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Abstract. This paper deals with equations of Sturm-Liouville-type having

nonlinearities on the right-hand side being possibly discontinuous. We present
different existence results of such equations under various hypotheses on the

nonlinearities. Our approach relies on critical point theory for locally Lipschitz

functionals. In particular, under suitable assumptions, an existence result of
a non-zero local minimum for locally Lipschitz functionals is established.

1. Introduction

The present paper is concerned with the existence of solutions to equations of
Sturm-Liouville type having discontinuous nonlinearities on the right-hand side.
Such equations are second-order differential equations of the form

−(p̂u′)′ + q̂u = λr̂f(u) in ]a, b[, (1.1)

satisfying a boundary condition, for example of Dirichlet type, i.e. u(a) = u(b) = 0.
Here, the given functions p̂, r̂ > 0 and q̂ are supposed to be integrable, λ is a
parameter and f : R → R is a function. When f(u) = u, the function r̂ is also
known as the density or weight function and, as it is well known, equations of this
type arise in different areas of pure and applied mathematics as well as quantum
mechanics. For instance, the one-dimensional time-dependent Schrödinger equation
is a special case of a Sturm-Liouville equation (see Teschl [23]). In addition, when f
possesses discontinuous nonlinearities, equations of type (1.1) are special prototypes
of several problems in Mechanics and Engineering (see, for instance, Motreanu-
Panagiotopoulos [17] and Panagiotopoulos [19]).

The aim of this work is to present existence results to equations of type (1.1)
where the functions p̂, q̂, r̂ are supposed to be essentially bounded on [a, b] and f
is assumed to be almost everywhere continuous which allows functions having an
uncountable set of points of discontinuity. The proof of our main result is based on
an abstract nonsmooth critical point result developed in Section 2 which ensures
the existence of at least one nontrivial local minimum. It should be pointed out that
the derivation and application of such critical point results in recent years has been
initiated by works of Ricceri [21] and [22], which can be seen as a starting point in
that direction, and it has been developed in the papers of Marano-Motreanu [15]
and [16], Bonanno-Candito [4] and Bonanno [2].

It is in the nature of things that Sturm-Liouville equations of type (1.1) have
been treated by a wide range of authors in the past under different conditions
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on the nonlinearity. We mention the works of Afrouzi-Heidarkhani [1], Bonanno-
Buccellato [3], Bonanno-Sciammetta [6], He-Ge [12], Henderson-Thompson [13] and
the references therein. Indeed, our results extend those ones in [6] requiring L1-
Carathéodory functions to the case of discontinuous right-hand sides.

As a particular case of our main theorem we have the following result if p̂ = r̂ = 1
and q̂ = 0.

Theorem 1.1. Let f : R → R be a locally essentially bounded and almost every-
where continuous function satisfying infR f > 0. Then there exists a number λ > 0
such that, for each λ ∈]0, λ[, problem

−u′′ = λf(u) in ]a, b[,

u(a) = u(b) = 0
(1.2)

admits at least one nontrivial positive solution.

We recall that a solution of (1.2) is a function u ∈ C1([a, b]) such that u′ is
absolutely continuous, u(a) = u(b) = 0 and −u′′(t) = λf(u(t)) for almost every
t ∈ [a, b] (see Section 3). The proof of this theorem follows directly by applying
Corollary 3.5 (see Section 3, Remark 3.6).

The paper is arranged as follows. In Section 2, we recall some basic facts about
nonsmooth analysis and we establish an existence result of a non-zero local min-
imum for locally Lipschitz functionals (see Theorem 2.3). Moreover, two conse-
quences (Theorems 2.4 and 2.5) are pointed out. In particular, Theorem 2.5 is a
useful tool in order to establish nontrivial solutions to differential problems having
discontinuous nonlinearities. Section 3 is devoted to a boundary value problem with
Sturm-Liouville equation involving discontinuous nonlinearities, where the main re-
sult is Theorem 3.1 which ensures the existence of a nontrivial solution. Finally, in
the same section, two helpful corollaries (Corollaries 3.4 and 3.5) and some concrete
examples (Examples 3.7 and 3.8) to illustrate the applicability of our results, are
pointed out.

2. Preliminaries

Let us start by recalling some basic notions in nonsmooth analysis that are
required in the sequel. For a real Banach space (X, ‖·‖X), we denote by X∗ its dual
space and by 〈·, ·〉 the duality pairing between X and X∗. A function f : X → R
is said to be locally Lipschitz if for every x ∈ X there exist a neighborhood Ux of
x and a constant Lx ≥ 0 such that

|f(y)− f(z)| ≤ Lx‖y − z‖X for all y, z ∈ Ux.
For a locally Lipschitz function f : X → R on a Banach space X, the generalized
directional derivative of f at the point x ∈ X along the direction y ∈ X is defined
by

f◦(x; y) := lim sup
z→x,t→0+

f(z + ty)− f(z)

t

(see Clarke [10, Chapter 2]). Note that if f : X → R is strictly differentiable, that
is, for all x ∈ X, f ′(x) ∈ X∗ exists such that

lim
z→x
t→0+

f(z + ty)− f(z)

t
= 〈f ′(x), y〉 for all y ∈ X,
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then the usual directional derivative f ′(x; y) given by

f ′(x; y) = lim
t→0+

f(x+ ty)− f(x)

t

exists and coincides with the generalized directional derivative f◦(x; y).
If f1, f2 : X → R are locally Lipschitz functions, then we have

