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ABSTRACT. In this paper we study the fractional p(-,-)-Laplacian and we introduce the cor-
responding nonlocal conormal derivative for this operator. We prove basic properties of the
corresponding function space and we establish a nonlocal version of the divergence theorem
for such operators. In the second part of this paper, we prove the existence of weak solutions
of corresponding p(+,-)-Robin boundary problems with sign-changing potentials by applying
variational tools.

1. INTRODUCTION

In recent years equations with nonstandard growth and related nonlocal equations have been
studied by several authors. Such equations are very powerful and have lots of applications to
different nonlinear problems including phase transitions, thin obstacle problem, stratified ma-
terials, anomalous diffusion, crystal dislocation, soft thin films, semipermeable membranes and
flame propagation, ultra-relativistic limits of quantum mechanics, multiple scattering, minimal
surfaces, material science, water waves and so. For a comprehensive introduction to the study
of nonlocal problems and the use of variational methods in the treatment of these problems, we
refer to the monograph by Molica Bisci, Radulescu and Servadei [24]. The starting point in the
study of nonlocal problems is due to the pioneering papers of Caffarelli, Roquejoffre and Sire [7],
Caffarelli, Salsa and Silvestre [3], and Caffarelli and Silvestre [9] about the fractional diffusion
operator (—A)® for s € (0,1). Based on this, several other works have been published in the
nonlocal framework. We refer, for example, to the works of Autuori and Pucci [1], Bahrouni
[3], Molica Bisci and Rédulescu [23], Pucci, Xiang and Zhang [26], Ridulescu, Xiang and Zhang
[21, 22, 28], and the references therein.

In this paper, we study the fractional p(-,-)-Laplace operator and we introduce the corre-
sponding nonlocal conormal derivative for this operator. Kaufmann, Rossi and Vidal [17] were
the first who established some results on fractional Sobolev spaces with variable exponent of
the form W=4():P()(Q) as well as properties of the fractional p(-,-)-Laplacian. In particu-
lar; it is shown that theses spaces are compactly embedded into variable exponent Lebesgue
spaces. They also give an existence result for nonlocal problems involving the fractional p(-,-)-
Laplacian. Bahrouni and Radulescu [5] obtained some further qualitative properties of the
fractional Sobolev spaces and the fractional p(-,-)-Laplacian. Further developments have been
done by Bahrouni [2] and Bahrouni and Ho [4], see also Ho and Kim [10].

In this work, we continue the study of this new class of problems. Our main aim is to
investigate for the first time fractional p(-, -)-Laplacian equation with nonlocal Robin boundary
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condition. Precisely, we consider the problem
(=A)yyut [uP® =2y = f(z,u) in Q,

_ _ (1.1)
Ns,p(~,-)u + ﬂ(x)|u|p(ﬂ?)*2u = g(l‘) in RN \ Qa

where Q € RY, N > 1, is a bounded domain with Lipschitz boundary, s € (0,1), p: R2Y —
(1, 4+00) is a symmetric, continuous function bounded away from 1, p(-) = p(-,-), g € LY (RV\Q),
B € L®(RN\ Q) with 8> 0 in RV \ Q and (—A);(w) stands for the fractional p(-,-)-Laplacian
which is given by

(_A);(.,.) u(z) = p. V./

RN

Ju(z) — u(y) [P0 ~2 (u(x) — uly))
|x — le-‘rsp(aZ,y)

dy forz e Q. (1.2)

Furthermore, N, ...y is defined by

_ p(@,y)—2 _ _
IR g TG ETGE TU RO PRI S

and denotes the nonlocal normal p(-, -)-derivative (or p(-,-)-Neumann boundary condition) and
describes the natural Neumann boundary condition in presence of the fractional p(-, -)-Laplacian.
This work extends the notion of the nonlocal normal derivative introduced by Dipierro, Ros Oton
and Valdinoci [12] for the fractional Laplacian (see also Guan [15]), and Mugnai and Lippi [25]
for the fractional p-Laplacian (see also Warma [29]). In the context of the fractional p(-,-)-
Laplacian we also refer to the recent works of Mezzomo, Bonaldo, Miyagaki and Hurtado [20]
and Zhang and Zhang [30].

This paper is organized as follows. In Section 2 we recall some definitions and fundamental
properties of the spaces LP()(Q), WP()(Q) and W*20)-2()(Q). In Section 3 we introduce the
corresponding function space for weak solutions of (1.1), prove some properties and state the
corresponding Green formula for problems like (1.1). In the last part, Section 4, we prove an
existence result for problem (1.1) with sign-changing potential based on the new results obtained
in Section 3 and by applying variational tools.

