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Abstract. This paper deals with critical logarithmic double phase problems
of the form

−divK(u) = g(x, u) + |u|p
∗−2u in Ω, u = 0 on ∂Ω,

where divK is the logarithmic double phase operator defined by

div

(
|∇u|p−2∇u+ µ(x)

(
log(e+ |∇u|) +

|∇u|
q(e+ |∇u|)

)
|∇u|q−2∇u

)
,

e is Euler’s number, Ω ⊂ RN , N ≥ 2, is a bounded domain with Lipschitz

boundary ∂Ω, 1 < p < N , p < q < p∗ = Np
N−p

, 0 ≤ µ(·) ∈ L∞(Ω) and

g : Ω × [−ξ, ξ] → R for ξ > 0 is a locally defined Carathéodory function

satisfying a certain behavior near the origin. Based on appropriate truncation

techniques and a suitable auxiliary problem, we prove the existence of a whole
sequence of sign-changing solutions of the problem above which converges to 0

in the logarithmic Musielak-Orlicz Sobolev space W
1,Hlog

0 (Ω) and in L∞(Ω).

1. Introduction

In the recent work by Arora–Crespo-Blanco–Winkert [5], the authors introduced
and studied the properties of the functional

I(u) =

∫
Ω

(
|∇u|p

p
+ µ(x)

|∇u|q

q
log(e+ |∇u|)

)
dx (1.1)

and of the corresponding logarithmic double phase operator given by

divK(u) = div

(
|∇u|p−2∇u

+ µ(x)

(
log(e+ |∇u|) + |∇u|

q(e+ |∇u|)

)
|∇u|q−2∇u

)
,

(1.2)

with u ∈ W
1,Hlog

0 (Ω) being the related logarithmic Musielak-Orlicz Sobolev space
while

Hlog(x, t) = tp + µ(x)tq log(e+ t) for all (x, t) ∈ Ω× [0,∞),

for 1 < p < N , p < q and 0 ≤ µ(·) ∈ L∞(Ω). In the past, special cases of the
functional given in (1.1) have been investigated. The local Hölder continuity of the
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gradient of local minimizers of

u 7→
∫
Ω

[
|∇u|p + µ(x)|∇u|p log(e+ |∇u|)

]
dx,

(p = q in (1.1)), was shown by Baroni–Colombo–Mingione [7] for 1 < p < ∞ and
0 ≤ µ(·) ∈ C0,α(Ω) while in a more recent work by De Filippis–Mingione [9], the
local Hölder continuity of the gradient of local minimizers of the functional

u 7→
∫
Ω

[
|∇u| log(1 + |∇u|) + µ(x)|∇u|q

]
dx, (1.3)

has been examined whenever 0 ≤ µ(·) ∈ C0,α(Ω) and 1 < q < 1 + α
n . It should be

noted that (1.3) originates from functionals with nearly linear growth of the form

u 7→
∫
Ω

|∇u| log(1 + |∇u|) dx, (1.4)

which has been studied, for example, in the papers by Fuchs–Mingione [13] and
Marcellini–Papi [25]. We point out that (1.4) occur in the theory of plasticity with
logarithmic hardening, see, for example, Seregin–Frehse [34] and Fuchs–Seregin [14].
Moreover, the famous work of Marcellini [24] includes as a special case functionals
with logarithmic term of the form

u 7→
∫
Ω

(1 + |∇u|2)
p
2 log(1 + |∇u|) dx.

In the present work we study critical elliptic problems involving the logarithmic
double phase operator given in (1.2). To be more precise, given a bounded domain
Ω ⊆ RN , N ≥ 2, with Lipschitz boundary ∂Ω, we investigate the Dirichlet problem

− divK(u) = g(x, u) + |u|p
∗−2u in Ω, u = 0 on ∂Ω, (1.5)

where divK is as in (1.2) while we suppose the following assumptions on the
exponents p, q, the weight function µ(·) and the perturbation g(·, ·):
(A1) 1 < p < N , p < q < p∗ := Np

N−p and 0 ≤ µ(·) ∈ L∞(Ω);

(A2) g : Ω × [−ξ, ξ] → R is a Carathéodory function for fixed ξ > 0 with
g(x, 0) = 0 and g(x, ·) is odd for a.a.x ∈ Ω;

(A3) there exists η ∈ L∞(Ω) such that

|g(x, s)| ≤ η(x) for a.a.x ∈ Ω and for all |s| ≤ ξ;

(A4) there exists γ ∈
(
1,min

{
p, p2

N−p + 1
})

such that

lim
s→0

g(x, s)

|s|γ−2s
= 0 uniformly for a.a.x ∈ Ω;

(A5)

lim
s→0

g(x, s)

|s|p−2s
= +∞ uniformly for a.a.x ∈ Ω.

We call a function u ∈ W
1,Hlog

0 (Ω) a weak solution of problem (1.5) if∫
Ω

(
|∇u|p−2∇u+ µ(x)

(
log(e+ |∇u|) + |∇u|

q(e+ |∇u|)

)
|∇u|q−2∇u

)
· ∇φ dx

=

∫
Ω

(
g(x, u) + |u|p

∗−2u
)
φ dx
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is satisfied for all φ ∈ W
1,Hlog

0 (Ω).
Our main result reads as follows.

Theorem 1.1. Suppose the assumptions (A1)–(A5), then problem (1.5) admits

a sequence {wn}n∈N ⊆ W
1,Hlog

0 (Ω) ∩ L∞(Ω) of sign-changing solutions such that
∥wn∥ → 0 and ∥wn∥∞ → 0 as n → ∞, where ∥ · ∥ and ∥ · ∥∞ are the norms in

W
1,Hlog

0 (Ω) and in L∞(Ω), respectively.

