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Abstract. In this paper we study quasilinear elliptic equations driven by the double phase
operator along with a reaction that has a singular and a parametric superlinear term and with

a nonlinear Neumann boundary condition of critical growth. Based on a new equivalent norm

for Musielak-Orlicz Sobolev spaces and the Nehari manifold along with the fibering method
we prove the existence of at least two weak solutions provided the parameter is sufficiently

small.

1. Introduction

Given a bounded domain Ω ⊂ RN , N ≥ 2, with Lipschitz boundary ∂Ω, we study the
following singular double phase problem with critical growth on the boundary

−div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
+ α(x)up−1 = ζ(x)u−κ + λuq1−1 in Ω,(

|∇u|p−2∇u+ µ(x)|∇u|q−2∇u
)
· ν = −β(x)up∗−1 on ∂Ω,

(1.1)

where λ > 0 and ν(x) is the outer unit normal of Ω at the point x ∈ ∂Ω. The operator involved
is the so-called double phase operator given by

div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
for u ∈W 1,H(Ω),

which is related to the energy functional

ω 7→
∫

Ω

(
|∇ω|p + µ(x)|∇ω|q

)
dx. (1.2)

Functionals of type (1.2) have first been studied by Zhikov [42] in order to provide models
for strongly anisotropic materials. The main characteristic of the functional defined in (1.2)
is the change of ellipticity on the set where the weight function is zero, that is, on the set
{x ∈ Ω : µ(x) = 0}. To be more precise, the energy density of (1.2) exhibits ellipticity in the
gradient of order q on the points x where µ(x) is positive and of order p on the points x where
µ(x) vanishes. Further results on regularity of minimizers of (1.2) can be found in the papers of
Baroni-Colombo-Mingione [2, 3], Colombo-Mingione [6, 7], De Filippis-Mingione [9], Marcellini
[25, 26] and Ragusa-Tachikawa [36].

We suppose the following assumptions:

(H): (i) 1 < p < N , p < q < p∗ and 0 ≤ µ(·) ∈ L∞(Ω);
(ii) 0 < κ < 1 and q1 ∈ (max{q, p∗}, p∗), where

p∗ =
Np

N − p
and p∗ =

(N − 1)p

N − p
(1.3)

are the critical exponents to p;
(iii) α ∈ L∞(Ω) with α(x) ≥ 0 for a. a.x ∈ Ω and α 6≡ 0;
(iv) β ∈ L∞(∂Ω) with β(x) ≥ 0 for a. a.x ∈ ∂Ω;
(v) ζ ∈ L∞(Ω) and ζ(x) > 0 for a. a.x ∈ Ω.
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We call a function u ∈ W 1,H(Ω) a weak solution of problem (1.1) if ζ(·)u−κh ∈ L1(Ω),
u(x) > 0 for a. a.x ∈ Ω and∫

Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇hdx

+

∫
Ω

α(x)up−1hdx+

∫
∂Ω

β(x)up∗−1hdσ

=

∫
Ω

ζ(x)u−κhdx+ λ

∫
Ω

uq1−1hdx

(1.4)

is satisfied for all test functions h ∈W 1,H(Ω). Based on (H) it is easy to see that the definition
of a weak solution in (1.4) is well-defined. Denoting by Θλ : W 1,H(Ω)→ R the energy functional
corresponding to problem (1.1), the main result in this paper is the following theorem.

Theorem 1.1. If hypotheses (H) hold, then there exists λ∗ > 0 such that for all λ ∈ (0, λ∗]
problem (1.1) has at least two weak solutions uλ, vλ ∈W 1,H(Ω) such that Θλ(uλ) < 0 < Θλ(vλ).

The proof of Theorem 1.1 relies on the properties of the Nehari manifold along with a new
equivalent norm in the corresponding Musielak-Orlicz Sobolev space W 1,H(Ω). In contrast to
other works dealing with double phase problems we were able to weaken the usual condition

q

p
< 1 +

1

N
. (1.5)

Such assumption is standard for Dirichlet double phase problems in order to have the equivalent

norm ‖∇ · ‖H in W 1,H
0 (Ω). It also guarantees the density of smooth functions in W 1,H(Ω).

Condition (1.5) can be replaced in our paper by q < p∗ which is equivalent to Nq
N+q < p. Note

that such condition is indeed weaker than (1.5). Furthermore, we can relax the assumptions on
the weight function µ(·). Instead of a Lipschitz condition we only need µ(·) to be bounded, not
necessarily continuous.

Based on the new equivalent norm in W 1,H(Ω) we were able to suppose critical growth on the
boundary of Ω. To the best of our knowledge there is only one paper concerning singular double
phase problems with nonlinear boundary condition, namely the paper of Farkas-Fiscella-Winkert
[14] who studied the problem

−div(A(u)) + up−1 + µ(x)uq−1 = up
∗−1 + λ

(
uγ−1 + g1(x, u)

)
in Ω,

A(u) · ν = up∗−1 + g2(x, u) on ∂Ω,
(1.6)

where

div(A(u)) := div
(
F p−1(∇u)∇F (∇u) + µ(x)F q−1(∇u)∇F (∇u)

)
is the Finsler double phase operator with a Minkowski space (RN , F ). They obtain the existence
of one weak solution of (1.6) by applying variational tools and truncation techniques. The
treatment is completely different from ours and only one solution is obtained. Also in the
case of nonsingular Neumann double phase problems there are only few works. We refer to El
Manouni-Marino-Winkert [11], Gasiński-Winkert [18], Papageorgiou-Rădulescu-Repovš [29] and
Papageorgiou-Vetro-Vetro [31]. In [18] the authors study the problem

− div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
= f(x, u)− |u|p−2u− µ(x)|u|q−2u in Ω,(

|∇u|p−2∇u+ µ(x)|∇u|q−2∇u
)
· ν = g(x, u) on ∂Ω.

(1.7)

Based on the Nehari manifold method it is shown that problem (1.7) has at least three nontrivial
solutions. We point out that the use of the Nehari manifold in [18] is different from ours. Indeed
the idea in the current paper is the splitting of the Nehari manifold into three disjoint parts and
the two solutions in Theorem 1.1 turn out to be the global minimizers of Θλ restricted to two
of them provided the parameter is sufficiently small. The third one is the empty set.
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In general, the use of the fibering method along with the Nehari manifold is a very powerful
tool and was initiated by the works of Drábek-Pohozaev [10] and Sun-Wu-Long [37]. Afterwards
several authors applied this method to different problems of singular and nonsingular type. We
refer to the works of Alves-Santos-Silva [1], Lei [21], Liu-Dai-Papageorgiou-Winkert [23], Liu-
Winkert [24], Mukherjee-Sreenadh [28], Papageorgiou-Repovš-Vetro [30], Papageorgiou-Winkert
[33], Wang-Zhao-Zhao [38] and Yang-Bai [39].

For existence results for double phase problems with homogeneous Dirichlet boundary con-
dition we refer to the papers of Colasuonno-Squassina [5] (eigenvalue problem for the double
phase operator), Farkas-Winkert [13] (Finsler double phase problems), Gasiński-Papageorgiou
[15] (locally Lipschitz right-hand side), Gasiński-Winkert [16, 17] (convection and superlinear
problems), Liu-Dai [22] (Nehari manifold approach), Perera-Squassina [35] (Morse theoretical
approach), Zeng-Bai-Gasiński-Winkert [40, 41] (multivalued obstacle problems) and the refer-
ences therein. Finally, we mention the nice overview article of Mingione-Rădulescu [27] about
recent developments for problems with nonstandard growth and nonuniform ellipticity.

2. Preliminaries

In this section we will present the main properties of Musielak-Orlicz spaces LH(Ω) and
W 1,H(Ω), respectively and equip the space W 1,H(Ω) with a new equivalent norm.

The usual Lebesgue spaces Lr(Ω) and Lr(Ω;RN ) will be endowed with the norm ‖ · ‖r and
the boundary Lebesgue spaces are denoted by Lr(∂Ω) with norm ‖ · ‖r,∂Ω whenever 1 ≤ r ≤ ∞.
The corresponding Sobolev spaces are denoted by W 1,r(Ω) for 1 < r < ∞ with the equivalent
norm

‖u‖1,r =

(
‖∇u‖rr +

∫
Ω

α(x)|u|r dx

) 1
r

,

where α fulfills hypothesis (H)(iii). The proof for such result is similar to those proofs as in
Papageorgiou-Winkert [34, Proposition 2.8], [32, Proposition 4.5.34].

Let hypothesis (H)(i) be satisfied and let H : Ω× [0,∞)→ [0,∞) be defined by

H(x, t) = tp + µ(x)tq.

Let M(Ω) be the space of all measurable functions u : Ω → R. As usual, we identify two such
functions which differ on a Lebesgue-null set. Then, the Musielak-Orlicz Lebesgue space LH(Ω)
is given by

LH(Ω) = {u ∈M(Ω) : %H(u) < +∞}
equipped with the Luxemburg norm

‖u‖H = inf
{
τ > 0 : %H

(u
τ

)
≤ 1
}
,

where the modular function is given by

%H(u) :=

∫
Ω

H(x, |u|) dx =

∫
Ω

(
|u|p + µ(x)|u|q

)
dx.

