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Abstract. The first part of this paper deals with existence of solutions to the
quasilinear elliptic problem

− div a(x,∇u) = f(x, u,∇u) in Ω,

a(x,∇u) · ν = g(x, u)− ζ|u|p−2u on ∂Ω,
(P)

involving a general nonhomogeneous differential operator, namely div a, and

Carathéodory functions f : Ω × R × RN → R and g : ∂Ω × R → R. Under
appropriate conditions on the perturbations, we show that (P) possesses a

bounded solution. In the second part, we consider the special case when div a
is the (p, q)-Laplacian with a parameter µ > 0, and study the asymptotic

behavior of solutions as µ goes to zero or to infinity. A uniqueness result is

also provided.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper, we are
interested in the existence of solutions to the following quasilinear problem, driven
by a nonhomogeneous differential operator and with nonlinear boundary condition,

−div a(x,∇u) = f(x, u,∇u) in Ω,

a(x,∇u) · ν = g(x, u)− ζ|u|p−2u on ∂Ω,
(1.1)

where ν(x) denotes the outer unit normal of Ω at x ∈ ∂Ω, 1 < p < ∞, ζ > 0, and
a : Ω × RN → RN is a continuous strictly monotone map in the second variable
satisfying appropriate regularity and growth conditions, listed in hypotheses H(a)
of Section 2.

The nonlinearities f : Ω× R× RN → R and g : ∂Ω× R → R are Carathéodory
functions, that is, x 7→ f(x, s, ξ), x 7→ g(x, s) are measurable for all (s, ξ) ∈ R×RN ,
while (s, ξ) 7→ f(x, s, ξ), s 7→ g(x, s) are continuous for a.e. x ∈ Ω, respectively, for
a.e. x ∈ ∂Ω.

In the first part of this paper we prove that, under general growth conditions
on the perturbations, problem (1.1) admits a bounded weak solution. This result
is obtained via the classical main theorem on pseudomonotone operators. If div a
coincides with the weighted (p, q)-Laplacian, namely

∆pu+ µ∆qu := div
(
|∇u|p−2∇u+ µ|∇u|q−2∇u

)
, (1.2)
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where 1 < q < p <∞, µ > 0, and u ∈W 1,p(Ω), then (1.1) becomes

−∆pu− µ∆qu = f(x, u,∇u) in Ω,(
|∇u|p−2∇u+ µ|∇u|q−2∇u

)
· ν = g(x, u)− ζ|u|p−2u on ∂Ω.

(1.3)

The second part treats the uniqueness of solutions to (1.3) and its asymptotic
behavior as µ→ 0+ and µ→∞, respectively.

It should be noted that the presence of a reaction depending also on the gradient
of the solution prevents to apply variational methods, like critical point theory. This
difficulty is overcome by adapting the approach of Averna-Motreanu-Tornatore [2],
who considered problem (1.1) with a homogeneous Dirichlet boundary condition
and weighted (p, q)-Laplacian as defined in (1.2). Our paper exhibits at least two
novelties:

• a more general differential operator, which may also depend on x ∈ Ω,
appears;
• nonlinear Robin boundary conditions with perturbation g : ∂Ω × R → R

are taken on.

Moreover, a bounded solution to (1.1) exists once a suitable inequality involving
the first eigenvalue of the Robin eigenvalue problem for the p-Laplacian (cf. (2.7)
in Section 2 and (3.6) of Section 3) holds.

For other existence results on quasilinear equations with convection term we refer
to the papers of De Figueiredo-Girardi-Matzeu [3], Dupaigne-Ghergu-Rădulescu [4],
Faraci-Motreanu-Puglisi [5], Faria-Miyagaki-Motreanu [6], Faria-Miyagaki-
Motreanu-Tanaka [7], Motreanu- Motreanu-Moussaoui [14], Motreanu-Tanaka [15],
Motreanu-Tornatore [16], Ruiz [20], Tanaka [21], and the references therein.
Finally, we mention the works of Filippucci-Pucci-Rădulescu [8] and Winkert [22]
concerning problems with nonlinear boundary condition and the recent monograph
of Papageorgiou-Rădulescu-Repovš [18].