We point out that the right-hand side of (1.5) consists of the combined effect
of a locally defined Carathéodory perturbation g(x, ·) along with the critical term

u → |u|p∗−2u with p∗ := Np
N−p being the critical exponent related to the given

number 1 < p < N . The main difficulty in the study of (1.5) is the appearance of
the critical term and the lack of compactness. In order to overcome this fact, we
are going to study an appropriate auxiliary problem by using suitable truncation
functions which makes the auxiliary problem coercive. Then we are able to show the
existence of extremal constant sign solutions of this auxiliary problem which will
be used in order to apply the symmetric mountain pass theorem due to Kajikiya
[19]. With our work, we are not only extending the work of Liu–Papageorgiou
[22] from the double phase setting to the logarithmic double phase one, but we
are also in the position to weaken the assumptions so that assumption H1(iii) in
[22] is not needed anymore. For additional information and details we also refer to
Papageorgiou–Vetro–Winkert [29] in which the double phase problem with variable
exponent has been discussed.

As mentioned at the beginning of the Introduction, the logarithmic double phase
operator (1.2) has been recently introduced and so only few papers exist involving
such operator. The first one has been published by Arora–Crespo-Blanco–Winkert
[5] who treated the problem

− divK(u) = f(x, u) in Ω, u = 0 on ∂Ω, (1.6)

where divK is as in (1.2) but with variable exponents and with a Carathéodory
function f : Ω×R → R having subcritical growth and a certain behavior at infinity
and near the origin. The authors prove the existence of a least energy sign-changing
solution by minimization of the related energy function over the corresponding
Nehari manifold of (1.6) under the stronger assumption that q + 1 < p∗. We also
refer to a recent work by the same authors [4] concerning new embeddings and
existence results. Another logarithmic double phase operator different from the
one in (1.2) has been introduced by Vetro–Zeng [40] who studied existence and
uniqueness of equations involving the operator

u 7→ ∆HL
u = div

(
H′

L(x, |∇u|)
|∇u|

∇u

)
, u ∈ W 1,HL

0 (Ω),

where HL : Ω× [0,∞) → [0,∞) is given by

HL(x, t) = (tp + µ(x)tq) log(e+ t),

with 1 < p < q and H′
L stands for the derivative of HL with respect to the second

variable. The operator (1.2) also appeared in the work by Vetro–Winkert [39] who
proved the boundedness, closedness and compactness of the solution set to the
problem

− divK(u) = f(x, u,∇u) in Ω, u = 0 on ∂Ω,
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where divK is as in (1.2) but with variable exponents and f : Ω×R×RN → R is a
convection term with very mild structures conditions. Finally, the operator in [39]
is also involved in a Kirchhoff type context by Vetro [38].

We also mention the recent work by Tran–Nguyen [37] who showed existence
results for equations involving (1.2) when p = q. In addition, we also refer to some
works dealing with logarithmic perturbations on the right-hand side for Schrödinger
equations or p-Laplace problems. In 2009, Montenegro–de Queiroz [26] studied the
problem

−∆u = χu>0(log(u) + λf(x, u)) in Ω, u = 0 on ∂Ω, (1.7)

with a function f(x, ·) being nondecreasing and sublinear while fu is supposed to be
continuous. They showed that problem (1.7) has a maximal solution uλ ≥ 0 of type
C1,γ(Ω). We also refer to the works by Figueiredo–Montenegro–Stapenhorst [11, 12]
who considered a similar problem in planar domains with f being of exponential
growth. Furthermore, logarithmic Schrödinger equations of the form

−∆u+ V (x)u = Q(x)u log(u2) in RN (1.8)

have been studied by Squassina–Szulkin [36] who showed the existence of infinitely
many solutions of (1.8). More results for logarithmic Schrödinger equations have
been published by Alves–de Morais Filho [2], Alves–Ji [3] and Shuai [35], see also
Alves–da Silva [1] about logarithmic Schrödinger equations on exterior domains
and Bahrouni–Fiscella–Winkert [6] for sign-changing potentials in RN . Finally, we
mention some related works for double phase problems without logarithmic terms,
see the papers by Ge–Pucci [15], Guo–Liang–Lin–Pucci [16], and Liu–Pucci [23].

The paper is organized as follows. In Section 2 we recall the main properties of
the logarithmic Musielak-Orlicz Sobolev spaces and the logarithmic double phase
operator (1.2). Moreover, we point out the main results about the eigenvalue
problem of the p-Laplacian with homogeneous Dirichlet boundary condition. In
Section 3 we first study an auxiliary problem and prove the existence of extremal
constant sign solutions and then we apply the results of Kajikiya [19] to give the
proof of Theorem 1.1.

2. Preliminaries

This section is devoted to the main properties of logarithmic Musielak-Orlicz
Sobolev spaces, the corresponding logarithmic double phase operator and some
tools which will be used in the sequel. Most of the results are taken from the
recent paper by Arora–Crespo-Blanco–Winkert [5]. We also refer to the monographs
by Diening–Harjulehto–Hästö–Růžička [10] , Harjulehto–Hästö [17], Papageorgiou–
Winkert [30] and the paper by Crespo-Blanco–Gasiński–Harjulehto–Winkert [8].
First, for 1 ≤ r ≤ ∞, Lr(Ω) stands for the usual Lebesgue space with norm ∥ · ∥r
while W 1,r

0 (Ω) denotes the related Sobolev space with zero traces endowed with the
equivalent norm ∥∇ · ∥r for 1 < r < ∞.

