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Abstract. In this paper, we are interested in Kirchhoff problems driven by
a double phase operator with a logarithmic perturbation and with variable

exponents. Employing variational methods, we first establish the existence

of at least one nontrivial weak solution for the problem under consideration,
supposed that the nonlinearity satisfies very general assumptions. Moreover,

via modifying slightly the hypotheses on the reaction term and making use of

a variant of the symmetric mountain pass theorem, we also produce infinitely
many solutions for our problem.

1. Introduction

Let Ω ⊆ RN (N ≥ 2) be a bounded domain with Lipschitz boundary ∂Ω and let
C0,1(Ω) be the space of all Lipschitz continuous functions u : Ω → R. In the present
article, the functions p, q and µ are supposed to satisfy the following assumptions:

(H1) p, q ∈ C0,1(Ω) are such that 1 < p(x) < N and

p(x) < q(x) < 2 q+ < (p∗)− ≤ p∗(x) :=
Np(x)

N − p(x)

for all x ∈ Ω, where for m ∈ C(Ω) with m(x) > 1 for all x ∈ Ω we put

m− := min
x∈Ω

m(x) and m+ := max
x∈Ω

m(x);

µ ∈ L∞(Ω) \ {0} is such that

µ(x) ≥ 0 for a.a.x ∈ Ω.

Also, e stands for Euler’s number and we consider a > 0 such that ap− ≥ 1. In
this paper, we focus on problems driven by logarithmic operators with variable
exponents and a-logarithmic perturbation given by

divL(u) := div

[(
|∇u|p(x)−2 + µ(x)|∇u|q(x)−2

)
∇u log(e+ a|∇u|) +(

1

p(x)
|∇u|p(x)−2 +

µ(x)

q(x)
|∇u|q(x)−2

)
∇u |∇u|

e+ a|∇u|

]
,

(1.1)

for any function u belonging to an appropriate Musielak-Orlicz Sobolev space

W 1,HL

0 (Ω), which will be defined in Section 2. This operator and the related
Musielak-Orlicz Sobolev space were recently introduced by Lu–Vetro–Zeng [24],
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who studied existence and uniqueness of equations involving such an operator in
the context of a nonlinear problem with convection (that is, the nonlinearity de-
pends on the weak gradient of the solution). We point out that the operator in
(1.1) is connected to integral functionals of the form

u 7→
∫
Ω

(|∇u|p(x) + µ(x)|∇u|q(x)) log(e+ a|∇u|) dx,

which originates from functionals with nearly linear growth of type

u 7→
∫
Ω

|∇u| log(1 + |∇u|) dx. (1.2)

Functionals as in (1.2) have been considered by Fuchs–Mingione [18] and Marcellini–
Papi [25]. We stress that such type of functional appears in the context of plasticity
with logarithmic hardening, as one can see for example by Seregin–Frehse [28].

In the present work, we focus on the following Kirchhoff type problem

−K
[ ∫

Ω

Φ(u) log(e+ a|∇u|) dx
]
div L(u) = f(x, u) in Ω,

u = 0 on ∂Ω

(1.3)

with

Φ(u) =
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x),

where the operator divL is as in (1.1), a is such that ap− ≥ 1, while K = K ′ with
a function K : [0,+∞) → [0,+∞) satisfying the following assumptions:

(H2) K ∈ C1([0,+∞)) is such that

(i) there exists ϑ ∈
[
1, (p

∗)−

2 q+

)
so that the function

K(t)

tϑ
is nonincreasing on (0,+∞);

(ii) there exists k > 0 such that

K(t) ≥ k for all t ≥ 1.

Example 1.1. For k > 0 and ϑ ∈
[
1, (p

∗)−

2 q+

)
fixed, we consider the function

K : [0,+∞) → [0,+∞) defined by

K(t) := kt+ tϑ for all t ≥ 0.

We point out that K(·) satisfies all the assumptions in hypotheses (H2).

We recall that in the case p(x) = q(x) = 2 for all x ∈ Ω and a = 0, equation (1.3)
can be directly linked to a stationary analogue (the corresponding elliptic equation)
of the classical governing (parabolic) equation of nonlinear beam vibration posed
by Kirchhoff [21], where a nonlocal term of type K(t) = kt + b is involved. There
the real parameters k and b summarize physical features of the beam such as mass
density, area of the cross-section, and length. Now, the idea of considering a general
multiplicative function K in equation (1.3) is aimed to better model situations
when for instance shape and area of the cross-section may change along beam’s
length, or when precise inertia effects are investigated (see, for example, Andrianov–
Koblik [1] and the references cited therein). It is noted that such investigations are
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performed using experiments, and so the controllability of the physical setting is
crucial for a successful process. From a mathematical perspective, this is realized
by imposing a suitable set of assumptions on K to ensure that its influence is
well-controlled throughout the analysis (see hypothesis (H2)). Finally, we remark
that the attention of scholars was directed to nonlocal type problems by the Lions’
approach (that is the Lions’ representation theorem to generalize the Lax-Milgram
theorem) with applications to physical systems (see Lions [22]). Furthermore, the
hypothesis (H2) can be considered minimal, hence it is dictated by the specific
needs of our proofs. In detail, (H2) gives well-posedness of the energy functional
associated to problem (1.3) in order to fulfill the mountain-pass geometry (see
Lemmas 3.2–3.4), and (H2)(ii) avoids the degeneracy of the main operator as well.