(f1 + f2)◦(x; y) ≤ f◦1 (x; y) + f◦2 (x; y) for all x, y ∈ X. (2.1)

The generalized gradient of a locally Lipschitz function f : X → R at x ∈ X is the
set

∂f(x) := {x∗ ∈ X∗ : 〈x∗, y〉 ≤ f◦(x; y) for all y ∈ X} .
Based on the Hahn-Banach theorem we easily verify that ∂f(x) is nonempty. An
element x ∈ X is said to be a critical point of a locally Lipschitz function f : X → R
if there holds

f◦(x; y) ≥ 0 for all y ∈ X
or, equivalently, 0 ∈ ∂f(x) (see Chang [9]).

Let Φ,Ψ : X → R be two locally Lipschitz continuous functions. We put

I = Φ−Ψ.

We further fix two numbers r1, r2 ∈ [−∞,+∞] such that r1 < r2. The following
definition is a special version of the Palais-Smale condition ((PS) for short).

Definition 2.1. We say that the function I : X → R fulfills the Palais-Smale

condition cut off lower at r1 and upper at r2 (
[r1]

(PS)
[r2]

-condition for short) if
any sequence (un) ⊆ X satisfying

(1) I(un) is bounded;
(2) there exists a sequence (εn) ⊂ R+, εn → 0+ such that

I◦(un; v) ≥ −εn‖v‖X for all v ∈ X;

(3) r1 < Φ(un) < r2 for all n ∈ N;

has a convergent subsequence. If r1 = −∞, r2 ∈ R, we write (PS)
[r2]

and the case

r1 ∈ R, r2 = +∞ will be denoted by
[r1]

(PS).

It is easy to see that if r1 = −∞ and r2 = +∞, the definition above reduces
to the well-known (PS)-condition for locally Lipschitz continuous functions (see
Motreanu-Rădulescu [18, Definition 1.7]). We should also mention that if I fulfills

the
[r1]

(PS)
[r2]

-condition, then it satisfies the
[s1]

(PS)
[s2]

-condition for all s1, s2 ∈
[−∞,+∞] such that r1 ≤ s1 < s2 ≤ r2. Particularly, if I satisfies the usual (PS)-

condition for locally Lipschitz continuous functions, then it fulfills the
[s1]

(PS)
[s2]

-
condition for all s1, s2 ∈ [−∞,+∞] with s1 < s2.

The following result is due to Bonanno [2, Lemma 3.1]

Lemma 2.2. Let X be a real Banach space and let I : X → R be a locally Lipschitz
continuous function being bounded from below. Then, for all minimizing sequence
(un) ⊆ X of I, there exists a minimizing sequence (vn) ⊆ X of I such that

(1) I(vn) ≤ I(un) for all n ∈ N;
(2) I◦(vn;h) ≥ −εn‖h‖X for all h ∈ X, for all n ∈ N and with εn → 0+.

Now, we can prove the following.
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Theorem 2.3. Let X be a real Banach space and let Φ,Ψ : X → R be two locally
Lipschitz continuous functions. Put

I = Φ−Ψ

and assume that there exist x0 ∈ X and r1, r2 ∈ R satisfying r1 < Φ(x0) < r2 such
that

sup
u∈Φ−1(]r1,r2[)

Ψ(u) ≤ r2 − Φ(x0) + Ψ(x0), (2.2)

sup
u∈Φ−1(]−∞,r1])

Ψ(u) ≤ r1 − Φ(x0) + Ψ(x0). (2.3)

Furthermore, suppose that I satisfies the
[r1]

(PS)
[r2]

-condition.
Then, there exists u0 ∈ Φ−1(]r1, r2[) such that I(u0) ≤ I(u) for all u ∈ Φ−1(]r1, r2[)

with u0 being a critical point of I.

Proof. We first put

C := r2 − Φ(x0) + Ψ(x0) (2.4)

to define

Φr1 := max {Φ(u), r1} , ΨC := min {Ψ(u), C} , (2.5)

and

J := Φr1 −ΨC .

Note that J is locally Lipschitz continuous and bounded from below. Taking into ac-
count Lemma 2.2, let (un) ⊆ X be a minimizing sequence of J , i.e. limn→∞ J(un) =
infX J , we find a sequence (vn) ⊆ X of J such that limn→∞ J(vn) = infX J , and
J◦(vn;h) ≥ −εn‖h‖X for all h ∈ X, for all n ∈ N and with εn → 0+.

