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Abstract. We consider a parametric elliptic equation driven by a nonlin-

ear nonhomogeneous differential operator and with a Robin boundary condi-
tion. In the first part we prove the existence of positive solutions and state a

bifurcation-type result describing how the set of positive solutions changes as

the parameter λ > 0 varies. In the second part we show that problem admits
nodal (sign-changing) solutions provided the parameter λ > 0 is sufficiently

large.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper, we
study the following nonlinear nonhomogeneous parametric Robin problem

−div a(x,∇u) = f(x, u, λ) in Ω,

∂u

∂na
+ β(x)|u|p−2u = 0 on ∂Ω,

(Pλ)

where a : Ω × RN → RN is a continuous map which is strictly monotone in the
second variable and satisfies appropriate regularity and growth conditions listed in
hypotheses H(a) below. These hypotheses are general enough to incorporate many
differential operators of interest in our framework such as the weighted p-Laplacian
(1 < p < ∞) and the weighted (p, q)-differential operator (1 < q < p < ∞),
that is, a sum of weighted p- and q-Laplacians. In the reaction term f : Ω × R ×
(0,∞) → R on the right-hand side, λ > 0 is a parameter and (x, s) → f(x, s, λ)
is a Carathéodory function for every λ > 0, that is, x → f(x, s, λ) is measurable
for all x ∈ R and s → f(x, s, λ) is continuous for a.a. (almost all) x ∈ Ω. In the
boundary condition, the term ∂u

∂na
denotes the generalized normal derivative defined

by extension of the map

C1(Ω) 3 u→ (a(x,∇u), n)RN

with n being the outward unit normal on ∂Ω according to Green’s theorem.
In the first part of the paper, we are interested in the existence of positive

solutions and examine how the set of positive solutions varies with λ > 0 which
is known as a bifurcation-type result. We also prove the existence of a smallest
positive solution u∗λ and study the monotonicity as well as the continuity properties
of the map λ → u∗λ. In the second part of the paper we are interested in finding
so called nodal (sign-changing) solutions. Indeed, we can prove that such solutions
exist provided the parameter λ > 0 is sufficiently large.
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In the past such problems were investigated primarily in the context of Dirichlet
problems and usually for equations with competing nonlinearities which are called
“concave-convex problems”. We mention the works of Ambrosetti-Brezis-Cerami
[2], Brock-Iturriaga-Ubilla [5], Garćıa Azorero-Peral Alonso-Manfredi [9], Gasiński-
Papageorgiou [11], Guo [13], Guo-Zhang [14], Takeuchi [22]. For the Neumann
problem there is the work of Cardinali-Papageorgiou-Rubbioni [6] for logistic equa-
tions while there is a recent work of Fragnelli-Mugnai-Papageorgiou [8] for a class
of nonlinear parametric Robin problems driven by the p-Laplacian.

Our approach is variational based on the critical point theory. We also make use
of critical groups in order to distinguish between solutions. In the next section we
recall the main analytical tools which we will use in the sequel.

2. Preliminaries

Let X be a Banach space and let X∗ be its topological dual while 〈·, ·〉 denotes
the duality brackets to the pair (X∗, X). Given ϕ ∈ C1(X,R) we say that ϕ
satisfies the Palais-Smale condition, the PS-condition for short, if every sequence
(un)n≥1 ⊆ X such that (ϕ(un))n≥1 ⊆ R is bounded and such that ϕ′(un) → 0 in
X∗ as n→∞, admits a strongly convergent subsequence.

This compactness-type condition on the functional ϕ leads to a deformation
theorem from which one can derive the minimax theory for the critical values of
ϕ. A central result of this theory is the so-called mountain pass theorem due to
Ambrosetti-Rabinowitz [3] which we recall next.

Theorem 2.1. Let ϕ ∈ C1(X,R) be a functional satisfying the PS-condition and
let u1, u2 ∈ X, ‖u2 − u1‖X > ρ > 0,

max{ϕ(u1), ϕ(u2)} < inf{ϕ(u) : ‖u− u1‖X = ρ} =: mρ

and c = infγ∈Γ max0≤t≤1 ϕ(γ(t)) with Γ = {γ ∈ C ([0, 1], X) : γ(0) = u1, γ(1) =
u2}. Then c ≥ mρ with c being a critical value of ϕ.

We denote by W 1,p(Ω) for 1 < p < ∞ the usual Sobolev space equipped with
the norm

‖u‖1,p =
[
‖u‖pp + ‖∇u‖pp

] 1
p

for u ∈W 1,p(Ω)

where ‖ · ‖p denotes the norm of Lp(Ω), resp.Lp(Ω,RN ). It is well-known that
W 1,p(Ω) is a separable, reflexive Banach space. The boundary Lebesgue space is
denoted by Lq(∂Ω) for 1 ≤ q ≤ ∞.

In addition to the Sobolev space W 1,p(Ω) we will also use the ordered Banach
space C1(Ω) and its positive cone

C1(Ω)+ =
{
u ∈ C1(Ω) : u(x) ≥ 0 for all x ∈ Ω

}
.

This cone has a nonempty interior containing the open set

D+ =
{
u ∈ C1(Ω)+ : u(x) > 0 for all x ∈ Ω

}
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and

int
(
C1(Ω)+

)
= D̂+ =

{
u ∈ C1(Ω)+ : u(x) > 0 for all x ∈ Ω,

∂u

∂n

∣∣∣∣
∂Ω∩u−1(0)

< 0 if ∂Ω ∩ u−1(0) 6= ∅

}
.

Evidently, we have D+ ⊆ D̂+.
The norm of RN is denoted by ‖ · ‖RN and (·, ·)RN stands for the inner product

in RN . For s ∈ R, we set s± = max{±s, 0} and for u ∈ W 1,p(Ω) we define
u±(·) = u(·)±. It is well known that

u± ∈W 1,p(Ω), |u| = u+ + u−, u = u+ − u−.

For u, v ∈W 1,p(Ω) with u ≤ v we denote by [u, v] the order interval defined by the
two Sobolev functions, that is,

[u, v] =
{
h ∈W 1,p(Ω) : u(x) ≤ h(x) ≤ v(x) for a.a.x ∈ Ω

}
.

By | · |N we denote the Lebesgue measure on RN . On the boundary ∂Ω we consider
the (N−1)-dimensional Hausdorff (surface) measure σ. Having this measure, we can
define in the usual way the boundary Lebesgue spaces Lq(∂Ω) for 1 ≤ q ≤ ∞. From
the theory of Sobolev spaces we know that there exists a unique linear, continuous
map γ0 : W 1,p(Ω)→ Lp∗(∂Ω) with

p∗ =

{
(N−1)p
N−p if p < N,

any q ∈ [1,∞) if p ≥ N.

called the trace map such that

γ0(u) = u
∣∣
∂Ω

for all u ∈W 1,p(Ω) ∩ C(Ω).

The trace map gives meaning to the notion of boundary values for an arbitrary
Sobolev function. Furthermore, the trace map γ0 is compact into Lq(∂Ω) for all
q < p∗. Moreover it holds

ker γ0 = W 1,p
0 (Ω) and im γ0 = W

1
p′ ,p(∂Ω) for

1

p′
+

1

p
= 1.

In what follows, for the sake of notational simplicity we drop the usage of the trace
operator γ0. All restrictions of Sobolev functions on ∂Ω are understood in the sense
of traces.

Now let us introduce the hypotheses on the map a : Ω× RN → RN involved in
the definition of the differential operator. So, let ϑ ∈ C1(0,∞) be a function such
that

0 < ĉ0 ≤
tϑ′(t)

ϑ(t)
≤ c0 and c1t

p−1 ≤ ϑ(t) ≤ c2
(
tτ−1 + tp−1

)
(2.1)

for all t > 0, with some constants ĉ0, c0, c1, c2 > 0 and for 1 ≤ τ < p < ∞. The
hypotheses on a : Ω× RN → RN read as follows.

H(a): a(x, ξ) = a0 (x, ‖ξ‖RN ) ξ with a0 ∈ C(Ω × R+) for all ξ ∈ RN where R+ =
[0,+∞) and with a0(x, t) > 0 for all x ∈ Ω, for all t > 0 and
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(i) a0 ∈ C1(Ω × (0,∞)), t → ta0(x, t) is strictly increasing in (0,∞),
lim
t→0+

ta0(x, t) = 0 for all x ∈ Ω and

lim
t→0+

ta′0(x, t)

a0(x, t)
= c > −1 for all x ∈ Ω;

(ii) ‖∇ξa(x, ξ)‖RN ≤ c3
ϑ (‖ξ‖RN )

‖ξ‖RN
for all x ∈ Ω, for all ξ ∈ RN \ {0} and

for some c3 > 0;

(iii) (∇ξa(x, ξ)y, y)RN ≥
ϑ (‖ξ‖RN )

‖ξ‖RN
‖y‖2RN for all x ∈ Ω, for all ξ ∈ RN \{0}

and for all y ∈ RN ;

(iv) there exists δ ∈ (0, 1) such that

‖∇xa0(x, t)‖RN ≤ c4 (1 + | ln δ|) a0(x, t)

for all x ∈ Ω, for all t ∈ [δ, 1] and for some c4 > 0.

