

holds for all v ∈ W 1,q
0 (Ω).

Our first main result is the following one.

Theorem 1.1. Suppose N ≥ 2, 1 < q < 1∗ and that f satisfies (f1)–(f5). Then

there exist non-trivial constant sign solutions u0, v0 ∈ W 1,q
0 (Ω) of (1.5) in the sense

of (1.6) such that u0 is nonnegative and v0 is nonpositive, respectively.

In the second part of this paper we prove the following result, which states the
existence of a sign-changing solution of (1.5) in the sense of (1.6).

Theorem 1.2. Suppose N ≥ 2, 1 < q < 1∗ and that f satisfies (f1)− (f5). Then

there exists a sign-changing solution w0 ∈ W 1,q
0 (Ω) of (1.5), which turns out to be

a least energy sign-changing solution of (1.5).

The proofs of our results are mainly based on the usage of the Nehari manifold
to get a sign-changing solution to problem (1.4). To be more precise we consider
the so called nodal Nehari set defined by

Mp =
{
u ∈ W 1,q

0 (Ω): u± ̸= 0 and ⟨Φ′
p(u), u

±⟩ = 0
}
,

where

Φp(u) := Ip(u) +
p− 1

p
|Ω|

with Ip being the energy functional to (1.4). This method is very powerful and
does not need any regularity on the solutions. As far as we know, the set Mp was
first used by Bartsch-Weth [11] in order to get nodal solutions for the semilinear
equation
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−∆u+ u = f(u) in Ω, u = 0 on ∂Ω,

with differentiable f growing superlinearly and subcritically provided Ω contains a
large ball.

We point out that, up to our knowledge, our work is the first one dealing with
a (1, q)-Laplacian instead of a 1-Laplacian. This fact gives us, in addition to
the existence results in Theorems 1.1 and 1.2, more regularity on the solutions.
Indeed, in our results we obtain that the solutions belong to the usual Sobolev
space W 1,q

0 (Ω) which implies that their weak derivative exist. Such property is in
general not true for functions on BV(Ω) for which the distributional derivative is
just a vectorial Radon measure. As a result of this, our solutions satisfy (1.5) in
the weak sense given in (1.6), what is unusual for problems involving this operator.

This paper is organized as follows. In Section 2 we introduce our function space
BV(Ω) of all functions of bounded variation including its properties and we present
the pairing theory introduced by Anzellotti [9]. Section 3 is devoted to the proof
of Theorem 1.1 while in Section 4 we give the proof of Theorem 1.2.

2. Preliminaries

In this section we present the main function space and tools that will be needed in
the sequel. First of all, let us introduce the space of functions of bounded variation,
denoted by BV(Ω), where Ω ⊂ RN is a bounded domain, see the monograph of
Attouch-Buttazzo-Michaille [10]. We say that u ∈ BV(Ω), or is a function of
bounded variation, if u ∈ L1(Ω) and its distributional derivative Du is a vectorial
Radon measure, i.e.,

BV(Ω) =
{
u ∈ L1(Ω): Du ∈ M(Ω,RN )

}
.

It can be proved that u ∈ BV(Ω) if and only if u ∈ L1(Ω) and∫
Ω

|Du| := sup

{∫
Ω

u div ϕdx : ϕ ∈ C1
c (Ω,RN ), ∥ϕ∥∞ ≤ 1

}
< +∞.

The space BV(Ω) is a Banach space when endowed with the norm

∥u∥BV :=

∫
Ω

|Du|+
∫
Ω

|u|dx,

which is continuously embedded into Lr(Ω) for all r ∈ [1, 1∗], where 1∗ = N/(N−1).
Since the domain Ω is bounded, it also holds the compactness of the embedding of
BV(Ω) into Lr(Ω) for all r ∈ [1, 1∗).

The space C∞(Ω) is not dense in BV(Ω) with respect to the strong topology.
However, with respect to the strict convergence, it does. We say that (un)n∈N ⊂
BV(Ω) converges to u ∈ BV(Ω) in the sense of the strict convergence, if

un → u in L1(Ω) and

∫
Ω

|Dun| →
∫
Ω

|Du|

as n → ∞. In Ambrosio-Fusco-Pallara [4] it has been shown that the trace operator
BV(Ω) ↪→ L1(∂Ω) is well defined in such a way that

∥u∥ :=

∫
Ω

|Du|+
∫
∂Ω

|u|dHN−1

is an equivalent norm to ∥ · ∥BV.
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Given u ∈ BV(Ω), we can decompose its distributional derivative as

Du = Dau+Dsu,

where Dau is absolutely continuous with respect to the Lebesgue measure LN while
Dsu is singular with respect to the same measure. Moreover, we denote the total
variation of Du as |Du|.

In several arguments used in this work, it is mandatory to have a sort of Green’s
formula to expressions like w div(z), where z ∈ L∞(Ω,RN ), div(z) ∈ LN (Ω) and
w ∈ BV(Ω). For this we have to somehow deal with the product between z and
Dw, which we denote by (z, Dw). This can be done through the pairings theory
developed by Anzellotti in [9], see also Frid-Chen in [13]. Below, we describe the
main results of this theory.