In addition, we define the seminormed space

Lqµ(Ω) =

{
u ∈M(Ω) :

∫
Ω

µ(x)|u|q dx < +∞
}

endowed with the seminorm

‖u‖q,µ =

(∫
Ω

µ(x)|u|q dx

) 1
q

.

The Musielak-Orlicz Sobolev space W 1,H(Ω) is defined by

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
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equipped with the norm

‖u‖1,H = ‖∇u‖H + ‖u‖H,

where ‖∇u‖H = ‖ |∇u| ‖H. We know that LH(Ω) and W 1,H(Ω) are uniformly convex and so
reflexive Banach spaces, see Colasuonno-Squassina [5, Proposition 2.14] or Harjulehto-Hästö [19,
Theorem 6.1.4].

The following proposition states the main embeddings for the spaces LH(Ω) and W 1,H(Ω),
see Gasiński-Winkert [18, Proposition 2.2] or Crespo-Blanco-Gasiński-Harjulehto-Winkert [8,
Propositions 2.17 and 2.19]

Proposition 2.1. Let (H)(i) be satisfied and let p∗ as well as p∗ be the critical exponents to p
as given in (1.3). Then the following embeddings hold:

(i) LH(Ω) ↪→ Lr(Ω) and W 1,H(Ω) ↪→W 1,r(Ω) are continuous for all r ∈ [1, p];
(ii) W 1,H(Ω) ↪→ Lr(Ω) is continuous for all r ∈ [1, p∗] and compact for all r ∈ [1, p∗);

(iii) W 1,H(Ω) ↪→ Lr(∂Ω) is continuous for all r ∈ [1, p∗] and compact for all r ∈ [1, p∗);
(iv) LH(Ω) ↪→ Lqµ(Ω) is continuous;

(v) Lq(Ω) ↪→ LH(Ω) is continuous.

Furthermore, we introduce the seminormed space

W q
µ(Ω;RN ) =

{
u ∈ Lqµ(Ω) :

∫
Ω

µ(x)|∇u|q dx < +∞
}

endowed with the seminorm

‖∇u‖q,µ =

(∫
Ω

µ(x)|∇u|q dx

) 1
q

,

see Proposition 2.1(iv).
Next we prove the existence of two equivalent norms in W 1,H(Ω) which will be useful in our

treatment. In the following we use the seminorms

‖u‖r1,θ1 =

(∫
Ω

θ1(x)|u|r1 dx

) 1
r1

and ‖u‖r2,θ2,∂Ω =

(∫
∂Ω

θ2(x)|u|r2 dσ

) 1
r2

,

where we suppose

(H’): (i) 1 < p < N , p < q < p∗ and 0 ≤ µ(·) ∈ L∞(Ω);
(ii) 1 ≤ r1 ≤ p∗ and 1 ≤ r2 ≤ p∗;

(iii) θ1 ∈ L∞(Ω), θ1(x) ≥ 0 for a. a.x ∈ Ω;
(iv) θ2 ∈ L∞(∂Ω), θ2(x) ≥ 0 for a. a.x ∈ ∂Ω;
(v) θ1 6≡ 0 or θ2 6≡ 0.

Proposition 2.2. If hypotheses (H’) hold, then

‖u‖◦1,H = ‖∇u‖H + ‖u‖r1,θ1 + ‖u‖r2,θ2,∂Ω

‖u‖∗1,H = inf

{
τ > 0 :

∫
Ω

((
|∇u|
τ

)p
+ µ(x)

(
|∇u|
τ

)q)
dx+

∫
Ω

θ1(x)

(
|u|
τ

)r1
dx

+

∫
∂Ω

θ2(x)

(
|u|
τ

)r2
dσ ≤ 1

}
,

are both equivalent norms on W 1,H(Ω).

Proof. We prove the result in the critical case, that is, r1 = p∗ and r2 = p∗, the other cases work
similarly. First, it is straightforward to show that ‖ · ‖◦1,H and ‖ · ‖∗1,H are norms on W 1,H(Ω).

Applying Proposition 2.1(ii), (iii) gives for u ∈W 1,H(Ω)

‖u‖◦1,H ≤ ‖∇u‖H + ‖θ1‖
1
p∗
∞ ‖u‖p∗ + ‖θ2‖

1
p∗∞ ‖u‖p∗,∂Ω
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≤ ‖∇u‖H + CΩ‖θ1‖
1
p∗
∞ ‖u‖1,H + C∂Ω‖θ2‖

1
p∗∞ ‖u‖1,H

≤ C1‖u‖1,H,

where CΩ, C∂Ω > 0 are the embedding constants and C1 > 0.
Let us now show that

‖u‖H ≤ c‖u‖◦1,H (2.1)

for some c > 0. Arguing indirectly, we suppose that (2.1) is not true. Then there exists a
sequence {un}n∈N ⊂W 1,H(Ω) such that

‖un‖H > n‖un‖◦1,H for all n ∈ N. (2.2)

We set yn = un
‖un‖H which gives ‖yn‖H = 1. From (2.2) we then obtain

1

n
> ‖yn‖◦1,H. (2.3)

Since ‖∇ · ‖H + ‖ · ‖H is the norm of W 1,H(Ω), we see that {yn}n∈N ⊂ W 1,H(Ω) is bounded.
Hence, we may assume that

yn ⇀ y in W 1,H(Ω) and yn ⇀ y in Lp
∗
(Ω) and Lp∗(∂Ω), (2.4)

see Proposition 2.1(ii), (iii). Moreover, from (H’)(i) we know that q < p∗. So from Proposition
2.1(ii), (v) we have W 1,H(Ω) ↪→ Lq(Ω) compactly and Lq(Ω) ↪→ LH(Ω) continuously. Therefore
yn → y in LH(Ω) and since ‖yn‖H = 1 it is clear that y 6= 0. Passing to the limit in (2.3) as
n → ∞ and using (2.4) along with the weak lower semicontinuity of the norm ‖∇ · ‖H and of
the seminorms ‖ · ‖p∗,θ1 , ‖ · ‖p∗,θ2,∂Ω leads to

0 ≥ ‖∇y‖H + ‖y‖p∗,θ1 + ‖y‖p∗,θ2,∂Ω. (2.5)

From (2.5) we conclude that y ≡ τ 6= 0 is a constant and so we have

0 ≥ |τ |
1
p∗

(∫
Ω

θ1(x) dx

) 1
p∗

+ |τ |
1
p∗

(∫
∂Ω

θ2(x) dσ

) 1
p∗

> 0

since θ1 6≡ 0 or θ2 6≡ 0 by hypothesis (H’)(v). This is a contradiction and so (2.1) is true. From
this we directly have that

‖u‖1,H ≤ C2‖u‖◦1,H

for some C2 > 0.
Let us now prove that ‖ · ‖◦1,H and ‖ · ‖∗1,H are equivalent. For u ∈W 1,H(Ω) we have

∫
Ω

((
|∇u|
‖u‖◦1,H

)p
+ µ(x)

(
|∇u|
‖u‖◦1,H

)q)
dx+

∫
Ω

θ1(x)

(
|u|
‖u‖◦1,H

)p∗
dx

+

∫
∂Ω

θ2(x)

(
|u|
‖u‖◦1,H

)p∗
dσ

≤ %H
(
∇u
‖∇u‖H

)
+

∫
Ω

θ1(x)

(
|u|

‖u‖p∗,θ1

)p∗
dx+

∫
∂Ω

θ2(x)

(
|u|

‖u‖p∗,θ2,∂Ω

)p∗
dσ

= 3.
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Therefore, ‖u‖∗1,H ≤ 3‖u‖◦1,H. Similarly, we obtain∫
Ω

((
|∇u|
‖u‖∗1,H

)p
+ µ(x)

(
|∇u|
‖u‖∗1,H

)q)
dx+

∫
Ω

θ1(x)

(
|u|
‖u‖∗1,H

)p∗
dx

+

∫
∂Ω

θ2(x)

(
|u|
‖u‖∗1,H

)p∗
dσ

≤ ρ∗1,H

(
u

‖u‖∗1,H

)
,

(2.6)

where ρ∗1,H is the corresponding modular to ‖ · ‖∗1,H given by

ρ∗1,H(u) =

∫
Ω

(|∇u|p + µ(x)|∇u|q) dx+

∫
Ω

θ1(x)|u|p
∗

dx+

∫
∂Ω

θ2(x)|u|p∗ dσ.

Note that, for u ∈ W 1,H(Ω), the function τ 7→ ρ∗1,H(τu) is continuous, convex and even and it

is strictly increasing when τ ∈ [0,+∞). So, by definition, we directly obtain

‖u‖∗1,H = τ if and only if ρ∗1,H

(u
τ

)
= 1.