If J(x0) = infX J , then from (2.2) and (2.5) we infer, for u ∈ Φ−1(]r1, r2[),
Ψ(u) ≤ C and therefore, J(u) = I(u) for all u ∈ Φ−1(]r1, r2[). Thus, I(x0) =
J(x0) ≤ J(u) = I(u) for all u ∈ Φ−1(]r1, r2[).

Let us now suppose that infX J < J(x0). Then we find n0 > 0 such that
J(vn) < J(x0) for all n > n0.
Claim: r1 < Φ(vn) < r2 for all n > n0

First observe

Φ(vn)−ΨC(vn) ≤ Φr1(vn)−ΨC(vn) < Φ(x0)−Ψ(x0).

Hence

Φ(vn) < ΨC(vn) + Φ(x0)−Ψ(x0) ≤ C + Φ(x0)−Ψ(x0) = r2 (2.6)

implying Φ(vn) < r2. Suppose now that Φ(vn) ≤ r1. This yields

r1 −Ψ(vn) = Φr1(vn)−Ψ(vn) < Φ(x0)−Ψ(x0),

or equivalently

r1 − Φ(x0) + Ψ(x0) < Ψ(vn).

Owing to (2.3) we obtain Φ(vn) > r1 being a contradiction. This proves the claim.
Then, from the claim and (2.2) we obtain J(vn) = I(vn) and J◦(vn;h) =

I◦(vn;h) for all n > n0 and for all h ∈ X. Therefore, limn→∞ I(vn) = limn→∞ J(vn) =

infX J and I◦(vn;h) ≥ −εn‖h‖ for all h ∈ X. Since I satisfies the
[r1]

(PS)
[r2]

-
condition, we conclude that (vn) admits a subsequence strongly converging to
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v∗ ∈ X. Thus, I(v∗) = infX J ≤ J(u) = I(u) for all u ∈ Φ−1(]r1, r2[). In summary
we have

I(v∗) ≤ I(u) for all u ∈ Φ−1(]r1, r2[). (2.7)

Due to the claim and because of the continuity of Φ there holds v∗ ∈ Φ−1([r1, r2]).
If v∗ ∈ Φ−1(]r1, r2[), the conclusion of the theorem follows directly from (2.7).

If Φ(v∗) = r1, then (2.3) implies

I(v∗) = r1 −Ψ(v∗) ≥ r1 − sup
Φ(u)≤r1

Ψ(u) ≥ Φ(x0)−Ψ(x0) = I(x0).

This combined with (2.7) gives I(x0) ≤ I(u) for all u ∈ Φ−1(]r1, r2[) and the
assertion of the theorem is proved.

If Φ(v∗) = r2, we have, due to I(v∗) = J(v∗),

r2 −Ψ(v∗) = r2 −ΨC(v∗),

which implies Ψ(v∗) = ΨC(v∗) ≤ C. Let us now suppose that I(v∗) < I(x0). Then
(2.4) along with Ψ(v∗) ≤ C gives

I(v∗) = r2 −Ψ(v∗) ≥ r2 − C = Φ(x0)−Ψ(x0) = I(x0),

a contradiction. Therefore, I(v∗) = I(x0) and (2.7) yields I(x0) ≤ I(u) for all
u ∈ Φ−1(]r1, r2[). That finishes the proof of the theorem taking into account that
each local minimum is also a critical point of I (see, for instance, [15, Proposition
2.1]). �

For a real Banach space X and locally Lipschitz continuous functions Φ,Ψ :
X → R we define

Iλ = Φ− λΨ

with λ > 0. Moreover, we put

β(r1, r2) = inf
v∈Φ−1(]r1,r2[)

sup
u∈Φ−1(]r1,r2[)

Ψ(u)−Ψ(v)

r2 − Φ(v)
(2.8)

for all r1, r2 ∈ R with r1 < r2 and

ρ(r1, r2) = sup
v∈Φ−1(]r1,r2[)

Ψ(v)− sup
u∈Φ−1(]−∞,r1])

Ψ(u)

Φ(v)− r1
(2.9)

for all r1, r2 ∈ R with r1 < r2.

Theorem 2.4. Let X be a real Banach space and let Φ,Ψ : X → R be two locally
Lipschitz continuous functions. Suppose that there exist two numbers r1, r2 ∈ R
satisfying r1 < r2 such that

β(r1, r2) < ρ(r1, r2),

where β and ρ are as in (2.8) and (2.9), and for each λ ∈
]

1
ρ(r1,r2) ,

1
β(r1,r2)

[
the

function Iλ = Φ− λΨ fulfills the
[r1]

(PS)
[r2]

-condition.

Then, for each λ ∈
]

1
ρ(r1,r2) ,

1
β(r1,r2)

[
there exists u0,λ ∈ Φ−1 (]r1, r2[) such that

Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1 (]r1, r2[) with u0,λ being a critical point of Iλ.
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Proof. Fixing λ ∈
]

1
ρ(r1,r2) ,

1
β(r1,r2)

[
, we have β(r1, r2) < 1

λ < ρ(r1, r2) which im-

plies the existence of v1, v2 ∈ Φ−1 (]r1, r2[) such that

sup
u∈Φ−1(]r1,r2[)

Ψ(u)−Ψ(v1)

r2 − Φ(v1)
<

1

λ
and

1

λ
<

Ψ(v2)− sup
u∈Φ−1(]−∞,r1])

Ψ(u)

Φ(v2)− r1
.