Let us denote

XN (Ω) =
{
z ∈ L∞(Ω,RN ) : div(z) ∈ LN (Ω)

}
.

For z ∈ XN (Ω) and w ∈ BV(Ω), we define the distribution (z, Dw) ∈ D′(Ω) as

⟨(z, Dw), φ⟩ := −
∫
Ω

wφ div(z) dx−
∫
Ω

wz · ∇φdx

for every φ ∈ D(Ω). With this definition, it can be proved that (z, Dw) is in fact a
Radon measure such that ∣∣∣∣∫

B

(z, Dw)

∣∣∣∣ ≤ ∥z∥∞
∫
B

|Dw| (2.1)

for every Borel set B ⊂ Ω.
In order to define an analogue of Green’s formula, it is also necessary to describe

a weak trace theory for z. In fact, there exists a trace operator [ · , ν] : XN (Ω) →
L∞(∂Ω) such that

∥ [z, ν] ∥L∞(∂Ω) ≤ ∥z∥∞
and, if z ∈ C1(Ωδ,RN ),

[z, ν] (x) = z(x) · ν(x) on Ωδ,

where Ωδ is a δ-neighborhood of ∂Ω. Thanks to these definitions, it can be
proved that the following Green’s formula holds for every z ∈ XN (Ω) and w ∈
BV(Ω) ∩ L∞(Ω):∫

Ω

w div(z) dx+

∫
Ω

(z, Dw) =

∫
∂Ω

[z, ν]w dHN−1. (2.2)

3. Existence of constant sign solutions

In this section we are going to prove Theorem 1.1. In order to get the solutions
we are interested in, the first step is to consider the following problem for q > p > 1,

−∆pu−∆qu = f(x, u) in Ω,

u = 0 on ∂Ω.
(3.1)

It is well known that weak solutions of (3.1) are critical points of the energy

functional Ip : W
1,q
0 (Ω) → R given by

Ip(u) :=
1

p

∫
Ω

|∇u|p dx+
1

q

∫
Ω

|∇u|q dx−
∫
Ω

F (x, u) dx,
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which is well defined as by (f1) it holds∫
Ω

F (x, u) dx ≤ C1∥u∥1 + C2∥u∥rr.

Since we are looking for nonnegative (or nonpositive) solutions, let us consider the
truncated version of Ip (denoted by the sake of simplicity also by Ip), as

Ip(u) :=
1

p

∫
Ω

|∇u|p dx+
1

q

∫
Ω

|∇u|q dx−
∫
Ω

F+(x, u) dx,

where F+(x, s) =
∫ s

0
f+(x, t) dt and f+(x, s) = 0 for s ≤ 0 and f+(x, s) = f(x, s)

for s > 0.
We consider the functional Φp : W

1,q
0 (Ω) → R given by

Φp(u) := Ip(u) +
p− 1

p
|Ω|,

which is well defined and (Φp(u))p>1 is non-decreasing in p, for all u ∈ W 1,q
0 (Ω).

Indeed, if 1 < p1 ≤ p2 < N , then by Young’s inequality with exponents p2/p1 and
p2/(p2 − p1), it follows that∫

Ω

|∇u|p1 dx ≤ p1
p2

∫
Ω

|∇u|p2 dx+
p2 − p1

p2
|Ω|.

Hence, it follows that, for all u ∈ W 1,q
0 (Ω),

Φp1
(u) =

1

p1

∫
Ω

|∇u|p1 dx+
p1 − 1

p1
|Ω|+ 1

q

∫
Ω

|∇u|q dx−
∫
Ω

F (u) dx

≤ 1

p1

(
p1
p2

∫
Ω

|∇u|p2 dx+
p2 − p1

p2
|Ω|
)
+

p1 − 1

p1
|Ω|+ 1

q

∫
Ω

|∇u|q dx

−
∫
Ω

F (u) dx

= Φp2(u).

(3.2)

Since Φp and Ip differs just by a constant, we can study (3.1) from a variational
point of view by dealing with either Ip or Φp.

By (f3), for p > 1 sufficiently close to 1, the function f satisfies

lim sup
s→0

|f(x, s)|
|s|p−1

= 0 uniformly for a.a.x ∈ Ω.

Then, for each such p, standard arguments imply that Φp satisfies the geometric
conditions of the mountain-pass theorem. Moreover, as in Molina Salas-Segura de
León [30], one can prove that there exists e ∈ W 1,q

0 (Ω), such that

Φp(e) < 0 for all 1 < p < q.

Then, we can find a sequence (un)n∈N ⊂ W 1,q(Ω) such that, as n → +∞,

Φp(un) → cp,

and
(1 + ∥un∥W 1,q ) Φ′

p(un) → 0 in W−1,q′(Ω),

where

cp = inf
γ∈Γp

max
t∈[0,1]

Φp(γ(t))
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and

Γp = {γ ∈ C([0, 1],W 1,q
0 (Ω)) : γ(0) = 0 and γ(1) = e}.

Moreover, as in Gasiński-Winkert [23], one can prove that Ip satisfy the Cerami

compactness condition. Then, there exists an element up ∈ W 1,q
0 (Ω) such that

un → up in W 1,q
0 (Ω) as n → +∞.