2. Preliminaries

For 1 ≤ p <∞, we denote by Lp(Ω) and Lp(Ω,RN ) the usual Lebesgue spaces,
equipped with the norm ‖ · ‖p. If 1 < p <∞ then W 1,p(Ω) stands for the Sobolev
space, endowed with the norm ‖ · ‖1,p. The duality pairing between W 1,p(Ω) and
its dual W 1,p(Ω)∗ will be denoted by 〈·, ·〉.

On the boundary ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface)
measure σ, by which we can define in the usual way the boundary Lebesgue space
Lp(∂Ω), with norm ‖ · ‖p,∂Ω. It is known that there exists a unique continuous
linear operator γ : W 1,p(Ω) → Lq(∂Ω), where p ≤ q ≤ p∗ (see (3.3) below), called
trace map, such that

γ(u) = u
∣∣
∂Ω

for all u ∈W 1,p(Ω) ∩ C0(Ω).

Henceforth, although all restrictions of Sobolev functions to ∂Ω are understood
in the sense of traces, we will avoid the usage of the trace operator γ to simplify
notation.

Given any % > 0, consider the norm

‖u‖%,p =
(
‖∇u‖pp + %‖u‖pp,∂Ω

) 1
p

, (2.1)
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which is equivalent to the standard one ‖ · ‖1,p; see Papageorgiou-Winkert [19]. If
s > 1 then s′ := s

s−1 denotes its conjugate, x · z is the inner product of x, z ∈ RN ,

while R+ := [0,+∞). The well-known inequality(
|s1|r−2s1 − |s2|r−2s2

)
(s1 − s2) ≥ 22−r|s1 − s2|r ∀ s1, s2 ∈ R (2.2)

holds, where r ≥ 2; see Lindqvist [12, p. 71, inequality I]. The Lebesgue measure is
denoted by | · | and the same notation is used for the Hausdorff surface measure (it
will be clear from the context which one is used).

Let us now introduce the hypotheses on the map a : Ω× RN → RN involved in
the definition of the differential operator. Suppose ϑ ∈ C1((0,∞)) satisfies

0 < d̂0 ≤
tϑ′(t)

ϑ(t)
≤ d̂1 and d̂2t

p−1 ≤ ϑ(t) ≤ d̂3

(
1 + tp−1

)
(2.3)

for all t > 0, with 1 < p < ∞ and appropriate constants d̂0, d̂1, d̂2, d̂3 > 0. The
conditions on a : Ω× RN → RN read as follows.

H(a): a(x, ξ) := â (x, |ξ|) ξ in Ω× RN , where â ∈ C0(Ω× R+) and â(x, t) > 0 for
every (x, t) ∈ Ω× (0,+∞). Moreover,

(i) â ∈ C1(Ω× (0,∞)), t→ tâ(x, t) is strictly increasing in (0,∞), and

lim
t→0+

tâ(x, t) = 0, lim
t→0+

tâ′t(x, t)

â(x, t)
= d̂ > −1 ∀x ∈ Ω;

(ii) ‖∇ξa(x, ξ)‖ ≤ d̂4
ϑ (|ξ|)
|ξ|

for every (x, ξ) ∈ Ω×RN \ {0}, with suitable

d̂4 > 0;

(iii) (∇ξa(x, ξ)y) · y ≥ ϑ (|ξ|)
|ξ|
|y|2 for all x ∈ Ω, ξ ∈ RN \ {0}, and y ∈ RN .

Remark 2.1. Setting

G0(x, t) =

∫ t

0

â(x, s)s ds, (x, t) ∈ Ω× R+,

one has G0 ∈ C1(Ω × R+) as well as t 7→ G0(x, t) increasing and strictly convex.
Accordingly, the function G(x, ξ) := G0(x, |ξ|) lies in C1(Ω × RN ) and is convex
with respect to ξ. Since an easy computation shows that

∇ξG(x, ξ) = (G0)′t(x, |ξ|)
ξ

|ξ|
= â(x, |ξ|)ξ = a(x, ξ) ∀ ξ ∈ RN \ {0}

while ∇ξG(x, 0) = 0, the function G(x, ·) turns out a primitive of a(x, ·). When
combined with G(x, 0) = 0 and ξ 7→ G(x, ξ) convex, this entails

G(x, ξ) ≤ a(x, ξ) · ξ, (x, ξ) ∈ Ω× RN . (2.4)

The next lemma summarizes the main properties of a : Ω × RN → RN . It
immediately follows from (2.3) and H(a).