From this and (2.6) we conclude that ‖∇u‖H ≤ ‖u‖∗1,H, ‖u‖p∗,θ1 ≤ ‖u‖∗1,H and ‖u‖r2,θ2,∂Ω ≤
‖u‖∗1,H. Therefore, 1

3‖u‖
◦
1,H ≤ ‖u‖∗1,H. �

Assuming hypotheses (H) we know from Proposition 2.2 that

‖u‖ = inf

{
τ > 0 :

∫
Ω

((
|∇u|
τ

)p
+ µ(x)

(
|∇u|
τ

)q)
dx+

∫
Ω

α(x)

(
|u|
τ

)p
dx

+

∫
∂Ω

β(x)

(
|u|
τ

)p∗
dσ ≤ 1

}
is a norm on W 1,H(Ω) which is equivalent to ‖ · ‖1,H and ‖ · ‖◦1,H. The corresponding modular

ρ to ‖ · ‖ is given by

ρ(u) =

∫
Ω

(|∇u|p + µ(x)|∇u|q) dx+

∫
Ω

α(x)|u|p dx+

∫
∂Ω

β(x)|u|p∗ dσ (2.7)

for u ∈W 1,H(Ω).
The norm ‖ · ‖ and the modular function ρ are related as follows.

Proposition 2.3. Let (H)(i), (iii) and (iv) be satisfied, let y ∈ W 1,H(Ω) and let ρ be defined
by (2.7). Then the following hold:

(i) If y 6= 0, then ‖y‖ = λ if and only if ρ( yλ ) = 1;
(ii) ‖y‖ < 1 (resp.> 1, = 1) if and only if ρ(y) < 1 (resp.> 1, = 1);

(iii) If ‖y‖ < 1, then ‖y‖q ≤ ρ(y) ≤ ‖y‖p;
(iv) If ‖y‖ > 1, then ‖y‖p ≤ ρ(y) ≤ ‖y‖q;
(v) ‖y‖ → 0 if and only if ρ(y)→ 0;

(vi) ‖y‖ → +∞ if and only if ρ(y)→ +∞.

The proof of Proposition 2.3 can be done as in Liu-Dai [22, Proposition 2.1] or Crespo-Blanco-
Gasiński-Harjulehto-Winkert [8, Proposition 2.16].

Let A : W 1,H(Ω)→W 1,H(Ω)∗ be the nonlinear mapping defined by

〈A(u), ϕ〉H =

∫
Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇ϕdx

+

∫
Ω

α(x)|u|p−2uϕdx+

∫
∂Ω

β(x)|u|p∗−2uϕdσ

(2.8)
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for all u, ϕ ∈ W 1,H(Ω) with 〈 · , · 〉H being the duality pairing between W 1,H(Ω) and its dual
space W 1,H(Ω)∗. The properties of the operator A : W 1,H(Ω) → W 1,H(Ω)∗ are summarized in
the next proposition.

Proposition 2.4. Let hypotheses (H)(i), (iii) and (iv) be satisfied. Then, the operator A de-
fined by (2.8) is bounded (that is, it maps bounded sets into bounded sets), continuous, strictly
monotone (hence maximal monotone) and it is of type (S+).

The proof of Proposition 2.4 is similar to those in Liu-Dai [22, Proposition 3.1] or Crespo-
Blanco-Gasiński-Harjulehto-Winkert [8, Proposition 3.5].

3. Proof of the main result

This section is concerned with the proof of Theorem 1.1. For this purpose, we introduce the
energy functional Θλ : W 1,H(Ω)→ R of problem (1.1) given by

Θλ(u) =
1

p
‖u‖p1,p +

1

q
‖∇u‖qq,µ +

1

p∗
‖u‖p∗p∗,β,∂Ω −

1

1− κ

∫
Ω

ζ(x)|u|1−κ dx− λ

q1
‖u‖q1q1 .

It is clear that Θλ is not a C1-functional because of the singular term. Next, for u ∈W 1,H(Ω),
we introduce the fibering function ψu : [0,+∞)→ R given by

ψu(t) = Θλ(tu) for all t ≥ 0.

It is easy to see that ψu ∈ C∞((0,∞)). Based on this, we can introduce the so-called Nehari
manifold related to problem (1.1) which is defined by

Nλ =

{
u ∈W 1,H(Ω) \ {0} : ‖u‖p1,p + ‖∇u‖qq,µ + ‖u‖p∗p∗,β,∂Ω =

∫
Ω

ζ(x)|u|1−κ dx+ λ‖u‖q1q1

}
=
{
u ∈W 1,H(Ω) \ {0} : ψ′u(1) = 0

}
.

We know that Nλ contains all weak solutions of problem (1.1) but it is smaller than the whole
space W 1,H(Ω). The advantage of Nλ is the fact that our energy functional Θλ has nice prop-
erties restricted to Nλ which fail globally. Next, we split the manifold Nλ into three disjoint
parts in the following way:

N+
λ =

{
u ∈ Nλ : (p+ κ− 1)‖u‖p1,p + (q + κ− 1)‖∇u‖qq,µ + (p∗ + κ− 1)‖u‖p∗p∗,β,∂Ω

−λ(q1 + κ− 1)‖u‖q1q1 > 0
}

= {u ∈ Nλ : ψ′′u(1) > 0} ,

N ◦λ =
{
u ∈ Nλ : (p+ κ− 1)‖u‖p1,p + (q + κ− 1)‖∇u‖qq,µ + (p∗ + κ− 1)‖u‖p∗p∗,β,∂Ω

= λ(q1 + κ− 1)‖u‖q1q1
}

= {u ∈ Nλ : ψ′′u(1) = 0} ,

N−λ =
{
u ∈ Nλ : (p+ κ− 1)‖u‖p1,p + (q + κ− 1)‖∇u‖qq,µ + (p∗ + κ− 1)‖u‖p∗p∗,β,∂Ω

−λ(q1 + κ− 1)‖u‖q1q1 < 0
}

= {u ∈ Nλ : ψ′′u(1) < 0} .

In general, the energy functional Θλ is not coercive on W 1,H(Ω), but it is on the manifold
Nλ as stated in the next proposition.

Proposition 3.1. If hypotheses (H) hold, then Θλ

∣∣
Nλ

is coercive.

Proof. Let u ∈ Nλ be such that ‖u‖ > 1. By the definition of Nλ we have

− λ
q1
‖u‖q1q1 = − 1

q1
‖u‖p1,p −

1

q1
‖∇u‖qq,µ −

1

q1
‖u‖p∗p∗,β,∂Ω +

1

q1

∫
Ω

ζ(x)|u|1−κ dx. (3.1)
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Applying (3.1), Proposition 2.3(iv) and Theorem 13.17 of Hewitt-Stromberg [20, p. 196] we
obtain

Θλ(u) =

[
1

p
− 1

q1

]
‖u‖p1,p +

[
1

q
− 1

q1

]
‖∇u‖qq,µ +

[
1

p∗
− 1

q1

]
‖u‖p∗p∗,β,∂Ω

+

[
1

q1
− 1

1− κ

] ∫
Ω

ζ(x)|u|1−κ dx

≥ c1ρ(u) +

[
1

q1
− 1

1− κ

] ∫
Ω

ζ(x)|u|1−κ dx

≥ c1‖u‖p − c2‖u‖1−κ

(3.2)

since p < q < q1 and p∗ < q1 by hypothesis (H)(ii) and for some positive constants c1, c2. Thus,
the coercivity of Θλ on Nλ follows from (3.2) as 1− κ < 1 < p. �

Now we are going to prove that the global minimum of Θλ on N+
λ is negative provided

N+
λ 6= ∅. The nonemptiness of N+

λ will be proved later in Proposition 3.4. To this end, let

m+
λ = infN+

λ
Θλ.

Proposition 3.2. If hypotheses (H) hold and if N+
λ 6= ∅, then Θλ

∣∣
N+
λ

< 0. In particular,

m+
λ < 0.

Proof. Let u ∈ N+
λ 6= ∅. By the definition of N+

λ we get

λ‖u‖q1q1 <
p+ κ− 1

q1 + κ− 1
‖u‖p1,p +

q + κ− 1

q1 + κ− 1
‖∇u‖qq,µ +

p∗ + κ− 1

q1 + κ− 1
‖u‖p∗p∗,β,∂Ω. (3.3)

Since N+
λ ⊂ Nλ we have by the definition of Nλ

− 1

1− κ

∫
Ω

ζ(x)|u|1−κ dx = − 1

1− κ

(
‖u‖p1,p + ‖∇u‖qq,µ + ‖u‖p∗p∗,β,∂Ω

)
+

λ

1− κ
‖u‖q1q1 . (3.4)

Applying (3.4) and (3.3) leads to

Θλ(u) =
1

p
‖u‖p1,p +

1

q
‖∇u‖qq,µ +

1

p∗
‖u‖p∗p∗,β,∂Ω −

1

1− κ

∫
Ω

ζ(x)|u|1−κ dx− λ

q1
‖u‖q1q1

=

[
1

p
− 1

1− κ

]
‖u‖p1,p +

[
1

q
− 1

1− κ

]
‖∇u‖qq,µ +

[
1

p∗
− 1

1− κ

]
‖u‖p∗p∗,β,∂Ω

+ λ

[
1

1− κ
− 1

q1

]
‖u‖q1q1

≤
[
−(p+ κ− 1)

p(1− κ)
+

p+ κ− 1

q1 + κ− 1
· q1 + κ− 1

q1(1− κ)

]
‖u‖p1,p

+

[
−(q + κ− 1)

q(1− κ)
+

q + κ− 1

q1 + κ− 1
· q1 + κ− 1

q1(1− κ)

]
‖∇u‖qq,µ

+

[
−(p∗ + κ− 1)

p∗(1− κ)
+
p∗ + κ− 1

q1 + κ− 1
· q1 + κ− 1

q1(1− κ)

]
‖u‖p∗p∗,β,∂Ω

=
p+ κ− 1

1− κ

[
1

q1
− 1

p

]
‖u‖p1,p +

q + κ− 1

1− κ

[
1

q1
− 1

q

]
‖∇u‖qq,µ

+
p∗ + κ− 1

1− κ

[
1

q1
− 1

p∗

]
‖u‖p∗p∗,β,∂Ω

< 0,

since p < q < q1 and p∗ < q1, see hypotheses (H)(i) and (ii). This shows that Θλ

∣∣
N+
λ

< 0 and

so m+
λ < 0. �
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The next proposition shows that N ◦λ is empty provided the parameter λ > 0 is sufficiently
small.