Hence, up is a weak solution of (3.1), that is,∫
Ω

|∇up|p−2∇up · ∇v dx+

∫
Ω

|∇up|q−2∇up · ∇v dx =

∫
Ω

f(x, up)v dx (3.3)

with
Φp(up) = cp.

In addition, by taking u−
p as test function in (3.3), we have that∫

Ω

|∇u−
p |p dx+

∫
Ω

|∇u−
p |q dx = 0,

which implies that up is a nonnegative solution.
It is also possible to show that the mountain pass solution up is the minimum of

Φp over the Nehari manifold associated to (3.1) (for instance, see [33][Proposition
3.11), defined by

Np =
{
u ∈ W 1,q

0 (Ω) \ {0} : ⟨Φ′
p(u), u⟩ = 0

}
,

i.e.,
Φp(up) = min

u∈Np

Φp(u). (3.4)

Hence, since Np contains all nontrivial nonnegative solutions of (3.1), it follows that
up is a nonnegative ground state solution of (3.1).

In Gasiński-Winkert [23] (as well as in Figueiredo-Ramos Quoirin [22]), the
authors deal with (3.1) by using the Nehari manifold and prove that for each

u ∈ W 1,q
0 (Ω), u ≥ 0 and u ̸= 0, there exists a unique tu > 0 such that Φ′

p(tuu) = 0
and

Φp(tuu) = max
t>0

Φp(tu). (3.5)

Moreover, tup
= 1, i.e.

Φp(up) = max
t>0

Φp(tup).

Now we prove some technical lemmas that will imply that the family (up)1<p<q

is bounded in W 1,q
0 (Ω).

Lemma 3.1. The family (Φp(up))p is nondecreasing for p ∈ (1, q).

Proof. Let 1 < p1 ≤ p2 < q and up1 , up2 ∈ W 1,q
0 (Ω) satisfying (3.4). Since up2 ̸= 0,

there exists t > 0 such that
tup2

∈ Np1
. (3.6)

Then, from (3.2), (3.4), (3.5) and (3.6), it follows that

Φp2(up2) ≥ Φp2(tup2) ≥ Φp1(tup2) ≥ Φp1(up1).

□



8 G.M. FIGUEIREDO, M.T.O. PIMENTA, AND P. WINKERT

Lemma 3.2. There exists C > 0 such that

∥up∥1,q ≤ C for all p ∈ (1, q). (3.7)

The family (up)1<p<q is bounded in W 1,q
0 (Ω).

Proof. Let us assume by contradiction that

∥up∥1,q → +∞ as p → 1+. (3.8)

Let wp := up/∥up∥1,q. Since (wp)1<p<q is bounded in W 1,q
0 (Ω), there exists

w ∈ W 1,q
0 (Ω) such that w ≥ 0 and

wp ⇀ w in W 1,q
0 (Ω)

wp → w in Lr(Ω) for all 1 ≤ r <
Nq

N − q
.

From Lemma 3.1, there exists C > 0 such that Φp(up) ≤ C for 1 < p < q. Hence,

Φp(up)

∥up∥q1,q
= op(1). (3.9)

Moreover, note that by (f2), for a given η > 0, there exists δ > 0, such that

F (x, s)

|s|q
≥ η for |s| ≥ δ.

Then, from (3.9), we have that

1

p

∥up∥p1,p
∥up∥q1,q

+
1

q
=

∫
Ω

F (x, up)

∥up∥q1,q
dx+ op(1)

≥
∫
Ω∩{up≥δ}

F (x, up)

∥up∥q1,q
dx+ op(1)

≥
∫
Ω∩{up≥δ}

F (x, up)

uq
p

wq
p dx+ op(1)

≥ η

∫
Ω∩{up≥δ}

wq
p dx+ op(1).

(3.10)

On the other hand, since W 1,q
0 (Ω) ↪→ W 1,p

0 (Ω), it follows that

∥up∥p1,p
∥up∥q1,q

=

(
∥up∥1,p
∥up∥1,q

)p

∥up∥p−q
1,q = op(1). (3.11)

Hence, from (3.10), (3.11), Fatou’s Lemma and the fact that χ{up≥δ} → χ{w>0}
a.e., we get

1

q
≥ η

∫
Γ

wp dx for all η > 0,

where Γ = {x ∈ Ω: w(x) > 0}. Then, w = 0 in W 1,q
0 (Ω).

Now, let k ≥ 1 and define

vp = (qk)
1
q wp.

Then, note that

vp ⇀ 0 in W 1,q
0 (Ω)
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and

vp → 0 in Lr(Ω) for 1 ≤ r <
Nq

N − q
.

For each p ∈ (1, q), let tp ∈ [0, 1] such that

Φp(tpup) = max
0≤t≤1

Φp(tup).

From (3.8), there exists p ∈ (1, q), such that

0 ≤ (qk)
1
q

∥up∥1,q
≤ 1 for all p ∈ (1, p).