2. PRELIMINARIES

In this section, we recall some necessary properties of variable exponent spaces and fractional
Sobolev spaces with variable exponent. -

Suppose that € is a bounded domain in R with Lipschitz boundary 9 and let p € C (),
where

Ci()={peC(Q) : p(x)>1forallzcQ}

We set p~ := min g p(z) and p* := max g p(z), then p~ > 1 and p™ < co. By LPO)(Q) we
identify the variable exponent Lebesgue space which is defined by

rO(Q) = {u ’ u : 2 — R is measurable and / |ulP@ dz < oo}
Q

equipped with the Luxemburg norm

l|lullpc.y = inf {'r >0: /
Q

u(x)

p(z)
der <1;.
i
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The variable exponent Sobolev space W) (Q) is defined by
Wir)(Q) = {u e LP(Q) : |Vu| € L”(‘)(Q)}
with the norm

ullipey = IVullpey + llullpe-
For more information and basic properties of variable exponent spaces we refer the reader to
the papers of Fan and Zhao [13], Kovécik and Rékosnik [18] and the monographs of Diening,
Harjulehto, Hésto and Ruzicka [11] and Radulescu and Repovs [27].
Let L0)(Q) be the conjugate space of LP()(Q), that is, 1/p(z) +1/q(x) = 1 for all z € Q. If
u € LPO)(Q) and v € L90)(Q), then the Holder-type inequality

1 1
wvdr| < +> Ullpe |V g
/Q (p = [[tllpc 1vllgcy

is satisfied. More general, if p; € C4(Q) (j =1,2,...,k) and
L !
pi(z)  pa(z) pr(x)

then, for all u; € LPi()(Q) (j =1,...,k), we have

/uluQ~~ukdw
Q

In order to work variable Lebesgue and Sobolev spaces we need to consider the corresponding
modular function. To this end, let p: LP()(Q) — R be defined by

o) = [ JuP® da.
Q

Proposition 2.1. The following hold:
() llullpey <1 (=1,>1) < plu) <1(=1,1);

< <1 TR ) l[wallpy ¢ l[wz]] [k
< — — — UL ||pq, (-) | U2 D Uk ) -
n s A p1(") p2() i (")

.. - +
() Iy > 1 =l < o) < [l
(iid) lullpey <1 = Julll, < plu) < llull, -

Proposition 2.2. If u,u, € LPO)(Q) with n € N, then the following statements are equivalent:
(Z) limy, 400 Hun - qu(~) =0;
(#) limy,— 1 oo p(uy — u) = 0;
(i1i) up(x) — u(z) a.e.in Q and lim, 1o p(uyn) = p(u).

Let us now introduce the fractional Sobolev space with variable exponents following the work
of Kaufmann, Rossi and Vidal [17]. To this end, let s € (0,1) and let ¢: Q@ — (1,00) and
p: Q x Q — (1,00) be two continuous functions. Furthermore, we suppose that p is symmetric
and that both functions, ¢ and p, are bounded away from 1, that is,

p(z,y) =p(y,x) forall z,y €

1 <g-:=ming(z) < q(z) < g4 := maxq(z)
zeN TEQ (21)
1<p = min p(z,y) <plr,y) <p" = max _p(z,y).

(z.9)€QxQ (z,9)€QxQ
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Now we introduce the fractional variable Sobolev space W := W#():»(:)(Q) which is given
by

)|p(m7y
_ a(-
W—{u Q—>R|UEL ///\pwy)w y|N+szy)dxdy<ooforsome)\>0

equipped with the variable exponent seminorm

- p(z,y)
[U] s p(.,),0 = inf {)\ >0 : / lu@) = u(y)] dx dy < 1} .
Q

wq AP@Y) | p — y|N+sp(z.y)

If we endow W with the norm

lullw = [ulspi .0 + lullLao @),
then W becomes a Banach space. The following lemma can be found in Bahrouni and Radulescu
[5, Lemma 3.1].

Lemma 2.3. Suppose that Q@ C RY is a bounded open domain and assume (2.1). Then W is a
separable, reflexive space.

The following theorem states the compactness of the embedding W into a suitable variable
Lebesgue space L’"<')(Q). For the proof we refer to Kaufmann, Rossi and Vidal [17, Theorem
1.1].