Proposition 3.3. If hypotheses (H) hold, then there exists λ̂ > 0 such that N ◦λ = ∅ for all

λ ∈ (0, λ̂).

Proof. We argue indirectly and assume that for every λ̂ > 0 we can find λ ∈ (0, λ̂) such that
N ◦λ 6= ∅. This means that for such λ > 0 there exists u ∈ N ◦λ such that

(p+ κ− 1)‖u‖p1,p + (q + κ− 1)‖∇u‖qq,µ + (p∗ + κ− 1)‖u‖p∗p∗,β,∂Ω = λ(q1 + κ− 1)‖u‖q1q1 . (3.5)

We know that N ◦λ ⊂ Nλ and so u ∈ Nλ, that is,

(q1 + κ− 1)‖u‖p1,p + (q1 + κ− 1)‖∇u‖qq,µ + (q1 + κ− 1)‖u‖p∗p∗,β,∂Ω

= (q1 + κ− 1)

∫
Ω

ζ(x)|u|1−κ dx+ λ(q1 + κ− 1)‖u‖q1q1 .
(3.6)

Subtracting (3.5) from (3.6) we obtain

(q1 − p)‖u‖p1,p + (q1 − q)‖∇u‖qq,µ + (q1 − p∗)‖u‖p∗p∗,β,∂Ω = (q1 + κ− 1)

∫
Ω

ζ(x)|u|1−κ dx. (3.7)

Since 0 < 1 − κ < 1 < p < q < q1 and p∗ < q1 we can use Proposition 2.3(iii), (iv) to the left-
hand side of (3.7) and Theorem 13.17 of Hewitt-Stromberg [20, p. 196] along with Proposition
2.1(ii) to the right-hand side of (3.7) in order to get

min {‖u‖p, ‖u‖q} ≤ c3‖u‖1−κ

for some constant c3 > 0. As 0 < 1− κ < 1 < p < q this implies

‖u‖ ≤ c4 (3.8)

for some c4 > 0. However, from equation (3.5) we deduce

min {‖u‖p, ‖u‖q} ≤ λc5‖u‖q1 (3.9)

for some c5 > 0 where we have used Propositions 2.3(iii), (iv) and 2.1(ii) . From (3.9) we then
conclude that

‖u‖ ≥
(

1

λc5

) 1
q1−p

or ‖u‖ ≥
(

1

λc5

) 1
q1−q

.

Letting λ → 0+, it follows ‖u‖ → +∞ since p < q < q1 contradicting (3.8). This proves the

emptiness of N ◦λ for all λ ∈ (0, λ̂). �

Next we are going to prove the nonemptiness of the sets N±λ for small values of the parameter
λ > 0 and we will show that the functional Θλ achieves its global minimum restricted to the set
N+
λ .

Proposition 3.4. If hypotheses (H) hold, then there exists λ̃ ∈ (0, λ̂] such that N±λ 6= ∅ for

all λ ∈ (0, λ̃) and for any λ ∈ (0, λ̃) there exists uλ ∈ N+
λ such that Θλ(uλ) = m+

λ < 0 and
uλ(x) ≥ 0 for a. a.x ∈ Ω.

Proof. Let u ∈W 1,H(Ω) be such that u 6≡ 0. We consider the function η̃u : (0,+∞)→ R defined
by

η̃u(t) = tp−q1‖u‖p1,p − t−q1−κ+1

∫
Ω

ζ(x)|u|1−κ dx. (3.10)

Recall that q1 − p < q1 + κ− 1. Hence, there exists a unique t̃◦u > 0 such that

η̃u
(
t̃◦u
)

= max
t>0

η̃u(t).
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This means

(p− q1)
(
t̃◦u
)p−q1−1 ‖u‖p1,p + (q1 + κ− 1)

(
t̃◦u
)−q1−κ ∫

Ω

ζ(x)|u|1−κ dx = 0

and so

t̃◦u =

 (q1 + κ− 1)

∫
Ω

ζ(x)|u|1−κ dx

(q1 − p)‖u‖p1,p


1

p+κ−1

. (3.11)

Using (3.11) into the definition of η̃u in (3.10) gives

η̃u
(
t̃◦u
)

=

[
(q1 − p)‖u‖p1,p

] q1−p
p+κ−1

[
(q1 + κ− 1)

∫
Ω

ζ(x)|u|1−κ dx

] q1−p
p+κ−1

‖u‖p1,p

−

[
(q1 − p)‖u‖p1,p

] q1+κ−1
p+κ−1

[
(q1 + κ− 1)

∫
Ω

ζ(x)|u|1−κ dx

] q1+κ−1
p+κ−1

∫
Ω

ζ(x)|u|1−κ dx

=
(q1 − p)

q1−p
p+κ−1 ‖u‖

p(q1+κ−1)
p+κ−1

1,p

(q1 + κ− 1)
q1−p
p+κ−1

[∫
Ω

ζ(x)|u|1−κ dx

] q1−p
p+κ−1

−
(q1 − p)

q1+κ−1
p+κ−1 ‖u‖

p(q1+κ−1)
p+κ−1

1,p

(q1 + κ− 1)
q1+κ−1
p+κ−1

[∫
Ω

ζ(x)|u|1−κ dx

] q1−p
p+κ−1

=
p+ κ− 1

q1 − p

[
q1 − p

q1 + κ− 1

] q1+κ−1
p+κ−1 ‖u‖

p(q1+κ−1)
p+κ−1

1,p[∫
Ω

ζ(x)|u|1−κ dx

] q1−p
p+κ−1

.

(3.12)

Applying Theorem 13.17 of Hewitt-Stromberg [20, p. 196] we have

∫
Ω

ζ(x)|u|1−κ dx ≤ c6‖u‖1−κp∗ (3.13)

for some c6 > 0. Furthermore, we denote by S the best constant of the continuous embedding
W 1,p(Ω) ↪→ Lp

∗
(Ω), that is,

S‖u‖pp∗ ≤ ‖u‖
p
1,p. (3.14)
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From (3.12), (3.13) and (3.14) it follows that

η̃u
(
t̃◦u
)
− λ‖u‖q1q1

=
p+ κ− 1

q1 − p

[
q1 − p

q1 + κ− 1

] q1+κ−1
p+κ−1 ‖u‖

p(q1+κ−1)
p+κ−1

1,p[∫
Ω

ζ(x)|u|1−κ dx

] q1−p
p+κ−1

− λ‖u‖q1q1

≥ p+ κ− 1

q1 − p

[
q1 − p

q1 + κ− 1

] q1+κ−1
p+κ−1 S

q1+κ−1
p+κ−1

(
‖u‖pp∗

) q1+κ−1
p+κ−1(

c6‖u‖1−κp∗
) q1−p
p+κ−1

− λc7‖u‖q1p∗

=
[
c8 − λc7

]
‖u‖q1p∗

(3.15)

for some constants c7, c8 > 0. From (3.15) we conclude that there exists λ̃ ∈ (0, λ̂] independent
of u such that

η̃u
(
t̃◦u
)
− λ‖u‖q1q1 > 0 for all λ ∈

(
0, λ̃
)
. (3.16)

Now we introduce the function ηu : (0,+∞)→ R defined by

ηu(t) = tp−q1‖u‖p1,p + tq−q1‖∇u‖qq,µ + tp∗−q1‖u‖p∗p∗,β,∂Ω − t
−q1−κ+1

∫
Ω

ζ(x)|u|1−κ dx.

Note that the equation

0 = η′u(t) = (p− q1)tp−q1−1‖u‖p1,p + (q − q1)tq−q1−1‖∇u‖qq,µ

+ (p∗ − q1)tp∗−q1−1‖u‖p∗p∗,β,∂Ω − (−q1 − κ+ 1)t−q1−κ
∫

Ω

ζ(x)|u|1−κ dx
(3.17)

is equivalent to

(q1 − p)tp+κ−1‖u‖p1,p + (q1 − q)tq+κ−1‖∇u‖qq,µ + (q1 − p∗)tp∗+κ−1‖u‖p∗p∗,β,∂Ω

= (q1 + κ− 1)

∫
Ω

ζ(x)|u|1−κ dx.
(3.18)

Since 0 < q1− q < q1− p < q1 +κ− 1, 0 < q1− p∗, 0 < p+κ− 1 < q+κ− 1 and 0 < p∗+κ− 1,
we can observe that the left-hand side of (3.18), which we shall denote as ξu(t), fulfills

lim
t→0+

ξu(t) = 0, lim
t→+∞

ξu(t) = +∞ and ξ′u(t) > 0 for all t > 0.