Lemma 2.2. Let H(a) be satisfied. Then:
(i) a ∈ C0(Ω×RN ,RN )∩C1(Ω×(RN \{0}),RN ). Moreover, the map ξ 7→ a(x, ξ),

x ∈ RN , is continuous and strictly monotone, whence maximal monotone too.

(ii) |a(x, ξ)| ≤ d̂5

(
1 + |ξ|p−1

)
for every (x, ξ) ∈ Ω× RN , where d̂5 > 0.

(iii) a(x, ξ) · ξ ≥ d̂2
p−1 |ξ|

p for all (x, ξ) ∈ Ω× RN , with d̂2 given by (2.3).
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Gathering Lemma 2.2 and (2.4) together yields the estimates below for the prim-
itive G(x, ·).

Corollary 2.3. Under assumptions H(a) one has, for appropriate d̂6 > 0,

d̂2

p(p− 1)
|ξ|p ≤ G(x, ξ) ≤ d̂6 (1 + |ξ|p) in Ω× RN .

Example 2.4. The following functions, where we drop the x-dependence for the
sake of simplicity, fulfill H(a).

(a) a(ξ) := |ξ|p−2ξ, with 1 < p <∞. It corresponds to the p-Laplacian

∆pu := div
(
|∇u|p−2∇u

)
∀u ∈W 1,p(Ω).

The potential is G(ξ) = 1
p |ξ|

p.

(b) a(ξ) := |ξ|p−2ξ + µ|ξ|q−2ξ, where 1 < q < p < ∞ and µ > 0. It arises from
the parametric (p, q)-Laplacian

u 7→ ∆pu+ µ∆qu ∀u ∈W 1,p(Ω).

The potential is G(ξ) = 1
p |ξ|

p + µ
q |ξ|

q.

(c) a(ξ) :=
(
1 + |ξ|2

) p−2
2 ξ, with 1 < p <∞, It represents the generalized p-mean

curvature differential operator

u 7→ div
[
(1 + |∇u|2)

p−2
2 ∇u

]
∀u ∈W 1,p(Ω).

The potential is G(ξ) = 1
p (1 + |ξ|2)

p
2 .

Let A : W 1,p(Ω)→W 1,p(Ω)∗ be defined by

〈A(u), ϕ〉 :=

∫
Ω

a(x,∇u) · ∇ϕdx, u, ϕ ∈W 1,p(Ω). (2.5)

The next proposition collects some basic properties of A; proofs can be found in
Gasiński-Papageorgiou [9].

Proposition 2.5. Let H(a) be satisfied and let A be as in (2.5). Then the operator
A is bounded, continuous, monotone (hence maximal monotone), and of type (S+).

Evidently,

〈Ap(u), ϕ〉 :=

∫
Ω

|∇u|p−2∇u · ∇ϕdx ∀u, ϕ ∈W 1,p(Ω) (2.6)

represents a meaningful special case of A.
Given β > 0, consider the Robin eigenvalue problem

−∆pu = λ|u|p−2u in Ω,

|∇u|p−2∇u · ν = −β|u|p−2u on ∂Ω.
(2.7)

It is known (see Lê [10]) that the first eigenvalue λ1,p,β of (2.7) is positive, simple,
and isolated. Moreover, it can be variationally characterized through

λ1,p,β = inf
u∈W 1,p(Ω)

{∫
Ω

|∇u|pdx+ β

∫
∂Ω

|u|pdσ :

∫
Ω

|u|pdx = 1

}
. (2.8)
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3. Existence results

The assumptions on the perturbations f : Ω×R×RN → R and g : ∂Ω×R→ R
read as follow. To avoid unnecessary technicalities, ‘for all x’ will take the place of
‘for almost all x’.