Theorem 2.4. Let Q C RN be a Lipschitz bounded domain and s € (0,1). Let q(-), p(-,-) be
continuous variable exponents satisfying (2.1) with sp(z,y) < N for (z,y) € Q x Q. Moreover
q(z) > p(x,z) for z € Q. Assume that r: Q — (1,00) is a continuous function such that

Np(z, ) ) _
)= ———~—>r(z)>r_:=minr(z) >1 foralxe.
Pi(@) = s > 1) minr(e) > 1
Then there exists a constant C' = C(N, s,p,q,r,)) such that for every f € W, it holds

£l o) < Clfllw

Thus, the space W is continuously embedded in L™)(Q) for any r € (1,p%). Moreover, this
embedding is compact.

We also refer to a similar result for traces for fractional Sobolev spaces with variable expo-
nents, see Del Pezzo and Rossi [10, Theorem 1.1].
Under the assumption (2.1), let L: W — W* be the nonlinear map defined by

/ lu(z) — u(y)P=9 =2 (u(x) — u(y))(e(z) — e(y)) dy. (2.2)

|Z‘ _ y|N+sp(rc,y)

It can be seen as the generalization of the fractional p-Laplacian in the constant exponent case
and it is called fractional p(-, -)-Laplacian, denoted by £ := (fA);(, 3 Bahrouni and Radulescu

[0, Lemma 4.2] proved several properties of £ which are stated in the next lemma.

Lemma 2.5.
(i) L is a bounded and strictly monotone operator;
(i4) L fulfills the (S )-property, that is, w, — u in W and limsup,,_, . (L(u,),u, —u) < 0
imply u, — u in W;
(iii) L: W — W* is a homeomorphism.
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The operator (2.2) is related to the energy functional J: W — R defined by

W)l
//pry|x |N+sp(xy)dxdy for all u € W.

It is clear that J is well-defined on W and J € C'(W;R) with the derivative given by
(J'(u), ) = (L(u),p) forall u,p €W,

see Bahrouni and Rédulescu [5, Lemma 4.1].

Remark 2.6. Note that Theorem 2. remains true when q(x) > p(x,z) for all x € Q, see Zhang
and Zhang [30]. In ezisting articles working on W, see Bahrouni and Radulescu [5, Theorem
5.1] or Kaufmann, Rossi and Vidal [17, Theorem 1.4], the function q is actually assumed to
satisfy q(x) > p(z,x) for all ¥ € Q due to some technical reason. Such spaces are actually not
a generalization of the fractional Sobolev space WP ().

3. FUNCTIONAL SETTING

The aim of this section is to give the basic properties of the fractional p(:,-)-Laplacian with
associated p(-,-)-Neumann boundary condition. After this, we are able to introduce the defi-
nition of a weak solution for the new Robin problem with p(-,-)-Neumann boundary condition
stated in (1.1). In order to do this, we use some ideas developed by Bahrouni, Radulescu and
Winkert [6] and Dipierro, Ros-Oton and Valdinoci [12].

We suppose the following assumptions:

(S) s € R with s € (0,1);
(P) p: RN — (1, +00) is a symmetric, continuous function bounded away from 1, that is,

p(z,y) = p(y,z) for all z,y € R*Y
with

1<p := min z,y) < p(z,y) <p':= max z,Y).
pri=  min p(ey) Spley) <phi= max p(y)

and sp™ < N;
(G) g € L'(RY\ Q);
(B) Be L®RN\Q)and g>0in RV \ O
Let u: RN — R be a measurable function and let p(x) = p(z, ) for all z € R*N. We set

o

1
lullx += [l ) memscope + el ooy + 191707 ul

L7 (CQ) Lo (cQ)’

where CQ = RV \ Q and

X := {u: RY — R measurable : [jul|x <oo}.

Proposition 3.1. Let hypotheses (S), (P), (G) and (B) be satisfied. Then, (X, - |x) is a
reflexive Banach space.