Our aim is to investigate the existence of nontrivial weak solutions (see (3.3)) of
problem (1.3) by applying variational tools. To be more precise, we make use of
the classical mountain pass theorem in order to derive the existence of at least one
nontrivial weak solution for problem (1.3), supposed that the nonlinearity f satisfies
very general conditions (see hypothesis (H3) and Theorem 3.5). Then, we produce
infinitely many weak solutions for problem (1.3) (see Theorem 4.3) using a variant
of the symmetric mountain pass theorem, namely, the Fountain theorem which can
be found in Willem (see [33, Theorem 3.6]). Here, we obtain such multiplicity
result under different hypotheses on the nonlinearity f , (see hypotheses (H3)(ii)
and (H4)).

A special feature of the problem (1.3) is the fact that it combines the opera-
tor with variable exponents and a-logarithmic perturbation given in (1.1) along
with a Kirchhoff term. As far as we know, this is the first paper that treats
such a type of operator together with a Kirchhoff term. We point out that a
Kirchhoff type problem driven by the classical double phase operator with vari-
able exponents and with a nonlinearity which is just locally defined was consid-
ered recently by Ho–Winkert [20]. Differently from our study, the authors estab-
lished the existence of infinitely many solutions via an abstract critical point result
due to Kajikiya. For Kirchhoff problems in the double phase setting but with
constant exponents we refer to the papers by Arora–Fiscella–Mukherjee–Winkert
[4, 5], Borer–Pimenta–Winkert [7], Cen–Vetro–Zeng [13], Colasuonno–Perera [9],
Crespo-Blanco–Gasiński–Winkert [14], Fiscella–Marino–Pinamonti–Verzellesi [16],
Fiscella–Pinamonti [17], and Yang–Liu–Meng [32]. We also recall that nonlocal
problems in the context of equations driven by the Laplacian or the p-Laplacian have
been studied by a number of authors. We mention the papers by Alves–Figueiredo
[2], Bueno–Ercole–Ferreira–Zumpano [8], Corrêa [10], and Corrêa–Figueiredo [11].
Further, existence results on degenerate and nondegenerate Kirchhoff problems can
be found in the papers of Autuori–Pucci–Salvatori [6] and Xiang–Zhang–Rǎdulescu
[34], see also Vetro [29] for p(x)-Kirchhoff type problems with convection.

Finally, we note that another logarithmic double phase operator different from
the one in (1.1) has been recently introduced by Arora–Crespo-Blanco–Winkert [3]
which has the form

div

[
|∇u|p(x)−2∇u +

µ(x)

(
log(e+ |∇u|) + |∇u|

q(x)(e+ |∇u|)

)
|∇u|q(x)−2∇u

] (1.4)
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with u ∈W 1,Hlog(Ω), where Hlog : Ω× [0,+∞) → [0,+∞) is given by

Hlog(x, t) = tp(x) + µ(x)tq(x) log(e+ t).

The operator defined in (1.4) also appears in recent works by Carranza–Pimenta–
Vetro–Winkert [12], Vetro [30] and Vetro–Winkert [31]. Note that in [12] the au-
thors focused on a problem with a right-hand side consisting of a Carathéodory
perturbation defined only locally and of a critical term. Therein, making use of
appropriate truncation techniques and a suitable auxiliary problem, they produced
a whole sequence of sign-changing solutions to the problem which converges to 0
in L∞(Ω) as well as in the logarithmic Musielak-Orlicz Sobolev space W 1,Hlog(Ω).
In [30], the author explores a similar problem to that under consideration here,
namely, in the equation studied in [30] we have a multiplicative function K as well.
But there the function K has to satisfy a condition which links it to its integral
function, while here we claim a monotonicity condition on K. Further, in [30] the
growth condition on the nonlinearity f also depends on a constant η that we do not
consider here. Lastly, in [31] the authors obtained existence and uniqueness results
for a problem involving a nonlinearity which also depends on the gradient of the
solution. Further, they proved the boundedness, closedness and compactness of the
related solution set to the problem under consideration.

The paper is organized as follows. In Section 2 we recall the basic properties of
Sobolev spaces with variable exponents and of logarithmic Musielak-Orlicz Sobolev
spaces. Furthermore, we mention the properties of the operator (1.1) and fix some
notation. Section 3 states and proves an existence results on very mild assumptions
on the data (see Theorem 3.5) while Section 4 shows the existence of infinitely many
solutions to problem (1.3) (see Theorem 4.3).

2. Preliminaries

In this section, we collect some facts on Lebesgue spaces and Musielak-Orlicz
Sobolev spaces with variable exponents which will be needed later. One can find
these topics in the books of Harjulehto–Hästö [19] and Musielak [26], see also the
papers by Crespo-Blanco–Gasiński–Harjulehto–Winkert [15] and Lu–Vetro–Zeng
[24] for more information.

To this end, let Ω ⊆ RN (N ≥ 2) be a bounded domain with Lipschitz boundary
∂Ω and let m ∈ C(Ω) be such that m(x) > 1 for all x ∈ Ω. We write m′(·) to
denote the conjugate variable exponent of m(·), which means that

1

m(x)
+

1

m′(x)
= 1 for all x ∈ Ω.