Then, taking (f1) and (f2) into account, there exists a constant C > 0 such that

F (x, s) ≥ −C for a.a.x ∈ Ω and for all s ∈ R.
Using this, we obtain

Φp(tpup) ≥ Φp

(
(qk)

1
q

∥up∥1,q
up

)
= Φp(vp)

=
1

p
(qk)

p
q ∥∇wp∥pp + k∥∇wp∥qq −

∫
Ω

F (x, vp) dx

≥ min

{
1

p
(qk)

p
q , 1

}
k

p
q
(
∥∇wp∥pp + ∥∇wp∥qq

)
−
∫
Ω

F (x, vp) dx

≥ min

{
1

p
(qk)

p
q , 1

}
k

p
q ∥∇wp∥qq − C

≥ min

{
1

p
(qk)

p
q , 1

}
k

p
q ∥wp∥q1,q − C

= min

{
1

p
(qk)

p
q , 1

}
k

p
q − C.

Then, it follows that
lim

p→1+
Φp(tpup) = +∞. (3.12)

Since Φp(0) = p−1
p |Ω| and, from Lemma 3.1, (Φp(up))p is bounded, there exists

p̃ > 1 such that

0 < tp < 1 for all p ∈ (1, p̃).

Hence,

d

dt
Φp(tup)

∣∣∣
t=tp

= 0.

Then, for 1 < p < p̃,

∥tp∇up∥pp + ∥tp∇up∥qq =

∫
Ω

f(x, tpup)tpup dx. (3.13)

From Lemma 3.1 there exists C > 0 such that

qΦp(up) ≤ C. (3.14)
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Moreover, we have that

∥∇up∥pp + ∥∇up∥qq =

∫
Ω

f(x, up)up dx. (3.15)

Subtracting (3.15) from (3.14) yields(
q

p
− 1

)
∥∇up∥pp +

∫
Ω

(f(x, up)up − qF (x, up)) dx ≤ C. (3.16)

On the other hand, by (f4) and (3.16),(
q

p
− 1

)
∥tp∇up∥pp +

∫
Ω

(f(x, tpup)tpup − qF (x, tpup)) dx

≤
(
q

p
− 1

)
∥∇up∥pp +

∫
Ω

(f(x, up)up − qF (x, up)) dx

≤ C.

(3.17)

From (3.13) and (3.17), for 1 < p < p̃, we have

q

p
∥tp∇up∥pp + ∥tp∇up∥qq − q

∫
Ω

F (x, tpup) dx ≤ C,

which implies that

qΦp(tpup) ≤ C for all p ∈ (1, p̃).

But this contradicts (3.12), so the assertion of the lemma follows. □

Using Lemma 3.2 we can find u0 ∈ W 1,q
0 (Ω) such that

up ⇀ u0 in W 1,q
0 (Ω), (3.18)

up → u0 in Lr(Ω) for all 1 ≤ r <
qN

N − q
, (3.19)

up → u0 a.e. in Ω,

as p → 1+. Note that this implies that u0 ≥ 0.
Now let us find out what kind of problem the limit function u0 satisfies. In a first

step, we are going to prove that u0 satisfies (1.5) in a very weak sense. Actually,
after the next results, we prove that u0 is a solution of bounded variation of (1.5),
i.e., there exists z ∈ L∞(Ω,RN ) such that ∥z∥∞ ≤ 1 and −div z−∆qu0 = f(x, u0) in D′(Ω),

z · ∇u0 = |∇u0| a.e. in Ω,
u0 = 0, on ∂Ω.

Lemma 3.3. There exists z ∈ L∞(Ω,RN ) such that ∥z∥∞ ≤ 1 and

|∇up|p−2∇up ⇀ z in Ls(Ω,RN ) for 1 ≤ s < +∞, (3.20)

as p → 1+.

Proof. Let us fix s ∈ [1,+∞). By Hölder’s inequality, for 1 < p < s/(s − 1), one
has

∥|∇up|p−2∇up∥ss =
∫
Ω

|∇up|(p−1)s dx

≤
(∫

Ω

|∇up|p dx
) (p−1)s

p

|Ω|1−
s
p′
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≤

((∫
Ω

|∇up|q dx
) p

q

|Ω|
(q−p)

q

) (p−1)s
p

|Ω|1−
s
p′

≤ ∥up∥(p−1)s
1,q |Ω|1−

(p−1)s
q

≤ C(p−1)s|Ω|1−
(p−1)s

q ,

where C > 0 is as in (3.7). Then

∥|∇up|p−2∇up∥s ≤ C(p−1)|Ω|
1
s−

(p−1)
q .

Hence, (|∇up|p−2∇up)p>1 is bounded in Ls(Ω). Then, there exists zs ∈ Ls(Ω,RN ),
such that |∇up|p−2∇up ⇀ zs in Ls(Ω,RN ). Through a diagonal argument, it is
possible to show that zs does not depend on s and then we denote it simply by z.
By making p → 1+, from the last inequality and the weak semicontinuity of the
norm in Ls(Ω,RN ),

∥z∥s ≤ lim inf
p→1+

∥|∇up|p−2∇up∥s ≤ |Ω| 1s .

Finally, letting s → +∞, we have that

∥z∥∞ ≤ 1,

which finishes the proof. □

From (3.20), we get

−∆p = div(|∇up|p−2∇up) → div z in D′(Ω) (3.21)

as p → 1+, what follows from taking ∇φ as a test function in (3.20), where
φ ∈ D(Ω).