Proof. Step 1: (X, || - ||x) is a Banach space.
It is easy to check that || - || x is a norm on X. We only show that if ||u||x = 0, then v =0
a.e.in RY. Indeed, from ||ullx = 0, we get [u]l zs¢)(q) = 0, which implies that

u=0 a.e.in Q, (3.1)



6 A. BAHROUNI, V.D. RADULESCU, AND P. WINKERT

and

_ p(z,y)
/ [ulz) Z(y” dz dy = 0. (3.2)
R2Nv\(c)y2 |z — y|[NHep@y)

By (3.2), we deduce that u(z) = u(y) for a.a. (z,y) € R*V \ (CQ)?, that is, u =c € R a.e. in
RY. By (3.1), it easily follows that ¢ = 0, so u = 0 a.e.in R,

Now, we prove that X is complete. To this end, let (uy)ren be a Cauchy sequence in X. In
particular, (uj)ren is a Cauchy sequence in LP() () and so, up to a subsequence, there exists

u € LPO)(Q) such that
up —u in LPO)(Q) and a.e.in Q.
Precisely, we find Z; C RY such that
|Z1| =0 and wug(z) = u(zx) forevery z € Q\ Z;. (3.3)
For any U: RY — R and for any (z,y) € R?Y we set

(U(z) = U(y))xren\ (e (T, y)

Ey(z,y) =
’ [~y +

)

which implies

(ug () — un(w) — ur(y) +un(y)) xren (co)2 (7, y)
+s

Euk ($>y) - EUh (LL', y) =

|x — y| P(JJZ?J) .
Using the fact that (ug)gen is a Cauchy sequence in X and Proposition 2.1, for every € > 0
there exists N. € N such that for h, k > N., we have

b=

- »T
ert > [E,, — Euh]s,p(.,)_RzN\(csz)z

-
- / [k = wn) (@) = (g — ur) ()P dy
— \Jr2v\(c)? |z — y|N+sp(y)

> ”Euk - Euh

LpC) (R2N) -

Thus, (E,, )ren is a Cauchy sequence in LP(>)(R?Y) and so, up to a subsequence, we are able
to assume that E,, converges to some FE, in LP(+)(R*N) and a.e.in R?N. This means we can
find Z5 € R?N such that

|Zo] =0 and E,, (x,y) = Eu(z,y) for every (z,y) € R*V \ Z,. (3.4)
For any x € Q, we set
Sy ={yeRY: (z,y) e R®N\ Z»},
W= {(z,y) eR*: z€Qandy e RN\ S, },
Vi={zeQ: |RV\S,|=0}.

Proceeding exactly as in Dipierro, Ros-Oton and Valdinoci [12, Proposition 3.1] and Mugnai
and Lippi [25, Proposition 2.2] we get

QN (VA Z)| = [(Q\V)UZ1)| < [Q\ V] +[Z1] = 0.
In particular V' \ Z; # 0, so we can fix xg € V' \ Z;.
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Because of 29 € Q\ Zy, from (3.3), it follows
lim uk(l'o) = u(.’lﬁo)
e el

In addition, since o € V, we obtain |RY \ S,,| = 0. Then, for a.a.y € RY, this yields

(20,y) € R2V \ Z5 and hence, by (3.4)
lim E,, (zo,y) = Fu(xo,y).
k—o0

2. we have

Since  x (CQ) C RV \ (CQ)
k(7o) —ux(y) for a.a. y € CQ.

By, (x0,y) =
e |z — y|*TrEw

N
(we0) — ko — yI7ET* Buy (w0,))

But this implies
for a.a. y € CA.

li =1l
) = i,

+SE/‘u(‘r()v y)

= u(wo) — |z — y|7=

Combining this with (3.3) we see that uy, converges a.e.in RV to some u in RY. Since uy is a
Cauchy sequence in X, for any € > 0 there exists N, > 0 such that, for any h > N., we have by

applying Fatou’s Lemma,
€ > liminf Huh — ukHX
k—+o00
1
o L
N +11m1nf </ g, — ug [P daj)

= lim inf (Ps.p() B2N\(co2 (un — uk)) P
</ \g||un — ugP™ dgg) ) —|—hm1nf (/ 18| un — ug [P d;g) L
)

+ lim inf
k—-+00
1

i N
(,Og,p( )R2N\ (e (un — u)) P~ + ( up, 7u|p(a:) d:v)

+</'mh%—uwﬂmﬁ +( wmm—uW@¢Q
pt
UHL;@( )(© + /gl 7 (up — “)Hzﬁ(-)(cg)

pt
> [uh - u]§7p7R2N\(CQ)2 + ||uh
pt
([ 11— )"
(49)
»t
lun —ullx

>

T_Hr
A=
Therefore, u;, converges to u in X and so, X is complete
Step 2: X is a reflexive space

Consider the space
Y = LP®(Q) x LPH(CQ) x LP@ () x LPEY) (RPV\ (C0)?)

endowed with the norm
1 1
vlly = llvll sy ) + 1870 0| ooy ey + 17O vl Loer cq) + Vs p() r2M\ (02
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We notice that (Y,]|.]]y) is a reflexive Banach space. We consider the map T: X — Y defined
as