Remark 2.2. These conditions on the map a : Ω × RN → RN are designed in
order to use the nonlinear regularity theory of Lieberman [16] and the nonlinear
maximum principle of Zhang [25]. If we set

G0(x, t) =

∫ t

0

a0(x, s)sds,

then G0 ∈ C1(Ω × R+) and the function G0(x, ·) is increasing and strictly convex
for all x ∈ Ω. We set G(x, ξ) = G0(x, ‖ξ‖RN ) for all (x, ξ) ∈ Ω × RN and obtain
that G ∈ C1(Ω × RN ) and that the function ξ → G(x, ξ) is convex. Moreover, we
easily derive that

∇ξG(x, ξ) = (G0)′t(x, ‖ξ‖RN )
ξ

‖ξ‖RN
= a0(x, ‖ξ‖RN )ξ = a(x, ξ)

for all ξ ∈ RN \ {0} and ∇ξG(x, 0) = 0. So, G(x, ·) is the primitive of a(x, ·). This

fact, the convexity of G(x, ·) and since G(x, 0) = 0 for all x ∈ Ω imply that

G(x, ξ) ≤ (a(x, ξ), ξ)RN for all (x, ξ) ∈ Ω× RN . (2.2)

The next lemma summarizes the main properties of a : Ω × RN → RN . The
result is an easy consequence of (2.1) and the hypotheses H(a)(i), (ii), (iii).

Lemma 2.3. If hypotheses H(a)(i)–(iii) are satisfied, the the following hold:
(i) a ∈ C(Ω × RN ,RN ) ∩ C1(Ω × (RN \ {0}),RN ) and the map ξ → a(x, ξ) is

continuous and strictly monotone and so maximal monotone as well for all
x ∈ Ω;

(ii) ‖a(x, ξ)‖RN ≤ c5

(
1 + ‖ξ‖p−1

RN

)
for all x ∈ Ω, for all ξ ∈ RN and for some

c5 > 0;

(iii) (a(x, ξ), ξ)RN ≥
c1
p−1 ‖ξ‖

p
RN for all x ∈ Ω and for all ξ ∈ RN .

From this lemma along with (2.2) we easily deduce the following growth estimates
for the primitive G(x, ·).
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Corollary 2.4. If hypotheses H(a)(i)–(iii) hold, then
c1

p(p− 1)
‖ξ‖pRN ≤ G(x, ξ) ≤ c6

(
1 + ‖ξ‖pRN

)
for all x ∈ Ω, for all ξ ∈ RN and for some c6 > 0.

Example 2.5. Let â ∈ C1(Ω) be such that

0 < η0 ≤ â(x) ≤ η1 and 0 < η0 ≤ ‖∇â(x)‖RN ≤ η1 for all x ∈ Ω.

We consider the following maps:

a1(x, y) = â(x)‖y‖p−2
RN y with 1 < p <∞,

a2(x, y) = â(x)‖y‖p−2
RN y + ‖y‖q−2

RN y with 1 < q < p <∞,

a3(x, y) = â(x)
(
1 + ‖y‖2RN

) p−2
2 y with 1 < p <∞.

These maps satisfy hypotheses H(a). The map a1 corresponds to a weighted version
of the p-Laplacian

div
(
â(x)‖∇u‖p−2

RN ∇u
)

for all u ∈W 1,p(Ω)

while the map a2 corresponds to a weighted (p, q)-Laplacian given by

div
(
â(x)‖∇u‖p−2

RN ∇u
)

+ ∆qu for all u ∈W 1,p(Ω).

Now, let A : W 1,p(Ω)→W 1,p(Ω)∗ be the nonlinear map defined by

〈A(u), h〉 =

∫
Ω

(a(x,∇u),∇h)RN dx for all u, h ∈W 1,p
0 (Ω).

Hypotheses H(a) imply that A is continuous, monotone, hence maximal monotone
as well.

Consider now a Carathéodory function f0 : Ω× R→ R such that

|f0(x, s)| ≤ a0(x)
(
1 + |s|r−1

)
for a.a.x ∈ Ω and for all x ∈ R

with a0 ∈ L∞(Ω)+ and 1 ≤ r ≤ p∗, where p∗ denotes the critical Sobolev exponent
given by

p∗ =

{
Np
N−p if p < N,

+∞ if N ≤ p.

We set F0(x, s) =
∫ s

0
f0(x, t)dt and consider the C1-functional ϕ0 : W 1,p(Ω) → R

defined by

ϕ0(u) =

∫
Ω

G(x,∇u)dx+
1

p

∫
∂Ω

β(x)|u|pdσ −
∫

Ω

F0(x, u)dx.

From Papageorgiou-Rădulescu [19] we have the following result.

Proposition 2.6. Let the assumptions in H(a)(i)–(iii) be satisfied. If u0 ∈W 1,p(Ω)
is a local C1(Ω)-minimizer of ϕ0, that is, there exists ρ0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1(Ω) with ‖h‖C1(Ω) ≤ ρ0,

then u0 ∈ C1,α(Ω) for some α ∈ (0, 1) and u0 is a local W 1,p(Ω)-minimizer of ϕ0,
that is, there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈W 1,p(Ω) with ‖h‖1,p ≤ ρ1.
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The hypotheses on the boundary coefficient β are the following ones.

H(β): β ∈ C0,α(∂Ω) for some α ∈ (0, 1) and β(x) > 0 for all x ∈ ∂Ω.

Remark 2.7. This hypothesis excludes the Neumann problem, that is, β ≡ 0, from
our consideration. Indeed, as we will see in Section 3, the Neumann problem does
not have positive solutions for any λ > 0. The requirement that β(x) > 0 for all
x ∈ ∂Ω is in order to use the strong comparison principles, see Propositions 2.9
and 2.10.

The next result will be useful in obtaining a priori estimates. It extends a
corresponding result of Zeidler [24, p. 1033].

Proposition 2.8. If β ∈ L∞(∂Ω), β(x) ≥ 0 σ-a.e. on ∂Ω and β 6≡ 0, then

u→ |u|1,p = ‖∇u‖p +

(∫
∂Ω

β(x)|u|qdσ
) 1
q

with 1 ≤ q ≤ (N−1)p
N−p if N > p and 1 ≤ q < ∞ if p ≥ N , is an equivalent norm on

W 1,p(Ω).

Proof. Taking the continuity of the trace map into account, we have for every
u ∈W 1,p(Ω)

|u|1,p ≤ ‖∇u‖p + ‖β‖L∞(∂Ω)‖γ0(u)‖Lq(∂Ω) ≤ ‖∇u‖p + ‖β‖L∞(∂Ω)‖γ0‖Lc7‖u‖1,p
for some c7 > 0 where ‖γ0‖L denotes the operator norm of γ0. This gives

|u|1,p ≤ c8‖u‖1,p for some c8 > 0. (2.3)

Next we show that

‖u‖q ≤ c9|u|1,p for some c9 > 0. (2.4)

Arguing by contradiction, suppose that (2.4) is not true. Then there exists a
sequence {un}n≥1 ⊆W 1,p(Ω) such that ‖un‖q > n|un| for all n ∈ N. Let yn = un

‖un‖q
for all n ∈ N. Then ‖yn‖q = 1 for all n ≥ 1 and we have

1

n
> |yn|1,p, (2.5)

which shows that |yn|1,p → 0 as n → ∞. Recall that u → ‖∇u‖p + ‖u‖q is an
equivalent norm on W 1,p(Ω), see, for example, Gasiński-Papageorgiou [10, Theorem
2.5.24, p. 227]. So, it follows that {yn}n≥1 ⊆ W 1,p(Ω) is bounded. Hence we may
assume that

yn
w→ y in W 1,p(Ω) and yn → y in Lq(Ω) and in Lq(∂Ω). (2.6)

Here we have used the Rellich-Kondrachov theorem and the compactness of the
trace map. From (2.5) and (2.6) we obtain

‖∇y‖p +

(∫
∂Ω

β(x)|y|qdσ
) 1
q

≤ 0, (2.7)

which implies, due to H(β), that y ≡ ξ ∈ R. From (2.7) and hypothesis H(β) it
follows that

0 < |ξ|
(∫

Ω

β(x)dσ

) 1
q

≤ 0,



SOLUTIONS WITH SIGN INFORMATION FOR NONLINEAR PROBLEMS 7

a contradiction. Therefore, (2.4) is true and we have

‖u‖1,p ≤ c10|u|1,p for some c10 > 0 and for all u ∈W 1,p(Ω). (2.8)

From (2.3) and (2.8) we conclude that | · |1,p is an equivalent norm on W 1,p(Ω). �

It is well known that it is difficult to have strong comparison principles for
nonlinear equations. We refer to the works of Arcoya-Ruiz [4] and Cuesta-Takáč
[7] who proved such results for Dirichlet problems. The result of Arcoya-Ruiz [4]
was extended to Robin problems by Fragnelli-Mugnai-Papageorgiou [8]. We recall
their result for future use.