Now, we introduce the nonlinear map Hlog : Ω× [0,∞) → [0,∞) defined by

Hlog(x, t) = tp + µ(x)tq log(e+ t),
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where we assume hypothesis (A1). Denoting by M(Ω) the set of all measurable
function u : Ω → R, we can introduce the space LHlog(Ω) by

LHlog(Ω) =

{
u ∈ M(Ω): ρHlog

(u) :=

∫
Ω

Hlog(x, |u|) dx < ∞
}
,

equipped with the norm

∥u∥Hlog
:= inf

{
λ > 0: ρHlog

(u
λ

)
≤ 1

}
for u ∈ LHlog(Ω),

where ρHlog
is called modular function corresponding to Hlog. We know that

LHlog(Ω) is a separable and reflexive Banach space. The corresponding logarithmic
Musielak-Orlicz Sobolev space W 1,Hlog(Ω) is then given by

W 1,Hlog(Ω) =
{
u ∈ LHlog(Ω): |∇u| ∈ LHlog(Ω)

}
,

endowed with the norm

∥u∥1,Hlog
:= ∥u∥Hlog

+ ∥∇u∥Hlog
.

Furthermore, we set

W
1,Hlog

0 (Ω) = C∞
c (Ω)

∥·∥1,Hlog .

Note that both spaces W 1,Hlog(Ω) and W
1,Hlog

0 (Ω) are separable, reflexive Banach

spaces. In addition, we can equip the space W
1,Hlog

0 (Ω) with the equivalent norm

∥u∥ := ∥∇u∥Hlog
,

see Arora–Crespo-Blanco–Winkert [5, Proposition 3.9]. In the following, we use
the abbreviations ρHlog

(∇u) := ρHlog
(|∇u|) and Hlog( · ,∇u) = Hlog( · , |∇u|) for

u ∈ W
1,Hlog

0 (Ω).
The following embedding results can be found in the work by Arora–Crespo-

Blanco–Winkert [5, Proposition 3.7].

Proposition 2.1. Let hypotheses (A1) be satisfied. Then the following hold:

(i) W
1,Hlog

0 (Ω) ↪→ W 1,p
0 (Ω) is continuous;

(ii) W
1,Hlog

0 (Ω) ↪→ Lp∗
(Ω) is continuous;

(iii) W
1,Hlog

0 (Ω) ↪→ Lr(Ω) is compact for all 1 ≤ r < p∗.

Moreover, the relation between the norm ∥ · ∥ in W
1,Hlog

0 (Ω) and the modular
function ρHlog

is stated in the next proposition, see Arora–Crespo-Blanco–Winkert
[5, Proposition 3.6]. In the following, we denote by κ the constant given by

κ =
e

e+ t0
, (2.1)

where e is Euler’s number and t0 is the positive number that satisfies t0 =
e log(e+ t0).

Proposition 2.2. Let hypotheses (A1) be satisfied, λ > 0, u ∈ W
1,Hlog

0 (Ω), and κ
as in (2.1). Then the following hold:

(i) ∥u∥ = λ if and only if ρHlog

(∇u
λ

)
= 1;

(ii) ∥u∥ < 1(resp.= 1, > 1) if and only if ρHlog
(∇u) < 1 (resp.= 1, > 1);

(iii) if ∥u∥ < 1 then ∥u∥q+κ ≤ ρHlog
(∇u) ≤ ∥u∥p;

(iv) if ∥u∥ > 1 then ∥u∥p ≤ ρHlog
(∇u) ≤ ∥u∥q+κ;

(v) ∥un∥ → 0 if and only if ρHlog
(∇un) → 0 as n → ∞.
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The following lemma will be used later, see Arora–Crespo-Blanco–Winkert [5,
Lemma 5.4].

Lemma 2.3. Let Q > 1 and h : [0,∞) → [0,∞) given by h(t) = t
Q(e+t) log(e+t) .

Then h attains its maximum value at t0 and the value is κ
Q , where t0 and κ are the

same as in (2.1).

Next, we introduce the nonlinear operator A : W
1,Hlog

0 (Ω) → W
1,Hlog

0 (Ω)∗ defined
by

⟨A(u), v⟩ =
∫
Ω

|∇u|p−2∇u · ∇v dx

+

∫
Ω

µ(x)

(
log(e+ |∇u|) + |∇u|

q(e+ |∇u|)

)
|∇u|q−2∇u · ∇v dx,

(2.2)

where ⟨ ·, · ⟩ denotes the duality pairing between W
1,Hlog

0 (Ω) and its dual space

W
1,Hlog

0 (Ω)∗. The properties of A : W
1,Hlog

0 (Ω) → W
1,Hlog

0 (Ω)∗ are summarized in
the following proposition, see Arora–Crespo-Blanco–Winkert [5, Theorem 4.4].

Theorem 2.4. Let hypotheses (A1) be satisfied and A be given as in (2.2). Then
A is bounded, continuous, strictly monotone, and satisfies the (S+)-property, that

is, any sequence {un}n∈N ⊆ W
1,Hlog

0 (Ω) such that un ⇀ u weakly in W
1,Hlog

0 (Ω)

and lim supn→∞⟨A(un), un − u⟩ ≤ 0 converges strongly to u in W
1,Hlog

0 (Ω).

In the following, C1
0 (Ω) stands for the ordered Banach space given by

C1
0 (Ω) =

{
u ∈ C1(Ω): u

∣∣
∂Ω

= 0
}
,

while C1
0 (Ω)+ is the positive cone defined by

C1
0 (Ω)+ =

{
u ∈ C1

0 (Ω): u(x) ≥ 0 for all x ∈ Ω
}
,

which has a nonempty interior

int
(
C1

0 (Ω)+
)
=

{
u ∈ C1

0 (Ω): u(x) > 0 ∀x ∈ Ω and
∂u

∂n
(x) < 0 ∀x ∈ ∂Ω

}
,

where n = n(x) is the outer unit normal at x ∈ ∂Ω. For any t ∈ R we put
t± = max{±t, 0}, that is, t = t+ − t− and |t| = t+ + t−. Furthermore, for any
function u : Ω → R we write u±(·) = [u(·)]±.