Now, let x0 ∈ Φ−1 (]r1, r2[) be such that

Φ(x0)− λΨ(x0) = min {Φ(v1)− λΨ(v1),Φ(v2)− λΨ(v2)} .

This implies

sup
u∈Φ−1(]r1,r2[)

λΨ(u) < r2 − Φ(x0) + λΨ(x0),

and

sup
u∈Φ−1(]−∞,r1])

λΨ(u) < r1 − Φ(x0) + λΨ(x0).

Now, we may apply Theorem 2.3 to the function Iλ = Φ − λΨ which yields the
assertion of the theorem. �

As a direct consequence of Theorem 2.4 we have the following result.

Theorem 2.5. Let X be a real Banach space and let Φ,Ψ : X → R be two locally
Lipschitz continuous functions satisfying infX Φ = Φ(0) = Ψ(0) = 0. Suppose that
there exist r ∈ R and û ∈ X with 0 < Φ (û) < r such that

sup
u∈Φ−1(]−∞,r[)

Ψ(u)

r
<

Ψ (û)

Φ(û)
(2.10)

and for each λ ∈ Λr,û :=

Φ (û)

Ψ(û)
,

r

sup
u∈Φ−1(]−∞,r[)

Ψ(u)

 the function Iλ = Φ − λΨ

fulfills the (PS)
[r]

-condition.
Then, for each λ ∈ Λr,û there exists uλ ∈ Φ−1 (]0, r[) such that Iλ(uλ) ≤ Iλ(u)

for all u ∈ Φ−1 (]0, r[) with uλ being a critical point of Iλ.

Proof. Our aim is to apply Theorem 2.4. To this end, let r1 = 0 and r2 = r. Then,
owing to (2.10), we obtain

β(0, r) ≤
sup

u∈Φ−1(]−∞,r[)
Ψ(u)−Ψ(û)

r − Φ(û)
<

r
Ψ (û)

Φ(û)
−Ψ(û)

r − Φ(û)
=

Ψ (û)

Φ(û)
= ρ(0, r).

Now, let (vn) ⊆ Φ−1 (]0, r[) such that limn→∞ vn = 0. It follows

β(0, r) ≤
sup

u∈Φ−1(]0,r[)

Ψ(u)−Ψ(vn)

r − Φ(vn)
for all n ∈ N.

Therefore, since Φ,Ψ are continuous and Φ(0) = Ψ(0) = 0, it results

β(0, r) ≤
sup

u∈Φ−1(]0,r[)

Ψ(u)

r
.
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This finally givesΦ (û)

Ψ(û)
,

r

sup
u∈Φ−1(]−∞,r[)

Ψ(u)

 ⊆ ] 1

ρ(0, r)
,

1

β(0, r)

[
.

Since Iλ satisfies the (PS)
[r]

-condition, it fulfills the
[0]

(PS)
[r]

-condition as well.
Hence, the assumptions of Theorem 2.4 are satisfied and the assertion of the theorem
follows. �

Remark 2.6. In order to obtain the existence of multiple critical points for non-
differentiable functionals, we refer to [7] and the references therein.

We say that a function f : [a, b]×R→ R belongs toH if x→ f(x, t) is measurable
for every t ∈ R, there exists a set A ⊂ [a, b] with m(A) = 0 such that the set

Df :=
⋃

x∈[a,b]\A

{t ∈ R : f(x, ·) is discontinuous at t} (2.11)

has measure zero, f is locally essentially bounded, and the functions

f−(x, t) := lim
δ→0+

essinf
|t−z|<δ

f(x, z), f+(x, t) := lim
δ→0+

esssup
|t−z|<δ

f(x, z),

are superpositionally measurable, that is, f−(x, u(x)) and f+(x, u(x)) are measur-
able for all measurable functions u : [a, b] → R. Functions belonging to H are
sometimes called highly discontinuous.

3. Main result

In this section, we are going to apply the abstract results of Section 2 to suit-
able differential equations. To this end, we consider the following Sturm-Liouville
boundary value problem

−(pu′)′ + qu = λf(x, u) in ]a, b[,

u(a) = u(b) = 0
(3.1)

where p, q ∈ L∞([a, b]) fulfilling essinf [a,b] p > 0, essinf [a,b] q ≥ 0, λ > 0 is a param-
eter to be specified, and f : [a, b]× R→ R is a given function.