(H) f : Ω× R× RN → R and g : ∂Ω× R → R are Carathéodory functions such
that:

(i) There exist α1 ∈ Lq
′
1(Ω), α2 ∈ Lq

′
2(∂Ω) and a1, a2, a3 ∈ R+ satisfying

|f(x, s, ξ)| ≤ a1|ξ|
p

q′1 + a2|s|q1−1 + α1(x) in Ω× R× RN , (3.1)

|g(x, s)| ≤ a3|s|q2−1 + α2(x) on ∂Ω× R, (3.2)

where 1 < q1 < p∗ and 1 < q2 < p∗, with critical exponents

p∗ :=

{
Np
N−p if p < N,

+∞ otherwise,
p∗ :=

{
(N−1)p
N−p if p < N,

+∞ otherwise.
(3.3)

(ii) There exist ωf ∈ L1(Ω), ωg ∈ L1(∂Ω) and b1, b2, b3 ∈ R+ such that

f(x, s, ξ)s ≤ b1|ξ|p + b2|s|p + ωf (x) in Ω× R× RN , (3.4)

g(x, s)s ≤ b3|s|p + ωg(x) on ∂Ω× R. (3.5)

Moreover,

b1 + b2λ
−1
1,p,β +

b3
ζ
< min

{
d̂2

p− 1
, 1

}
and 0 < β ≤ ζ. (3.6)

Definition 3.1. We say that u ∈W 1,p(Ω) is a weak solution of problem (1.1) if it
satisfies∫

Ω

a(x,∇u) · ∇ϕdx =

∫
Ω

f(x, u,∇u)ϕdx+

∫
∂Ω

[
g(x, u)− ζ|u|p−2u

]
ϕdσ (3.7)

for all test functions ϕ ∈W 1,p(Ω).

Using the embeddings (cf. Adams [1])

i : W 1,p(Ω)→ Lq1(Ω) and γ : W 1,p(Ω)→ Lq2(∂Ω), (3.8)

Hölder’s inequality, as well as (H)(i), one easily verifies that all the integrals involved
in (3.7) are finite.

We are now ready to formulate our existence result, whose proof chiefly exploits
the main theorem on pseudomonotone operators.

Theorem 3.2. Under hypotheses H(a) and (H), problem (1.1) admits at least one
weak solution u ∈W 1,p(Ω) ∩ L∞(Ω).

Proof. Let N̂f and N̂g the Nemytskij operators associated with f and g, respec-

tively, let i∗ : Lq
′
1(Ω)→W 1,p(Ω)∗ and γ∗ : Lq

′
2(∂Ω)→W 1,p(Ω)∗ be the adjoints of

embeddings (3.8), and let

Nf := i∗ ◦ N̂f , Ng := γ∗ ◦ N̂g ◦ γ, N := γ∗ ◦
(
ζ| · |p−2·

)
◦ γ. (3.9)

Set, provided u ∈W 1,p(Ω),

A(u) = A(u)−Nf (u)−Ng(u) +N(u). (3.10)
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From (H)(i) it immediately follows that A : W 1,p(Ω) → W 1,p(Ω)∗ maps bounded
sets into bounded sets. Moreover, the operator A is pseudomonotone. Indeed, if
{un} ⊆W 1,p(Ω) fulfills

un
w→ u in W 1,p(Ω), lim sup

n→∞
〈A(un), un − u〉 ≤ 0

then, by compactness of embeddings (3.8), one has

un → u in Lq1(Ω), un → u in Lq2(∂Ω).

When combined with (3.1)–(3.2) this entails, after using Hölder’s inequality,

lim
n→∞

∫
Ω

f(x, un,∇un)(un − u) dx = 0,

lim
n→∞

∫
∂Ω

g(x, un)(un − u) dσ = 0,

lim
n→∞

∫
∂Ω

ζ|un|p−2un(un − u) dσ = 0,

(3.11)

whence

lim sup
n→∞

〈A(un), un − u〉 = lim sup
n→∞

〈A(un), un − u〉 ≤ 0. (3.12)