Let us now recall some known results about the eigenvalue problem of the p-
Laplacian for 1 < p < ∞ with homogeneous Dirichlet boundary condition which is
defined by

−∆pu = λ|u|p−2u in Ω, u = 0 on ∂Ω. (2.3)

We know from Lê [20] that there exists a smallest eigenvalue λ1 of (2.3) which is
positive, isolated, simple and can be written as

λ1 = inf

{∥∇u∥pp
∥u∥pp

: u ∈ W 1,p
0 (Ω), u ̸= 0

}
. (2.4)

We denote by u1 the Lp-normalized positive eigenfunction corresponding to λ1,
that is, ∥u1∥p = 1. Furthermore, u1 ∈ int

(
C1

0 (Ω)+
)
due to the regularity theory of

Lieberman [21] and the maximum principle by Pucci–Serrin [32].
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Let X be a Banach space and X∗ be its dual space. We say that a functional
φ ∈ C1(X) satisfies the Palais-Smale condition (PS-condition for short), if every
sequence {un}n∈N ⊆ X such that {φ(un)}n∈N ⊆ R is bounded and

φ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence. We also set

Kφ := {u ∈ X : φ′(u) = 0} ,

which is the set of all critical points of φ. Recall that a set S ⊆ X is called
downward directed if for given u1, u2 ∈ S there exists u ∈ S such that u ≤ u1 and
u ≤ u2. Similarly, S ⊆ X is called upward directed if for given v1, v2 ∈ S one can
find v ∈ S such that v1 ≤ v and v2 ≤ v.

The proof of Theorem 1.1 relies on the following abstract critical point result
established by Kajikiya [19, Theorem 1], which extends the symmetric mountain
pass theorem.

Theorem 2.5. Let (X, ∥ · ∥) be an infinite dimensional Banach space and φ ∈
C1(X,R) such that the following hold:

(i) φ is even, bounded from below, φ(0) = 0 and it satisfies the (PS)-condition.
(ii) For any n ∈ N, there exist a n-dimensional subspace Xn of X and a number

rn > 0 such that supXn∩Srn
φ(u) < 0, where Srn = {u ∈ X : ∥u∥ = rn}.

Then, the functional φ admits a sequence of critical points {vn}n∈N satisfying
∥vn∥ → 0 as n → ∞.

3. Asymptotically vanishing sign-changing solutions

We first study a truncated auxiliary problem which helps us to deal with the
critical term in (1.5). To this end, let Ψ ∈ C1(R) be an even cut-off function such
that

suppΨ ⊆ [−ξ, ξ], Ψ∣∣[−ξ
2 , ξ2 ]

≡ 1 and 0 < Ψ ≤ 1 on (−ξ, ξ). (3.1)

Next, we introduce the function ϑ : Ω× R → R by

ϑ(x, s) = Ψ(s)
[
g(x, s) + |s|p

∗−2s
]
+ (1−Ψ(s))|s|γ−2s, (3.2)

which is a Carathéodory function, whereby γ is from hypothesis (A4). It is easy to
see that from the choice of Ψ in (3.1) along with (3.2) and (A4) we have the growth
condition

|ϑ(x, s)| ≤ C
(
1 + |s|γ−1

)
(3.3)

for a.a.x ∈ Ω and for all s ∈ R with some C > 0.
The strategy for dealing with the critical term in problem (1.5) relies on the

cut-off function Ψ, introduced above and satisfying the properties listed in (3.1).
In this framework, the function ϑ has subcritical growth (see (3.3)), and therefore,
by considering the auxiliary problem formulated below, extremal constant sign
solutions can be obtained through standard variational methods. Furthermore,
Theorem 2.5 yields a sequence of sign-changing solutions wn to the auxiliary
problem converging to zero. This convergence makes it possible to select a
sufficiently large n0 ∈ N such that Ψ(wn(x)) = 1 for a.a.x ∈ Ω and for all n ≥ n0

(by virtue of the second property in (3.1)), which in turn ensures that ϑ coincides
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with the right-hand side of the original problem (1.5). Note again that the number
ξ > 0 is fixed from the beginning, see (A2).

Now, we are interested in the solvability of the auxiliary problem

− divK(u) = ϑ(x, u) in Ω, u = 0 on ∂Ω, (3.4)

where divK(u) is the logarithmic double phase operator given in (1.2). We are
going to prove the existence of extremal constant sign solutions of (3.4) which will
be used in the construction of sign-changing solutions to our original problem (1.5).
For this purpose, let S+ and S− be the sets of positive and negative solutions of

problem (3.4), respectively. In the following, we denote by E± : W
1,Hlog

0 (Ω) → R
the truncated energy functionals related to (3.4) given by

E±(u) =
∫
Ω

[
1

p
|∇u|p + µ(x)

q
|∇u|q log(e+ |∇u|)

]
dx−

∫
Ω

Θ(x,±u±) dx, (3.5)

for all u ∈ W
1,Hlog

0 (Ω), where Θ(x, s) =
∫ s

0
ϑ(x, t) dt. It is obvious to see that

E± ∈ C1(W
1,Hlog

0 (Ω)).
First, we show that S± are nonempty.

Proposition 3.1. Let hypotheses (A1)–(A5) be satisfied. Then S+ and S− are

nonempty subsets in W
1,Hlog

0 (Ω) ∩ L∞(Ω).