If f and q are continuous functions, then a classical solution of (3.1) is a function
u ∈ C1([a, b]) such that pu′ ∈ C1([a, b]), u(a) = u(b) = 0, and −(p(x)u′(x))′ +
q(x)u(x) = λf(x, u(x)) for all x ∈ [a, b]. If u ∈ AC([a, b]) satisfies pu′ ∈ AC([a, b]),
u(a) = u(b) = 0, and−(p(x)u′(x))′+q(x)u(x) = λf(x, u(x)) for almost all x ∈ [a, b],

then u is called a generalized solution of (3.1). Finally, we say that u ∈W 1,2
0 ([a, b])

is a weak solution of (3.1) if∫ b

a

p(x)u′(x)v′(x)dx+

∫ b

a

q(x)u(x)v(x)dx = λ

∫ b

a

f(x, u(x))v(x)dx

is satisfied for all test functions v ∈W 1,2
0 ([a, b]). Note that a weak solution of (3.1)

is also a generalized solution.
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In what follows we identify by X the Sobolev space W 1,2
0 ([a, b]) equipped with

the norm

‖u‖X =

(∫ b

a

p|u′|2dx+

∫ b

a

q|u|2dx

) 1
2

for all u ∈ X.

We set

p0 := essinf
x∈[a,b]

p(x) > 0, q0 := essinf
x∈[a,b]

q(x) ≥ 0,

and

m :=
2p0

b− a
. (3.2)

It is well known that X is compactly embedded into C([a, b]) with the estimate

‖u‖∞ ≤
1√
2m
‖u‖X . (3.3)

Finally, we put

K :=
6p0

12‖p‖∞ + (b− a)2‖q‖∞
. (3.4)

The main result in this paper is the following.

Theorem 3.1. Let f : [a, b] × R → R be a function belonging to class H. Put
F (x, s) :=

∫ s
0
f(x, t)dt for all (x, s) ∈ [a, b]× R and suppose that

(H1) there exist two positive constants c, d with d < c such that

F (x, s) ≥ 0 for all (x, s) ∈ [a, b]× [0, d] (3.5)

and ∫ b

a

max
|s|≤c

F (x, s)dx

c2
< K

∫ b− 1
4 (b−a)

a+ 1
4 (b−a)

F (x, d)dx

d2
; (3.6)

(H2) there holds

λf−(x, s)− q(x)s ≤ 0 ≤ λf+(x, s)− q(x)s implies λf(x, s)− q(x)s = 0

for a.a. x ∈ [a, b], for all s ∈ Df (see (2.11)), and for each λ ∈ Λc,d, where

Λc,d :=

 1

K

md2∫ b− 1
4 (b−a)

a+ 1
4 (b−a)

F (x, d)dx

,
mc2∫ b

a

max
|s|≤c

F (x, s)dx

 .
Then, for each λ ∈ Λc,d, problem (3.1) admits at least one nontrivial weak solution
uλ such that |uλ(x)| < c for all x ∈ [a, b].

Proof. First, we put

Φ(u) :=
1

2
‖u‖2X , Ψ(u) :=

∫ b

a

F (x, u)dx

for all u ∈ X. It is clear that both Φ and Ψ are locally Lipschitz on X.
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Fixing λ ∈ Λc,d, we are going to prove that critical points of Φ − λΨ are weak
solutions of problem (3.1). For this purpose, let u0 ∈ X be a critical point of
Φ− λΨ, that is

(Φ− λΨ)
◦

(u0; v − u0) ≥ 0 for all v ∈ X,

which implies Φ′(u0)(w) + λ (−Ψ)
◦

(u0;w) ≥ 0 for all w ∈ X (see (2.1)), that is

−

(∫ b

a

p(x)u′0(x)w′(x)dx+

∫ b

a

q(x)u0(x)w(x)dx

)
≤ λ (−Ψ)

◦
(u0;w) for all w ∈ X.

Defining

T (w) := −

(∫ b

a

p(x)u′0(x)w′(x)dx+

∫ b

a

q(x)u0(x)w(x)dx

)
for all w ∈ X

we easily verify that T is a linear and continuous operator on X satisfying T ∈
λ∂(−Ψ)(u0). Note that Ψ is locally Lipschitz on L2([a, b]) and X is densely em-
bedded into L2([a, b]). Hence, by virtue of Theorem 2.2 of Chang [9], we have
∂(−Ψ)

∣∣
X

(u0) ⊆ ∂(−Ψ)
∣∣
L2([a,b])

(u0) which implies that T is a linear and continuous

operator on L2([a, b]). Thus, we find an element ŵ ∈ L2([a, b]) such that

T (w) =

∫ b

a

w(x)ŵ(x)dx for all w ∈ L2([a, b]).

Let us now consider the auxiliary problem given by

−(pu′)′ − qu = ŵ in ]a, b[,

u(a) = u(b) = 0.
(3.7)

It is known that problem (3.7) has a unique weak solution û ∈W 2,2([a, b])∩X (see,
for example, Brezis [8, Chapter VIII.4, Example 2]), that is

−

(∫ b

a

p(x)û′(x)w′(x)dx+

∫ b

a

q(x)û(x)w(x)dx

)
=

∫ b

a

ŵ(x)w(x)dx = T (w)

for all w ∈ X. Since a linear continuous operator on X is uniquely determined by
a function in X (see, for example, Kufner-John-Fuč́ık [14, Theorem 5.9.3]) we have
û = u0 which gives u0 ∈W 2,2([a, b]) and∫ b

a

(p(x)u′0(x))′w(x)dx−
∫ b

a

q(x)u0(x)w(x)dx

= −

(∫ b

a

p(x)u′0(x)w′(x)dx+

∫ b

a

q(x)u0(x)w(x)dx

)
≤ λ(−Ψ)◦(u0;w) for all w ∈ X.