By Lm(·)(Ω) we denote the variable exponent Lebesgue space defined by

Lm(·)(Ω) =
{
u ∈M(Ω): ρm(·)(u) < +∞

}
,

where M(Ω) stands for the set of all measurable functions u : Ω → R and the
modular ρm(·) is given by

ρm(·)(u) :=

∫
Ω

|u|m(x) dx.

As usual, we equip Lm(·)(Ω) with the Luxemburg norm defined by

∥u∥m(·) = inf

{
α > 0: ρm(·)

(
u

α

)
≤ 1

}
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for all u ∈ Lm(·)(Ω). With such norm the space Lm(·)(Ω) becomes a separable,
uniformly convex and hence reflexive Banach space whose dual space is given by
Lm′(·)(Ω). In addition, we know that the Hölder-type inequality∫

Ω

|uv|dx ≤
[
1

r−
+

1

(r′)
−

]
∥u∥m(·) ∥v∥m′(·)

holds for all u ∈ Lm(·)(Ω) and for all v ∈ Lm′(·)(Ω). Also, ifm1,m2 ∈ C(Ω) are such
that 1 ≤ m1(x) ≤ m2(x) for all x ∈ Ω, then we have the continuous embedding

Lm2(·)(Ω) ↪→ Lm1(·)(Ω).

Now, we focus on the nonlinear function HL : Ω× [0,+∞) → [0,+∞) defined by

HL(x, t) =
(
tp(x) + µ(x)tq(x)

)
log(e+ at)

for all x ∈ Ω and for all t ≥ 0, where a ≥ 0 and the exponents as well as the weight
function verify hypothesis (H1). We stress that HL(·, t) is a locally integrable,
generalized N -function satisfying the ∆2-condition (see Lu–Vetro–Zeng [24, Section
2]). Thus, the corresponding Musielak-Orlicz space LHL(Ω) is given by

LHL(Ω) = {u ∈M(Ω): ρHL
(u) < +∞} ,

with the modular ρHL
(·) defined by

ρHL
(u) :=

∫
Ω

HL(x, |u|) dx =

∫
Ω

(
|u|p(x) + µ(x)|u|q(x)

)
log(e+ a|u|) dx.

We consider on LHL(Ω) the Luxemburg norm, that is,

∥u∥HL
:= inf

{
β > 0: ρHL

(
u

β

)
≤ 1

}
,

for all u ∈ LHL(Ω). This norm makes LHL(Ω) to be a separable and reflexive
Banach space (see Lu–Vetro–Zeng [24, Proposition 2.13]). Also, from Proposition
2.21 of [24] we know that the norm ∥ ·∥HL

and the modular ρHL
are related to each

other. In fact, let a1 be the positive constant given by

a1 :=
t1

log(e+ at1)

log(e+ at2)

t2
, (2.1)

where t1 and t2 are a local maximum point and a local minimum point, respectively,
for the function defined by h(t) := t

log(e+at) for all t ≥ 0. Then, we have the

following result.

Proposition 2.1. Let hypothesis (H1) be satisfied. Then the following hold:

(i) ∥u∥HL
< 1 (resp. > 1,= 1) if and only if ρHL

(u) < 1 (resp. > 1,= 1);

(ii) min{∥u∥p
−

HL
, a1 ∥u∥q

++1
HL

} ≤ ρHL
(u) ≤ max{∥u∥p

−

HL
, a1 ∥u∥q

++1
HL

}, being a1
as given in (2.1);

(iii) ∥u∥HL
→ 0 if and only if ρHL

(u) → 0;
(v) ∥u∥HL

→ +∞ if and only if ρHL
(u) → +∞;

(vi) ∥u∥HL
→ 1 if and only if ρHL

(u) → 1.

Next, the Musielak-Orlicz Sobolev space corresponding to LHL(Ω), denoted by
W 1,HL(Ω), is given by

W 1,HL(Ω) =
{
u ∈ LHL(Ω): |∇u| ∈ LHL(Ω)

}



6 S. ZENG, F. VETRO, AND P. WINKERT

endowed with the norm

∥u∥1,HL
:= ∥u∥HL

+ ∥∇u∥HL
,

where ∥∇u∥HL
:= ∥ |∇u| ∥HL

. Then, we define W 1,HL

0 (Ω) by the completion of
C∞

0 (Ω) in W 1,HL(Ω). From Propositions 2.13, 2.23 and 2.24 of [24] we see that

W 1,HL(Ω) and W 1,HL

0 (Ω) are separable, reflexive Banach spaces satisfying the fol-
lowing embeddings.

Proposition 2.2. Let hypothesis (H1) be satisfied. Then the following hold:

(i) W 1,HL(Ω) ↪→ Lm(·)(Ω) and W 1,HL

0 (Ω) ↪→ Lm(·)(Ω) are compact for m ∈
C(Ω) with 1 ≤ m(x) < p∗(x) for all x ∈ Ω;

(ii) W 1,HL(Ω) ↪→ LHL(Ω) is compact and there exists a constant b > 0 such
that

∥u∥HL
≤ b ∥∇u∥HL

for all u ∈W 1,HL

0 (Ω).

As the Poincaré inequality holds, we can endow the space W 1,HL

0 (Ω) with the
equivalent norm given by

∥u∥ := ∥∇u∥HL
for all u ∈W 1,HL

0 (Ω).