From the two limits and via the intermediate value theorem one can derive that there exists
t◦u > 0 such that (3.18) holds, and from the remaining claim that this value is unique due to the
injectivity of ξu(t). Furthermore, if we consider η′u(t) > 0 (η′u(t) < 0), then (3.18) holds with
a sign < (>), and as ξu(t) is strictly increasing this holds for t < t◦u (t > t◦u). Hence ηu(t) is
strictly increasing in (0, t◦u), strictly decreasing in (t◦u,∞) and

ηu (t◦u) = max
t>0

ηu(t).

It is easy to see that ηu ≥ η̂u. Thus, from (3.16) there exists λ̃ ∈ (0, λ̂] independent of u such
that

ηu (t◦u)− λ‖u‖q1q1 > 0 for all λ ∈
(

0, λ̃
)
.

On the other hand, as 0 < q1 − q < q1 − p < q1 + κ− 1, 0 < q1 − p∗ there holds

lim
t→0+

ηu(t) = −∞ and lim
t→+∞

ηu(t) = 0.

By the intermediate value theorem and the injectivity of ηu(t) in (0, t◦u) and (t◦u,∞), there exist
unique numbers t1u < t◦u < t2u such that

ηu
(
t1u
)

= λ‖u‖q1q1 = ηu
(
t2u
)

and η′u
(
t2u
)
< 0 < η′u

(
t1u
)
. (3.19)
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Recall that the fibering function ψu : [0,+∞)→ R is given by

ψu(t) = Θλ(tu) for all t ≥ 0.

We have

ψ′u
(
t1u
)

=
(
t1u
)p−1 ‖u‖p1,p +

(
t1u
)q−1 ‖∇u‖qq,µ +

(
t1u
)p∗−1 ‖u‖p∗p∗,β,∂Ω

−
(
t1u
)−κ ∫

Ω

ζ(x)|u|1−κ dx− λ
(
t1u
)q1−1 ‖u‖q1q1

and

ψ′′u
(
t1u
)

= (p− 1)
(
t1u
)p−2 ‖u‖p1,p + (q − 1)

(
t1u
)q−2 ‖∇u‖qq,µ

+ (p∗ − 1)
(
t1u
)p∗−2 ‖u‖p∗p∗,β,∂Ω + κ

(
t1u
)−κ−1

∫
Ω

ζ(x)|u|1−κ dx

− λ(q1 − 1)
(
t1u
)q1−2 ‖u‖q1q1 .

(3.20)

The first relation in (3.19) gives(
t1u
)p−q1 ‖u‖p1,p +

(
t1u
)q−q1 ‖∇u‖qq,µ +

(
t1u
)p∗−q1 ‖u‖p∗p∗,β,∂Ω

−
(
t1u
)−q1−κ+1

∫
Ω

ζ(x)|u|1−κ dx = λ‖u‖q1q1 .
(3.21)

Now we multiply (3.21) with κ
(
t1u
)q1−2

and −(q1 − 1)
(
t1u
)q1−2

, respectively. It follows

κ
(
t1u
)p−2 ‖u‖p1,p + κ

(
t1u
)q−2 ‖∇u‖qq,µ + κ

(
t1u
)p∗−2 ‖u‖p∗p∗,β,∂Ω − κλ

(
t1u
)q1−2 ‖u‖q1q1

= κ
(
t1u
)−κ−1

∫
Ω

ζ(x)|u|1−κ dx
(3.22)

and

− (q1 − 1)
(
t1u
)p−2 ‖u‖p1,p − (q1 − 1)

(
t1u
)q−2 ‖∇u‖qq,µ − (q1 − 1)

(
t1u
)p∗−2 ‖u‖p∗p∗,β,∂Ω

+ (q1 − 1)
(
t1u
)−κ−1

∫
Ω

ζ(x)|u|1−κ dx = −λ(q1 − 1)
(
t1u
)q1−2 ‖u‖q1q1 .

(3.23)

Now we use (3.22) in (3.20) which leads to

ψ′′u
(
t1u
)

= (p+ κ− 1)
(
t1u
)p−2 ‖u‖p1,p + (q + κ− 1)

(
t1u
)q−2 ‖∇u‖qq,µ

+ (p∗ + κ− 1)
(
t1u
)p∗−2 ‖u‖p∗p∗,β,∂Ω − λ(q1 + κ− 1)

(
t1u
)q1−2 ‖u‖q1q1

=
(
t1u
)−2

[
(p+ κ− 1)

(
t1u
)p ‖u‖p1,p + (q + κ− 1)

(
t1u
)q ‖∇u‖qq,µ

+ (p∗ + κ− 1)
(
t1u
)p∗ ‖u‖p∗p∗,β,∂Ω − λ(q1 + κ− 1)

(
t1u
)q1 ‖u‖q1q1].

(3.24)

On the other hand, applying (3.23) in (3.20) along with the representation in (3.17) yields

ψ′′u
(
t1u
)

= (p− q1)
(
t1u
)p−2 ‖u‖p1,p + (q − q1)

(
t1u
)q−2 ‖∇u‖qq,µ

+ (p∗ − q1)
(
t1u
)p∗−2 ‖u‖p∗p∗,β,∂Ω + (q1 + κ− 1)

(
t1u
)−κ−1

∫
Ω

ζ(x)|u|1−κ dx

=
(
t1u
)q1−1

η′u
(
t1u
)
> 0,

(3.25)

see (3.17). From (3.24) and (3.25) we conclude that

(p+ κ− 1)
(
t1u
)p ‖u‖p1,p + (q + κ− 1)

(
t1u
)q ‖∇u‖qq,µ

+ (p∗ + κ− 1)
(
t1u
)p∗ ‖u‖p∗p∗,β,∂Ω − λ(q1 + κ− 1)

(
t1u
)q1 ‖u‖q1q1 > 0,

since t1u > 0. This shows that

t1uu ∈ N+
λ for all λ ∈

(
0, λ̃
]
.
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Hence, N+
λ 6= ∅. The same treatment can be done for the point t2u in order to prove that

N−λ 6= ∅.
Now we are going to show the second assertion of the proposition. To this end, let {un}n∈N ⊂

N+
λ be a minimizing sequence, that is,

Θλ(un)↘ m+
λ < 0 as n→∞. (3.26)

First, we know that {un}n∈N ⊂W 1,H(Ω) is bounded since N+
λ ⊂ Nλ and by applying Proposi-

tion 3.1. Hence, we may assume that

un ⇀ uλ in W 1,H(Ω) un → uλ in Lq1(Ω) and un ⇀ uλ in Lp∗(∂Ω), (3.27)

see Proposition 2.1(ii), (iii). From (3.26) and (3.27) it follows that

Θλ(uλ) ≤ lim inf
n→+∞

Θλ(un) < 0 = Θλ(0).

Therefore, uλ 6= 0.
Next, we want to prove that

lim
n→+∞

ρ(un) = ρ(uλ) (3.28)

for a subsequence (still denoted by un).
Claim 1: lim infn→+∞ ‖un‖p1,p = ‖uλ‖p1,p
Let us suppose Claim 1 is not true. Then we have

lim inf
n→+∞

‖un‖p1,p > ‖uλ‖
p
1,p.

Using this and (3.19) along with the weak lower semicontinuity of the corresponding norms and
seminorms results in

lim inf
n→+∞

ψ′un
(
t1uλ
)

= lim inf
n→+∞

[(
t1uλ
)p−1 ‖un‖p1,p +

(
t1uλ
)q−1 ‖∇un‖qq,µ +

(
t1uλ
)p∗−1 ‖un‖p∗p∗,β,∂Ω

−
(
t1uλ
)−κ ∫

Ω

ζ(x)|un|1−κ dx− λ
(
t1uλ
)q1−1 ‖un‖q1q1

]
>
(
t1uλ
)p−1 ‖uλ‖p1,p +

(
t1uλ
)q−1 ‖∇uλ‖qq,µ +

(
t1uλ
)p∗−1 ‖uλ‖p∗p∗,β,∂Ω

−
(
t1uλ
)−κ ∫

Ω

ζ(x)|uλ|1−κ dx− λ
(
t1uλ
)q1−1 ‖uλ‖q1q1

= ψ′uλ
(
t1uλ
)

=
(
t1uλ
)q1−1 [

ηuλ
(
t1uλ
)
− λ‖uλ‖q1q1

]
= 0.

Hence, there exists a number n0 ∈ N such that ψ′un(t1uλ) > 0 for all n > n0. We know that

un ∈ N+
λ ⊂ Nλ and ψ′un(t) = tq1−1

[
ηun(t)− λ‖un‖q1q1

]
. Therefore, we conclude that ψ′un(t) < 0

for all t ∈ (0, 1) and ψ′un(1) = 0 which implies t1uλ > 1.

Recall that ψuλ is decreasing on (0, t1uλ ]. This implies

Θλ

(
t1uλuλ

)
≤ Θλ (uλ) < m+

λ .