Note that, from (3.1), (3.19) and (3.21) and applying Lebesgue’s Dominated
Convergence Theorem, it follows that

−div z−∆qu0 = f(x, u0) in D′(Ω), (3.22)

i.e., ∫
Ω

z · ∇φdx+

∫
Ω

|∇u0|q−2∇u0 · ∇φdx =

∫
Ω

f(x, u0)φdx, ∀φ ∈ D(Ω).

Lemma 3.4. The function u0 and the vector field z satisfy the following equality

z · ∇u0 = |∇u0| a.e. in Ω.

Proof. First, note that, since ∥z∥∞ ≤ 1, it follows that,

z · ∇u0 ≤ |z · ∇u0| ≤ ∥z∥∞|∇u0| ≤ |∇u0|, a.e. in Ω.

Hence, it is enough to show the opposite inequality. For this, it is enough to prove
that ∫

Ω

φ z · ∇u0 dx ≥
∫
Ω

φ|∇u0|dx (3.23)

for all φ ∈ C1
0 (Ω) with φ ≥ 0.

Let φ ∈ C1
0 (Ω), such that φ ≥ 0 and let us consider (ρϵ)ϵ>0 a family of mollifiers.

By taking (u0φ) ∗ ρϵ as a test function in (3.22), we have that∫
Ω

z · ∇u0φ ∗ ρϵ dx
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=

∫
Ω

z · ∇(u0φ ∗ ρϵ) dx−
∫
Ω

z · ∇φu0 ∗ ρϵ dx

= −
∫
Ω

|∇u0|q−2∇u0 · ∇(u0φ ∗ ρϵ) dx+

∫
Ω

f(x, u0)u0φ ∗ ρϵ dx

−
∫
Ω

z · ∇φu0 ∗ ρϵ dx

= −
∫
Ω

|∇u0|qφ ∗ ρϵ dx−
∫
Ω

|∇u0|q−2∇u0 · ∇φu0 ∗ ρϵ dx

+

∫
Ω

f(x, u0)u0φ ∗ ρϵ dx−
∫
Ω

z · ∇φu0 ∗ ρϵ dx.

By doing ϵ → 0+, we have that∫
Ω

z · ∇u0φdx =

∫
Ω

f(x, u0)u0φdx−
∫
Ω

φ|∇u0|q dx

−
∫
Ω

u0|∇u0|q−2∇u0 · ∇φdx−
∫
Ω

u0z · ∇φdx.

(3.24)

Now, let us consider upφ ∈ W 1,q
0 (Ω) as a test function in (3.1). Then we obtain,∫

Ω

φ|∇up|p dx+

∫
Ω

up|∇up|p−2∇up · ∇φdx

+

∫
Ω

φ|∇up|q dx+

∫
Ω

up|∇up|q−2∇up · ∇φdx

=

∫
Ω

f(x, up)upφdx.

(3.25)

Now we calculate the lim inf as p → 1+ in both sides of (3.25). Before, note that,∫
Ω

φ|∇u0|dx ≤ lim inf
p→1+

∫
Ω

|∇up|pφdx. (3.26)

Indeed, by Young’s inequality,∫
Ω

φ|∇u0|dx ≤ lim inf
p→1+

∫
Ω

φ|∇up|dx

≤ lim inf
p→1+

(
1

p

∫
Ω

φ|∇up|p dx+
p− 1

p

∫
Ω

φdx

)
= lim inf

p→1+

∫
Ω

φ|∇up|p dx.

Moreover, by (3.19) and (3.20), it follows that

lim
p→1+

∫
Ω

up|∇up|p−2∇up · ∇φdx =

∫
Ω

u0z · ∇φdx. (3.27)

Finally, Lebesgue’s Dominated Convergence Theorem and (3.19) imply that

lim
p→1+

∫
Ω

f(x, up)upφdx =

∫
Ω

f(x, u0)u0φdx. (3.28)

Then, from (3.18), (3.24), (3.25), (3.26), (3.27) and (3.28), we obtain∫
Ω

z · ∇u0φdx
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=

∫
Ω

f(x, u0)u0φdx−
∫
Ω

φ|∇u0|q dx−
∫
Ω

u0|∇u0|q−2∇u0 · ∇φdx

−
∫
Ω

u0z · ∇φdx

≥ lim inf
p→1+

(∫
Ω

f(x, up)upφdx−
∫
Ω

φ|∇up|q dx−
∫
Ω

up|∇up|q−2∇up · ∇φdx

−
∫
Ω

up|∇up|p−2∇up · ∇φdx

)
= lim inf

p→1+

∫
Ω

φ|∇up|p dx

≥
∫
Ω

φ|∇u0|dx,

which implies (3.23). □

Note that, up to now, from (3.22) and Lemma 3.4, we have found u0 ∈ W 1,q
0 (Ω),

for which there exists z ∈ XN (Ω) such that ∥z∥∞ ≤ 1 and −div z−∆qu0 = f(x, u0) in D′(Ω),
z · ∇u0 = |∇u0| a.e. in Ω,

u0 = 0 on ∂Ω.
(3.29)

Now, what is left to do is to show that u0 ̸= 0. For this purpose, we introduce
the energy functional Φ: W 1,q

0 (Ω) → R given by

Φ(u) =

∫
Ω

|∇u|dx+
1

q

∫
Ω

|∇u|q dx−
∫
Ω

F (x, u) dx. (3.30)

First of all, note that by Young’s inequality, Φ(u) ≤ Φp(u) for every u ∈ W 1,q
0 (Ω).