Since A enjoys property (S+), the weak convergence of {un} in W 1,p(Ω) and (3.12)
yield un → u. So, A(un) → A(u) in W 1,p(Ω)∗, because A is continuous. Let us
finally show that the operator A turns out coercive, i.e.,

lim
‖u‖ζ,p→∞

〈Au, u〉
‖u‖ζ,p

= +∞, (3.13)

where ‖ · ‖ζ,p denotes the equivalent norm on W 1,p(Ω) defined in (2.1), for % := ζ.
Via (2.8) and (3.6) we have

λ1,p,β ≤
‖∇u‖pp + β‖u‖pp,∂Ω

‖u‖pp
≤
‖u‖pζ,p
‖u‖pp

∀u ∈W 1,p(Ω) \ {0}. (3.14)

Exploiting Lemma 2.2 (iii), (3.4), (3.5), and (3.14) leads to

〈A(u), u〉

=

∫
Ω

a(x,∇u) · ∇u dx+ ζ‖u‖pp,∂Ω −
∫

Ω

f(x, u,∇u)u dx−
∫
∂Ω

g(x, u)u dx

≥ min

{
d̂2

p− 1
, 1

}
‖u‖pζ,p − b1‖∇u‖

p
p − b2‖u‖pp − ‖ωf‖1 − b3‖u‖

p
p,∂Ω − ‖ωg‖1,∂Ω

≥

[
min

{
d̂2

p− 1
, 1

}
− b1 − b2λ−1

1,p,β −
b3
ζ

]
‖u‖pζ,p − ‖ωf‖1 − ‖ωg‖1,∂Ω.

On account of (3.6), conclusion (3.13) follows at once from p > 1.
Summing up, A : W 1,p(Ω)→W 1,p(Ω)∗ is bounded, pseudomonotone, and coer-

cive. Thus, the main theorem on pseudomonotone operators (see, e.g., Motreanu-
Motreanu-Papageorgiou [17]) provides u ∈W 1,p(Ω) such that A(u) = 0. Thanks to
(3.10) the function u turns out a weak solution of problem (1.1), while Theorem 3.1
in Marino-Winkert [13] gives u ∈W 1,p(Ω)∩L∞(Ω). This completes the proof. �
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Remark 3.3. To achieve the C1,σ-regularity of the solution given by Theorem 3.2,
we need an additional condition on the boundary term g, namely

|g(x, s)− g(y, t)| ≤ L [|x− y|α + |s− t|α] , |g(x, s)| ≤ L

for all (x, s), (y, t) ∈ ∂Ω× [−M0,M0], with appropriate L ∈ R+, α ∈ (0, 1], M0 > 0.
In such a case, the desired result follows from Marino-Winkert [13, Theorem 3.9],
which is a direct consequence of the famous Lieberman’s regularity theory [11].

4. Asymptotic Behavior and Uniqueness Results for the
(p, q)-Laplacian

Throughout this section, a(x, ξ) := |ξ|p−2ξ + µ|ξ|q−2ξ, where 1 < q < p < ∞
and µ ≥ 0. Hence, problem (1.1) writes

−∆pu− µ∆qu = f(x, u,∇u) in Ω,(
|∇u|p−2∇u+ µ|∇u|q−2∇u

)
· ν = g(x, u)− ζ|u|p−2u on ∂Ω,

(Pµ)

while (3.6) becomes

b1 + b2λ
−1
1,p,β +

b3
ζ
< 1 and β ≤ ζ, (4.1)

because d̂2 = p− 1. If µ := 0 then (Pµ) reduces to

−∆pu = f(x, u,∇u) in Ω,

|∇u|p−2∇u · ν = g(x, u)− ζ|u|p−2u on ∂Ω.
(P0)

Using Example 2.4 and Theorem 3.2 we directly infer the following theorem.

Theorem 4.1. Let (H) be satisfied. Then, for each µ ≥ 0, problem (Pµ) possesses
at least one weak solution uµ ∈W 1,p(Ω) ∩ L∞(Ω).

To investigate the asymptotic behavior of (Pµ) as µ goes to zero and +∞,
respectively, the next elementary a priori estimate will be employed.