Since t1uλuλ ∈ N
+
λ we have

m+
λ ≤ Θλ

(
t1uλuλ

)
< m+

λ ,

a contradiction. So Claim 1 is proved.
From Claim 1 we find a subsequence (still denoted by un) such that

‖un‖p1,p → ‖uλ‖
p
1,p. (3.29)

Claim 2: lim infn→+∞ ‖∇un‖qq,µ = ‖∇uλ‖qq,µ for the subsequence in (3.29).
As before, let us suppose Claim 2 is not true. So we have

lim inf
n→+∞

‖∇un‖qq,µ > ‖∇uλ‖qq,µ.
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Then we can argue exactly as in the proof of Claim 1. This shows Claim 2.
From Claim 2 we find a subsequence (still denoted by un) such that

‖∇un‖qq,µ → ‖∇uλ‖qq,µ. (3.30)

Claim 3: lim infn→+∞ ‖un‖p∗p∗,β,∂Ω = ‖uλ‖p∗p∗,β,∂Ω for the subsequence in (3.30).

The proof is the same as in Claims 1 and 2. So we find again a subsequence (still denoted by
un) such that

‖un‖p∗p∗,β,∂Ω → ‖uλ‖
p∗
p∗,β,∂Ω. (3.31)

For the sequence in (3.31) we know that the convergences in (3.29) and (3.30) hold true. So
combining (3.29)–(3.31) for this sequence we see that (3.28) is satisfied. Since the integrand
corresponding to the modular function ρ(·) is uniformly convex, this implies ρ(un−uλ2 ) → 0.

Then Proposition 2.3(v) implies that un → uλ in W 1,H(Ω), see also Fan-Guan [12, Theorems
3.2 and 3.5]. By the continuity of Θλ we have Θλ(un)→ Θλ(uλ) and thus, Θλ(uλ) = m+

λ . We

know that un ∈ N+
λ for all n ∈ N, that is,

(p+ κ− 1)‖un‖p1,p + (q + κ− 1)‖∇un‖qq,µ + (p∗ + κ− 1)‖un‖p∗p∗,β,∂Ω

− λ(q1 + κ− 1)‖un‖q1q1 > 0.
(3.32)

Passing to the limit in (3.32) as n→ +∞ we obtain

(p+κ−1)‖uλ‖p1,p+(q+κ−1)‖∇uλ‖qq,µ+(p∗+κ−1)‖uλ‖p∗p∗,β,∂Ω−λ(q1+κ−1)‖uλ‖q1q1 ≥ 0. (3.33)

Since λ ∈ (0, λ̃) and λ̃ ≤ λ̂, we conclude from Proposition 3.3 that we have a strict inequality
in (3.33). Hence, uλ ∈ N+

λ . Note that we can always use |uλ| instead of uλ, so we may assume
that uλ(x) ≥ 0 for a. a.x ∈ Ω such that uλ 6= 0. �

The next proposition plays a key role in order to prove that uλ is a weak solution of problem
(1.1).

Proposition 3.5. If hypotheses (H) hold, h ∈W 1,H(Ω) and λ ∈ (0, λ̃], then we can find δ > 0
such that Θλ(uλ) ≤ Θλ(uλ + th) for all t ∈ [0, δ].

Proof. Taking u ∈ N+
λ , we introduce the function ϕ : W 1,H(Ω)× (0,∞)→ R defined by

ϕ(y, t) = tp+κ−1‖u+ y‖p1,p + tq+κ−1‖∇(u+ y)‖qq,µ + tp∗+κ−1‖u+ y‖p∗p∗,β,∂Ω

−
∫

Ω

ζ(x)|u+ y|1−κ dx− λtq1+κ−1‖u+ y‖q1q1 for all y ∈W 1,H(Ω).

Due to u ∈ N+
λ ⊂ Nλ, we easily see that ϕ(0, 1) = 0. Moreover, since u ∈ N+

λ , we obtain

ϕ′t(0, 1) = (p+ κ− 1)‖u‖p1,p + (q + κ− 1)‖∇u‖qq,µ + (p∗ + κ− 1)‖u‖p∗p∗,β,∂Ω

− λ(q1 + κ− 1)‖u‖q1q1 > 0.

Now we can apply the implicit function theorem, see, for example, Berger [4, p. 115], which
ensures the existence of ε > 0 and a continuous function χ : Bε(0)→ (0,∞) such that

χ(0) = 1 and χ(y)(u+ y) ∈ Nλ for all y ∈ Bε(0),

where Bε(0) =
{
u ∈W 1,H(Ω) : ‖u‖ < ε

}
. Choosing ε > 0 small enough, we have

χ(0) = 1 and χ(y)(u+ y) ∈ N+
λ for all y ∈ Bε(0). (3.34)

We define now the function Ξh : [0,+∞)→ R given by

Ξh(t) = (p− 1) ‖uλ + th‖p1,p + (q − 1)‖∇uλ + t∇h‖qq,µ + (p∗ − 1)‖uλ + th‖p∗p∗,β,∂Ω

+ κ

∫
Ω

ζ(x) |uλ + th|1−κ dx− λ(q1 − 1) ‖uλ + th‖q1q1 .
(3.35)
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We know that uλ ∈ Nλ and uλ ∈ N+
λ . This gives

κ

∫
Ω

ζ(x) |uλ|1−κ dx = κ ‖uλ‖p1,p + κ ‖∇uλ‖qq,µ + κ ‖uλ‖p∗p∗,β,∂Ω − λκ ‖uλ‖
q1
q1

(3.36)

and

(p+ κ− 1) ‖uλ‖p1,p + (q + κ− 1) ‖∇uλ‖qq,µ + (p∗ + κ− 1) ‖uλ‖p∗p∗,β,∂Ω

− λ(q1 + κ− 1) ‖uλ‖q1q1 > 0.
(3.37)

Using (3.36) and (3.37) in (3.35) we infer that Ξh(0) > 0 and since Ξh : [0,+∞)→ R is contin-
uous there exists a number δ0 > 0 such that

Ξh(t) > 0 for all t ∈ [0, δ0].

From the first part of the proof, see (3.34), we know that for every t ∈ [0, δ0] there exists χ(t) > 0
such that

χ(t) (uλ + th) ∈ N+
λ and χ(t)→ 1 as t→ 0+.

From Proposition 3.4 it follows that

m+
λ = Θλ (uλ) ≤ Θλ (χ(t) (uλ + th)) for all t ∈ [0, δ0]. (3.38)

Let u ∈ W 1,H(Ω) be arbitrary and recall that ψu(t) = Θλ(tu) for all t ≥ 0. Note that for
t > 0, we have tψ′u(t) = 0 if and only if tu ∈ Nλ, that is, t = t1u or t = t2u by (3.19). From (3.25)
we also know that ψ′′u(t1u) > 0 > ψ′′u(t2u). On the other hand, there exists a unique t∗u > 0 such
that ψ′′u(t∗u) = 0. Hence, t1u < t∗u < t2u. Altogether, if ψ′′u(t) > 0, then t ∈ (0, t∗u) ⊆ (0, t2u) and
ψu(t) ≥ ψu(t1u).

t1u

t2u

ψu(t2u)

ψu(t1u)

t∗u

︸ ︷︷ ︸
ψ′′u(t)>0

︸ ︷︷ ︸
ψ′′u(t)<0

Figure 1. The graph of ψu(t).

Now, from ψ′′uλ(1) > 0 and the continuity in t, we have ψ′′uλ+th(1) > 0 for t ∈ [0, δ] with
δ ∈ (0, δ0]. Therefore, using (3.38)

m+
λ = Θλ (uλ) ≤ Θλ (χ(t) (uλ + th)) = ψuλ+th(χ(t)) ≤ ψuλ+th(1) = Θλ (uλ + th)

for all t ∈ [0, δ]. �

Now we are ready to show that uλ is indeed a weak solution for problem (1.1).

Proposition 3.6. If hypotheses (H) hold and λ ∈ (0, λ̃), then uλ is a weak solution of problem
(1.1) such that Θλ(uλ) < 0.

Proof. First, we mention that uλ ≥ 0 for a. a.x ∈ Ω and Θλ(uλ) < 0, see Proposition 3.4.
Claim: uλ > 0 for a. a.x ∈ Ω
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Arguing indirectly and suppose there exists a set B with positive measure such that uλ = 0 in
B. Let h ∈W 1,H(Ω) with h > 0 and let t ∈ (0, δ) (see Proposition 3.5), then (uλ+th)1−κ > u1−κ

λ

a. e. in Ω \B. Applying Proposition 3.5 yields

0 ≤ Θλ(uλ + th)−Θλ(uλ)

t

=
1

p

‖uλ + th‖p1,p − ‖uλ‖
p
1,p

t
+

1

q

‖∇(uλ + th)‖qq,µ − ‖∇uλ‖qq,µ
t

+
1

p∗

‖uλ + th‖p∗p∗,β,∂Ω − ‖uλ‖
p∗
p∗,β,∂Ω

t
− 1

(1− κ)tκ

∫
B

ζ(x)h1−κ dx

− 1

1− κ

∫
Ω\B

ζ(x)
(uλ + th)1−κ − (uλ)1−κ

t
dx − λ

q1

‖uλ + th‖q1q1 − ‖uλ‖
q1
q1

t

<
1

p

‖uλ + th‖p1,p − ‖uλ‖
p
1,p

t
+

1

q

‖∇(uλ + th)‖qq,µ − ‖∇uλ‖qq,µ
t

+
1

p∗

‖uλ + th‖p∗p∗,β,∂Ω − ‖uλ‖
p∗
p∗,β,∂Ω

t
− 1

(1− κ)tκ

∫
B

ζ(x)h1−κ dx

− λ

q1

‖uλ + th‖q1q1 − ‖uλ‖
q1
q1

t
.