Let h1, h2 ∈ L∞(Ω). We write h1 ≺ h2 if for every compact K ⊆ Ω there exists
ε = ε(K) > 0 such that

h1(x) + ε ≤ h2(x) for a.a.x ∈ K.

Evidently, if h1, h2 ∈ C(Ω) and h1(x) < h2(x) for all x ∈ Ω, then h1 ≺ h2. The
strong comparison result of Fragnelli-Mugnai-Papageorgiou [8] extends Proposition
6 of Arcoya-Ruiz [4].

Proposition 2.9. If hypotheses H(a)(i), (ii), (iii) hold, ξ ∈ L∞(Ω)+, h1, h2 ∈
L∞(Ω) with h1 ≺ h2, u ∈ C1(Ω), u 6= 0, v ∈ D+, u ≤ v and they satisfy

−div a(x,∇u(x)) + ξ(x)|u(x)|p−2u(x) = h1(x) for a.a.x ∈ Ω,

−div a(x,∇v(x)) + ξ(x)v(x)p−1 = h2(x) for a.a.x ∈ Ω

and ∂v
∂n

∣∣
∂Ω

< 0, then v − u ∈ D̂+.

The next strong comparison principle extends Theorem 2.1 of Cuesta-Takáč [7].

Proposition 2.10. If hypotheses H(a)(i), (ii), (iii) hold, h1, h2 ∈ L∞(Ω), h1(x) ≤
h2(x) for a.a.x ∈ Ω and the inequality is strict on a set of positive measure and
u, v ∈ C1(Ω) satisfy u ≤ v on Ω and

−div a(x,∇u(x)) = h1(x) for a.a.x ∈ Ω,
∂u

∂n

∣∣∣∣
∂Ω

< 0,

−div a(x,∇v(x)) = h2(x) for a.a.x ∈ Ω,
∂v

∂n

∣∣∣∣
∂Ω

< 0,

then v − u ∈ D̂+.

Proof. From the hypotheses on the normal derivatives of u and v we see that for
δ > 0 small enough we have∣∣∇[(1− t)u(x) + tv(x)

]∣∣ ≥ ε > 0 for all t ∈ [0, 1] and for all x ∈ Ωδ, (2.9)

where Ωδ = {x ∈ Ω : d(x, ∂Ω) < δ}. Then from the hypotheses of the proposition
we get

−div
[
a(x,∇v(x))− a(x,∇u(x)

]
≥ 0 for a.a.x ∈ Ω. (2.10)

Let a = (ak)Nk=1. Then for k ∈ {1, . . . , N}, by the mean value theorem, we obtain

ak(x, ξ)− ak(x, ξ′) =

N∑
k=1

∫ 1

0

∂ak
∂ym

(x, ξ′ + t(ξ − ξ′)) (ξm − ξ′m) dt



8 N. S. PAPAGEORGIOU AND P. WINKERT

for all ξ = (ξm)Nm=1 and ξ′ = (ξ′m)Nm=1. On Ωδ we define the following coefficients

ck,m(x) =

∫ 1

0

∂ak
∂ym

(∇u(x) + t(∇v(x)−∇u(x)))dt.

Using these coefficients we introduce the following second order differential operator

L(w) = −div

(
N∑
m=1

ck,m(x)
∂w

∂zm

)
for all w ∈W 1,p(Ωδ).

From (2.9) we see that the operator L is strictly elliptic and due to (2.10) one has

L(v − u)(x) ≥ 0 for a.a.x ∈ Ωδ. (2.11)

We will show that u 6= v on Ωδ. Arguing by contradiction, suppose that u = v on
Ωδ. Since by hypotheses h1 6= h2, we obtain h1 6= h2 on Ω \ Ωδ. Then we choose
ϑ ∈W 1,p(Ω) such that

ϑ > 0 on Ω and ϑ
∣∣
Ω\Ωδ

≡ 1. (2.12)

In what follows we denote by 〈·, ·〉∂Ω the duality brackets for the pair(
W
− 1
p′ ,p

′
(∂Ω),W

1
p′ ,p(∂Ω)

)
with

1

p′
+

1

p
= 1.

Applying the nonlinear Green’s identity, see, for example Gasiński-Papageorgiou
[10, Theorem 2.4.53, p. 210], (2.12) and the fact that u = v on Ωδ give∫

Ω

h1ϑdx =

∫
Ω

(a(x,∇u),∇ϑ)RNdx−
〈
∂u

∂na
, ϑ

〉
∂Ω

=

∫
Ωδ

(a(x,∇u),∇ϑ)RN −
〈
∂u

∂na
, ϑ

〉
∂Ω

=

∫
Ωδ

(a(x,∇v),∇ϑ)RN −
〈
∂v

∂na
, ϑ

〉
∂Ω

=

∫
Ω

h2ϑdx.

(2.13)

But from (2.12) and since h1 6= h2 we see that∫
Ω

(h2 − h1)ϑdx > 0. (2.14)

Comparing (2.13) and (2.14) we reach a contradiction. Hence, u 6= v on Ωδ.
Then from (2.11) and the strong maximum principle, see, for example Motreanu-
Motreanu-Papageorgiou [17, Theorem 8.27, p. 217], we obtain

(v − u)(x) > 0 for all x ∈ Ω,
∂(v − u)

∂n

∣∣∣∣
∂Ω∩(v−u)−1(0)

< 0.

Therefore, v − u ∈ D̂+. �

Next, let us recall some basic definitions and facts about critical groups which
will be used in the sequel. Let X be a Banach space and let (Y1, Y2) be a topological
pair such that Y2 ⊆ Y1 ⊆ X. For every integer k ≥ 0 the term Hk(Y1, Y2) stands

for the k
th
=-relative singular homology group with integer coefficients. Recall that

Hk(Y1, Y2) = Zk(Y1, Y2)
/
Bk(Y1, Y2) for all k ∈ N0,
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where Zk(Y1, Y2) is the group of relative singular k-cycles of Y1 mod Y2 (that is,
Zk(Y1, Y2) = ker ∂k with ∂k being the boundary homomorphism) and Bk(Y1, Y2)
is the group of relative singular k-boundaries of Y1 mod Y2 (that is, Bk(Y1, Y2) =
im ∂k+1). We know that ∂k−1 ◦ ∂k = 0 for all k ∈ N, hence Bk(Y1, Y2) ⊆ Zk(Y1, Y2)
and so the quotient

Zk(Y1, Y2)
/
Bk(Y1, Y2)

makes sense.
Given ϕ ∈ C1(X) and c ∈ R, we introduce the following sets:

ϕc = {u ∈ X : ϕ(u) ≤ c} (the sublevel set of ϕ at c),

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ),

Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c} (the critical set of ϕ at the level c).

For every isolated critical point u ∈ Kc
ϕ the critical groups of ϕ at u ∈ Kc

ϕ are
defined by

Ck(ϕ, u) = Hk

(
ϕc ∩ U,ϕc ∩ U \ {u}

)
for all k ≥ 0,

where U is a neighborhood of u such that Kϕ∩ϕc∩U = {u}. The excision property
of singular homology theory implies that the definition of critical groups above is
independent of the particular choice of the neighborhood U .

3. Positive Solutions

In this section we study the existence and multiplicity of the positive solutions
as the parameter λ > 0 varies.

The hypotheses on the reaction term f : Ω×R× (0,+∞)→ R are the following
ones.

H(f): f : Ω × R × (0,+∞) → R is a function such that (x, s) → f(x, s, λ) is a
Carathéodory function for every λ > 0, f(x, 0, λ) = 0 for a.a.x ∈ Ω, for all
λ > 0 and

(i) for every ρ > 0 and every λ0 > 0 there exists aλ0
ρ ∈ L∞(Ω)+ such that

0 ≤ f(x, s, λ) ≤ aλ0
ρ (x)

for a.a.x ∈ Ω, for all s ∈ [0, ρ] and for all 0 < λ ≤ λ0;

(ii) for every λ > 0 there holds

lim
s→+∞

f(x, s, λ)

sp−1
= 0 uniformly for a.a.x ∈ Ω;

(iii) for every λ > 0 there holds

lim
s→0+

f(x, s, λ)

sp−1
= 0 uniformly for a.a.x ∈ Ω;

(iv) • s → f(x, s, λ) is nondecreasing on R+ for a.a.x ∈ Ω and for every
λ > 0;

• λ → f(x, s, λ) is strictly increasing on (0,+∞) for a.a.x ∈ Ω and
for all s > 0;
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• f(x, s, λ) → 0+ as λ → 0+ uniformly for a.a.x ∈ Ω and for all
x ∈ K ⊆ R+ with K being compact; moreover f(x, s, λ)→ +∞ as
λ→ +∞ for a.a.x ∈ Ω and for all s > 0.