Proposition 4.2. Let hypotheses (H) be satisfied and let uµ ∈ W 1,p(Ω) ∩ L∞(Ω)
be the weak solution of problem (Pµ) obtained from Theorem 4.1. Then there exists
a constant C > 0, independent of µ, such that

‖uµ‖ζ,p ≤ C ∀µ ∈ R+. (4.2)

Proof. Note that uµ fulfills (3.7), pick ϕ := uµ, and recall (3.14), to arrive at

‖uµ‖pζ,p = ‖∇uµ‖pp + ζ‖uµ‖pp,∂Ω

≤
∫

Ω

(|∇uµ|p + µ|∇uµ|q) dx+ ζ

∫
∂Ω

|uµ|pdσ

=

∫
Ω

f(x, uµ,∇uµ)uµ dx+

∫
∂Ω

g(x, uµ)uµ dσ

≤ b1‖∇uµ‖pp + b2‖uµ‖pp + ‖ωf‖1 + b3‖uµ‖pp,∂Ω + ‖ωg‖1,∂Ω

≤
(
b1 + b2λ

−1
1,p,β +

b3
ζ

)
‖u‖pζ,p + ‖ωf‖1 + ‖ωg‖1,∂Ω.
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Therefore, by (4.1), setting

C :=

 ‖ωf‖1 + ‖ωg‖1,∂Ω

1−
(
b1 + b2λ

−1
1,p,β + b3

ζ

)
 1

p

> 0

inequality (4.2) holds true for any µ ∈ R+. �

We first treat the case when µ→ 0+.

Theorem 4.3. Let (H) be satisfied. Then to every sequence µn → 0+ there corre-
spond a (not relabeled) subsequence {uµn} ⊆W 1,p(Ω) ∩ L∞(Ω) such that

(1) uµn is a weak solution of (Pµn) for all n ∈ N,
(2) uµn → u in W 1,p(Ω), and
(3) u ∈W 1,p(Ω) is a weak solution of (P0).

Proof. Fixed {µn} as above, Theorem 4.1 gives {uµn} ⊆W 1,p(Ω)∩L∞(Ω) enjoying
(1). Thanks to Proposition 4.2, the sequence {uµn} turns out bounded. So, we may
assume

uµn
w→ u in W 1,p(Ω), uµn → u in Lq1(Ω) and Lq2(∂Ω), (4.3)

which easily produce (3.11); cf. the proof of Theorem 3.2. From (3.7) written for
u := uµn , ϕ := uµn − u it thus follows

lim
n→+∞

〈Ap(uµn), uµn − u〉 = 0,

with Ap given by (2.6), because µn → 0. The (S+)-property of Ap now entails
uµn → u in W 1,p(Ω), namely (2) holds. Finally, due to (H)(i) and standard results
on the Nemytskij operator, we have

Nf (uµn)→ Nf (u), Ng(uµn)→ Ng(u), N(uµn)→ N(u) (4.4)

in W 1,p(Ω)∗; see (3.9) for the meaning of symbols Nf , Ng, N . Since∫
Ω

|∇uµn |p−2∇uµn · ∇ϕdx− µn
∫

Ω

|∇uµn |q−2∇uµn · ∇ϕdx

=

∫
Ω

f(x, uµn ,∇uµn)ϕdx+

∫
∂Ω

[
g(x, uµn)− ζ|uµn |p−2uµn

]
ϕdσ, n ∈ N,

(4.5)

and, moreover,

〈Ap(uµn), ϕ〉 → 〈Ap(u), ϕ〉, 〈Aq(uµn), ϕ〉 → 〈Aq(u), ϕ〉
whatever ϕ ∈W 1,p(Ω), while µn → 0, letting n→ +∞ in (4.5) shows (3). �

We now come to the case when µ→ +∞.

Theorem 4.4. If hypotheses (H) hold, µn → +∞, and {uµn} ⊆W 1,p(Ω)∩L∞(Ω)
fulfills conclusion (1) of Theorem 4.3 then uµn → c in W 1,q(Ω) for some c ∈ R.

