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Abstract. The aim of this paper is the study of variational-hemivariational

inequalities with nonhomogeneous Neumann boundary condition. We prove
sufficient conditions for the existence of a whole sequence of solutions which is

either unbounded or converges to zero. For homogeneous Neumann boundary

condition, results of this type have been obtained in Marano and Motreanu
[3]. Our approach is based on abstract nonsmooth critical point results given

in [3]. The applicability of our results is demonstrated by providing two veri-

fiable criteria which address problems with nonsmooth potential and nonzero
Neumann boundary condition.

1. Introduction

The present paper is devoted to the study of variational-hemivariational inequal-
ities involving boundary integral terms. Specifically, given a bounded domain Ω in
RN with a C1-boundary ∂Ω and p ∈]N,+∞[, we consider the problem: Find u ∈ K
such that, for all v ∈ K,∫

Ω

|∇u|p−2∇u∇(v − u)dx+

∫
Ω

a|u|p−2u(v − u)dx

+

∫
Ω

αF o(u; v − u)dx+

∫
∂Ω

θHo(γu; γv − γu)dσ ≥ 0,

(1.1)

where K is a closed convex subset of W 1,p(Ω) containing the constant functions.
The data in (1.1) are supposed to satisfy: a ∈ L∞(Ω) with ess infx∈Ω a(x) > 0,
α ∈ L1(Ω) and θ ∈ L1(∂Ω) fulfilling

α(x) ≥ 0, for a.a. x ∈ Ω, θ(x) ≥ 0, for a.a. x ∈ ∂Ω, (1.2)

F o and Ho stand for Clarke’s generalized directional derivatives of locally Lipschitz
functions F,H : R→ R given by

F (ξ) :=

∫ ξ

0

f(t)dt, H(ξ) :=

∫ ξ

0

h(t)dt,

where f, h : R → R are locally essentially bounded functions, and γ : W 1,p(Ω) →
Lp(∂Ω) denotes the trace operator. We endow the space W 1,p(Ω) with the norm

‖u‖W 1,p(Ω) :=

(∫
Ω

(|∇u|p + a|u|p) dx
)1/p

,
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which is equivalent to the usual one. Since p > N , there is the compact embedding
W 1,p(Ω) ↪→ C0(Ω). For a later use, let

c := sup{‖u‖−1
W 1,p(Ω)‖u‖C0(Ω) : u ∈W 1,p(Ω), u 6≡ 0} <∞, (1.3)

be the best embedding constant, where ‖u‖C0(Ω) = supx∈Ω |u(x)|. The expression

of c implies that

cp‖a‖L1(Ω) ≥ 1.

Problem (1.1) differs from the corresponding problem studied in Marano and
Motreanu [3] by the fact that the integral term∫

Ω

βGo(u; v − u)dx

in [3], with a locally Lipschitz function G : R→ R and some β ∈ L1(Ω), is replaced
in our formulation with the boundary term∫

∂Ω

θHo(γu; γv − γu)dσ.

Actually, this expresses the passage in the Neumann boundary condition from the
homogeneous situation (i.e., ∂u

∂n = 0 on ∂Ω) to the possibly nonhomogeneous case

in (1.1). A prototype of (1.1), taking for simplicity K = W 1,p(Ω), is the fol-
lowing boundary value problem with nonsmooth potential and nonhomogeneous,
nonsmooth Neumann boundary condition:

∆pu− a(x)|u|p−2u ∈ α(x)∂F (u) in Ω,

|∇u|p−2 ∂u

∂n
∈ −θ(x)∂H(γu) on ∂Ω,

where n(x) is the outward unit normal at x ∈ ∂Ω, ∂u
∂n denotes the corresponding

normal derivative of u on ∂Ω, while ∂F and ∂H represent the generalized gradients
of F and H, respectively.