Moreover,
lim

p→1+
Φp(up) = Φ(u0). (3.31)

Indeed, since u0 satisfies (3.29) and up fulfills (3.1), by a regularizing argument
which allows us to use u0 as test function in (3.29), note that, as p → 1+,∫

Ω

|∇u0|dx+

∫
Ω

|∇u0|q dx =

∫
Ω

z · ∇u0 +

∫
Ω

|∇u0|q dx

= −
∫
Ω

u0 div z dx+

∫
Ω

|∇u0|q dx

=

∫
Ω

f(x, u0)u0 dx

=

∫
Ω

f(x, up)up dx+ op(1)

=

∫
Ω

|∇up|p dx+

∫
Ω

|∇up|q dx+ op(1).

(3.32)

On the other hand, from (3.18) and since W 1,q
0 (Ω) ↪→ W 1,r

0 (Ω), for every 1 ≤ r < q,
it follows from the weak lower semicontinuity of the norm and Young’s inequality
that ∫

Ω

|∇u0|dx ≤ lim inf
p→1+

∫
Ω

|∇up|dx ≤ lim inf
p→1+

∫
Ω

|∇up|p dx. (3.33)
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In the same way, ∫
Ω

|∇u0|q dx ≤ lim inf
p→1+

∫
Ω

|∇up|q dx. (3.34)

Then, from (3.32), (3.33) and (3.34), it follows that∫
Ω

|∇u0|dx =

∫
Ω

|∇up|p dx+ op(1) (3.35)

and ∫
Ω

|∇u0|q dx =

∫
Ω

|∇up|q dx+ op(1). (3.36)

Moreover, by (f1), (3.19) and the Lebesgue’s Dominated Convergence Theorem,
as p → 1+, ∫

Ω

F (x, u0) dx =

∫
Ω

F (x, up) dx+ o(1). (3.37)

Then, (3.35), (3.36) and (3.37) imply (3.31).
Note also that, by (f1), (f3) and the Sobolev embedding, for all ε > 0, there

exists a positive constant Cε > 0 such that

|f(x, s)s| ≤ ε|s|+ Cε|s|r for a.a.x ∈ Ω and for all s ∈ R.
Then,

Φ(u) ≥ (1− ε)∥u∥q1,q dx− Cε∥u∥r1,q.
Let us consider ε > 0 small enough such that 1 − ε > 1/2. Then, if ∥u∥1,q ≤ ρ,

where 0 < ρ <

(
(1− ε)− 1/2

Cε

) 1
r−q

, it follows that

Φ(u) ≥
∥u∥q1,q

2
. (3.38)

Then, for all p ∈ (1, p),

Φp(up) ≥ Φp

(
ρup

∥up∥1,q

)
≥ Φ

(
ρup

∥up∥1,q

)
≥ ρq

2
.

Hence
ρq

2
≤ Φp(up)

≤
∫
Ω

|∇up|p dx+

∫
Ω

|∇up|q dx−
∫
Ω

F (x, up) dx

=

∫
Ω

f(x, up)up dx−
∫
Ω

F (x, up) dx.

for all p ∈ (1, p). Then, if up → 0 in Lr(Ω), for 1 ≤ r < qN/(N − q), we have a
contradiction. Hence, u0 ̸= 0.

So far, we have proved that u0 ∈ W 1,q
0 (Ω) is a solution of bounded variation

of (1.5). To be more precise, we have proved that u0 satisfies (3.29). Now, let us
prove that u0 is in fact a weak solution of (1.5), i.e.,∫

Ω

∇u0 · ∇v

|∇u0|
dx+

∫
Ω

|∇u0|q−2∇u0 · ∇v dx =

∫
Ω

f(x, u0)v dx

holds for all v ∈ W 1,q
0 (Ω). To this end, let us consider the functional Φ defined in

(3.30). Note that

Φ = J − F ,
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where

J (u) =

∫
Ω

|∇u|dx+
1

q

∫
Ω

|∇u|q dx and F(u) =

∫
Ω

F (x, u) dx.

Since J is a convex and locally Lipschitz and F ∈ C1(W 1,q
0 (Ω)), the subdifferential

of Φ(u0), given by ∂Φ(u0) ⊂ W−1,q′(Ω), is well defined. Moreover, u0 ∈ ∂Φ(u0) if
and only if

J (v)− J (u0) ≥
∫
Ω

f(x, u0)(v − u0) dx for all v ∈ W 1,q
0 (Ω). (3.39)

This, in turn, is equivalent to F ′(u0) ∈ ∂J (u0).
Furthermore, note that J = J1 + Jq, where

J1(u) =

∫
Ω

|∇u|dx and Jq(u) =
1

q

∫
Ω

|∇u|q dx.