3

T(w) = (W,au,g, |<><y>l> |

’ ‘gj — y| p(iv,y)+s
By construction, we have that
1T (w)lly = [lu]lx-

Hence, T is an isometry from X to the reflexive space Y. This shows that X is reflexive. O

Proposition 3.2. Let hypotheses (S), (P), (G) and (B) be satisfied. Then, for any r € C(9)
with 1 < r(z) < pk(x) for all x € Q, there exists a constant o > 0 such that

ullLror o) < allullx  for allu € X.
Moreover, this embedding is compact.
Proof. By the assumptions it is clear that

lullg < Jlullx for all u € X.

Therefore, using Theorem 2.4 and Remark 2.6, we get our desired result. O
Note that the norm || - ||x is equivalent on X to
[l
SHSIROR
p
_ p(z,y) p(z) 3.5
ﬂﬁﬁ@ot/ Ju(z) — u(u)| M@+/;ﬂfiw (3.5)
r2N\ ()2 HPEVp(z, y) (| — y|)NHerley) o p(x)pP@

—|—/ %Mﬁ(@ dz +/ ﬂmﬁw dz < 1},
ca HP@p(x) ca HP@p(x)
where the modular p: X — R is defined by
ju(z) — u(w) P [
p(u) = / dx dy + — dx
“ r2m\(c)2 (2, y) (|7 — y|)NHor@) o p()

+/ 9@, 5@ gy 4 [ 2815w gy
cq D(z) co D(

The following lemma will be helpful in later considerations.

Lemma 3.3. Let hypotheses (S), (P), (G) and (8) be satisfied and let uw € X. Then the following
hold:

(i) For u # 0 we have: |lulx = a if and only if p(%) = 1;

p+ —
e < p(u) < 4lful ;

(i) ||lullx <1 implies

(iid) [[ullx > 1 implies [[ul% < plu).
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Proof. (i) It is clear that the mapping A — p(Au) is a continuous, convex, even function, which
is strictly increasing on [0, 400). Thus, by the definition of p and the equivalent norm given in
(3.5), we have
u
lulx =a = p(%) =1
(ii) Let w € X be such that ||ul|x < 1, then

[U] s p(., ) R2N\ (c)2 < 1, HUHL?(‘)(Q) <1,
1

<t o774

LPO) (CQ) prOu

By the convexity of p along with Proposition 2.1 we obtain the assertion.
(iii) Let w € X be such that ||u||x > 1. From (i) it follows

_ p(z,y) p(z)
p( u ):/ |u( ()w )u(u)| dxdy—i-/ L*(w)dx
[Jul| x R2\(€0)2 p(z, y)|Jul| 7Y (Jo — y|)N+sp@w) 2 p(z)|ull

+/ %w@(r) da _,_/ %w@(w) dr = 1.

o p(x)||ully ca p(z)||ully

Then, by the mean value theorem, there exist (z1,y1) € R?V \ (CQ)?, 25 € Q, 3,24 € CS such
that

1
50) u’ <1
H 191 LPO)(CQ)

_ p(z,y) p(z)
[|ul /570 Jr2 (002 p(z,y)(|x — y|)N+spley ||u||§((“f2 q p(z)
1 - 1 _
[ ul[52) Jea P(x) [[ul 2 Jea P(x)

Since |lul|x > 1, it follows that

1 / lu(z) — u(u)|p(x,y) / Mﬁ(r)
1< — dx dy + — dx
Jull% l row (a2 P(z,y) (| — y )N For(0) o D)

1 (@) ulP® dz 9(x) wlP@) do
ull% [ co T?(JU)‘ " d +/CQ ﬁ(x)' [P d ]

This finishes the proof. i

Lemma 3.4. Let hypotheses (S), (P), (G) and (B) be satisfied. Then p: X - R and p': X —
X* have the following properties:

(i) The function p is of class C*(X,R) and p’': X — X* is coercive, that is,
(o' (u), u)

X 4400 as ||lul|x — +oo;
[Jullx

(i) p' is strictly monotone operator.
(iii) p' is a mapping of type (S4), that is, if up, — w in X and limsup,,_,, o (¢’ (un), un —
wyx <0, then u, = u in X.