Finally, we introduce the nonlinear operator VL : W 1,HL

0 (Ω) → W 1,HL

0 (Ω)∗ de-
fined by

⟨VL(u), w⟩ :=
∫
Ω

L(u) · ∇w dx (2.2)

for all u,w ∈W 1,HL

0 (Ω), where L is as in (1.1) and ⟨·, ·⟩ stands for the dual pairing

between W 1,HL

0 (Ω) and its dual space W 1,HL

0 (Ω)∗. From Theorems 3.5 and 3.6 of
[24] we know that such operator is characterized by several notable properties. In
particular, we stress that the following results hold.

Proposition 2.3. Let hypothesis (H1) be satisfied. Then, the operator VL is
bounded (that is, it maps bounded sets into bounded sets), continuous, strictly mono-
tone, coercive and of (S+)-type, that is,

un ⇀ u in W 1,HL

0 (Ω) and lim sup
n→+∞

⟨VL(un), un − u⟩ ≤ 0

imply

un → u in W 1,HL

0 (Ω).

We conclude this section by recalling that a C1-functional ψ : W 1,HL

0 (Ω) → R
satisfies the Palais-Smale condition if any sequence {un}n∈N ⊂W 1,HL

0 (Ω) such that

{ψ(un)}n∈N ⊂ R is bounded and

ψ′(un) → 0 in W 1,HL

0 (Ω)∗ as n→ +∞

admits a convergent subsequence in W 1,HL

0 (Ω). Also, we fix some notations which
will be needed later. We denote by |Ω| the Lebesgue measure of Ω in RN and for any
s ∈ R we put s± := max{±s, 0} which means that s = s+ − s− and |s| = s+ + s−.
For any function u : Ω → R we write u±(·) := [u(·)]±. With the purpose to lighten
the notation, from now on we will use C as a generic constant, which may change
from line to line, but does not depend on the crucial quantities.
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3. An existence result

In this section, we suppose the following assumptions on the reaction term f
while ϑ is as given in hypothesis (H2)(i):

(H3) f : Ω×R → R is a Carathéodory function satisfying the following conditions:
(i) there exists r1 ∈ ((q++1)ϑ, (p∗)−) such that for all ε > 0 there exists

δε > 0 such that

|f(x, t)| ≤ (q+ + 1)ϑ ε |t|(q
++1)ϑ−1 + r1 δε |t|r1−1

for a.a.x ∈ Ω and for all t ∈ R;

(ii) there exist r2 ∈ (2 q+ ϑ, (p∗)−) and t0 ≥ 0 such that

c ≤ r2 F (x, t) ≤ tf(x, t)

for some c > 0, for a.a.x ∈ Ω and for any |t| ≥ t0 with F (x, t) =∫ t

0
f(x, s) ds.

For the sake of reader convenience, an example of the function verifying the
aforementioned condition is provided next.

Example 3.1. Let ϑ ∈
[
1, (p

∗)−

2 q+

)
and r1 ∈ ((q+ + 1)ϑ, (p∗)−) be fixed. The odd

function f : Ω× R → R defined by

f(x, t) :=
r1
2
tr1−1 for a.a.x ∈ Ω and for all t ≥ 0

satisfies all the assumptions in (H3). In fact, we have that condition (H3)(i) holds
for all ε > 0 if we take δε = 1, while condition (H3)(ii) holds for t0 = 1 and
r2 ∈ (2q+ϑ, r1).

Our aim is to show that problem (1.3) admits at least one nontrivial weak solution

in W 1,HL

0 (Ω). In order to do this, the idea is to use the classical mountain pass

theorem. For this purpose, we introduce the C1-functional ϕ : W 1,HL

0 (Ω) → R
defined by

ϕ(u) := K

[ ∫
Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
log(e+ a|∇u|) dx

]
−
∫
Ω

F (x, u) dx

(3.1)

for all u ∈W 1,HL

0 (Ω). We point out that the derivative of ϕ is given by

⟨ϕ′(u), w⟩ = K
[ ∫

Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
log(e+ a|∇u|) dx

]
×

∫
Ω

L(u) · ∇w dx−
∫
Ω

f(x, u)w dx

(3.2)

for all u,w ∈ W 1,HL

0 (Ω). Also, we recall that u ∈ W 1,HL

0 (Ω) is a weak solution of
problem (1.3) if the following equality

K
[ ∫

Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
log(e+ a|∇u|) dx

]
×
∫
Ω

L(u) · ∇w dx =

∫
Ω

f(x, u)w dx

(3.3)
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holds for all w ∈ W 1,HL

0 (Ω). Thus, according to (3.2) and (3.3) we have that the
weak solutions of problem (1.3) coincide with the critical points of ϕ. Taking this
into account, if we show that the functional ϕ satisfies the geometric features of
the classical mountain pass theorem, then we are able to apply such theorem in
order to obtain the existence of a nontrivial critical value of ϕ and consequently of

a nontrivial weak solution of problem (1.3) in W 1,HL

0 (Ω).
Therefore, we are going to prove that ϕ satisfies the geometry of the mountain

pass theorem. We will do this in three steps. We start by the following result.