Proof. We start by showing that S+ ̸= ∅. Due to

E+(u) ≥
1

q
ρHlog

(|∇u|)−
∫
Ω

Θ(x, u+) dx

along with the growth in (3.3), γ < p by (A4) as well as Proposition 2.2 (iv),
we see that E+ is coercive. Moreover, from Proposition 2.1 (iii), we know that

W
1,Hlog

0 (Ω) ↪→ Lr(Ω) is compact for any 1 ≤ r < p∗. Therefore, the functional
E+ is also sequentially weakly lower semicontinuous. Then, we can find an element

û ∈ W
1,Hlog

0 (Ω) such that

E+(û) = inf
[
E+(u) : u ∈ W

1,Hlog

0 (Ω)
]
.

We show that û ̸= 0. Taking hypothesis (A5) into account, for each ε > 0, there

exists ω ∈
(
0,min{ ξ

2 , 1}
)
such that

G(x, s) =

∫ s

0

g(x, t) dt ≥ ε

p
|s|p for all |s| ≤ ω. (3.6)

Recall that u1 ∈ int
(
C1

0 (Ω)+
)

is the Lp-normalized positive eigenfunction
corresponding to λ1 of the eigenvalue problem (2.3). Now we choose t ∈ (0, 1) small

enough such that tu1(x) ∈ (0, ω] for all x ∈ Ω. Then, since ω ∈
(
0,min{ ξ

2 , 1}
)
, we

get from (3.1) that

ϑ(x, tu1) = g(x, tu1) + (tu1)
p∗−2tu1 ≥ g(x, tu1). (3.7)

Now, using the representation of λ1 in (2.4), ∥u1∥p = 1 and the inequality
log(e + xy) ≤ log(e + x) + log(e + y) for all x, y > 0 as well as (3.6) and (3.7),
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we obtain

E+(tu1) =

∫
Ω

[
1

p
|∇(tu1)|p +

µ(x)

q
|∇(tu1)|q log(e+ t|∇u1|)

]
dx

−
∫
Ω

Θ(x, tu1) dx

≤ tp

p
λ1 +

tq log(e+ t)

q

∫
Ω

µ(x)|∇u1|q dx

+
tq

q

∫
Ω

µ(x)|∇u1|q log(e+ |∇u1|) dx− tp

p
ε

=
tp

p
(λ1 − ε) +

tq log(e+ t)

q

∫
Ω

µ(x)|∇u1|q dx

+
tq

q

∫
Ω

µ(x)|∇u1|q log(e+ |∇u1|) dx.

(3.8)

Taking ε > λ1, we see from (3.8), for t > 0 sufficiently small, since p < q, that

E+(tu1) < 0.

This shows that û ̸= 0.
Since û is a global minimizer of E+, it holds E ′

+(û) = 0, which means∫
Ω

(
|∇û|p−2∇û+ µ(x)

(
log(e+ |∇û|) + |∇û|

q(e+ |∇û|)

)
|∇û|q−2∇û

)
· ∇φ dx

=

∫
Ω

ϑ(x, û+)φdx

for all φ ∈ W
1,Hlog

0 (Ω). Testing the above equation with φ = −û− ∈ W
1,Hlog

0 (Ω)
(see Arora–Crespo-Blanco–Winkert [5, Proposition 3.8 (iii)]) yields û− = 0.
Therefore, û ≥ 0 and since û ̸= 0, it is a nontrivial positive weak solution of
problem (3.4). This proves S+ ̸= ∅ and from Rădulescu–Stapenhorst–Winkert [33],

we know that û ∈ W
1,Hlog

0 (Ω) ∩ L∞(Ω).
Similarly, we can show the existence of a nontrivial negative bounded weak

solution v̂ of problem (3.4) which is the global minimizer of E− : W
1,Hlog

0 (Ω) → R
defined in (3.5). □

In the next step, we will show that the auxiliary problem (3.4) has extremal
constant sign solutions in the sense that there exist a smallest positive solution
ũ ∈ S+ and a largest negative solution ṽ ∈ S−.

Proposition 3.2. Let hypotheses (A1)–(A5) be satisfied. Then there exists ũ ∈ S+

such that ũ ≤ u for all u ∈ S+ and there exists ṽ ∈ S− such that ṽ ≥ v for all
v ∈ S−.

Proof. We start with the existence of ũ. First, note that the set S+ is downward
directed. This is a standard proof and can be done as in the paper by Papageorgiou–
Rădulescu–Repovš [28, Proposition 7]. From this fact, using Lemma 3.10 by Hu–
Papageorgiou [18], there exists a decreasing sequence {un}n∈N ⊆ S+ such that

inf
n∈N

un = inf S+.
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As un ∈ S+ it holds∫
Ω

(
|∇un|p−2∇un

+ µ(x)

(
log(e+ |∇un|) +

|∇un|
q(e+ |∇un|)

)
|∇un|q−2∇un

)
· ∇φ dx

=

∫
Ω

ϑ(x, un)φ dx

(3.9)

for all φ ∈ W
1,Hlog

0 (Ω) and for all n ∈ N. Choosing φ = un ∈ W
1,Hlog

0 (Ω) in (3.9)
and using (3.3) as well as 0 ≤ un ≤ u1 leads to

ρHlog
(∇un) =

∫
Ω

|∇un|p dx+

∫
Ω

µ(x)|∇un|q log(e+ |∇un|) dx < c1

for some c1 > 0 and for all n ∈ N. Therefore, Proposition 2.2 (iii),(iv) implies

that {un}n∈N ⊆ W
1,Hlog

0 (Ω) is bounded. Furthermore, taking hypothesis (A4) into

account, we see that γ < p2

N−p+1 and so N
p (γ−1) < p∗. Next, we can take a number

t > N
p such that t(γ−1) < p∗. Then, by the boundedness of {un}n∈N ⊆ W

1,Hlog

0 (Ω)

and Proposition 2.1 (iii) we may assume that

un ⇀ ũ in W
1,Hlog

0 (Ω) and un → ũ in Lt(γ−1)(Ω) (3.10)

for a subsequence if necessary (not relabeled) and ũ ∈ W
1,Hlog

0 (Ω). Moreover,
combining (3.1), (3.2) and hypothesis (A4) we get

|ϑ(x, s)| ≤ c2|s|γ−1 (3.11)

for a.a.x ∈ Ω, for all s ∈ R and for some c2 > 0. Now, from (3.9) and (3.11),
because of t > N

p , we obtain that

∥un∥∞ ≤ c3∥un∥
γ−1
p−1

t(γ−1) (3.12)

for some c3 > 0 and for all n ∈ N. The proof of this result can be done as in Perera–

Squassina [31, Proposition 2.4] since W
1,Hlog

0 (Ω) ↪→ W 1,p
0 (Ω) by Proposition 2.1 (i).