Proof. (i) Evidently, from the definition of p, we conclude that p € C*(X,R). By Lemma 3.3,
for ||u||x > 1, we obtain

(' (), u)x = p(u) > |l -
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Then
(p'(u), u)

X -1
> Jlull% — = 400
[l x X

as |lul|x — +oo since p~ > 1.
(ii) The strict monotonicity of p’ is a direct consequence of the well-known Simon inequalities

-2 -2 .
eyl <o (Il eyl y) (@ —y) ifp=2,

and

IS

a—yl” <Gy [(lel P2 =yl y) - (2= )]

277p .
< (=" +y) 7 ifpe(1,2),

for all z,y € RV, where ¢, and C), are positive constants depending only on p, see Lindqvist
[19, p. 71] or Filippucci, Pucci and Radulescu [14, p. 713].

(iii) By applying (i) and (ii), the proof of assertion (iii) is identical to the proof of Theorem
3.1 in Bahrouni and Rédulescu [5]. O

Now we are interested in a nonlocal analogue of the divergence theorem also known as inte-
gration by parts formula. We have the following result.

Proposition 3.5. Let hypotheses (S), (P), (G) and (8) be satisfied and let u be any bounded
C?-function in RN . Then,

/ (—A);(T)u(x) dx = —/ N (. yu(z) de.
Q RN\Q

Proof. From (P) we know that p is symmetric. We obtain

/Q/Q \u(w) _ u(y)|p(m,y)—2 (u(l‘) — u(y)) dx dy

|z — y|N+sp(z.y)

== /Q/Q lu(z) — u(y)|p(w’y)72—| (uly) — u(z)) dz dy = 0.

€T — y‘N+SP(I7y)
It follows that

B s _ . _ p(z,y)—2 (u(ac)—u(y))
e = [ [ ) e S dyde

= [ 1 (e -2 (@) — uy))
/le_ﬁ% l/RN\Q lu(z) — u(y)| & gV orea) dy

—o_(u(z) —u(y))
+/ u(z) — u(y)|PEV—2 22 gy | dy
O\B. () | ( ) ( )| \x _ y‘N+sp(x,y)

- // |u(z) —U(y)\p(m’y)_Q—(u(x) —u) dy dx
o JRM\Q |

xr — y|N+5P(1,y)

- () — (o Paw—2_ (@) —u@)
Lo f @) =t s ey

= - N p.yul(y) dy.
RN\Q
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Proposition 3.6. Let hypotheses (S), (P), (G) and (B) be satisfied. Let uw and v be bounded
C?-functions in RN . Then,

1
1 / fu(z) —u
2 R2N\ (C2)2

:/’U(_A);(,)udx“r/ 'UNS)p(.’.)dx.
Q cQ

Proof. By symmetry, we have

1
3 o u) -
2 R2N\ (CN)2

_ (@) (@) — uly)Pew-2_ @) —u®) o
_ / / (@) - uy)| Sy v

+ /CQ/QU(LUNU(x) — u(y) P2 |:£lt(z);+1:§/2,l) dy dz.

(y)|P(x,y)—2 (u(ﬂ?)'; ﬁ(?y/ﬁ]z&}s(px(i;) v(y)) da dy

Thus, using (1.2) and (1.3), the identity follows. O

Based on the integration by parts formula we are now in the position to state the natural
definition of a weak solution for problem (1.1). First, to simplify the notation, for arbitrary
functions u, v: RN — R, we set

A p(u,v) = 1/ u(z) — u(y)[PEy) -2 (u(@) — u(y))(v(z) —v(y)) dx dy
R2N\ (CQ)2

2 |z — y|N+sp(a:,y)

—|—/ \u|ﬁ(’”)_2uvdx+/ B(x)|uP™ 2y da.
Q cQ

We say that u € X is a weak solution of (1.1), if

A p(u,v) = /Qf(a:,u)v dr + /CQ gvdx. (3.6)

is satisfied for every v € X. As a consequence of this definition, we have the following result.

Proposition 3.7. Let hypotheses (S), (P), (G) and (B) be satisfied. and let u be a weak solution
of (1.1). Then,

Nap(yu+B@)uff2u=g aeinRY\Q.
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Proof. First, we take v € X such that v =0 in Q as a test function in (3.6). Then

/ gudx
cQ

= A p(u,v)

! )P 2 (ulr) —u)oly)
B //RN\Q |z — y|N+sp(ay) dyd

/ / |u — u |p(w,y) 2( (‘T) — ’u,(y))’l}(l’) dy dx + ﬁ(x”u‘ﬁ(x)_Qu’U dx
ava co

o =y

[ e D Al DD 4y [
RN\Q cQ

|x__|N+w@ﬂ)