Lemma 3.2. Let hypotheses (H1), (H2) and (H3)(i) be satisfied. Then, there exist
ν ∈ (0, 1] and ζ := ζ(ν) > 0 such that

ϕ(u) ≥ ζ for all u ∈W 1,HL

0 (Ω) with ∥u∥ = ν.

Proof. First, we point out that hypothesis (H2) ensures that the following inequality

K(t) ≥ K(1) tϑ

holds for all t ∈ [0, 1]. Moreover, from Proposition 2.1(ii) we see that for all u ∈
W 1,HL

0 (Ω) with ∥u∥ ≤ 1, we have

a1∥u∥q
++1 ≤ ρHL

(∇u) ≤ ∥u∥p
−
≤ 1

with a1 > 0 as given in (2.1). This implies∫
Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
log(e+ a|∇u|) dx < 1,

according to the fact that∫
Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
log(e+ a|∇u|) dx ≤ 1

p−
ρHL

(∇u).

Also, we point out that hypothesis (H3)(i) assures that, for any ε > 0, it is possible
to find δε > 0 such that

|F (x, t)| ≤ ε |t|(q
++1)ϑ + δε |t|r1

for a.a.x ∈ Ω and for all t ∈ R. Keeping this in mind, we are able to affirm that

ϕ(u) ≥ K(1)

[ ∫
Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
log(e+ a|∇u|) dx

]ϑ
−
∫
Ω

ε|u|(q
++1)ϑ dx−

∫
Ω

δε|u|r1 dx

≥ aϑ1 K(1)

(q+)ϑ
∥u∥(q

++1)ϑ − ε ∥u∥(q
++1)ϑ

(q++1)ϑ − δε ∥u∥r1r1 .

Note that the embeddings

W 1,HL

0 (Ω) ↪→ L(q++1)ϑ(Ω) and W 1,HL

0 (Ω) ↪→ Lr1(Ω)

are both compact due to the fact that (q+ + 1) θ < 2 q+ θ < (p∗)− from hypothesis
(H2)(i) and r1 < (p∗)− from hypothesis (H3)(i) (see Proposition 2.2(i)). Taking

this into account, we denote by ℓ and ℓ̃ the best positive constants such that

∥u∥(q
++1)ϑ

(q++1)ϑ ≤ ℓ∥u∥(q
++1)ϑ and ∥u∥r1r1 ≤ ℓ̃∥u∥r1 ,
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for all u ∈W 1,HL

0 (Ω), respectively. Then, we have that

ϕ(u) ≥ aϑ1 K(1)

(q+)ϑ
∥u∥(q

++1)ϑ − ε ℓ ∥u∥(q
++1)ϑ − δε ℓ̃ ∥u∥r1

=

(
aϑ1K(1)

(q+)ϑ
− ε ℓ

)
∥u∥(q

++1)ϑ − δε ℓ̃ ∥u∥r1

=

[(
aϑ1 K(1)

(q+)ϑ
− ε ℓ

)
− δε ℓ̃ ∥u∥r1−(q++1)ϑ

]
∥u∥(q

++1)ϑ,

where r1 − (q+ +1)ϑ > 0 according to hypothesis (H3)(i). From here, if we choose
ε > 0 small enough such that

aϑ1 K(1)

(q+)ϑ
− ε ℓ > 0,

then for any u ∈W 1,HL

0 (Ω) with

∥u∥ = ν ∈
(
0, min

{
1,

[
1

δε ℓ̃

(
aϑ1 K(1)

(q+)ϑ
− ε ℓ

)] 1

r1−(q++1)ϑ
})

we have that

ϕ(u) ≥
[(

aϑ1 K(1)

(q+)ϑ
− ε ℓ

)
− δε ℓ̃ ν

r1−(q++1)ϑ

]
ν(q

++1)ϑ := ζ > 0.

This shows the assertion of the lemma. □

Now, we give the following result.

Lemma 3.3. Let hypotheses (H1), (H2) and (H3) be satisfied. Then, there exists

v ∈W 1,HL

0 (Ω) such that

ϕ(v) < 0 and ∥v∥ > 1.

Proof. From hypothesis (H2)(i) we have for all ε > 0 the inequality

K(t) ≤ K(ε)

εϑ
tϑ (3.4)

whenever t ≥ ε. Also, we point out that Proposition 2.1(ii) guarantees that for all

u ∈W 1,HL

0 (Ω) with ∥u∥ ≥ (q+)
1

p− > 1, it leads to

1 < ∥u∥p
−
≤ ρHL

(∇u).
Hence, we deduce that∫

Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
log(e+ a|∇u|) dx ≥ 1 (3.5)

taking into account that∫
Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
log(e+ a|∇u|) dx ≥ 1

q+
ρHL

(∇u).

Next, due to hypotheses (H3), we know that it is possible to find c1 > 0 and
c2 ≥ 0 so that the inequality

F (x, t) ≥ c1|t|r2 − c2 (3.6)

is satisfied for a.a.x ∈ Ω and for all t ∈ R.
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Based on this, for t ≥ (q+)
1

p− and w ∈ W 1,HL

0 (Ω) such that ∥w∥ = 1 we have
that

ϕ(tw) ≤ K(1)

[ ∫
Ω

(
1

p(x)
|∇(tw)|p(x) + µ(x)

q(x)
|∇(tw)|q(x)

)
log(e+ a|∇(tw)|) dx

]ϑ
− c1

∫
Ω

|t w|r2 dx+ c2

∫
Ω

dx

≤ K(1)

p−
t(q

++1)ϑ

[ ∫
Ω

(
|∇w|p(x) + µ(x) |∇w|q(x)

)
log(e+ a|∇w|) dx

]ϑ
− c1 t

r2 ∥w∥r2r2 + c2 |Ω|

=
K(1)

p−
t(q

++1)ϑ[ρHL
(∇w)]ϑ − c1 t

r2 ∥w∥r2r2 + c2 |Ω|.