Remark 3.1. Since we are interested in the existence of positive solutions and
all hypotheses above concern the positive semiaxis R+ = [0,+∞), without any loss
of generality, we may assume that f(x, ·, λ)

∣∣
(−∞,0]

≡ 0 for a.a.x ∈ Ω and for all

λ > 0.

Example 3.2. For the sake of simplicity we drop the x-dependence. Let f1 :
R× (0,∞)→ R be defined by

f1(s, λ) =

{
λsτ−1 if s ∈ [0, 1],

sq−1 ln(s) + λsη−1 if 1 < s,

with 1 < q, η < p < τ < +∞. Then f1 satisfies hypotheses H(f). Let f2 :
R× (0,∞)→ R be defined by

f2(s, λ) =

{
λsτ−1 if s ∈ [0, r(λ)],

λsq−1 + µ(λ) if r(λ) < s,

with a strictly increasing differentiable function r : (0,+∞) → (1,+∞) such that
r(λ) → 1+ as λ → 0+, µ(λ) = λ

[
r(λ)τ−1 − r(λ)q−1

]
and 1 < q < p < τ < +∞.

Then f2 satisfies hypotheses H(f).

We introduce the following two sets:

L = {λ > 0 : problem (Pλ) admits a positive solution} ,
S(λ) = {u : u is a positive solution of problem (Pλ)}.

Moreover, we set λ∗ = inf L ≥ 0.

Proposition 3.3. If hypotheses H(a), H(β) and H(f) hold, then S(λ) ⊆ D+ for
every λ > 0 and λ∗ > 0.

Proof. Let u ∈ S(λ). From Papageorgiou-Rădulescu [18] we have

−div a(x,∇u(x)) = f(x, u(x), λ) for a.a.x ∈ Ω,

∂u

∂na
+ β(x)up−1 = 0 on ∂Ω.

(3.1)

Moreover, from Winkert [23] we obtain that u ∈ L∞(Ω) and the nonlinear regularity
theory of Lieberman [16] gives u ∈ C1(Ω)+ \ {0}. Note that f(x, s, λ) ≥ 0 for
a.a.x ∈ Ω, for all s ≥ 0 and for all λ > 0. Then, (3.1) implies div a(x,∇u(x)) ≤ 0
for a.a.x ∈ Ω. Applying Theorem 1.2 of Zhang [25] gives u ∈ D+.

We have proved that S(λ) ⊆ D+ for all λ > 0. Using Proposition 2.8 there exists
c11 > 0 such that

c11‖u‖p1,p ≤
c1

p− 1
‖∇u‖pp +

∫
∂Ω

β(x)|u|pdσ for all u ∈W 1,p(Ω). (3.2)

Hypotheses H(f)(iii) imply that for a given ε ∈ (0, c11) there exists λ̃ > 0 such that

0 ≤ f
(
x, s, λ̃

)
≤ εsp−1 for a.a.x ∈ Ω and for all s ≥ 0. (3.3)
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Let λ ∈ (0, λ̃] and suppose that λ ∈ L. Then we find uλ ∈ S(λ) ⊆ D+ which means

〈A(uλ), h〉+

∫
∂Ω

β(x)up−1
λ hdσ =

∫
Ω

f(x, uλ, λ)hdx for all h ∈W 1,p(Ω). (3.4)

Choosing h = uλ ∈ D+ in (3.4) and using Lemma 2.3 gives

c1
p− 1

‖∇uλ‖pp +

∫
∂Ω

β(x)upλdσ ≤
∫

Ω

f(x, uλ, λ)uλdx.

Applying (3.2), (3.3) and hypothesis H(f)(iv) implies c11‖uλ‖p1,p ≤ ε‖uλ‖
p
1,p and so

c11 ≤ ε, a contradiction. Therefore, λ 6∈ L, hence 0 < λ̃ ≤ λ∗. �

Proposition 3.4. If hypotheses H(a), H(β) and H(f) hold, then L 6= ∅.

Proof. Using hypotheses H(f)(i), (ii) we see that for given ε > 0 and λ > 0 there
exists c12 = c12(ε, λ) > 0 such that

F (x, s, λ) ≤ ε

p
sp−1 + c12 for a.a.x ∈ Ω and for all s ≥ 0. (3.5)

We consider the C1-functional ϕλ : W 1,p(Ω)→ R defined by

ϕλ(u) =

∫
Ω

G(x,∇u)dx+
1

p

∫
∂Ω

β(x)|u|pdσ −
∫

Ω

F (x, s, λ)dx.

Using Corollary 2.4, (3.5) and Proposition 2.8 results in

ϕλ(u) =
c1

p(p− 1)
‖∇‖pp +

1

p

∫
∂Ω

β(x)|u|pdσ − ε

p
‖u+‖pp − c12|Ω|N

≥ c13‖u‖p1,p − c12|Ω|N
for some c13 > 0. Hence, ϕλ is coercive. Applying the Rellich-Kondrachov theorem
and the compactness of the trace map, we easily see that ϕλ is sequentially weakly
lower semicontinuous. So, by the Weierstraß-Tonelli theorem there exists uλ ∈
W 1,p(Ω) such that

ϕλ(uλ) = inf
[
ϕλ(u) : u ∈W 1,p(Ω)

]
. (3.6)

Hypothesis H(f)(iv) implies that

f(x, s, λ) > 0 for a.a.x ∈ Ω, for all s > 0 and for all λ > 0.

This gives

F (x, s, λ) > 0 for a.a.x ∈ Ω, for all s > 0 and for all λ > 0.

So, if ũ ∈ D+, then ∫
Ω

F (x, ũ, λ) dx > 0

and by Fatou’s lemma we have∫
Ω

F (x, ũ, λ) dx→ +∞ as λ→ +∞.

Therefore, we can find λ̃ > 0 such that∫
Ω

G(x,∇ũ)dx+
1

p

∫
∂Ω

β(x)ũpdσ <

∫
Ω

F (x, ũ, λ) dx for all λ > λ̃.

Hence ϕλ(ũ) < 0 = ϕλ(0) for all λ > λ̃ and so, due to (3.6), we have ϕλ(uλ) < 0 =

ϕλ(0) for all λ > λ̃. This shows that uλ 6= 0 for all λ > λ̃.
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Since uλ is a global minimizer of ϕλ we have ϕ′λ(uλ) = 0 which is equivalent to

〈A(uλ), h〉+

∫
∂Ω

β(x)|uλ|p−2uλhdσ =

∫
Ω

f(x, uλ, λ)hdx (3.7)

for all h ∈ W 1,p(Ω). We choose h = −u−λ ∈ W 1,p(Ω) in (3.7) and use Lemma 2.3
to obtain

c1
p− 1

‖∇u−λ ‖
p
p +

∫
∂Ω

β(x)(u−λ )pdσ ≤ 0.

Proposition 2.8 then implies that

c14‖u−λ ‖
p
1,p ≤ 0 for some c14 > 0.

Hence, uλ ≥ 0 and uλ 6= 0 for all λ > λ̃. Therefore, uλ ∈ S(λ) ⊆ D+ for all λ > λ̃
and so L 6= ∅. �

Proposition 3.5. If hypotheses H(a), H(β), H(f) hold and λ ∈ L, then (λ,+∞) ⊆
L.

Proof. Let µ > λ and let uλ ∈ S(λ) ⊆ D+. We introduce the following truncation
perturbation of the right-hand side nonlinearity in (Pλ)

kµ(x, s) =

{
f(x, uλ(x), µ) + (uλ(x))p−1 if s < uλ(x),

f(x, s, µ) + sp−1 if uλ(x) ≤ s.
(3.8)

It is easy to see that this is a Carathéodory function. Furthermore, we setKµ(x, s) =∫ s
0
kµ(x, t)dt and consider the C1-functional ϕ̂µ : W 1,p(Ω)→ R defined by

ϕ̂µ(u) =

∫
Ω

G(x,∇u)dx+
1

p
‖u‖pp +

1

p

∫
∂Ω

β(x)|u|pdσ −
∫

Ω

kµ(x, uµ)dx.

As we did in Proposition 3.4 for the functional ϕλ, we can show that ϕ̂µ is coercive
and sequentially weakly lower semicontinuous. Therefore, there exists a global
minimizer uµ ∈W 1,p(Ω) of ϕ̂µ, that is,

ϕ̂µ(uµ) = inf
[
ϕ̂µ(u) : u ∈W 1,p(Ω)

]
.