— p z,y)—2 — _
/ / \u U ‘ — ((U(Cf) U(y)) dx dy +/ ﬁ(x)|u|p($)72uv dx
]RN\Q |z — y|NHspley cQ

:/ V(YN .,y uly) dy+/ B(2)|ulP® 2y da.
RN\Q co

Therefore,

~ (Napnu@) + B@)|ulP "2 — g(z) Jo(z) do = 0
RN\Q

for every v € X which is 0 in €. In particular, this is true for every v € C°(RM \ Q), and so
Nop(yu(@) + B@)[ufP™ 2y = g(z) a.e.in RV \ Q.
0

Proposition 3.8. Let hypotheses (S), (P), (G) and () be satisfied. Let I: X — R be the
functional defined by

_ p(z,y) P(x)
T(u) = / [u(z) = ulw) ™ o dedy + @™
r2N\ (c)? 2p(T,y)|x — y[VHepley co  D(x)

f/f(x,u)udx—/ gudr  for every u € X.
Q cQ

dx

Then any critical point of I is a weak solution of problem (1.1).

Proof. We only show that I is well defined on X. The rest follows by standard argument.
Applying Holder’s inequality and condition (F), we have

/f(a:,u)udxs/b(x)|u|q<f>—1udxg/b(m)|u\q<z> da
Q Q Q

(3.7)
< el [|lut]|, | <o
Again, by Proposition 2.1 and condition (G), we infer that
1 1 1
udr < @) |g| 7@ |u| de < 2 1 H WuH u 3.8
|oaude < [ a7 gl ] < 2Agluseon [l <l (39

Combining (3.7) and (3.8), we conclude that I is well defined. O
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4. EXISTENCE RESULTS FOR FRACTIONAL ROBIN PROBLEMS WITH VARIABLE EXPONENT

In this section we suppose conditions (S), (P), (8) and
(F) Let g =0 and let f: Q x R — R be a Carathéodory function given by

flx,u) = AV (2)|u[?® 2y for all z € Q,
where g € C(Q2) such that 1 < g(z) < p(z) in Q and with
V e L™V such that r € C4(Q) and 1 < '(z)q(z) < p’(z) for all = € Q.
Moreover, we suppose that there exists a nonempty subset Qg C 2 such that
V(z) >0 forall z € Q.

The aim of this section is to prove the existence of at least one weak solution of (1.1) when
the parameter A\ > 0 is small enough. The proof is based in the results of the previous section
in combination with variational methods.

First we introduce the variational setting for problem (1.1). To this end, we denote by
I: X — R the energy function of problem (1.1) which is given by

_ p(z,y) p(z)
r2N\ (c)2 2p(z,y) |z — y[Nrep(@y o p()

B@WPy [ VE),
e P ® Aéquﬂ“ e

Note that under the assumptions (S), (P), () and (F) along with Proposition 3.8 it is easy
to see that the functional I is well-defined, of class C! on X and any critical point of Iis a weak
solution of problem (1.1).

We start with two auxiliary results.

Lemma 4.1. Let hypotheses (S), (P), (F) and (B) be satisfied. Then there is \* > 0 such that
for any X € (0, \*) there exist p > 0 and a > 0 such that

I(u)>a>0 foranyue X with |lul]| = p.
Proof. From Proposition 3.2 we have
ullr gy < aflullx  for all u € X. (4.1)
Fix p € (O, min (1, é)) Then inequality (4.1) implies that
llull v (2)qy <1 for all u € X with [Jul|x = p.

Thus, by applying Holder’s inequality and Proposition 2.1, we get

| V@ de < 2Vl

<20 |Vl for allwe X with [lullx = p.
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Hence, using (4.2) and Lemma 3.3, we obtain for any v € X with ||ul|x = p that
B()|uP™ JufP®)

|u(z) — u(y)[P=v)
I(u) = / dx dy + ————— ax =
( r2n\(c)2 P(2, )|z — y|NHep@y) co D) o (@)

[ V@) e g,
M g

1 / lu(z) — u(y)|P@y) / ~ B
= oF dedy+ | B@)|uP™ de+ [ |ufP™ dx
P ( r2v\(co)2 |z —y[NTerlew) o (@)l ; |ul

1
—Ai/ V(@) uft® da
q Q

dx

1

c 20 Vil o

> el - A= O g

_ 1 p+_)\2aq_||V||T(,) P
p+3p+—1p q- P

= pq7 1 pp+_q7 - >\2aq7 ||V7||T() .
prart-t q-

. q
S Apt3tla [V

We set

Then, combining this with the inequality above gives

I(u) >

7W:a>0 foralluGXWithHuHX:m
1%

where A € (0, \*). This completes the proof. O

Lemma 4.2. Let hypotheses (S), (P), (F) and (8) be satisfied. Then, there exists ¢ € X such
that

I(tp) <0 fort >0 small enough.