Recall that ∥w∥ := ∥∇w∥HL
= 1. This, according to Proposition 2.1(i), implies

that ρHL
(∇w) = 1 as well. Moreover, as r2 < (p∗)− due to hypothesis (H3)(ii),

Proposition 2.2(i) guarantees that the embeddingW 1,HL

0 (Ω) ↪→ Lr2(Ω) is compact.
This leads to

ϕ(tw) ≤ K(1)

p−
t(q

++1)ϑ − c1 C t
r2 + c2 |Ω|

for some C > 0. Taking into account that r2 > (q++1)ϑ from hypothesis (H3)(ii),
we conclude that

ϕ(t w) → −∞ as t→ +∞.

This shows that if t̄ > 0 is large enough, then v = t̄ w ∈W 1,HL

0 (Ω) is such that

∥v∥ > 1 and further ϕ(v) < 0.

This finishes the proof. □

Next, we show that the functional ϕ verifies the Palais-Smale condition.

Lemma 3.4. Let hypotheses (H1), (H2) and (H3) be satisfied. Then, the functional
ϕ satisfies the Palais-Smale condition.

Proof. In order to prove the claim, we consider a sequence {un}n∈N ⊂ W 1,HL

0 (Ω)
satisfying the following conditions:

{ϕ(un)}n∈N ⊂ R is bounded,

ϕ′(un) → 0 in W 1,HL

0 (Ω)∗ as n→ +∞.
(3.7)

First, we are going to prove that the sequence {un}n∈N ⊂W 1,HL

0 (Ω) is bounded. We
prove this via contradiction. For this purpose, assume that the sequence {un}n∈N
is unbounded. This means that it is possible to find a subsequence of {un}n∈N, not
relabeled, such that

∥un∥ → +∞ as n→ +∞ and ∥un∥ ≥ (q+)
1

p− for all n ∈ N. (3.8)

Note that hypothesis (H2)(i) implies that

tK(t) ≤ ϑK(t) (3.9)

for all t ≥ 0. Then, recalling that ap− ≥ 1, using (3.9) we see that

ϕ(un)−
1

r2
⟨ϕ′(un), un⟩
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= K

[ ∫
Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
log(e+ a|∇u|) dx

]
−
∫
Ω

F (x, un) dx

− 1

r2
K
[ ∫

Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
log(e+ a|∇u|) dx

]
×
∫
Ω

[(
|∇u|p(x) + µ(x)|∇u|q(x)

)
log(e+ a|∇u|)

+

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
|∇u|

(e+ a|∇u|)

]
dx+

1

r2

∫
Ω

f(x, un)un dx

≥ 1

q+ ϑ
K
[ ∫

Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
log(e+ a|∇u|) dx

]
×
∫
Ω

(
|∇u|p(x) + µ(x)|∇u|q(x)

)
log(e+ a|∇u|) dx

− 1

r2
K
[ ∫

Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
log(e+ a|∇u|) dx

]
×
∫
Ω

[(
|∇u|p(x) + µ(x)|∇u|q(x)

)
log(e+ a|∇u|)

+

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
|∇u|

(e+ a|∇u|)

]
dx

−
∫
Ω

(
F (x, un)−

1

r2
f(x, un)un

)
dx

≥
(

1

q+ ϑ
− 1

r2

)
K
[ ∫

Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
log(e+ a|∇u|) dx

]
× ρHL

(∇un)−
∫
Ω

(
F (x, un)−

1

r2
f(x, un)un

)
dx

− 1

r2
K
[ ∫

Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
log(e+ a|∇u|) dx

]
×
∫
Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
|∇u|

(e+ a|∇u|)
dx

≥
(

1

q+ ϑ
− 2

r2

)
K
[ ∫

Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
log(e+ a|∇u|) dx

]
× ρHL

(∇un)−
∫
Ωn

[
F (x, un)−

1

r2
f(x, un)un

]
+

dx, (3.10)

where we have used hypothesis (H3)(ii) to get

1

q+ ϑ
− 2

r2
> 0

and we put

Ωn := {x ∈ Ω: |un(x)| ≤ t0}
with t0 as given in hypothesis (H3)(ii).

Now, from hypothesis (H2)(ii) we know that there exists k > 0 such that

K(t) ≥ k whenever t ≥ 1. (3.11)



12 S. ZENG, F. VETRO, AND P. WINKERT

Also, from (3.5) and (3.8) we see that∫
Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
log(e+ a|∇u|) dx ≥ 1.

Putting

M := |Ωn| sup
x∈Ωn, |t|≤t0

[
F (x, t)− 1

r2
f(x, t)t

]
+

< +∞

(note that M < +∞ due to hypothesis (H3)(i)) and using (3.10) along with (3.11)
and Proposition 2.1(ii), we derive that

ϕ(un)−
1

r2
⟨ϕ′(un), un⟩ ≥

(
1

q+ ϑ
− 2

r2

)
k ∥un∥p

−
−M.