Our main results are Theorems 3.1 and 3.2 providing sufficient conditions that
problem (1.1) admit a whole sequence of solutions which is either unbounded or
converges to zero. Theorems 3.1 and 3.2 correspond to Theorems 2.1 and 2.2
in [3] which hold for the homogeneous Neumann boundary condition. However,
Theorems 3.1 and 3.2 are not extensions of Theorems 2.1 and 2.2 in [3] due to the
presence therein of a term involving a locally Lipschitz function G : R → R that
cannot be incorporated in the locally Lipschitz function F : R → R in view of
the imposed assumptions on F and G. We illustrate the applicability of Theorems
3.1 and 3.2 by two results stated as Theorems 4.1 and 4.2, which give verifiable
criteria to fulfill the hypotheses of Theorems 3.1 and 3.2 in the case where the
function H describing the generalized Neumann boundary condition is not trivial.
Our approach is variational relying on a nonsmooth critical point theorem that
guarantees the existence of infinitely many critical points in our nonsmooth setting
with suitable convergence properties (see [3]).

The rest of the paper is organized as follows. Section 2 presents some notions
and results in the nonsmooth critical point theory which are needed in the sequel.
Section 3 contains our main results, while Section 4 sets forth our applications.
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2. Preliminaries

In this section, we give a brief overview on some prerequisites of nonsmooth
analysis which are needed in the sequel. Let X be a real normed space with the
norm || · ||. Given a locally Lipschitz function j : X → R on a Banach space X, we
denote by jo(u; v) the generalized directional derivative of j at the point u ∈ X in
direction v ∈ X, which is defined by

jo(u; v) = lim sup
x→u,t↓0

j(x+ tv)− j(x)

t
,

(see [2, Chapter 2]). If j1, j2 : X → R are locally Lipschitz functions, there holds

(j1 + j1)o(u; v) ≤ jo
1(u; v) + jo

2(u; v), ∀u, v ∈ X.
Now we consider a function Φ : X → R which satisfies the structure hypothesis:

(S) Φ = j+I, with j : X → R locally Lipschitz and I : X → R∪{+∞} convex,
proper (i.e., I 6≡ +∞), and lower semicontinuous.

A point u ∈ X is called a critical point of Φ if the following inequality is valid

jo(u; v − u) + I(v)− I(u) ≥ 0, ∀v ∈ X

(see [5, Chapter 3]). In the case where j is continuously differentiable, this definition
reduces to the one of Szulkin in [7] and in the case where I ≡ 0 it coincides with
the notion of critical point introduced by Chang (cf. [1]). By [4, Proposition 2.1],
we know that each local minimum of Φ is a critical point.

Let (X, ‖ · ‖) and X̃ be real Banach spaces such that X is compactly embedded

in X̃. Further, let j1 : X̃ → R and j2 : X → R be locally Lipschitz, and let
I : X → R ∪ {+∞} be convex, proper, and lower semicontinuous. By D(I) we
denote the effective domain of I, that is D(I) = {u ∈ X : I(u) < +∞}. Set

Φ(u) = j1(u) + I(u), Ψ(u) = j2(u) for all u ∈ X.

We note that Φ and Ψ satisfy the structure condition (S). We assume that

Ψ−1(]−∞, %[) ∩D(I) 6= ∅, ∀% > inf
X

Ψ, (2.1)

and define for every % > infX Ψ the nonnegative number

ϕ(%) := inf
u∈Ψ−1(]−∞,%[)

Φ(u)− inf
v∈(Ψ−1(]−∞,%[))w

Φ(v)

%−Ψ(u)
, (2.2)

where (Ψ−1(]−∞, %[))w denotes the weak closure of Ψ−1(] −∞, %[). Finally, we
introduce

δ1 := lim inf
%→+∞

ϕ(%), δ2 := lim inf
%→(infX Ψ)+

ϕ(%).

Keeping the notation above, we state the following nonsmooth version of a critical
point result due to Ricceri [6, Theorem 2.5], which was established in [3, Theorem
1.1].