Proof. The same arguments employed in the previous proof yield here (4.3), (4.4),
as well as

1

µn

∫
Ω

|∇uµn |p−2∇uµn · ∇ϕdx+

∫
Ω

|∇uµn |q−2∇uµn · ∇ϕdx

=
1

µn

∫
Ω

f(x, uµn ,∇uµn)ϕdx+
1

µn

∫
∂Ω

[
g(x, uµn)− ζ|uµn |p−2uµn

]
ϕdσ,

(4.6)
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with arbitrary ϕ ∈W 1,p(Ω). Put ϕ =: uµn−u and recall that µn → +∞ to achieve

lim
n→+∞

〈Aq(uµn), uµn − u〉 = 0,

i.e., uµn → u in W 1,q(Ω) by the (S+)-property of Aq. From (4.6) it next follows,
after letting n→ +∞,∫

Ω

|∇u|q−2∇u · ∇ϕdx = 0, ϕ ∈W 1,p(Ω),

which clearly means

∆qu = 0 in Ω, |∇u|q−2∇u · ν = 0 on ∂Ω.

Hence, u = c for some c ∈ R. Since these arguments apply to every subsequence of
{uµn}, the proof is complete. �

Remark 4.5. Theorems 4.3–4.4 remain valid for the more general problem

−div [a1(x,∇u) + µa2(x,∇u)] = f(x, u,∇u) in Ω,

[a1(x,∇u) + µa2(x,∇u)] · ν = g(x, u)− ζ|u|p−2u on ∂Ω,

where a1, a2 : Ω× RN → RN satisfy assumptions H(a).

The last part of this section addresses uniqueness of weak solutions to problem
(Pµ). Adapting the approach of Averna-Motreanu-Tornatore [2], we will treat the
cases p = 2 or q = 2 under the following assumptions.

(U1) There exist c1, c2 ∈ R+ such that

(f(x, s, ξ)− f(x, t, ξ))(s− t) ≤ c1|s− t|2 ∀x ∈ Ω, s, t ∈ R, ξ ∈ RN ,
(g(x, s)− g(x, t))(s− t) ≤ c2|s− t|2 ∀x ∈ ∂Ω, s, t ∈ R.

(U2) With appropriate ρ ∈ Lr′(Ω), where 1 < r′ < p∗, and c3 ∈ R+ one has both
ξ 7→ f(x, s, ξ)− ρ(x) linear for every (x, s) ∈ Ω× R and

|f(x, s, ξ)− ρ(x)| ≤ c3|ξ| in Ω× R× RN .

Theorem 4.6. Let (H), (U1), and (U2) be satisfied.

(a) If p := 2 > q > 1 and c1λ
−1
1,2,β + c3λ

− 1
2

1,2,β + c2ζ
−1 < 1 then (Pµ) admits a

unique weak solution for every µ > 0.
(b) If p > q := 2 then (Pµ) possesses only one weak solution provided

min

{
µ,

22−p

1 + |∂Ω|
p−2
p

}
> c1λ

−1
1,2,β + c3λ

− 1
2

1,2,β +
c2
ζ
. (4.7)

Proof. Fix µ > 0. Theorem 4.1 gives a weak solution uµ ∈W 1,p(Ω)∩L∞(Ω) of (Pµ).
Suppose vµ ∈ W 1,p(Ω) enjoys the same property. Using (3.7) with ϕ := uµ − vµ



10 S. A. MARANO AND P. WINKERT

easily leads to

〈Ap(uµ)−Ap(vµ), uµ − vµ〉+ µ〈Aq(uµ)−Aq(vµ), uµ − vµ〉

+ ζ

∫
∂Ω

(|uµ|p−2uµ − |vµ|p−2vµ)(uµ − vµ) dσ

=

∫
Ω

(f(x, uµ,∇uµ)− f(x, vµ,∇uµ))(uµ − vµ) dx

+

∫
Ω

(f(x, vµ,∇uµ)− f(x, vµ,∇vµ))(uµ − vµ) dx

+

∫
∂Ω

(g(x, uµ)− g(x, vµ))(uµ − vµ) dσ.