We are going to prove that ũ ̸= 0. Suppose by contradiction that ũ = 0. Then
from (3.10) and (3.12) we have ∥un∥∞ → 0 as n → +∞ which implies the existence
of n0 ∈ N such that 0 < un(x) ≤ ω for a.a.x ∈ Ω and for all n ≥ n0, where

ω ∈
(
0,min{ ξ

2 , 1}
)
. Hence, taking (3.1) and (3.2) into account yields

ϑ(x, un(x)) = g(x, un(x)) + un(x)
p∗−1 (3.13)

for a.a.x ∈ Ω and for all n ≥ n0. Next, we set yn = un

∥un∥ for all n ∈ N which gives

∥yn∥ = 1 and yn ≥ 0 for all n ∈ N. Therefore, we may assume, for a subsequence
if necessary (not relabeled), that

yn ⇀ y in W
1,Hlog

0 (Ω) and yn → y in Lp(Ω)

for y ∈ W
1,Hlog

0 (Ω) with y ≥ 0. Applying un = ∥un∥yn in (3.9) and using (3.13)
results in∫

Ω

(
∥un∥p−1|∇yn|p−2∇yn
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+ µ(x)∥un∥q−1

(
log(e+ |∇un|) +

|∇un|
q(e+ |∇un|)

)
|∇yn|q−2∇yn

)
· ∇φ dx

=

∫
Ω

∥un∥p−1

[
g(x, un)

up−1
n

+ up∗−p
n

]
yp−1
n φ dx

for all φ ∈ W
1,Hlog

0 (Ω) and for all n ≥ n0. From this we conclude that∫
Ω

(
|∇yn|p−2∇yn

+ µ(x)∥un∥q−p

(
log(e+ |∇un|) +

|∇un|
q(e+ |∇un|)

)
|∇yn|q−2∇yn

)
· ∇φ dx

=

∫
Ω

[
g(x, un)

up−1
n

+ up∗−p
n

]
yp−1
n φ dx

(3.14)

for all φ ∈ W
1,Hlog

0 (Ω) and for all n ≥ n0. Note that

log(e+ |∇un|) = log(e+ ∥un∥|∇yn|)

≤

{
log(e+ |∇yn|) if ∥un∥ < 1,

∥un∥ log(e+ |∇yn|) if ∥un∥ ≥ 1,

(3.15)

where we used in case ∥un∥ < 1 the monotonicity of the logarithmic function while
for ∥un∥ ≥ 1 the standard inequality log(e + Ct) ≤ C log(e + t) for all t ≥ 0 and
C ≥ 1. Therefore, using (3.15) and Lemma 2.3, we see that the left-hand side of

(3.14) is bounded for all φ ∈ W
1,Hlog

0 (Ω) (similar to the proof of Theorem 4.4 by
Arora–Crespo-Blanco–Winkert [5]) and so the same holds for the right-hand side
of (3.14). But then, using (A5), we see that

y = 0 and
g(x, un(x))

un(x)p−1
yn(x)

p−1 → 0 for a.a.x ∈ Ω.

Next, choosing φ = yn in (3.14) and passing to the limit as n → +∞, we arrive at

lim
n→+∞

∫
Ω

|∇yn|p dx = 0.

Therefore, we have ∇yn(x) → 0 for a.a.x ∈ Ω for a subsequence if necessary,
not relabeled. This implies that Hlog(x,∇yn) → 0 for a.a.x ∈ Ω. From Vitali’s
convergence theorem we know that {Hlog( · ,∇yn(·)}n∈N ⊂ L1(Ω) is uniformly
integrable which yields

ρHlog
(∇yn) → 0 in W

1,Hlog

0 (Ω). (3.16)

Recall that by construction we have ∥yn∥ = 1 for all n ∈ N. Taking Proposition
2.2 (ii) into account, this is equivalent to ρHlog

(∇yn) = 1 for all n ∈ N which is a
contradiction to (3.16). Thus, we have ũ ̸= 0 and ũ ∈ S+ is the smallest positive
solution of (3.4) in S+. Using similar arguments, one can prove that ṽ ∈ S− such
that ṽ = supS−. □

Remark 3.3. By definition, g(x, ·) is defined only locally. Then, because of
hypothesis (A5), namely

lim
s→0

g(x, s)

|s|p−2s
= +∞ uniformly for a.a.x ∈ Ω,
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without any loss of generality, we can assume that

g(x, s)

|s|p−2s
> 0 for a.a.x ∈ Ω and for all |s| ≤ ξ.

This implies

g(x, s) > 0 for all 0 < s ≤ ξ and g(x, s) < 0 for all − ξ ≤ s < 0.