From this we conclude by hypothesis (H)(v) that

0 ≤ Θλ(uλ + th)−Θλ(uλ)

t
→ −∞ as t→ 0+,

which is a contradiction. This shows the Claim and so uλ > 0 a. e. in Ω.
Let us now show that

ζ(·)(uλ)−κh ∈ L1(Ω) for all h ∈W 1,H(Ω) (3.39)

and ∫
Ω

(
|∇uλ|p−2∇uλ + µ(x)|∇uλ|q−2∇uλ

)
· ∇hdx

+

∫
Ω

α(x)(uλ)p−1hdx+

∫
∂Ω

β(x)(uλ)p∗−1hdσ

≥
∫

Ω

ζ(x)(uλ)−κhdx+ λ

∫
Ω

(uλ)q1−1hdx

(3.40)

for all h ∈W 1,H(Ω) with h ≥ 0.
Taking h ∈ W 1,H(Ω) with h ≥ 0 and choosing a decreasing sequence {tn}n∈N ⊆ (0, 1] such

that lim
n→∞

tn = 0, we see that for n ∈ N, the functions

ωn(x) = ζ(x)
(uλ(x) + tnh(x))1−κ − uλ(x)1−κ

tn

are measurable, nonnegative and we have

lim
n→∞

ωn(x) = (1− κ)ζ(x)uλ(x)−κh(x) for a. a.x ∈ Ω.

From Fatou’s lemma we obtain∫
Ω

ζ(x) (uλ)
−κ

hdx ≤ 1

1− κ
lim inf
n→∞

∫
Ω

ωn dx. (3.41)

Applying again Proposition 3.5 we get for n ∈ N sufficiently large that

0 ≤ Θλ(uλ + tnh)−Θλ(uλ)

tn
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=
1

p

‖uλ + tnh‖p1,p − ‖uλ‖
p
1,p

tn
+

1

q

‖∇(uλ + tnh)‖qq,µ − ‖∇uλ‖qq,µ
tn

+
1

p∗

‖uλ + tnh‖p∗p∗,β,∂Ω − ‖uλ‖
p∗
p∗,β,∂Ω

tn
− 1

1− κ

∫
Ω

ωn dx− λ

q1

‖uλ + tnh‖q1q1 − ‖uλ‖
q1
q1

tn
.

Passing to the limit as n→∞ and applying (3.41) we obtain (3.39) and∫
Ω

ζ(x)(uλ)−κhdx

≤
∫

Ω

(
|∇uλ|p−2∇uλ + µ(x)|∇uλ|q−2∇uλ

)
· ∇hdx

+

∫
Ω

α(x)(uλ)p−1hdx+

∫
∂Ω

β(x)(uλ)p∗−1hdσ − λ
∫

Ω

(uλ)q1−1hdx.

This shows (3.40). Note that it is sufficient to prove the integrability in (3.39) for nonnegative
test functions h ∈W 1,H(Ω).

Now, we can prove that uλ is a weak solution of (1.1). Fur this purpose, let v ∈W 1,H(Ω) and
ε > 0. Taking h = (uλ + εv)+ as test function in (3.40) and using the fact that uλ ∈ N+

λ ⊂ Nλ
such that uλ ≥ 0, we obtain

0 6
∫

Ω

(
|∇uλ|p−2∇uλ + µ(x) |∇uλ|q−2∇uλ

)
· ∇(uλ + εv)+ dx

+

∫
Ω

α(x) (uλ)
p−1

(uλ + εv)+ dx+

∫
∂Ω

β(x) (uλ)
p∗−1

(uλ + εv)+ dσ

−
∫

Ω

(
ζ(x) (uλ)

−κ
+ λ (uλ)

q1−1
)

(uλ + εv)+ dx

=

∫
Ω

(
|∇uλ|p−2∇uλ + µ(x) |∇uλ|q−2∇uλ

)
· ∇ (uλ + εv) dx

−
∫
{uλ+εv<0}

(
|∇uλ|p−2∇uλ + µ(x) |∇uλ|q−2∇uλ

)
· ∇ (uλ + εv) dx

+

∫
Ω

α(x) (uλ)
p−1

(uλ + εv) dx−
∫
{uλ+εv<0}

α(x) (uλ)
p−1

(uλ + εv) dx

+

∫
∂Ω

β(x) (uλ)
p∗−1

(uλ + εv) dσ −
∫
{uλ+εv<0}

β(x) (uλ)
p∗−1

(uλ + εv) dσ

−
∫

Ω

(
ζ(x) (uλ)

−κ
+ λ (uλ)

q1−1
)

(uλ + εv) dx

+

∫
{uλ+εv<0}

(
ζ(x) (uλ)

−κ
+ λ (uλ)

q1−1
)

(uλ + εv) dx

= ‖uλ‖p1,p + ‖∇uλ‖qq,µ + ‖uλ‖p∗p∗,β,∂Ω −
∫

Ω

ζ(x)|uλ|1−κ dx− λ‖uλ‖q1q1

+ ε

∫
Ω

(
|∇uλ|p−2∇uλ + µ(x) |∇uλ|q−2∇uλ

)
· ∇v dx

+ ε

∫
Ω

α(x) (uλ)
p−1

v dx+ ε

∫
∂Ω

β(x) (uλ)
p∗−1

v dσ

− ε
∫

Ω

(
ζ(x) (uλ)

−κ
+ λ (uλ)

q1−1
)
v dx

−
∫
{uλ+εv<0}

(
|∇uλ|p−2∇uλ + µ(x) |∇uλ|q−2∇uλ

)
· ∇ (uλ + εv) dx

−
∫
{uλ+εv<0}

α(x) (uλ)
p−1

(uλ + εv) dx−
∫
{uλ+εv<0}

β(x) (uλ)
p∗−1

(uλ + εv) dσ
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+

∫
{uλ+εv<0}

(
ζ(x) (uλ)

−κ
+ λ (uλ)

q1−1
)

(uλ + εv) dx

≤ ε
∫

Ω

(
|∇uλ|p−2∇uλ + µ(x) |∇uλ|q−2∇uλ

)
· ∇v dx

+ ε

∫
Ω

α(x) (uλ)
p−1

v dx+ ε

∫
∂Ω

β(x) (uλ)
p∗−1

v dσ

− ε
∫

Ω

(
ζ(x) (uλ)

−κ
+ λ (uλ)

q1−1
)
v dx

− ε
∫
{uλ+εv<0}

(
|∇uλ|p−2∇uλ + µ(x) |∇uλ|q−2∇uλ

)
· ∇v dx

− ε
∫
{uλ+εv<0}

α(x) (uλ)
p−1

v dx− ε
∫
{uλ+εv<0}

β(x) (uλ)
p∗−1

v dσ

Note that the measure of the domain {uλ + εh < 0} tends to zero as ε→ 0. Hence∫
{uλ+εv<0}

(
|∇uλ|p−2∇uλ + µ(x) |∇uλ|q−2∇uλ

)
· ∇v dx→ 0 as ε→ 0,∫

{uλ+εv<0}
α(x) (uλ)

p−1
v dx→ 0 as ε→ 0,∫

{uλ+εv<0}
β(x) (uλ)

p∗−1
v dσ → 0 as ε→ 0.

So, we can divide the inequality above with ε > 0 and let ε→ 0. We obtain∫
Ω

(
|∇uλ|p−2∇uλ + µ(x)|∇uλ|q−2∇uλ

)
· ∇v dx

+

∫
Ω

α(x)(uλ)p−1v dx+

∫
∂Ω

β(x)(uλ)p∗−1v dσ

≥
∫

Ω

ζ(x)(uλ)−κv dx+ λ

∫
Ω

(uλ)ν−1v dx.

Since v ∈ W 1,H(Ω) is arbitrary, equality must hold. It follows that uλ is a weak solution of
problem (1.1) such that Θλ(uλ) < 0, see Propositions 3.2 and 3.4. �

Now we are interested in a second weak solution which turns out to be the global minimizer
of Θλ restricted to N−λ . First we show that this minimum is nonnegative.

Proposition 3.7. If hypotheses (H) hold, then there exists λ∗ ∈ (0, λ̃] such that Θλ

∣∣
N−λ

> 0 for

all λ ∈ (0, λ∗].