Then, owing to Theorem 2.1 of Chang [9], one get

(p(x)u′0(x))′ − q(x)u0(x) ∈
[
(−λf)

−
(x, (u0(x)), (−λf)

+
(x, u0(x))

]
for almost all x ∈ [a, b] which can be equivalently written as

−(p(x)u′0(x))′ ∈
[
λf−(x, u0(x))− q(x)u0(x), λf+(x, u0(x))− q(x)u0(x)

]
for almost all x ∈ [a, b]. Then, as f ∈ H, it follows

−(p(x)u′0(x))′ + q(x)u0(x) = λf(x, u0(x)) for almost all x ∈ u−1
0 (Df ). (3.8)
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Indeed, since m(Df ) = 0, due to De Giorgi-Buttazzo-Dal Maso [11], we obtain

−(p(x)u′0(x))′ = 0 for almost all x ∈ u−1
0 (Df ). Now, from (3.8) and hypothesis

(H2), we conclude that

λf(x, u0(x))− q(x)u0(x) = 0 for almost all x ∈ u−1
0 (Df ).

Hence, (3.8) holds and therefore

−(p(x)u′0(x))′ + q(x)u0(x) = λf(x, u0(x)) for almost all x ∈ [a, b],

which ensures that a critical point of Φ− λΨ is a weak solution of (3.1).
Our aim is now to apply Theorem 2.5. First we are going to prove that inequality

(2.10) is satisfied. To this end, let r := mc2 and define

û(x) =


4d
b−a (x− a) if x ∈

[
a, a+ 1

4 (b− a)
[
,

d if x ∈
[
a+ 1

4 (b− a), b− 1
4 (b− a)

]
,

4d
b−a (b− x) if x ∈

]
b− 1

4 (b− a), b
]

which belongs obviously to X. A simple calculation shows

4d2

(
p0

b− a
+
q0

12
(b− a)

)
≤ 1

2
‖û‖2X ≤ 4d2

(
‖p‖∞
b− a

+
‖q‖∞

12
(b− a)

)
. (3.9)

Now, we claim that 1√
K
d < c. Arguing by contradiction, we assume that

c ≤ 1√
K
d. (3.10)

Since d < c and due to (3.10) along with (3.5) we derive∫ b

a

max
|s|≤c

F (x, s)dx

c2
≥

∫ b

a

F (x, d)dx

c2
≥

∫ b− 1
4 (b−a)

a+ 1
4 (b−a)

F (x, d)dx

c2

≥

∫ b− 1
4 (b−a)

a+ 1
4 (b−a)

F (x, d)dx(
1√
K
d
)2 = K

∫ b− 1
4 (b−a)

a+ 1
4 (b−a)

F (x, d)dx

d2
,

which contradicts (3.6). Thus, 1√
K
d < c.

This gives 1
K d

2 < c2, that is

12‖p‖∞ + (b− a)2‖q‖∞
6p0

d2 < c2.

The last inequality can be rewritten as

4

(
‖p‖∞
b− a

+
‖q‖∞

12
(b− a)

)
d2 <

2p0

b− a
c2

which implies, due to (3.9) and the choice r = mc2 (see also (3.2)), that Φ (û) < r.
Furthermore, owing to (3.3) and the representation r = mc2, there holds

max
x∈[a,b]

|u(x)| ≤ c for all ‖u‖X ≤
√

2r. (3.11)
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Then, we have

sup
u∈Φ−1(]−∞,r[)

Ψ(u)

r
=

sup
‖u‖X≤

√
2r

∫ b

a

F (x, u(x))dx

r
≤

∫ b

a

max
|s|≤c

F (x, s)dx

mc2
. (3.12)

Moreover, by applying (3.5) and (3.9), we obtain

Ψ (û)

Ψ (û)
=

∫ b

a

F (x, û(x)) dx

1
2 ‖û‖

2
X

≥

∫ b− 1
4 (b−a)

a+ 1
4 (b−a)

F (x, d) dx

4d2
(
‖p‖∞
b−a + ‖q‖∞

12 (b− a)
)

= K

∫ b− 1
4 (b−a)

a+ 1
4 (b−a)

F (x, d) dx

md2
.