Let

[ṽ, ũ] :=
{
u ∈ W

1,Hlog

0 (Ω): ṽ(x) ≤ u(x) ≤ ũ(x) for a.a.x ∈ Ω
}
,

where ũ and ṽ are the extremal constant sign solutions from Proposition 3.2. Next,
we introduce the cut-off function ϑ̃ : Ω× R → R defined by

ϑ̃(x, s) :=


ϑ(x, ṽ(x)) if s < ṽ(x),

ϑ(x, s) if ṽ(x) ≤ s ≤ ũ(x),

ϑ(x, ũ(x)) if ũ(x) < s

(3.17)

and consider the truncated C1-functional Ẽ : W 1,Hlog

0 (Ω) → R by

Ẽ(u) =
∫
Ω

[
1

p
|∇u|p + µ(x)

q
|∇u|q log(e+ |∇u|)

]
dx−

∫
Ω

Θ̃(x, u) dx,

for all u ∈ W
1,Hlog

0 (Ω), where Θ̃(x, s) =
∫ s

0
ϑ̃(x, t) dt.

Note that KẼ = {u ∈ W
1,Hlog

0 (Ω): (Ẽ)′(u) = 0} ⊆ [ṽ, ũ]. Indeed, taking
u ∈ KẼ \ {ũ, ṽ} gives∫

Ω

(
|∇u|p−2∇u

+ µ(x)

(
log(e+ |∇u|) + |∇u|

q(e+ |∇u|)

)
|∇u|q−2∇u

)
· ∇φ dx

=

∫
Ω

ϑ̃(x, u)φdx for all φ ∈ W
1,Hlog

0 (Ω).

(3.18)

Testing (3.18) with φ = (u − ũ)+ ∈ W
1,Hlog

0 (Ω) and using that ũ solves (3.4), we
obtain

⟨A(u), (u− ũ)+⟩

=

∫
Ω

|∇u|p−2∇u · ∇(u− ũ)+ dx

+

∫
Ω

µ(x)

(
log(e+ |∇u|) + |∇u|

q(e+ |∇u|)

)
|∇u|q−2∇u · ∇(u− ũ)+ dx

=

∫
Ω

ϑ̃(x, u)(u− ũ)+ dx

=

∫
Ω

ϑ(x, ũ)(u− ũ)+ dx

=

∫
Ω

|∇ũ|p−2∇ũ · ∇(u− ũ)+ dx

+

∫
Ω

µ(x)

(
log(e+ |∇ũ|) + |∇ũ|

q(e+ |∇ũ|)

)
|∇ũ|q−2∇ũ · ∇(u− ũ)+ dx

= ⟨A(ũ), (u− ũ)+⟩.
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Therefore,

⟨A(u)−A(ũ), (u− ũ)+⟩ = 0,

which implies, due to the strict monotonicity of A (see Proposition 2.4), that u ≤ ũ.
Testing (3.18) with φ = (ṽ − u)+ and reasoning as above shows that ṽ ≤ u. Thus,
it holds KẼ ⊆ [ṽ, ũ].

Now, let V ⊆ W
1,Hlog

0 (Ω) ∩ L∞(Ω) be a finite dimensional subspace.

Proposition 3.4. Let hypotheses (A1)–(A5) be satisfied. Then, there exists a
number hV > 0 such that

sup
[
Ẽ(v) : v ∈ V, ∥v∥ = hV

]
< 0.

Proof. Recall that all norms on V are equivalent since V is finite dimensional (see
Papageorgiou–Winkert [30, Proposition 3.1.17]). Then we can find hV > 0 such
that

v ∈ V and ∥v∥ ≤ hV imply |v(x)| ≤ ω for a.a.x ∈ Ω,

where ω ∈
(
0,min{ ξ

2 , 1}
)
is as in the proof of Proposition 3.1. Since ω < ξ

2 , by
(3.1), we have Ψ(v(x)) = 1 for a.a.x ∈ Ω. From this, v ∈ V with ∥v∥ ≤ hV , we see
that

ϑ̃(x, v(x)) =


g(x, ṽ(x)) + |ṽ(x)|p∗−2ṽ(x) if v(x) < ṽ(x),

g(x, v(x)) + |v(x)|p∗−2v(x) if ṽ(x) ≤ v(x) ≤ ũ(x),

g(x, ũ(x)) + |ũ(x)|p∗−2ũ(x) if ũ(x) < v(x).

Let g̃ : Ω× R → R be the function defined by

g̃(x, v(x)) =


g(x, ṽ(x)) if v(x) < ṽ(x),

g(x, v(x)) if ṽ(x) ≤ v(x) ≤ ũ(x),

g(x, ũ(x)) if ũ(x) < v(x).

For G̃(x, s) :=
∫ s

0
g̃(x, t) dt and v < ṽ we have

G̃(x, v) =

∫ ṽ

0

g̃(x, s) ds+

∫ v

ṽ

g̃(x, s) ds =

∫ ṽ

0

g(x, s) ds+

∫ v

ṽ

g(x, ṽ) ds

= G(x, ṽ) + g(x, ṽ)(v − ṽ),

where G(x, s) =
∫ t

0
g(x, t) dt. By Remark 3.3, we know that g(x, ṽ) < 0 for

a.a.x ∈ Ω. Then it follows g(x, ṽ)(v − ṽ) > 0 for a.a.x ∈ Ω and so

G(x, v)− G̃(x, v) = G(x, v)−G(x, ṽ) + g(x, ṽ)(ṽ − v)

≤ G(x, v)−G(x, ṽ).