Hence, ϕ̂′µ(uµ) = 0 which means

〈A(uµ), h〉+

∫
Ω

|uµ|p−2uµhdx+

∫
∂Ω

β(x)|uµ|p−2uµhdσ =

∫
Ω

kµ(x, uµ)hdx (3.9)
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for all h ∈ W 1,p(Ω). We choose h = (uλ − uµ)+ ∈ W 1,p(Ω) in (3.9). This along
with (3.8), hypothesis H(f)(iv) and the fact that uλ ∈ S(λ) yields

〈A(uµ), (uλ − uµ)+〉+

∫
Ω

|uµ|p−2uµ(uλ − uµ)+dx

+

∫
∂Ω

β(x)|uµ|p−2uµ(uλ − uµ)+dσ

=

∫
Ω

[f(x, uλ, µ) + up−1
λ ](uλ − uµ)+dx

≥
∫

Ω

[f(x, uλ, λ) + up−1
λ ](uλ − uµ)+dx

= 〈A(uλ), (uλ − uµ)+〉+

∫
Ω

up−1
λ (uλ − uµ)+dx

+

∫
∂Ω

β(x)up−1
λ (uλ − uµ)+dσ.

This implies

〈A(uλ)−A(uµ), (uλ − uµ)+〉+

∫
Ω

[
up−1
λ − |uµ|p−2uµ

]
(uλ − uµ)+dx

+

∫
∂Ω

β(x)
[
up−1
λ − |uµ|p−2uµ

]
(uλ − uµ)+dσ ≤ 0.

Hence, due to Lemma 2.3 and hypotheses H(β), uλ ≤ uµ. Then from (3.8) and
(3.9) it follows that uµ ∈ S(µ) ⊆ D+ which says that µ ∈ L. So we have proved
that [λ,+∞) ⊆ L. �

An interesting byproduct of the proof above is the following monotonicity result.

Corollary 3.6. If hypotheses H(a), H(β), H(f) hold, λ ∈ L, uλ ∈ S(λ) and µ > λ,
then there exists uµ ∈ S(µ) such that uλ ≤ uµ.

Proposition 3.5 implies that

(λ∗,+∞) ⊆ L ⊆ [λ∗,+∞) . (3.10)

Next we show that problem (Pλ) has multiple solutions for all λ > λ∗.

Proposition 3.7. If hypotheses H(a), H(β), H(f) hold and λ > λ∗, then problem
(Pλ) has at least two positive solutions uλ, ûλ ∈ D+.

Proof. Let λ∗ < τ < λ < µ. From (3.10) we know that τ, µ ∈ L and applying
Corollary 3.6 there exist uτ ∈ S(τ) ⊆ D+ and uµ ∈ S(µ) ⊆ D+ such that

uτ ≤ uµ, uτ 6= uµ.

We introduce the following truncation perturbation of the right-hand side nonlin-
earity of problem (Pλ)

eλ(x, s) =


f(x, uτ (x), λ) + (uτ (x))p−1 if s < uτ (x),

f(x, s, λ) + sp−1 if uτ (x) ≤ s ≤ uµ(x),

f(x, uµ(x), λ) + (uµ(x))p−1 if uµ(x) < s,

(3.11)
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which is a Carathéodory function. Setting Eλ(x, s) =
∫ s

0
eλ(x, t)dt we then intro-

duce the C1-functional ψλ : W 1,p(Ω)→ R defined by

ψλ(u) =

∫
Ω

G(x,∇u)dx+
1

p
‖u‖pp +

1

p

∫
∂Ω

β(x)|u|pdσ −
∫

Ω

Eλ(x, u)dx.

From (3.11) and hypotheses H(β) we see that ψλ is coercive. Moreover, the Rellich-
Kondrachov theorem and the compactness of the trace operator imply that ψλ is
sequentially weakly lower semicontinuous. Hence, we find uλ ∈W 1,p(Ω) such that

ψλ(uλ) = inf
[
ψλ(u) : u ∈W 1,p(Ω)

]
. (3.12)

From (3.12) we have ψ′λ(uλ) = 0 which gives

〈A(uλ), h〉+

∫
Ω

|uλ|p−2uλhdx+

∫
∂Ω

β(x)|uλ|p−2uλhdσ =

∫
Ω

eλ(x, uλ)hdx. (3.13)

We choose h = (uλ − uµ)+ ∈ W 1,p(Ω) in (3.13). Then using (3.11), hypothesis
H(f)(iv) and uµ ∈ S(µ) we obtain

〈A(uλ), (uλ − uµ)+〉+

∫
Ω

up−1
λ (uλ − uµ)+dx

+

∫
∂Ω

β(x)up−1
λ (uλ − uµ)+dσ

=

∫
Ω

[f(x, uµ, λ) + up−1
µ ](uλ − uµ)+dx

≤
∫

Ω

[f(x, uµ, µ) + up−1
µ ](uλ − uµ)+dx

= 〈A(uµ), (uλ − uµ)+〉+

∫
Ω

up−1
µ (uλ − uµ)+dx

+

∫
∂Ω

β(x)up−1
µ (uλ − uµ)+dσ.

This gives

〈A(uλ)−A(uµ), (uλ − uµ)+〉+

∫
Ω

[
up−1
λ − up−1

µ

]
(uλ − uµ)+dx

+

∫
∂Ω

β(x)
[
up−1
λ − up−1

µ

]
(uλ − uµ)+dσ ≤ 0.

Then Lemma 2.3 and hypotheses H(β) imply that uλ ≤ uµ. If we choose h =
(uτ −uλ)+ ∈W 1,p(Ω) and reason as above, we obtain uτ ≤ uλ. So we have proved
that

uλ ∈ [uτ , uµ], uλ 6∈ {uτ , uµ}, (3.14)

see hypothesis H(f)(iv). Then from (3.13), (3.14) and (3.11) it follows that uλ ∈
S(λ) ⊆ D+. We have

−div a(x,∇uτ (x)) = f(x, uτ (x), τ) =: h1(x) for a.a.x ∈ Ω,

−div a(x,∇uλ(x)) = f(x, uλ(x), λ) =: h2(x) for a.a.x ∈ Ω,

−div a(x,∇uµ(x)) = f(x, uµ(x), µ) =: h3(x) for a.a.x ∈ Ω.

Note that (3.14) and hypothesis H(f)(iv) imply that

h1 ≤ h2 ≤ h3, h1 6= h2, h2 6= h3.
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Furthermore, we have

∂uτ
∂na

∣∣∣∣
∂Ω

< 0,
∂uλ
∂na

∣∣∣∣
∂Ω

< 0,
∂uµ
∂na

∣∣∣∣
∂Ω

< 0

since uτ , uλ, uµ ∈ D+. Thus, we can apply Proposition 2.10 and obtain

uλ − uτ ∈ D̂+ and uµ − uλ ∈ D̂+. (3.15)

Consider now the C1-functional ϕλ introduced in the proof of Proposition 3.4. From
(3.11) we see that

ψλ = ϕλ + ξ̂λ on [uτ , uµ] with ξ̂λ ∈ R.

Then, due to (3.15), we see that uλ is a local C1(Ω)-minimizer of ϕλ and so,

uλ is a local W 1,p(Ω)-minimizer of ϕλ, (3.16)

see Proposition 2.6. Hypothesis H(f)(iii) implies that for a given ε > 0 there exists
δ = δ(ε) > 0 such that

0 ≤ F (x, s, λ) ≤ ε

p
sp for a.a.x ∈ Ω and for all 0 ≤ s ≤ δ. (3.17)

Let u ∈ C1(Ω) with ‖u‖C1(Ω) ≤ δ. Then from Corollary 2.4, (3.17) and Proposition

2.8 we see that

ϕλ(u) ≥ c1
p(p− 1)

‖∇u‖pp +
1

p

∫
∂Ω

β(x)|u|pdσ − ε

p
‖u‖pp

≥ c15‖u‖p1,p −
ε

p
‖u‖p1,p

for some c15 > 0. Let ε ∈ (0, pc15). Then we see that u = 0 is a local C1(Ω)-
minimizer of ϕλ and so, again due to Proposition 2.6, u = 0 is a local W 1,p(Ω)-
minimizer of ϕλ.

We may assume, without any loss of generality, that 0 = ϕλ(0) ≤ ϕλ(uλ). The
treatment is similar if the opposite inequality holds. Moreover, we assume that
Kϕλ is finite, otherwise we already have an infinite number of positive solutions of
problem (Pλ). From (3.16) it follows that there exists ρ ∈ (0, 1) small enough such
that

0 = ϕλ(0) ≤ ϕλ(uλ) < inf [ϕλ(u) : ‖u− uλ‖ = ρ] = mλ, ‖uλ‖ > ρ, (3.18)

see Aizicovici-Papageorgiou-Staicu [1, Proof of Proposition 29]. Recall that ϕλ is
coercive, see the proof of Proposition 3.4. Hence

ϕλ satisfies the PS-condition. (3.19)

From (3.18) and (3.19) we see that we can apply the mountain pass theorem stated
as Theorem 2.1. This gives ûλ ∈ W 1,p(Ω) such that ûλ ∈ Kϕλ and mλ ≤ ϕλ(ûλ).
Hence, ûλ ∈ S(λ) ⊆ D+ and due to (3.18) we obtain that ûλ 6∈ {0, uλ}. �

It is natural to ask whether the critical parameter λ∗ > 0 is admissible. The
next proposition shows that λ∗ is indeed admissible, that is, λ∗ ∈ L.