Proof. We denote by

p, = inf p(z) and ¢ = inf ¢(z).
€ FASION)

Then, from condition (F), there exist g > 0 and an open set 2y C Qg such that
gy +eo<py, and |g(z)—gy|<eo forall ze .
Thus

q(z) < qy +e0<p, forallzeQy. (4.3)
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Let ¢ € C§°(Qp) such that Q; C supp(p), ¢ =1 for all 2 € Q1 and 0 < ¢ < 1in Q. Then, it
follows, for ¢ € (0, 1) small enough by applying (4.3), that

_ plz.y) _ p(x)
I(te) = / tp(w,y)Q lp(z) — oY)l do dy + / tp(w)ﬂ(x)Jw\ Y i
R2N\ (CQ)2 p cQ

(z,y)|z — yIN“”(z’y) p()

p(z V

+/ £( I)M )\/ 4 m) 10|9®) dy
Q
_ _ p(x,y) p(x) p(w)
<o (| o(2) w% oty [ BN [ 1
R\ (cq)2 2p(, y)|x — y[NHep@y) o
_M%+%/fﬁﬁww@dx<o
o q(x)
This shows the assertion. O

Now we are ready to state our main existence result.

Theorem 4.3. Let hypotheses (S), (P), (F) and (B) be satisfied. Then there exists \* > 0 such
that for any A € (0, \*) there exists at least one weak solution uy € X of problem (1.1).

Proof. Let A* be defined as in Lemma 4.1 and choose A € (0, \*). Again, invoking Lemma 4.1,
we can deduce that

inf  Iy(u) > 0.
uedB(0,p)

On the other hand, by Lemma 4.2, there exists ¢ € X such that I(tp) < 0 for all ¢ > 0 small
enough. Moreover, by Lemma 3.3, for ||u||x < p, we have

1 + 20 ||V || .
1) 2 ol =A==l
see the proof of Lemma 4.1. It follows that
—oco<m= inf I(u)<0.

u€B(0,p)
Applying Ekeland’s variational principle to the functional I: B(0, p) — R, we can find a (PS)-
sequence (un)nen C B(0, p), that is,
I(up) - m and I'(u,) — 0.
It is clear that (un)nen is bounded in X. Thus there exists uy € X such that, up to a subse-

quence, u, — uy in X. Using Proposition 3.2, we see that (u,)nen strongly converges to uy in
L) (Q). So, by Hélder’s inequality and Proposition 3.2, we obtain that

; q(z)—2 _ —
nglJrrloo/QV(x)|un| U (Up, — uy) dx = 0.

On the other hand, since (u,)nen is a (PS)-sequence, we infer that

lim (I'(u,) — I'(uy), un — uyx) = 0.

n—-+oo
Combining this with Lemma 3.4(iii), we can now conclude that w,, — u) in X. Hence,

I(ux) =m <0 and I'(uy)=0.
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We have thus shown that u) is a nontrivial weak solution for problem (1.1) whenever A € (0, \*).
This completes the proof. O

Final remarks. (i) In our hypothesis (P) we have assumed that inf , ,)cpen p(x,y) > 1. This
condition is essential for reflexivity reasons (Proposition 3.1), which are used in the proof of
Theorem 4.3, which is the main existence result of the present paper. The “borderline” case
inf (. ,yeren P(7,y) = 1 (as well as sup(,, ,)crzn p(2,y) = +00) attracts the non-reflexivity of the
associated Sobolev-type space with variable exponent, hence different tools should be employed.
Efficient arguments can be developed in the framework of Orlicz-Sobolev spaces and using
truncation methods in order to approximate the variable exponent.

(ii) The mathematical analysis developed in this paper is valid for variable exponents p(-, -)
which are symmetric, continuous and that fulfill hypothesis (P). However, the function space X
can be constructed even if p(-,-) is only a bounded function (not necessarily continuous). The
method used in our proof requires continuity properties of the variable exponent, hence we can
extend the main result to larger classes of variable exponents but by using an approximating
procedure by continuous functions.

Data Availability Statements. The data that supports the findings of this study are available
within the article.
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