Theorem 2.1. Assume that X is a reflexive Banach space and that the function
Ψ is weakly sequentially lower semicontinuous, coercive and satisfies (2.1). Then
the following properties hold:

(a) For every % > infX Ψ and every λ > ϕ(%), the function Φ+λΨ has a critical
point (local minimum) lying in Ψ−1(]−∞, %[).
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(b) If δ1 < +∞, then for every λ > δ1, either
(b1) Φ + λΨ possesses a global minimum, or
(b2) there is a sequence (un) of critical points (local minima) of Φ + λΨ

such that limn→+∞Ψ(un) = +∞.
(c) If δ2 < +∞, then for every λ > δ2, either

(c1) Φ +λΨ has a local minimum, which is also a global minimum of Ψ, or
(c2) there exists a sequence (un) of pairwise distinct critical points (local

minima) of Φ+λΨ, with limn→+∞Ψ(un) = infX Ψ, weakly converging
to a global minimum of Ψ.

3. Main Results

Our first main result reads as follows.

Theorem 3.1. Assume that

inf
ξ∈R

H(ξ) ≥ 0 (3.1)

and there exist two sequences (rn) ⊂ R+ and (ξn) ⊂ R such that

lim
n→+∞

rn = +∞, (3.2)

F (ξn) = inf
|ξ|≤c(prn)1/p

F (ξ), ∀n ∈ N, (3.3)

1

p
‖a‖L1(Ω)|ξn|p +H(ξn)‖θ‖L1(∂Ω) < rn, ∀n ∈ N, (3.4)

lim inf
|ξ|→+∞

F (ξ)‖α‖L1(Ω) +H(ξ)‖θ‖L1(∂Ω)

|ξ|p
< −1

p
‖a‖L1(Ω). (3.5)

Then problem (1.1) possesses an unbounded sequence of solutions.

Proof. In order to apply Theorem 2.1, we set X := W 1,p(Ω) and X̃ = C0(Ω), which

guarantees that X is compactly embedded in X̃ due to p > N . Let the functions

j1 : X̃ → R and j2 : X → R be defined by

j1(u) :=

∫
Ω

αF (u)dx, j2(u) :=
1

p
‖u‖pX +

∫
∂Ω

θH(γu)dσ.

They are locally Lipschitz since f, h ∈ L∞loc(R). Let I : X → R ∪ {+∞} be the
indicator function of the set K, that is

I(u) =

{
0, if u ∈ K,
+∞, otherwise,

which is convex, proper, and lower semicontinuous. Next, we introduce

Φ(u) = j1(u) + I(u), Ψ(u) = j2(u), for all u ∈ X.

Hypotheses (1.2) and (3.1) imply the estimate

Ψ(u) =
1

p
‖u‖pX +

∫
∂Ω

θH(γu)dσ ≥ 1

p
‖u‖pX , ∀u ∈ X, (3.6)

which proves the coercivity of Ψ and that infX Ψ = Ψ(0) = 0. Recalling that K
contains the constant functions, it follows that 0 ∈ K = D(I), thereby

0 ∈ Ψ−1(]−∞, %[) ∩D(I), ∀% > inf
X

Ψ.
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Using the compactness of the trace operator γ, we can show that Ψ is weakly
sequentially lower semicontinuous on X.
Taking into account (3.6), we get for each v ∈ (Ψ−1(]−∞, %[))w the estimate

‖v‖X ≤ (p%)1/p. Then, in view of (2.2), we infer that

0 ≤ ϕ(%) ≤ inf
u∈Ψ−1(]−∞,%[)

Φ(u)− inf
‖v‖X≤(p%)1/p

Φ(v)

%−Ψ(u)
, ∀% > inf

X
Ψ = 0. (3.7)

Let n ∈ N be fixed. The definition of the embedding constant c in (1.3) ensures
that for each v ∈ X satisfying ‖v‖X ≤ (prn)1/p we have |v(x)| ≤ c(prn)1/p for all
x ∈ Ω. From (1.2) and (3.3), we obtain

Φ(ξn) ≤ inf
‖v‖X≤(prn)1/p

Φ(v). (3.8)

Applying (3.4) yields

Ψ(ξn) =
1

p
‖ξn‖pX +

∫
∂Ω

θH(ξn)dσ =
1

p
‖a‖L1(Ω)|ξn|p +H(ξn)‖θ‖L1(∂Ω) < rn,

which proves that ξn ∈ Ψ−1(] −∞, rn[). By virtue of (3.2), we may insert % = rn
in (3.7) provided n is sufficiently large. Combining with (3.8) it results in

0 ≤ ϕ(rn) ≤ inf
u∈Ψ−1(]−∞,rn[)

Φ(u)− Φ(ξn)

rn −Ψ(u)
≤ Φ(ξn)− Φ(ξn)

rn −Ψ(ξn)
= 0. (3.9)

It turns out from (3.2) and (3.9) that lim inf%→+∞ ϕ(%) = 0 meaning δ1 = 0. We
are thus allowed to apply part (b) of Theorem 2.1 with λ = 1.