Proposition 3.8. If hypotheses H(a), H(β) and H(f) hold, then λ∗ ∈ L, that is,
L = [λ∗,+∞), see (3.10).
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Proof. Let {λn}n≥1 ⊆ (λ∗,+∞) be a sequence such that λn ↘ λ∗. From the proof
of Proposition 3.7 we see that we can find un ∈ S(λn) ⊆ D+ for n ∈ N such that
{un}n≥1 is decreasing. Since un ∈ S(λn) we have

〈A(un), h〉+

∫
∂Ω

β(x)up−1
n dσ =

∫
Ω

f(x, un, λn)hdx for all h ∈W 1,p(Ω). (3.20)

We choose h = un ∈W 1,p(Ω) in (3.20). Then, from Lemma 2.3, hypothesis H(f)(i)
and since 0 ≤ un ≤ u1 for all n ∈ N, we obtain

c1
p− 1

‖∇un‖pp +

∫
∂Ω

β(x)upndσ ≤ c16 for some c16 > 0 and for all n ∈ N.

Hence

{un}n≥1 ⊆W 1,p(Ω) is bounded, (3.21)

see Proposition 2.8. So, we may assume that

un
w→ uλ∗ in W 1,p(Ω) and un → uλ∗ in Lp(Ω) and Lp(∂Ω). (3.22)

From (3.21) and Winkert [23] we see that there exists c17 > 0 such that ‖un‖∞ ≤ c17

for all n ∈ N. Then from Lieberman [16] we know that we can find α′ ∈ (0, 1) and
c18 > 0 such that

un ∈ C1,α′(Ω) and ‖un‖C1,α′ (Ω) ≤ c18 for all n ∈ N. (3.23)

From the compact embedding C1,α′(Ω) into C1(Ω) and from (3.22) as well as (3.23)
it follows that

un → uλ∗ in C1(Ω). (3.24)

Hypothesis H(f)(iii) implies that for a given ε > 0 there exists δ = δ(ε) > 0 such
that

0 ≤ f(x, s, λ1)s ≤ εsp for a.a.x ∈ Ω and for all 0 ≤ s ≤ δ.
Then, by hypothesis H(f)(iv) we obtain

0 ≤ f(x, s, λn)s ≤ εsp for a.a.x ∈ Ω, for all 0 ≤ s ≤ δ and for all n ∈ N. (3.25)

Suppose that uλ∗ = 0. From (3.24) we see that there exists n0 ∈ N such that

un(x) ∈ (0, δ] for all x ∈ Ω and for all n ≥ n0. (3.26)

So, if we choose h = un ∈ D+ in (3.20), we obtain, due to (3.25) and (3.26), that

c1
p− 1

‖∇un‖pp +

∫
Ω

β(x)upndσ ≤
ε

p
‖un‖pp for all n ≥ n0.

Hence c19‖un‖p1,p ≤ ε‖un‖p1,p for all n ≥ n0 and for some c19 > 0. Therefore,
c19 ≤ ε. Since ε > 0 is arbitrary, letting ε ↘ 0, we reach a contradiction. Thus,
uλ∗ 6= 0. If we pass to the limit in (3.20) as n→∞ and use (3.24), then we conclude
that uλ∗ ∈ S(λ∗) ⊆ D+ and so λ∗ ∈ L. �

So we can state our first theorem. This is a bifurcation-type result describing
the changes in the set of positive solutions as the parameter λ > 0 varies.

Theorem 3.9. If hypotheses H(a), H(β) and H(f) hold, then there exists λ∗ > 0
such that the following is satisfied:

(a) problem (Pλ) has at least two positive solutions uλ, ûλ ∈ D+ for all λ > λ∗;
(b) problem (Pλ) has at least one positive solution uλ∗ ∈ D+ for λ = λ∗;
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(c) problem (Pλ) has no positive solution for all λ ∈ (0, λ∗);

Remark 3.10. Hypothesis H(β) leaves out the Neumann problem of our consider-
ations, that is, the case β ≡ 0. Indeed, under hypotheses H(f), problem (Pλ) with
β ≡ 0 and λ > 0 cannot have positive solutions. In order to see this, suppose we
could find a positive solution uλ. Then, as before, using the nonlinear regularity
theory and the nonlinear maximum principle, we can show that uλ ∈ D+. Moreover

〈A(uλ), h〉 =

∫
Ω

f(x, uλ, λ)hdx for all h ∈W 1,p(Ω).

Choosing h ≡ 1 ∈W 1,p(Ω) gives∫
Ω

f(x, uλ, λ)dx = 0.

Since uλ ∈ D+ we get 0 < mλ = minΩ uλ and then for τ < λ we have∫
Ω

f(x,mλ, τ)dx < 0,

see hypothesis H(f)(iv), a contradiction. So, the Neumann problem cannot have
positive solutions.

In the last part of this section we show that problem (Pλ) has a smallest pos-
itive solution u∗λ ∈ D+ for every λ ∈ L and we investigate the monotonicity and
continuity properties of the map λ→ u∗λ.

First we prove the existence of a smallest positive solution u∗λ ∈ D+ for every
λ ∈ L.

Proposition 3.11. If hypotheses H(a), H(β) and H(f) hold, then problem (Pλ)
admits a smallest positive solution u∗λ ∈ D+ for every λ ∈ L.

Proof. From Papageorgiou-Rădulescu-Repovš [20, see the proof of Proposition 7]
we know that S(λ) is downward directed, that is, if u, û ∈ S(λ), then there exists
ũ ∈ S(λ) such that ũ ≤ u and ũ ≤ û. Invoking Lemma 3.10 of Hu-Papageorgiou [15]
there exists a decreasing sequence {un}n≥1 ⊆ S(λ) such that inf S(λ) = infn≥1 un.
We have 0 ≤ un ≤ u1 ∈ D+ for all n ∈ N and

〈A(un), h〉+

∫
∂Ω

β(x)up−1
n hdx =

∫
Ω

f(x, un, λ)hdx (3.27)

for all h ∈ W 1,p(Ω) and for all n ∈ N. Choosing h = un ∈ D+ and using Lemma
2.3, Proposition 2.8 as well as hypothesis H(f)(i) we easily see that

{un}n≥1 ⊆W 1,p(Ω) is bounded. (3.28)

As in the proof Proposition 3.8, using (3.28) and the nonlinear regularity theory,
we obtain, at least for a subsequence, that

un → u∗λ in C1(Ω) as n→∞. (3.29)

Again, as in the proof of Proposition 3.8, using hypothesis H(f)(iii) and (3.29), we
show that u∗λ 6= 0. Then, if we pass to the limit in (3.27) as n→∞ and use (3.29),
we infer that u∗λ ∈ S(λ) ⊆ D+. Therefore, u∗λ = inf S(λ). �

Next we consider the map γ : L → C1(Ω) defined by

γ(λ) = u∗λ for all λ ∈ L = [λ∗,+∞).
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Proposition 3.12. If hypotheses H(a), H(β) and H(f) hold, then the map γ is

strictly increasing in the sense that λ < µ implies u∗µ − u∗λ ∈ D̂+. Moreover, γ is
left continuous on L0 = (λ∗,+∞).

Proof. Let λ ∈ L and let µ > λ. Then µ ∈ L. We consider u∗µ ∈ S(µ) ⊆ D+ which
is the minimal positive solution of problem (Pµ). According to Corollary 3.6 there
exists uλ ∈ S ⊆ D+ such that uλ ≤ u∗µ. Hence, u∗λ ≤ u∗µ. In fact, as in the proof of

Proposition 3.7, using Proposition 2.10, we can show that u∗µ − u∗λ ∈ D̂+.
Now we prove the left continuity of γ on L0 = (λ∗,+∞). So, suppose that

λn → λ− with λn > λ∗ for all n ∈ N. We have u∗λn ≤ u∗λ for all n ∈ N. As in the
proof of Proposition 3.8, we can show that

u∗λn → ũλ in C1(Ω). (3.30)

If ũλ 6= u∗λ, then we can find z0 ∈ Ω such that u∗λ(z0) < ũλ(z0). From (3.30) we see
that u∗λ(z0) < u∗λn(z0) for all n ≥ n0 which contradicts the monotonicity of γ. �

4. Nodal Solutions

In this section we are interested in the existence of nodal solutions for problem
(Pλ). In order to do this, we need to impose the conditions on f(x, ·) on all of R.
So, we introduce the following bilateral version of hypothesis H(f).