(3.13)

Hence, due to (3.12) as well as (3.13) along with (3.6) we see that

sup
u∈Φ−1(]−∞,r[)

Ψ(u)

r
<

Ψ (û)

Φ (û)
and Λc,d ⊆

Φ (û)

Ψ (û)
,

r

sup
u∈Φ−1(]−∞,r[)

Ψ(u)

 .
Consequently, condition (2.10) in Theorem 2.5 is satisfied. We only have to show

that Φ−λΨ satisfies the (PS)
[r]

-condition for all λ ∈ Λr,û. To this end, let (un) ⊆ X
be a sequence such that

(a) (Φ− λΨ) (un) is bounded;
(b) there exists a sequence (εn) ⊂ R+, εn → 0+ such that

(Φ− λΨ)
◦

(un; v) ≥ −εn‖v‖X for all v ∈ X;

(c) Φ(un) < r for all n ∈ N.

From (c) we directly see that (un) is a bounded sequence in X. Therefore, we may
assume that

un ⇀ u in X and un → u in L2([a, b]) (3.14)

because of the compact embedding X ↪→ L2([a, b]). Taking v = u − un in (b), it
gives

Φ′(un)(u− un) + λ (−Ψ)
◦

(un;u− un) ≥ −εn‖u− un‖X . (3.15)

By virtue of Young’s inequality, we obtain

Φ′(un)(u− un)

=

∫ b

a

p(x)u′n(x) (u′(x)− u′n(x)) dx+

∫ b

a

q(x)un(x) (u(x)− un(x)) dx

≤ 1

2

(∫ b

a

[
p(x)|u′n(x)|2 + q(x)|un(x)|2 + p(x)|u′(x)|2 + q(x)|u(x)|2

]
dx

)
− ‖un‖2X

=
1

2
‖un‖2X +

1

2
‖u‖2X − ‖un‖2X =

1

2
‖u‖2X −

1

2
‖un‖2X .

Applying the last inequality to (3.15), one has

−εn‖u− un‖X +
1

2
‖un‖2X ≤

1

2
‖u‖2X + λ (−Ψ)

◦
(un;u− un). (3.16)
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Note that Ψ is well-defined and locally Lipschitz on L2([a, b]). Since
(
−Ψ
∣∣
X

)◦
(u; v) ≤

(−Ψ)
◦ ∣∣
X

(u; v) for all u, v ∈ X (see Chang [9, Proof of Theorem 2.2, p.111], the

upper semicontinuity of (−Ψ)
◦

in the strong topology of L2([a, b])×L2([a, b]) (see,
Clarke [10, Proposition 2.1.1]) implies that

lim sup
n→∞

(−Ψ)
◦

(un;u− un) ≤ 0. (3.17)

Passing to the upper limit and using (3.17), inequality (3.16) becomes

lim sup
n→∞

‖un‖X ≤ ‖u‖X . (3.18)

Since X is uniformly convex and due to (3.14) and (3.18), we have un → u in X

(see, Brezis [8, Proposition III.30]). Hence, the functional Φ−λΨ fulfills the (PS)
[r]

-
condition. Therefore, the assumptions of Theorem 2.5 are satisfied which implies
the existence of a critical point uλ ∈ X of Φ − λΨ. As shown in the beginning of
this proof, we know that a critical point of Φ − λΨ is a weak solution of (3.1) as
well. In addition, Theorem 2.5 implies that uλ ∈ Φ−1(]0, r[) which ensures that uλ
is nontrivial due to the choice of Φ, that is, 0 < ‖uλ‖X <

√
2mc. On the other side

(3.3) gives |uλ(x)| ≤ 1√
2m
‖uλ‖X . This proves the assertion from the theorem. �

Remark 3.2. We observe that Theorem 3.1 and its consequences can be applied
to study problems with a complete Sturm-Liouville equation. To be precise, given
the problem

−(pu′)′ + ru′ + qu = λf(x, u) in ]a, b[,

u(a) = u(b) = 0
(3.19)

where p, r, q ∈ L∞([a, b]) fulfilling essinf [a,b] p > 0 and essinf [a,b] q ≥ 0, we can apply
Theorem 3.1 arguing exactly as in [5, Section 4]. Indeed, called R a primitive of r

p ,

it is enough to observe that the generalized solutions of the problem

−(e−Rpu′)′ + e−Rqu = λe−Rf(x, u) in ]a, b[,

u(a) = u(b) = 0

are generalized solutions of the problem (3.19).

Remark 3.3. Note that if f is independent of x the hypothesis (H1) of Theorem
3.1 becomes

(H1’) there exist two positive constants c, d with d < c such that

F (s) ≥ 0 for all s ∈ [0, d] (3.20)

and

max
|s|≤c

F (s)

c2
<
K

2

F (d)

d2
. (3.21)

The interval is then

Λc,d :=

 2

K

m

b− a
d2

F (d)
,
m

b− a
c2

max
|s|≤c

F (s)

 .
We also mention that if f : R → R is a locally essentially bounded and almost
everywhere continuous function, then it belongs to the class H.
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A direct consequence of Theorem 3.1 is the following result.

Corollary 3.4. Let f : R→ R be a function that is locally essentially bounded and
almost everywhere continuous. Put F (s) :=

∫ s
0
f(t)dt and suppose that (H1’) and

(K2) for each ŝ ∈ Df there exists a neighborhood U of ŝ such that

inf
U
f >

p0K

m2

F (d)

d2
max{‖q‖∞ŝ, q0ŝ};

are satisfied. Then, for each λ ∈ Λc,d, problem (3.1) admits at least one nontrivial
weak solution uλ such that |uλ(x)| < c for all x ∈ [a, b].