We claim that the function Φ + Ψ is unbounded from below. According to (3.5),
we can choose η > 0 such that

η ∈
]

1

p
‖a‖L1(Ω),− lim inf

|ξ|→+∞

F (ξ)‖α‖L1(Ω) +H(ξ)‖θ‖L1(∂Ω)

|ξ|p

[
.

This allows us to select a sequence (σn) ⊂ R satisfying

lim
n→+∞

|σn| = +∞, F (σn)‖α‖L1(Ω) +H(σn)‖θ‖L1(∂Ω) < −η|σn|p, ∀n ∈ N.

Then we derive

Φ(σn) + Ψ(σn) = F (σn)‖α‖L1(Ω) +
1

p
‖a‖L1(Ω)|σn|p +H(σn)‖θ‖L1(∂Ω)

< (
1

p
‖a‖L1(Ω) − η)|σn|p, n ∈ N.

Hence, by the choice of η, limn→+∞(Φ(σn) + Ψ(σn)) → −∞, which justifies our
claim. Therefore, assertion (b2) in Theorem 2.1 yields a sequence (un) ⊂ X of
critical points of Φ + Ψ satisfying limn→+∞Ψ(un) = +∞. As Ψ is bounded on
bounded sets, we deduce that the sequence (un) is unbounded in X. The fact that
un is a critical point of Φ + Ψ means that

(j1 + j2)o(un; v − un) + I(v)− I(un) ≥ 0, ∀v ∈ X. (3.10)

Then (3.10) entails that un ∈ K and

jo
1(un; v − un) + jo

2(un; v − un) ≥ 0, ∀v ∈ K. (3.11)
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A basic result on the generalized directional derivative of an integral functional (see
[2, p. 77]) shows that

jo
1(un; v − un) ≤

∫
Ω

α(x)F o(un; v − un)dx, ∀v ∈ K, (3.12)

and, for all v ∈ K,

jo
2(un; v − un) ≤

∫
Ω

|∇un|p−2∇un∇(v − un)dx+

∫
Ω

a|un|p−2un(v − un)dx

+

∫
∂Ω

θHo(γun; γv − γun)dσ.

(3.13)

Combining (3.11), (3.12), and (3.13) leads to∫
Ω

|∇un|p−2∇un∇(v − un)dx+

∫
Ω

a|un|p−2un(v − un)dx

+

∫
Ω

αF o(un; v − un)dx+

∫
∂Ω

θHo(γun; γv − γun)dσ ≥ 0,

for all v ∈ K, which completes the proof. �

Our second main result is the following theorem. Since its proof can be carried
out along the same lines as for Theorem 3.1, we omit it.

Theorem 3.2. Assume that

inf
ξ∈R

H(ξ) ≥ 0

and there exist two sequences (rn) ⊂ R+ and (ξn) ⊂ R such that

lim
n→+∞

rn = 0,

F (ξn) = inf
|ξ|≤c(prn)1/p

F (ξ), ∀n ∈ N,

1

p
‖a‖L1(Ω)|ξn|p +H(ξn)‖θ‖L1(∂Ω) < rn, ∀n ∈ N,

lim inf
ξ→0

F (ξ)‖α‖L1(Ω) +H(ξ)‖θ‖L1(∂Ω)

|ξ|p
< −1

p
‖a‖L1(Ω).

Then problem (1.1) admits a sequence of nontrivial solutions converging to zero.

4. Applications

First, we present an application of Theorem 3.1 with a function H which is not
zero.