For this reason and since (3.7) holds, we can affirm that there exist c3, c4 > 0 such
that

c3 + c4 ∥un∥ ≥
(

1

q+ ϑ
− 2

r2

)
k ∥un∥p

−
−M for all n ∈ N.

Since this contradicts to (3.8) due to p− > 1, we conclude that the sequence {un}n∈N
is bounded. Consequently, we may suppose (for a subsequence if necessary, not
relabeled) that

un ⇀ u in W 1,HL

0 (Ω),

un → u in L(q++1)ϑ(Ω) and in Lr1(Ω).
(3.12)

We emphasize at this point that if we take w = un − u in (3.2) and use (3.7), we
obtain

lim
n→+∞

K
[ ∫

Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
log(e+ a|∇u|) dx

]
×

∫
Ω

L(un) · ∇(un − u) dx− lim
n→+∞

∫
Ω

f(x, un) (un − u) dx = 0.

(3.13)

Next, using hypothesis (H3)(i) with ε = 1, Hölder’s inequality and (3.12) we can
see that ∣∣∣∣ ∫

Ω

f(x, un) (un − u) dx

∣∣∣∣
≤

∫
Ω

(
(q+ + 1)ϑ |un|(q

++1)ϑ−1 + r1 δ1 |un|r1−1

)
|un − u| dx

≤ (q+ + 1)ϑ ∥un∥(q
++1)ϑ−1

(q++1)ϑ ∥un − u∥(q++1)ϑ

+ r1 δ1 ∥un∥r1−1
r1 ∥un − u∥r1

→ 0 as n→ +∞.

(3.14)

Recall that the operator VL defined in (2.2) is continuous and bounded (see Propo-
sition 2.3). Further, we know that (3.5) holds and K(t) > k for all t ≥ 1 (see
(3.11)). Keeping all this in mind, from (3.13) using (3.14) we deduce that∫

Ω

L(un) · ∇(un − u) dx→ 0 as n→ +∞
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and hence

lim sup
n→+∞

⟨VL(un), un − u⟩ ≤ 0.

Now, as the operator VL is of (S+)-type (see again Proposition 2.3), we conclude
that

un → u in W 1,HL

0 (Ω).

□

Finally, we can state and prove the existence result in this section.

Theorem 3.5. Let hypotheses (H1), (H2) and (H3) be satisfied. Then, problem

(1.3) admits at least one nontrivial weak solution in W 1,HL

0 (Ω).

Proof. Let ϕ be the C1-functional introduced in (3.1). We recall that from (3.2)
and (3.3) we know that the critical points of ϕ are the weak solutions of problem
(1.3). For way of this, in order to obtain the claim, it is sufficient to show that ϕ
has at least one nontrivial critical point. Now, as ϕ(0) = 0 and since Lemmas 3.2,
3.3 and 3.4 hold, we are in the position to apply the mountain pass theorem to
derive that there exists a nontrivial critical value of ϕ, which is a nontrivial weak

solution of problem (1.3) in W 1,HL

0 (Ω). □

4. Infinitely many solutions

In this section, we present our second existence result. To be more precise, we are

going to show that problem (1.3) has infinitely many weak solutions in W 1,HL

0 (Ω).
In order to do this, we will make use of a variant of the symmetric mountain pass
theorem, namely, the Fountain theorem which can be found in the monograph by
Willem [33, Theorem 3.6]. First, we need new assumptions on the nonlinearity f .
Precisely, we now suppose that the Carathéodory function f : Ω× R → R satisfies
hypothesis (H3)(ii) and in addition we assume that:

(H4) f is odd with respect to the second variable and there exists r ∈ (p−, (p∗)−)
such that

|f(x, t)| ≤ d (1 + |t|r−1)

for some d > 0, for a.a.x ∈ Ω and for all t ∈ R.

Remark 4.1. We point out that if we replace hypothesis (H3)(i) with hypothe-
sis (H4), then Lemma 3.4 is still true. We can easily deduce this from the proof
of Lemma 3.4 recalling that since r < (p∗)− we have the compact embedding of

W 1,HL

0 (Ω) into Lr(Ω).

Before formulating the main result of this section, we note that W 1,HL

0 (Ω) is a
separable and reflexive Banach space. Therefore, we can find sequences

{vn}n∈N ⊂W 1,HL

0 (Ω) and {gn}n∈N ⊂W 1,HL

0 (Ω)∗

such that

W 1,HL

0 (Ω) := span{vn : n ∈ N}, W 1,HL

0 (Ω)∗ := span{gn : n ∈ N}

and further ⟨gj , vn⟩ :=

{
1 if n = j,

0 if n ̸= j.
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Next, we put

Zn := span {vn}, Z̃n :=

n⊕
j=1

Zj , Ẑn :=

+∞⊕
j=n

Z̃j

and

ξn := sup
u∈Ẑn, ∥u∥=1

∥u∥r,

where r is from hypothesis (H4).

Remark 4.2. We point out that

ξn → 0 as n→ +∞,

see Lemma 7.1 by Liu–Dai [23].

Now, we are ready to state our multiplicity result.