Proof. Our aim is to apply Theorem 3.1. Note that f belongs to the class H and
since f is independent of x, hypothesis (H1) of Theorem 3.1 is fulfilled (see Remark
3.3).

In order to prove (H2) of Theorem 3.1, let ŝ > 0. By virtue of hypothesis (K2)
it follows

f (s)− p0K

m2

F (d)

d2
‖q‖∞ŝ ≥ inf

U
f − p0K

m2

F (d)

d2
‖q‖∞ŝ =: h > 0 for all s ∈ U,

which implies

2m

(b− a)K

d2

F (d)
f (s)− ‖q‖∞ŝ ≥ h

2m

(b− a)K

d2

F (d)
for all s ∈ U.

Therefore,

λf (s)− q(x)ŝ ≥ h 2m

(b− a)K

d2

F (d)
for all λ >

2m

(b− a)K

d2

F (d)
,

for all s ∈ U , and for a.a. x ∈ [a, b]. This gives

λf− (ŝ)− q(x)ŝ > 0 for a.a. x ∈ [a, b] and for all λ >
2m

(b− a)K

d2

F (d)
.

The same can be done assuming ŝ ≤ 0 by arguing with q0 instead of ‖q‖∞. Hence,
(H2) of Theorem 3.1 is fulfilled which implies the existence of a nontrivial weak
solution uλ of (3.1) having the required properties. �

Based on the strong maximum principle, we have the following special case of
our result.

Corollary 3.5. If f : R → R is locally essentially bounded, almost everywhere
continuous and nonnegative, satisfying

(K1) lim
s→0+

f(s)

s
= +∞,

and
(K2’) for all s ∈ Df such that f−(s) = 0 one has f(s) = 0.

Then, for each c > 0, there exists λ∗c = c2

F (c) such that, for each λ ∈]0, λ∗c [, problem

(1.2) admits at least one positive weak solution uλ such that |uλ(x)| < c for all
x ∈ [a, b].
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Proof. Owing to (K1), we see that we can find δ > 0 such that f(t) > 0 for all

t ∈]0, δ[. Thus, c2

F (c) > 0 for all c ∈]0, δ[ and λ∗c > 0. Fixing λ ∈ ]0, λ∗c [ implies the

existence of c ∈]0, δ[ such that

1

λ
>
F (c)

c2
. (3.22)

On the other hand, thanks again to (K1), we have

lim
s→0+

F (s)

s2
= +∞.

Then we find a number d > 0 such that d < c and

K

2

F (d)

d2
>

1

λ
. (3.23)

Combining (3.22) and (3.23) yields

F (c)

c2
<
K

2

F (d)

d2

with d < c. Hence, taking the nonnegativity of f into account, assumption (H1’) is
satisfied (see Remark 3.3). Moreover, as a simple computation shows, (K2’) implies
(H2).

As the assumptions of Theorem 3.1 are satisfied, we obtain the existence of a
nontrivial weak solution uλ of (1.2) satisfying |uλ(x)| < c for all x ∈ [a, b]. Taking

v = u− = max(−u, 0) ∈ W 1,2
0 ([a, b]) as test function in the weak formulation of

(3.1) gives u ≥ 0 since f is positive on R. Moreover, we have

u′′(x)− [−λf(u(x))] = 0 in ]a, b[. (3.24)

Owing to (3.24) and due to the nonnegativity of f we see that the assumptions of
Pucci-Serrin [20, Theorem 11.1] are satisfied. This gives u ≡ 0 in ]a, b[ or u > 0 in
]a, b[. Since u is nontrivial it cannot be identically zero. Hence, u > 0 in ]a, b[. �

Remark 3.6. Theorem 1.1 is a special case of Corollary 3.5. Indeed, since infR f >
0, there holds

f(s)

s
≥ infs∈R f(s)

s
→ +∞ as s→ 0+.

Therefore, (K1) is satisfied. Finally, because of infR f > 0 it is easy to see that
(K2’) is fulfilled as well.

Let us give some examples of functions satisfying the assumptions of Corollary
3.5.

Example 3.7. Let f : R→ R be given by

f(x) =

{
1 if x ∈ C,
2 if x 6∈ C,

where C is the Cantor set. One easily verifies that f is continuous in every x 6∈ C
and since the Lebesgue measure of C is zero we conclude that f is almost everywhere
continuous. Of course, Corollary 3.5 is satisfied. We note that in this case the set
of discontinuity points of f is uncountable.
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Example 3.8. Given f : R→ R defined by

f(x) =

{
|x| 12 if x < 1,

ex if x ≥ 1,

it is easy to see that the hypotheses of Corollary 3.5 are fulfilled.

Acknowledgements

The first two authors have been partially supported by the Gruppo Nazionale per
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