Theorem 4.1. Assume that α 6≡ 0 in (1.2). Let (ξn) ⊂ R be a sequence with
limn→+∞ ξn = +∞ and let F : R → R and H : R → R+ be locally Lipschitz
functions such that for n sufficiently large the following conditions hold:

ξ2
n−1 < ξn; (4.1)

F |[−ξ2n,−ξ2n−1]∪[ξ2n−1, ξ
2
n] ≥ F (ξn) = − ξ2p

n

p‖α‖L1(Ω)cp
; (4.2)

‖θ‖L1(∂Ω)H(ξn) <
1

p

(
1

cp
ξ2p
n − ‖a‖L1(Ω)(1 + ε)|ξn|p

)
(4.3)
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with a constant ε > 0. Then problem (1.1) possesses an unbounded sequence of
solutions.

Proof. Let us check that Theorem 3.1 applies. Set

rn =
1

pcp
ξ2p
n . (4.4)

By (4.4) we see that hypothesis (3.2) is fulfilled. Notice that c(prn)
1
p = ξ2

n. Then,
by (4.1) and (4.2), we have

inf
|ξ|≤c(prn)

1
p

F (ξ) = inf
|ξ|≤ξ2n

F (ξ) = inf
ξ∈[−ξ2n,−ξ2n−1]∪[ξ2n−1, ξ

2
n]
F (ξ) = F (ξn).

This shows that hypothesis (3.3) is satisfied. Using (4.3) and (4.4), it follows
readily that the inequality required in hypothesis (3.4) is true. Finally, we note
that hypothesis (3.5) is also verified because through (4.3) and (4.2) we arrive at

lim inf
|ξ|→+∞

F (ξ)‖α‖L1(Ω) +H(ξ)‖θ‖L1(∂Ω)

|ξ|p

≤ lim inf
n→+∞

F (ξn)‖α‖L1(Ω) +H(ξn)‖θ‖L1(∂Ω)

|ξn|p

≤ lim inf
n→+∞

F (ξn)‖α‖L1(Ω) + 1
p

(
1
cp ξ

2p
n − ‖a‖L1(Ω)(1 + ε)|ξn|p

)
|ξn|p

= −
‖a‖L1(Ω)(1 + ε)

p
.

Applying Theorem 3.1 we achieve the desired conclusion. �

Now we present an application of Theorem 3.2 involving a function H which is
not zero.

Theorem 4.2. Assume that α 6≡ 0 in (1.2). Let (ξn) be a sequence of positive
real numbers with ξn ↓ 0 and let F : R → R and H : R → R+ be locally Lipschitz
functions such that for n sufficiently large the following conditions hold:√

ξn < ξn−1; (4.5)

F |
[−
√
ξn,−
√
ξn+1]∪[

√
ξn+1,

√
ξn]
≥ F (ξn) = − ξ

p
2
n

p‖α‖L1(Ω)cp
; (4.6)

‖θ‖L1(∂Ω)H(ξn) <
1

p

(
1

cp
ξ

p
2
n − ‖a‖L1(Ω)(1 + ε)ξpn

)
(4.7)

with a constant ε > 0. Then problem (1.1) possesses a sequence of solutions con-
verging to zero.

Proof. The proof proceeds in the same way as for Theorem 4.1, this time applying
Theorem 3.2. To this end, we set

rn =
1

pcp
ξ

p
2
n .

By (4.5) and (4.6), we have

inf
|ξ|≤c(prn)

1
p

F (ξ) = inf
[−
√
ξn,−
√
ξn+1]∪[

√
ξn+1,

√
ξn]

F (ξ) = F (ξn).
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Using (4.7) and (4.6) we see that

lim inf
ξ→0

F (ξ)‖α‖L1(Ω) +H(ξ)‖θ‖L1(∂Ω)

|ξ|p

≤ lim inf
n→+∞

F (ξn)‖α‖L1(Ω) +H(ξn)‖θ‖L1(∂Ω)

|ξn|p

≤ lim inf
n→+∞

F (ξn)‖α‖L1(Ω) + 1
p

(
1
cp ξ

p
2
n − ‖a‖L1(Ω)(1 + ε)|ξn|p

)
|ξn|p

= −
‖a‖L1(Ω)(1 + ε)

p
.

We may apply Theorem 3.2, which completes the proof. �
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