Since Jq ∈ C1
(
W 1,q

0 (Ω),R
)
and it is convex, we infer

J ′
q(u0)(v − u0) ≤ Jq(v)− Jq(u0) for all v ∈ W 1,q

0 (Ω). (3.40)

Lemma 3.5. The solution u0 of bounded variation is such that

F ′(u0) ∈ ∂J (u0).

Proof. For v ∈ W 1,q
0 (Ω), let us take (v − u0) as test function in (3.29). Then it

follows

−
∫
Ω

div z(v − u0) dx+

∫
Ω

|∇u0|q−2∇u0 · ∇(v − u0) dx =

∫
Ω

f(x, u0)(v − u0) dx.

The last equality, Green’s formula (2.2), (2.1), Lemma 3.4 and (3.40), imply that

F ′(u0)(v − u0)

= −
∫
Ω

v div zdx+

∫
Ω

u0 div zdx+

∫
Ω

|∇u0|q−2∇u0 · ∇v dx−
∫
Ω

|∇u0|q dx

=

∫
Ω

z · ∇v dx−
∫
Ω

z · ∇u0 dx+

∫
Ω

|∇u0|q−2∇u0 · ∇v dx−
∫
Ω

|∇u0|q dx

≤
∫
Ω

|∇v|dx−
∫
Ω

|∇u0|dx+ J ′
q(u0)(v − u0)

≤
∫
Ω

|∇v|dx−
∫
Ω

|∇u0|dx+ Jq(v)− Jq(u0)

= J (v)− J (u0).

Hence, F ′(u0) ∈ ∂J (u0). □

Since we know that (3.39) holds for all v ∈ W 1,q
0 (Ω), by considering v = u0 + tw

as test function and making t → 0±, we find that∫
Ω

∇u0 · ∇w

|∇u0|
dx+

∫
Ω

|∇u0|q−2∇u0 · ∇w dx =

∫
Ω

f(x, u0)w dx.

Then, u0 is a nonnegative weak nontrivial solution of (1.5).
The existence of a nonpositive weak solution v0 of (1.5) can be shown in the

same way, just dealing with the functional defined truncating the negative part of
f(x, ·). The Theorem 1.1 is proved.
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4. Existence of nodal solutions

In the proof of Theorem 1.2, as in the previous section, we approximate the
nodal solution we are looking for by the solutions of the (p, q)-Laplacian problem
(3.1).

Let us consider the energy functional Ip : W
1,q
0 (Ω) → R given by

Ip(u) :=
1

p

∫
Ω

|∇u|p dx+
1

q

∫
Ω

|∇u|q dx−
∫
Ω

F (x, u) dx.

Again, as in the previous section, we consider

Φp(u) := Ip(u) +
p− 1

p
|Ω|

and note that Φp and Ip have the very same critical points.
In order to get nodal solutions of (3.1), let us consider the so called nodal Nehari

set

Mp =
{
u ∈ W 1,q

0 (Ω): u± ̸= 0 and ⟨Φ′
p(u), u

±⟩ = 0
}
.

As before, we denote by Np the usual Nehari manifold associated to (3.1). From

Gasiński-Winkert [23], for every u ∈ W 1,q
0 (Ω) \ {0}, there exists a unique tu > 0

such that tuu ∈ Np. This implies that for every u ∈ W 1,q
0 (Ω) such that u± ̸= 0,

there exist a unique pair (t, s) ∈ R+ × R+, such that tu+ + su− ∈ Mp. Moreover,
again by Gasiński-Winkert [23], if u ∈ Np,

Φp(u) = max
t>0

Φp(tu).

Hence, if u ∈ Mp, then

Φp(u) = max
t,s>0

Φp(tu
+ + su−). (4.1)

By Gasiński-Winkert [23], there exists a nodal solution vp ∈ W 1,q
0 (Ω) of (3.1)

such that
Φp(vp) = min

Mp

Φp. (4.2)

Hence, since by its definition Mp contains all sign-changing solutions, it follows
that vp is a nodal solution with the lowest energy level among all the sign-changing
ones.

Lemma 4.1. The family (Φp(vp))p is nondecreasing for p ∈ (1, q).

Proof. Let 1 < p1 ≤ p2 < q and vp1
, vp2

∈ W 1,q
0 (Ω) satisfying (4.2). Since v±p2

̸= 0,
there exist t, s > 0 such that

tv+p2
+ sv−p2

∈ N±
p1
. (4.3)

Then, from (3.2), (4.1), (4.2) and (4.3), it follows that

Φp2
(vp2

) ≥ Φp2
(tv+p2

+ sv−p2
) ≥ Φp1

(tv+p2
+ sv−p2

) ≥ Φp1
(vp1

).

□

Lemma 4.2. The family (vp)1<p<q is bounded in W 1,q
0 (Ω).

Proof. The proof is analogous to Lemma 3.2. □
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As in Section 3, it follows that there exists v0 ∈ W 1,q
0 (Ω) such that

vp ⇀ v0 in W 1,q
0 (Ω),

vp → v0 in Lr(Ω) for all 1 ≤ r <
qN

N − q
,

vp → v0 a.e. in Ω,

as p → 1+. Moreover, with the same arguments, one can prove that v0 is a weak
solution of (3.1), i.e.,∫

Ω

∇v0 · ∇w

|∇v0|
dx+

∫
Ω

|∇v0|q−2∇v0 · ∇w dx =

∫
Ω

f(x, v0)w dx,

for all w ∈ W 1,q
0 (Ω).