Theorem 4.3. Let hypotheses (H1), (H2), (H3)(ii) and (H4) be satisfied. Then,

problem (1.3) admits infinitely many weak solutions in W 1,HL

0 (Ω).

Proof. Let ϕ be the C1-functional introduced in (3.1). From hypothesis (H4) we
know that f is odd with respect to the second variable. This in particular guarantees
that ϕ is an even functional. Also, according to Remark 4.1 we know that ϕ verifies
the Palais-Smale condition. Then, in order to use the Fountain theorem, we only
need to show that for all n ≥ 1 there exist σn > γn > 0 such that

ln := inf{ϕ(u) : u ∈ Ẑn, ∥u∥ = γn} → +∞ as n→ +∞ (4.1)

and

max{ϕ(u) : u ∈ Z̃n, ∥u∥ = σn} ≤ 0. (4.2)

As first step, we have to determinate γn > 0 such that (4.1) holds. To this end,

taking hypothesis (H2)(ii) into account there exists k > 0 such that for all u ∈ Ẑn

with ∥u∥ ≥ (q+)
1

p− > 1 it results

K
[ ∫

Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
log(e+ a|∇u|) dx

]
≥ k, (4.3)

(see (3.11) and (3.5)). Also, from hypothesis (H4) we have that

|F (x, t)| ≤ C(|t|+ |t|r) (4.4)

for some C > 0, for a.a.x ∈ Ω and for all t ∈ R.
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Then, using (3.9), (4.3), (4.4), Proposition 2.1(ii) and Hölder’s inequality, for all

u ∈ Ẑn such that ∥u∥ ≥ (q+)
1

p− > 1 we get that

ϕ(u) ≥ 1

q+ ϑ
K
[ ∫

Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
log(e+ a|∇u|) dx

]
×
∫
Ω

(
|∇u|p(x) + µ(x)|∇u|q(x)

)
log(e+ |∇u|) dx

− C

∫
Ω

|u| dx− C

∫
Ω

|u|r dx

≥ k

q+ ϑ
∥u∥p

−
− C |Ω|

r−1
r ∥u∥r − C∥u∥rr

≥ k

q+ ϑ
∥u∥p

−
− C ξn |Ω|

r−1
r ∥u∥ − C ξrn ∥u∥r

≥ k

q+ ϑ
∥u∥p

−
− C ξn |Ω|

r−1
r ∥u∥r − C ξrn ∥u∥r

=

[
k

q+ ϑ
− C

(
ξn |Ω|

r−1
r + ξrn

)
∥u∥r−p−

]
∥u∥p

−
,

(4.5)

where we recall that C > 0 may change from line to line. Taking Remark 4.2 into
account and recalling that r > p− from hypothesis (H4), by setting

γn :=

[
k

2 q+ ϑ

1

C (ξn |Ω|
r−1
r + ξrn)

] 1

r−p−

,

we have that

γn → +∞ as n→ +∞. (4.6)

This yields

γn > (q+)
1

p− for n large enough.

Thus, (4.5) and (4.6) permit us to affirm that for all u ∈ Ẑn with ∥u∥ = γn and n
large enough it holds

ln ≥ k

2 q+ ϑ
γp

−

n → +∞ as n→ +∞.

Consequently, we conclude that (4.1) holds.

Our goal is now to prove that (4.2) also holds. We recall that Z̃n has finite

dimension and hence all the norms on Z̃n are equivalent (see, for example, [27,
Proposition 3.1.17, p.183]). This means that there exists dZ̃n

> 0, independent of

u ∈ Z̃n, such that

dZ̃n
∥u∥r2 ≤ ∥u∥r2r2 ,

where r2 is from hypothesis (H3)(ii). Moreover, from Proposition 2.1(ii) we know
that

ρHL
(∇u) ≤ a1 ∥u∥q

++1 whenever ∥u∥ := ∥∇u∥HL
> 1,

with a1 > 0 as given in (2.1). Then, using the previous facts along with (3.6), (3.4)

(where we choose ε = 1) and (3.5), we have, for u ∈ Z̃n such that ∥u∥ ≥ (q+)
1

p− ,
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that

ϕ(u) ≤ K(1)

[ ∫
Ω

(
1

p(x)
|∇u|p(x) + µ(x)

q(x)
|∇u|q(x)

)
log(e+ a|∇u|) dx

]ϑ
− c1

∫
Ω

|u|r2 dx+ c2

∫
Ω

dx

≤ K(1)

p−
[ρHL

(∇u)]ϑ − c1 ∥u∥r2r2 + c2 |Ω|

≤ aϑ1 K(1)

p−
∥u∥(q

++1)ϑ − c1 dZ̃n
∥u∥r2 + c2 |Ω|

(4.7)

since (q+)
1

p− > 1 according to hypothesis (H1). Now, we point out that hypothesis
(H3)(ii) gives that r2 > (q+ + 1)ϑ. So, if we take

σn > max
{
(q+)

1

p− , γn
}

large enough,

with a view to (4.7), then we conclude that (4.2) holds.
Thus, the functional ϕ satisfies all the assumptions of the Fountain theorem.

Consequently, we can apply such result which guarantees the existence of an un-
bounded sequence of critical points of ϕ. Recalling that the critical points of ϕ are
weak solutions for problem (1.3) (see (3.3) and (3.2)), the theorem is proved. □
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