(4.8)

(a) Let p := 2 > q > 1. By monotonicity of Aq, the left-hand side in (4.8) can be
estimated through

〈A2(uµ)−A2(vµ), uµ − vµ〉+ µ〈Aq(uµ)−Aq(vµ), uµ − vµ〉

+ ζ

∫
∂Ω

(uµ − vµ)(uµ − vµ) dσ

≥ ‖∇(uµ − vµ)‖22 + ζ‖uµ − vµ‖22,∂Ω = ‖uµ − vµ‖2ζ,2,

(4.9)

where ‖ · ‖ζ,2 denotes the equivalent norm (2.1). As regards the right-hand side,
due to (U1), (U2), Hölder’s inequality, and (3.14), we have∫

Ω

(f(x, uµ,∇uµ)− f(x, vµ,∇uµ))(uµ − vµ) dx

+

∫
Ω

(f(x, vµ,∇uµ)− f(x, vµ,∇vµ))(uµ − vµ) dx

+

∫
∂Ω

(g(x, uµ)− g(x, vµ))(uµ − vµ) dσ

≤ c1‖uµ − vµ‖22 +

∫
Ω

(
f

(
x, vµ,∇

(
1

2
(uµ − vµ)2

))
− ρ(x)

)
dx

+ c2‖uµ − vµ‖22,∂Ω

≤ c1‖uµ − vµ‖22 + c3

∫
Ω

|uµ − vµ||∇(uµ − vµ)| dx+ c2‖uµ − vµ‖22,∂Ω

≤
(
c1λ
−1
1,2,β + c3λ

− 1
2

1,2,β + c2ζ
−1
)
‖uµ − vµ‖2ζ,2.

(4.10)

Gathering (4.8)–(4.10) together now yields

‖uµ − vµ‖2ζ,2 ≤
(
c1λ
−1
1,2,β + c3λ

− 1
2

1,2,β + c2ζ
−1
)
‖uµ − vµ‖2ζ,2,

which implies uµ = vµ, because c1λ
−1
1,2,β + c3λ

− 1
2

1,2,β + c2
ζ < 1.

(b) Let p > q := 2. Likewise before, the left-hand side of (4.8) becomes

〈Ap(uµ)−Ap(vµ), uµ − vµ〉+ µ〈A2(uµ)−A2(vµ), uµ − vµ〉

+ ζ

∫
∂Ω

(
|uµ|p−2uµ − |vµ|p−2vµ

)
(uµ − vµ) dσ

≥ µ‖∇(uµ − vµ)‖22 + ζ

∫
∂Ω

(
|uµ|p−2uµ − |vµ|p−2vµ

)
(uµ − vµ) dσ,

(4.11)
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while (2.2) entails∫
∂Ω

(
|uµ|p−2uµ − |vµ|p−2vµ

)
(uµ − vµ) dσ ≥ 22−p‖uµ − vµ‖pp,∂Ω. (4.12)

Via Hölder’s inequality we then get

‖uµ − vµ‖22,∂Ω ≤ ‖uµ − vµ‖2p,∂Ω |∂Ω|
p−2
p ≤ ‖uµ − vµ‖pp,∂Ω

(
1 + |∂Ω|

p−2
p

)
. (4.13)

Thus, from (4.11)–(4.13) it follows

〈Ap(uµ) +Ap(vµ), uµ − vµ〉+ µ〈A2(uµ) +A2(vµ), uµ − vµ〉

+ ζ

∫
∂Ω

(
|uµ|p−2uµ − |vµ|p−2vµ

)
(uµ − vµ) dσ

≥ µ‖∇(uµ − vµ)‖22 + ζ
22−p

1 + |∂Ω|
p−2
p

‖uµ − vµ‖22,∂Ω

≥ min

{
µ,

22−p

1 + |∂Ω|
p−2
p

}(
‖∇(uµ − vµ)‖22 + ζ‖uµ − vµ‖22,∂Ω

)
= min

{
µ,

22−p

1 + |∂Ω|
p−2
p

}
‖uµ − vµ‖2ζ,2.

(4.14)

Combining (4.8) with (4.14) and (4.10) yields

min

{
µ,

22−p

1 + |∂Ω|
p−2
p

}
‖uµ − vµ‖2ζ,2 ≤

(
c1λ
−1
1,2,β + c3λ

− 1
2

1,2,β + c2ζ
−1
)
‖uµ − vµ‖2ζ,2.

Therefore, if µ satisfies (4.7) then uµ = vµ. �
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