H(f)1: f : Ω × R × (0,+∞) → R is a function such that (x, s) → f(x, s, λ) is a
Carathéodory function for every λ > 0, f(x, 0, λ) = 0 for a.a.x ∈ Ω, for all
λ > 0 and

(i) for every ρ > 0 and every λ0 > 0 there exists aλ0
ρ ∈ L∞(Ω)+ such that

0 ≤ f(x, s, λ) ≤ aλ0
ρ (x)

for a.a.x ∈ Ω, for all |s| ≤ ρ and for all 0 < λ ≤ λ0;

(ii) for every λ > 0 there holds

lim
s→±∞

f(x, s, λ)

|s|p−2s
= 0 uniformly for a.a.x ∈ Ω;

(iii) for every λ > 0 there holds

lim
s→0

f(x, s, λ)

|s|p−2s
= 0 uniformly for a.a.x ∈ Ω;

(iv) • s → f(x, s, λ) is nondecreasing on R for a.a.x ∈ Ω and for every
λ > 0;

• λ → f(x, s, λ) is strictly increasing (resp. strictly decreasing) for
a.a.x ∈ Ω and for all s > 0 (resp. s < 0);

• f(x, s, λ) → 0 as λ → 0+ uniformly for a.a.x ∈ Ω and for all
x ∈ K ⊆ R with K being compact; moreover f(x, s, λ) → +∞
(resp.−∞) as λ→ +∞ for a.a.x ∈ Ω and for all s > 0 (resp. s < 0).

The new conditions also apply on the negative semiaxis (−∞, 0]. So, working as
in the first part of this section, we can have a bifurcation-type result for negative
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solutions of (Pλ). More precisely, let

L̃ = {λ > 0 : problem (Pλ) has a negative solution} ,

S̃(λ) = {u : u is a negative solution of problem (Pλ)}.

Then there exists λ̃∗ > 0 such that

L̃ =
[
λ̃∗,+∞

)
, S̃(λ) ⊆ −D+ for all λ ∈ L̃,

problem (Pλ) has two negative solutions for all λ > λ̃∗ and problem (Pλ) admits a

greatest negative solution v∗λ ∈ S̃(λ) ⊆ −D+ for every λ ∈ L̃.

Let λ∗0 = max{λ∗, λ̃∗}. Then problem (Pλ) has a smallest positive solution
u∗λ ∈ D+ and a greatest negative solution v∗λ ∈ −D+ for all λ ≥ λ∗0. Using them
we can generate a nodal solution when λ ≥ λ∗0 is large enough.

Theorem 4.1. If hypotheses H(a), H(β) and H(f)1 hold, then there exists λ∗1 ≥ λ∗0
such that problem (Pλ) admits a nodal solution yλ ∈ [v∗λ, u

∗
λ]∩C1(Ω) for all λ ≥ λ∗1.

Proof. We consider the following truncation perturbation of the right-hand side
nonlinearity of problem (Pλ)

f̂λ(x, s) =


f (x, v∗λ(x), λ) + |v∗λ(x)|p−2(x)|v∗λ(x) if s < v∗λ(x),

f(x, s, λ) + |s|p−2s if v∗λ(x) ≤ s ≤ u∗λ(x),

f (x, u∗λ(x), λ) + (u∗λ(x))p−1 if u∗λ(x) < s.

(4.1)

Of course, f̂λ : Ω × R → R is a Carathéodory function for every λ ≥ λ∗0. We set

F̂λ(x, s) =
∫ s

0
f̂λ(x, t)dt and consider the C1-functional ψ̂λ : W 1,p(Ω) → R defined

by

ψ̂λ(u) =

∫
Ω

G(x,∇u)dx+
1

p
‖u‖pp +

1

p

∫
∂Ω

β(x)|u|pdσ −
∫

Ω

F̂λ(x, u)dx.

Furthermore, let f̂±λ be the positive and negative truncations of f̂λ(x, ·), that is,

f̂±λ (x, s) = f̂λ(x,±s±). Both are Carathéodory functions. We set F̂±λ (x, s) =∫ s
0
f̂±λ (x, t)dt and consider the C1-functionals ψ̂±λ : W 1,p(Ω)→ R defined by

ψ̂±λ (u) =

∫
Ω

G(x,∇u)dx+
1

p
‖u‖pp +

1

p

∫
∂Ω

β(x)|u|pdσ −
∫

Ω

F̂±λ (x, u)dx.

Claim 1: Kψ̂λ
⊆ [v∗λ, u

∗
λ]∩C1(Ω), Kψ̂+ = {0, u∗λ}, Kψ̂−λ

= {0, v∗λ} for all λ ≥ λ∗0
Let u ∈ Kψ̂λ

. Then

〈A(u), h〉+

∫
Ω

|u|p−2uhdx+

∫
∂Ω

β(x)|u|p−2uhdσ =

∫
Ω

f̂λ(x, u)hdx

for all h ∈ W 1,p(Ω). First, let h = (u − u∗λ)+ ∈ W 1,p(Ω) in the equality above.
Applying (4.1) and the fact that u∗λ ∈ S(λ) gives

〈A(u), (u− u∗λ)+〉+

∫
Ω

up−1(u− u∗λ)+dx+

∫
∂Ω

β(x)up−1(u− u∗λ)+dσ

=

∫
Ω

[
f (x, u∗λ, λ) + (u∗λ)

p−1
]

(u− u∗λ)+dx

=
〈
A (u∗λ) , (u− u∗λ)+

〉
+

∫
Ω

(u∗λ)
p−1

(u− u∗λ)+dx+

∫
∂Ω

β(x) (u∗λ)
p−1

(u− u∗λ)+dσ.
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As before, see the proof of Proposition 3.5 or Proposition 3.7, this shows that
u ≤ u∗λ. Similarly, using h = (v∗ − u)+ ∈ W 1,p(Ω), we obtain v∗λ ≤ u. Hence,
u ∈ [v∗λ, u

∗
λ]. Taking (4.1) into account, we see that u is a solution of (Pλ). Then,

as before, the nonlinear regularity theory implies that u ∈ C1(Ω). Hence, Kψ̂λ
⊆

[v∗λ, u
∗
λ] ∩ C1(Ω).

In a similar way we prove that

Kψ̂+
λ
⊆
[
0, u∗λ

]
∩ C1(Ω) and Kψ̂−λ

⊆
[
v∗λ, 0

]
∩ C1(Ω).

The extremality of u∗λ and v∗λ, see Proposition 3.11 and recall λ ≥ λ∗0, implies that

Kψ̂+
λ

=
{

0, u∗λ
}

and Kψ̂−λ
=
{
v∗λ, 0

}
.

This proves Claim 1.
Claim 2: There exists λ∗1 ≥ λ∗0 such that u∗λ ∈ D+ and v∗λ ∈ −D+ are local

minimizers for the functional ψ̂λ for all λ ≥ λ∗1.

From (4.1) we see that ψ̂λ is coercive. Moreover, it is sequentially weakly lower
semicontinuous. So, by the Weierstraß-Tonelli theorem there exists ũ∗λ ∈ W 1,p(Ω)
such that

ψ̂+
λ (ũ∗λ) = inf

[
ψ̂λ(u) : u ∈W 1,p(Ω)

]
. (4.2)

Recall that F (x, η, λ) > 0 for a.a.x ∈ Ω, for all λ > 0 and for all η ∈ (0,+∞).
Hence ∫

Ω

F (x, η, λ)dx→ +∞ as λ→ +∞. (4.3)

Fix λ̃ > 0, recall that u∗
λ̃
∈ D+ and choose η ∈ (0,minΩ u

∗
λ̃
). On account of

Proposition 3.12 we have

η < min
Ω
u∗
λ̃
≤ min

Ω
u∗λ for all λ ≥ λ̃.

This fact along with (4.1) yields

ψ̂+
λ (η) =

ηp

p
‖β‖L1(∂Ω) −

∫
Ω

F (x, η, λ)dx for all λ ≥ λ̃.

From (4.3) we see that by choosing λ̃ > 0 large enough we obtain ψ̂+
λ (η) < 0 for all

λ ≥ λ̃. Then

ψ̂+
λ

(
ũ+
λ

)
< 0 = ψ̂+

λ (0) for all λ ≥ λ∗1 = max
{
λ̃, λ∗0

}
,

see (4.2). Therefore, ũ∗λ 6= 0 for all λ ≥ λ∗1.
Since ũ∗λ ∈ Kψ̂+

λ
, invoking Claim 1, we have

ũ∗λ = u∗λ ∈ D+ for all λ ≥ λ∗1. (4.4)

Note that

ψ̂λ
∣∣
C1(Ω)+

= ψ̂+
λ

∣∣
C1(Ω)+

.