Then, in order to complete the proof of Theorem 1.2, we just should prove that
v±0 ̸= 0. To this end, let us remember that from (3.38), there exists ρ > 0 sufficiently
small such that, if ∥v∥1,q ≤ ρ, then

Φ(v) ≥
∥v∥q1,q

2
, (4.4)

where Φ is given by (3.30). Note that since vp belongs to the Nehari nodal set Mp,
then v±p ∈ Np. Hence, s = 1 is the maximum of the function s 7→ Φp(sv

±
p ) and so,

for all p ∈ (1, q), from (4.4),

Φp(v
±
p ) ≥ Φp

(
ρv±p

∥v±p ∥

)
≥ Φ

(
ρv±p

∥v±p ∥

)
≥ ρ

2
. (4.5)

Then, from (4.5), we obtain
ρ

2
≤ Φp(v

±
p )

≤ ∥∇v±p ∥pp + ∥∇v±p ∥qq −
∫
Ω

F (x, v±p ) dx

=

∫
Ω

(
f(x, v±p )v

±
p − F (x, v±p )

)
dx.

(4.6)

Then, from (4.6), if v±p → 0 in Lr(Ω) as p → 1+, we see that (4.5) would not hold.

Therefore, v±0 ̸= 0 and this finishes the proof of Theorem 1.2.
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[9] G. Anzellotti, Pairings between measures and bounded functions and compensated
compactness, Ann. Mat. Pura Appl. (4) 135 (1983), 293–318.

[10] H. Attouch, G. Buttazzo, G. Michaille, “Variational Analysis in Sobolev and BV spaces:

Applications to PDEs and optimization”, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, 2006.

[11] T. Bartsch, T. Weth, Three nodal solutions of singularly perturbed elliptic equations on

domains without topology, Ann. Inst. H. Poincaré C Anal. Non Linéaire 22 (2005), no. 3,
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[23] L. Gasiński, P. Winkert, Sign changing solution for a double phase problem with nonlinear
boundary condition via the Nehari manifold, J. Differential Equations 274 (2001), 1037–1066.

[24] B. Kawohl, On a family of torsional creep problems, J. Reine Angew. Math. 410 (1990),

1–22.

[25] M. Latorre, S. Segura de León, Sergio Existence and comparison results for an elliptic
equation involving the 1-Laplacian and L1-data, J. Evol. Equ. 18 (2018), no. 1, 1–28.

[26] J.M. Mazón, S. Segura de León, The Dirichlet problem for a singular elliptic equation arising
in the level set formulation of the inverse mean curvature flow, Adv. Calc. Var. 6 (2013), no.
2, 123–164.

[27] A. Mercaldo, J.D. Rossi, S. Segura de León, C. Trombetti, Anisotropic p, q-Laplacian
equations when p goes to 1, Nonlinear Anal. 73 (2010), no. 11, 3546–3560.



NODAL SOLUTIONS OF (p, q)-LAPLACIAN PROBLEMS AS p GOES TO 1 19

[28] A. Mercaldo, J.D. Rossi, S. Segura de León, C. Trombetti, Behaviour of p-Laplacian problems

with Neumann boundary conditions when p goes to 1, Commun. Pure Appl. Anal. 12 (2013),

no. 1, 253–267.
[29] A. Mercaldo, S. Segura de León, C. Trombetti, On the solutions to 1-Laplacian equation with

L1 data, J. Funct. Anal. 256 (2009), no. 8, 2387–2416.

[30] A. Molino Salas, S. Segura de León, Elliptic equations involving the 1-Laplacian and a
subcritical source term, Nonlinear Anal. 168 (2018), 50–66.

[31] E. Parini, The second eigenvalue of the p-Laplacian as p goes to 1, Int. J. Differ. Equ. 2010

(2010), Art. ID 984671, 23 pp.
[32] M.T.O. Pimenta, G.C.G. dos Santos, J.R. Santos Júnior, On a quasilinear elliptic problem

involving the 1-Laplacian operator and a discontinuous nonlinearity, Proc. Roy. Soc.

Edinburgh Sect. A 154 (2024), no. 1, 33–59.
[33] P.H. Rabinowitz, On a class of nonlinear Schödinger equations, Z. Angew. Math. Phys. 43

(1992), 270–291.
[34] L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms,

Phys. D 60 (1992), no. 1-4, 259–268.

(G.M. Figueiredo) Departamento de Matemática, Universidade de Braśılia - UnB, CEP:

70910-900, Braśılia-DF, Brazil
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(M.T.O. Pimenta)Departamento de Matemática e Computação, Universidade Estadual
Paulista - Unesp, CEP: 19060-900 , Presidente Prudente - SP, Brazil

Email address: marcos.pimenta@unesp.br

(P. Winkert) Technische Universität Berlin, Institut für Mathematik, Straße des
17. Juni 136, 10623 Berlin, Germany

Email address: winkert@math.tu-berlin.de


	1. Introduction
	2. Preliminaries
	3. Existence of constant sign solutions
	4. Existence of nodal solutions
	Acknowledgment
	References