Proof. First we take u ∈ N−λ which is possible by Proposition 3.4. Applying the definition of

N−λ and the embedding W 1,p(Ω) ↪→ Lq1(Ω) we have

λ(q1 + κ− 1)cq19 ‖u‖
q1
1,p ≥ λ(q1 + κ− 1)‖u‖q1q1

> (p+ κ− 1)‖u‖p1,p + (q + κ− 1)‖∇u‖qq,µ + (p∗ + κ− 1)‖u‖p∗p∗,β,∂Ω

≥ (p+ κ− 1)‖u‖p1,p

for some constant c9 > 0. This implies

‖u‖1,p ≥
[

p+ κ− 1

λcq19 (q1 + κ− 1)

] 1
q1−p

. (3.42)
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We argue by contradiction and suppose that the statement of the proposition is not true.
Then there exists u ∈ N−λ such that Θλ(u) ≤ 0, that is,

1

p
‖u‖p1,p +

1

q
‖∇u‖qq,µ +

1

p∗
‖u‖p∗p∗,β,∂Ω −

1

1− κ

∫
Ω

ζ(x)|u|1−κ dx− λ

q1
‖u‖q1q1 ≤ 0. (3.43)

As N−λ ⊆ Nλ we obtain from the definition of Nλ
1

q1
‖∇u‖qq,µ =

1

q1

∫
Ω

ζ(x)|u|1−κ dx+
λ

q1
‖u‖q1q1 −

1

q1
‖u‖p1,p −

1

q1
‖u‖p∗p∗,β,∂Ω. (3.44)

Combining (3.44) and (3.43) one has(
1

p
− 1

q1

)
‖u‖p1,p +

(
1

q
− 1

q1

)
‖∇u‖qq,µ +

(
1

p∗
− 1

q1

)
‖u‖p∗p∗,β,∂Ω

+

(
1

q1
− 1

1− κ

)∫
Ω

ζ(x)|u|1−κ dx ≤ 0.

Since p∗ < q1 and q < q1 this implies

q1 − p
pq1

‖u‖p1,p ≤
q1 + κ− 1

q1(1− κ)

∫
Ω

ζ(x)|u|1−κ dx ≤ q1 + κ− 1

q1(1− κ)
c10‖u‖1−κ1,p

for some constant c10 > 0. Therefore,

‖u‖1,p ≤ c11 (3.45)

for some c11 > 0. Now we use (3.45) in (3.42) and get

0 <
c12

c11
≤ λ

1
q1−p with c12 =

[
(p+ κ− 1)

cq19 (q1 + κ− 1)

] 1
q1−p

> 0.

Letting λ → 0 yields a contradiction since 1 < p < q1. Hence, we find λ∗ ∈ (0, λ̃] such that
Θλ

∣∣
N−λ

> 0 for all λ ∈ (0, λ∗]. �

Next we will show that the functional Θλ achieves its global minimum restricted to the set
N−λ .

Proposition 3.8. If hypotheses (H) hold and λ ∈ (0, λ∗], then there exists vλ ∈ N−λ with vλ ≥ 0
such that

m−λ = inf
N−λ

Θλ = Θλ (vλ) > 0.

Proof. First note that for v ∈ N−λ by using the embedding W 1,p(Ω) ↪→ Lq1(Ω) we obtain

λ(q1 + κ− 1)‖v‖q1q1 > (p+ κ− 1)‖v‖p1,p ≥ (p+ κ− 1)
1

cp9
‖v‖pq1

for c9 > 0, see the proof of Proposition 3.7. Therefore,

‖v‖q1 ≥
[

p+ κ− 1

λcp9(q1 + κ− 1)

] 1
q1−p

. (3.46)

Let {vn}n∈N ⊂ N−λ ⊂ Nλ be a minimizing sequence. Then, since N−λ ⊂ Nλ, we know from
Proposition 3.1 that {vn}n∈N ⊂W 1,H(Ω) is bounded. We may assume that

vn ⇀ vλ in W 1,H(Ω), vn → vλ in Lq1(Ω) and vn ⇀ vλ in Lp∗(∂Ω).

From (3.46) we see that vλ 6= 0. Now we will use the point t2vλ > 0 (see (3.19)) for which we
have

ηvλ
(
t2vλ
)

= λ ‖vλ‖q1q1 and η′vλ
(
t2vλ
)
< 0.

In the proof of Proposition 3.4 we derived that t2vλvλ ∈ N
−
λ .
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Let us now show that limn→+∞ ρ(vn) = ρ(vλ) for a subsequence (still denoted by vn). As in
the proof of Proposition 3.4 we can prove Claims 1–3 via contradiction. Indeed, then we have
in each case for a subsequence

Θλ(t2vλvλ) < lim
n→∞

Θλ(t2vλvn).

Since Θλ(t2vλvn) ≤ Θλ(vn) (note that it is the global maximum since ψ′′vn(1) < 0, see Figure 1)

and t2vλvλ ∈ N
−
λ , we obtain

m−λ ≤ Θλ(t2vλvλ) < m−λ ,

a contradiction. Therefore, for a subsequence, we have limn→+∞ ρ(vn) = ρ(vλ) and since
the integrand corresponding to the modular function ρ(·) is uniformly convex, this implies
ρ( vn−vλ2 )→ 0. Then Proposition 2.3(v) implies that vn → vλ in W 1,H(Ω) and the continuity of

Θλ gives Θλ(vn)→ Θλ(vλ) and so Θλ(vλ) = m−λ .

Since vn ∈ N−λ for all n ∈ N, we have

(p+ κ− 1)‖vn‖p1,p + (q + κ− 1)‖∇vn‖qq,µ + (p∗ + κ− 1)‖vn‖p∗p∗,β,∂Ω

− λ(q1 + κ− 1)‖vn‖q1q1 < 0.
(3.47)

Now we pass to the limit in (3.47) as n→ +∞ in order to get

(p+κ−1)‖vλ‖p1,p+(q+κ−1)‖∇vλ‖qq,µ+(p∗+κ−1)‖vλ‖p∗p∗,β,∂Ω−λ(q1+κ−1)‖vλ‖q1q1 ≤ 0. (3.48)

From Proposition 3.3 we know that equality in (3.48) cannot happen, so we have a strict in-
equality. Therefore, vλ ∈ N−λ . Since the treatment also works for |vλ| instead of vλ, we may
assume that vλ(x) ≥ 0 for a. a.x ∈ Ω such that vλ 6= 0. Proposition 3.7 finally shows that
m−λ > 0. �

Finally, we reach a second weak solution of problem (1.1).

Proposition 3.9. If hypotheses (H) hold and λ ∈ (0, λ∗), then vλ is a weak solution of problem
(1.1) such that Θλ(vλ) > 0.

Proof. Following the proof of Proposition 3.5 replacing uλ by vλ in the definition of Ξh we can
show for every t ∈ [0, δ0] there exists χ(t) > 0 such that

χ(t) (vλ + th) ∈ N−λ and χ(t)→ 1 as t→ 0+.

From Proposition 3.8 we derive that

m−λ = Θλ (vλ) ≤ Θλ (χ(t) (vλ + th)) for all t ∈ [0, δ0]. (3.49)

Claim: vλ > 0 for a. a.x ∈ Ω
Let us suppose there is a set B with positive measure such that vλ = 0 in B. Let h ∈W 1,H(Ω)

with h > 0 and let t ∈ (0, δ0), see (3.49), then (χ(t)(vλ + th))1−κ > (χ(t)vλ)1−κ a. e. in Ω \ B.
From (3.49) and since ψvλ(1) is the global maximum (see Figure 1) which implies ψvλ(1) ≥
ψvλ(χ(t)) we then obtain

0 ≤ Θλ(χ(t)(vλ + th))−Θλ(vλ)

t

≤ Θλ(χ(t)(vλ + th))−Θλ(χ(t)vλ)

t

=
1

p

‖χ(t)(vλ + th)‖p1,p − ‖χ(t)vλ‖p1,p
t

+
1

q

‖∇(χ(t)(vλ + th))‖qq,µ − ‖∇(χ(t)vλ)‖qq,µ
t

+
1

p∗

‖χ(t)(vλ + th)‖p∗p∗,β,∂Ω − ‖χ(t)vλ‖p∗p∗,β,∂Ω

t
− χ(t)1−κ

(1− κ)tκ

∫
B

ζ(x)h1−κ dx

− 1

1− κ

∫
Ω\B

ζ(x)
(χ(t)(vλ + th))1−κ − (χ(t)vλ)1−κ

t
dx − λ

q1

‖χ(t)(vλ + th)‖q1q1 − ‖χ(t)vλ‖q1q1
t
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<
1

p

‖χ(t)(vλ + th)‖p1,p − ‖χ(t)vλ‖p1,p
t

+
1

q

‖∇(χ(t)(vλ + th))‖qq,µ − ‖∇(χ(t)vλ)‖qq,µ
t

+
1

p∗

‖χ(t)(vλ + th)‖p∗p∗,β,∂Ω − ‖χ(t)vλ‖p∗p∗,β,∂Ω

t
− χ(t)1−κ

(1− κ)tκ

∫
B

ζ(x)h1−κ dx

− λ

q1

‖χ(t)(vλ + th)‖q1q1 − ‖χ(t)vλ‖q1q1
t

.

From the considerations above we see that

0 ≤ Θλ(χ(t)(vλ + th))−Θλ(χ(t)vλ)

t
→ −∞ as t→ 0+,

which is a contradiction. This shows the Claim and so vλ > 0 a. e. in Ω.
The rest of the proof works in the same way as the proof of Proposition 3.6. Indeed, (3.39)

and (3.40) can be shown similarly using again (3.49) and the inequality ψvλ(1) ≥ ψvλ(χ(t))
along with vλ > 0. The last part of Proposition 3.6 is the same replacing uλ by vλ and finally
we know from Proposition 3.8 that Θλ(vλ) > 0. �

The proof of Theorem 1.1 follows now from Propositions 3.6 and 3.9.
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[16] L. Gasiński, P. Winkert, Constant sign solutions for double phase problems with superlinear nonlinearity,

Nonlinear Anal. 195 (2020), 111739, 9 pp.
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