Thus, u∗λ is a local C1(Ω)-minimizer of ψ̂λ for all λ ≥ λ∗1, see (4.4). Then, Propo-

sition 2.6 implies that u∗λ is a local W 1,p(Ω)-minimizer of ψ̂λ for all λ ≥ λ∗1. This
proves Claim 2.

We may assume that

ψλ (v∗λ) ≤ ψλ (u∗λ) .
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The reasoning is similar if the opposite inequality holds. Moreover, we assume that
Kψ̂λ

is finite, otherwise we already have an infinite number of nodal solutions on

account of Claim 1 and the extremality of u∗λ and v∗λ. This fact and Claim 2 imply
that there exists ρ ∈ (0, 1) such that

ψ̂λ (v∗λ) ≤ ψ̂λ (u∗λ) < inf
[
ψ̂λ(u) : ‖u− u∗λ‖ = ρ

]
= mλ, ‖v∗λ − u∗λ‖ > ρ (4.5)

for λ ≥ λ∗1.

Because of (4.1) we know that ψ̂λ is coercive for all λ ≥ λ∗0 and this implies that

ψ̂λ satisfies the PS-condition for all λ ≥ λ∗0. (4.6)

Then (4.5) and (4.6) permit the use of the mountain pass theorem stated as Theo-
rem 2.1. Therefore, we find yλ ∈W 1,p(Ω) such that

yλ ∈ Kψ̂λ
and mλ ≤ ψ̂λ(yλ). (4.7)

From (4.5) and (4.7) it follows that

yλ 6∈ {u∗λ, v∗λ} for all λ ≥ λ∗1. (4.8)

In addition, from (4.7) and Claim 1, we have

yλ ∈ [v∗λ, u
∗
λ] ∩ C1(Ω) for all λ ≥ λ∗1. (4.9)

From (4.8) and (4.9) we see that if we can show the nontriviality of yλ, then this
will be a nodal solution of (Pλ). To this end, note that yλ is a critical point of

mountain pass type for ψ̂λ. Therefore, we obtain

C1

(
ψ̂λ, yλ

)
6= 0 for all λ ≥ λ∗1, (4.10)

see Motreanu-Motreanu-Papageorgiou [17, Corollary 6.81, p. 168]. We consider the
homotopy hλ : [0, 1]×W 1,p(Ω)→ R defined by

hλ(t, u) = (1− t)ψ̂λ(u) + tϕλ(u) for all λ ≥ λ∗1.

Suppose we could find sequences {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆ W 1,p(Ω) such
that

tn → t, un → 0 in W 1,p(Ω) and (hλ)
′
u (tn, un) = 0 for all n ∈ N, (4.11)

which results in

〈A(un), h〉+ (1− tn)

∫
Ω

|un|p−2unhdx+

∫
∂Ω

β(x)|un|p−2unhdσ

=

∫
Ω

[
(1− tn)f̂λn(x, un) + tnf(x, un, λn)

]
hdx for all h ∈W 1,p(Ω).

This means

− div a(x,∇un(x)) + (1− tn)|un(x)|p−2un(x)

= (1− tn)f̂λn(x, un(x)) + tnf(x, un(x), λn) for a.a.x ∈ Ω,

∂u

∂na
+ β(x)|un|p−2un = 0 on ∂Ω.
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From Winkert [23] we know that there exists c20 > 0 such that ‖un‖∞ ≤ c20 for all
n ∈ N. Then the nonlinear regularity theory of Lieberman [16] implies that we can
find η ∈ (0, 1) and c21 > 0 such that

un ∈ C1,η(Ω) and ‖un‖C1,η(Ω) ≤ c21 for all n ∈ N.

From (4.11) and the compact embedding of C1,η(Ω) into C1(Ω) it follows that
un → 0 in C1(Ω) as n → ∞. Hence, un ∈ [v∗λ, u

∗
λ] for all n ≥ n0 and so, due

to Claim 1, {un}n≥n0
⊆ Kψ̂λ

. This contradicts the finiteness of Kψ̂λ
. Therefore,

(4.11) cannot occur and so from the homotopy invariance of critical groups, see
Gasiński-Papageorgiou [12, Theorem 5.125, p. 836], we have

Ck

(
ψ̂λ, 0

)
= Ck (ϕλ, 0) for all k ∈ N0 and for all λ ≥ λ∗1.

Since u = 0 is a local minimizer of ϕλ, see the proof of Proposition 3.7, we obtain

Ck

(
ψ̂λ, 0

)
= δk,0Z for all k ∈ N0. (4.12)

Comparing (4.10) and (4.12) we see that yλ 6= 0. Hence

yλ ∈ [v∗λ, u
∗
λ] ∩ C1(Ω)

is a nodal solution of problem (Pλ) for all λ ≥ λ∗1. �

We can improve the conclusion of the previous theorem by strengthening the
conditions on the map a : Ω× RN → RN . The new conditions read as follows.

H(a)1: a(x, ξ) = a0 (x, ‖ξ‖RN ) ξ with a0 ∈ C(Ω × R+) for all ξ ∈ RN where R+ =
[0,+∞) and with a0(x, t) > 0 for all x ∈ Ω, for all t > 0, hypotheses
H(a)1(i), (ii), (iv) are the same as the corresponding hypotheses H(a)(i),
(ii), (iv) and

(iii) (∇ξa(x, ξ)y, y)RN ≥ c22‖y‖2 for all x ∈ Ω, for all ξ ∈ RN \ {0}, for all

y ∈ RN and for some c22 > 0.

Remark 4.2. So, we have strengthened the coercivity condition on ∇ξa(x, ·).

Example 4.3. Let â ∈ C1(Ω) be such that

0 < η0 ≤ â(x) ≤ η1 and 0 < η0 ≤ ‖∇â(x)‖RN ≤ η1 for all x ∈ Ω.

Then the following maps satisfy hypotheses H(a)1:

a1(x, ξ) = â‖ξ‖p−2
RN ξ + ln (c+ ‖ξ‖RN ) ξ with 2 ≤ p <∞, c > 1,

a2(x, ξ) = â(x)‖ξ‖p−2
RN ξ + ξ with 2 < p <∞,

a3(x, ξ) = A0(x)ξ with A0 ∈ C1
(
Ω,RN×N

)
positive definite.

We have the following result.

Proposition 4.4. If hypotheses H(a)1, H(β) and H(f)1 hold, then there exists
λ∗1 ≥ λ∗0 such that problem (Pλ) has a nodal solution

yλ ∈ int
C1(Ω)

[v∗λ, u
∗
λ]

for all λ ≥ λ∗1.



SOLUTIONS WITH SIGN INFORMATION FOR NONLINEAR PROBLEMS 23

Proof. From Theorem 4.1 we know that there exists λ∗1 ≥ λ∗0 such that problem
(Pλ) admits a nodal solution

yλ ∈ [v∗λ, u
∗
λ] ∩ C1(Ω)

for all λ ≥ λ∗1. Since yλ ≤ u∗λ we obtain

−div a(x,∇yλ(x)) + |yλ(x)|p−2yλ(x) = f (x, yλ(x), λ) + |yλ(x)|p−2yλ(x)

≤ f (x, u∗λ(x), λ) + (u∗λ(x))
p−1

= −div a (x,∇u∗λ(x)) + (u∗λ(x))
p−1

.

(4.13)

Hypotheses H(a)1(iii) and the tangency principle of Pucci-Serrin [21, Theorem 2.5.2,
p. 35] imply that

yλ(x) < u∗λ(x) for all x ∈ Ω. (4.14)

We set

h1(x) = f (x, yλ(x), λ) + |yλ(x)|p−2
yλ(x),

h2(x) = f (x, u∗λ(x), λ) + (u∗λ(x))
p−1

.

Evidently, h1, h2 ∈ L∞(Ω) and since yλ, u
∗
λ ∈ C1(Ω) we infer from (4.14) that

h1 ≺ h2. Then because of (4.13) and Proposition 2.9 we obtain

u∗λ − yλ ∈ D̂+.

In a similar way we prove that

yλ − v∗λ ∈ D̂+.

Therefore, we conclude that yλ ∈ intC1(Ω)[v
∗
λ, u
∗
λ]. �

References

[1] S. Aizicovici, N. S. Papageorgiou, V. Staicu, “Degree Theory for Operators of Monotone
Type and Nonlinear Elliptic Equations with Inequality Constraints”, Mem. Amer. Math. Soc.,

Vol. 196, no. 915, 2008.

[2] A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities
in some elliptic problems, J. Funct. Anal.122 (1994), no. 2, 519–543.

[3] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and appli-

cations, J. Functional Analysis 14 (1973), 349–381.
[4] D. Arcoya, D. Ruiz, The Ambrosetti-Prodi problem for the p-Laplacian operator, Comm. Par-

tial Differential Equations 31 (2006), no. 4-6, 849–865.
[5] F. Brock, L. Iturriaga, P. Ubilla, A multiplicity result for the p-Laplacian involving a param-
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