Arguing in the same way, for ũ < v it holds

G̃(x, v) = G(x, ũ) + g(x, ũ)(v − ũ),

and so, since g(x, ũ)(ũ− v) < 0 by Remark 3.3,

G(x, v)− G̃(x, v) = G(x, v)−G(x, ũ) + g(x, ũ)(ũ− v)

≤ G(x, v)−G(x, ũ).
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On account of this, we can write

Ẽ(v) =
∫
Ω

[
1

p
|∇v|p + µ(x)

q
|∇v|q log(e+ |∇v|)

]
dx−

∫
Ω

Θ̃(x, v) dx

=
1

p

∫
Ω

|∇v|p dx+
1

q

∫
Ω

µ(x)|∇v|q log(e+ |∇v|) dx

−
∫
{x∈Ω: v(x)<ṽ(x)}

(
G̃(x, v) +

1

p∗
|ṽ|p

∗
)

dx

−
∫
{x∈Ω: ṽ(x)≤v(x)≤ũ(x)}

[
G(x, v) +

1

p∗
|v|p

∗
)

dx

−
∫
{x∈Ω: ũ(x)<v(x)}

(
G̃(x, v) +

1

p∗
|ũ|p

∗
)

dx

≤ 1

p

∫
Ω

|∇v|p dx+
1

q

∫
Ω

µ(x)|∇v|q log(e+ |∇v|) dx

−
∫
{x∈Ω: v(x)<ṽ(x)}

G̃(x, v) dx

−
∫
{x∈Ω: ṽ(x)≤v(x)≤ũ(x)}

G(x, v) dx

−
∫
{x∈Ω: ũ(x)<v(x)}

G̃(x, v) dx

=
1

p

∫
Ω

|∇v|p dx+
1

q

∫
Ω

µ(x)|∇v|q log(e+ |∇v|) dx−
∫
Ω

G(x, v) dx

+

∫
{x∈Ω: v(x)<ṽ(x)}

(
G(x, v)− G̃(x, v)

)
dx

+

∫
{x∈Ω: ũ(x)<v(x)}

(
G(x, v)− G̃(x, v)

)
dx

≤ 1

p

∫
Ω

|∇v|p dx+
1

q

∫
Ω

µ(x)|∇v|q log(e+ |∇v|) dx−
∫
Ω

G(x, v) dx

+

∫
{x∈Ω: v(x)<ṽ(x)}

(G(x, v)−G(x, ṽ)) dx

+

∫
{x∈Ω: ũ(x)<v(x)}

(G(x, v)−G(x, ũ)) dx.

Recall (3.6), that is, by (A5), for each ε > 0, we can find ω ∈
(
0,min{ ξ

2 , 1}
)
such

that

G(x, s) ≥ ε

p
|s|p for all |s| ≤ ω. (3.19)

Now we can choose hV > 0 sufficiently small such that∫
{x∈Ω: v(x)<ṽ(x)}

(G(x, v)−G(x, ṽ)) dx

+

∫
{x∈Ω: ũ(x)<v(x)}

(G(x, v)−G(x, ũ)) dx < ωp.

(3.20)



ON CRITICAL LOGARITHMIC DOUBLE PHASE PROBLEMS 15

Using (3.19) and (3.20) in the observations above we obtain

Ẽ(v) ≤ 1

p

∫
Ω

|∇v|p dx+
1

q

∫
Ω

µ(x)|∇v|q log(e+ |∇v|) dx

− ε

p

∫
Ω

|v|p dx+ ωp.

(3.21)

From Proposition 2.2 (iii), (iv) we know that∫
Ω

µ(x)|∇v|q log(e+ |∇v|) dx ≤ ρHlog
(∇v) ≤ max{∥v∥p, ∥v∥q+κ}. (3.22)

Recall that all norms on V are equivalent since V is finite dimensional. Using this
fact and (3.22) in (3.21) we can find positive constants c1, c2, c3, independent of ω,
such that

Ẽ(v) ≤ c1∥v∥p∞ + c2 max{∥v∥p∞, ∥v∥q+κ
∞ } − εc3∥v∥p∞ + ωp.

Then, for v ∈ V with ∥v∥ = hV along with the equivalence of the norms on V , it
follows, due to ω < 1, that

Ẽ(v) ≤ c1ω
p + c2 max{ωp, ωq+κ} − εc3ω

p + ωp

= (c1 + c2 − εc3 + 1)ωp.

Choosing ε > c1+c2+1
c3

yields Ẽ(v) < 0 for all v ∈ V with ∥v∥ = hV . □

Now we are in the position to prove Theorem 1.1 by applying the symmetric
mountain pass theorem due to Kajikiya [19, Theorem 1].

Proof of Theorem 1.1. First note that the truncated functional Ẽ : W 1,Hlog

0 (Ω) → R
is even and coercive. In particular, it is bounded from below. Then, from
Proposition 5.1.15 by Papageorgiou–Rădulescu–Repovš [27] we know that it fulfills
the PS-condition. Using this and Proposition 3.4 we are able to apply Theorem 2.5

to get a sequence {wn}n∈N ⊂ W
1,Hlog

0 (Ω) ∩ L∞(Ω) such that

wn ∈ KẼ ⊆ [ṽ, ũ], wn ̸= 0, Ẽ(wn) ≤ 0 for all n ∈ N
and

∥wn∥ → 0 as n → +∞. (3.23)

Recall that the functions ṽ and ũ are the extremal constant sign solutions of (3.4),
see Proposition 3.2. Since wn ∈ KẼ ⊆ [ṽ, ũ] and wn ̸= 0 for all n ∈ N, we know that

wn is a critical point of Ẽ belonging to [ṽ, ũ]. Then, due to the truncation defined in

(3.17), it follows that ϑ̃(x, s) = ϑ(x, s) for a.a.x ∈ Ω and for all s ∈ R. Therefore,
wn is a solution of our auxiliary problem (3.4) and since wn ∈ [ṽ, ũ] with ṽ, ũ being
the extremal constant sign solutions of (3.4), wn must be a sign-changing solution
of problem (3.4) for all n ∈ N. Furthermore, as already pointed out in (3.12), we
have the estimate

∥wn∥∞ ≤ C∥wn∥
γ−1
p−1

t(γ−1)

for some C > 0 and for all n ∈ N with t > N
p and t(γ−1) < p∗. Then, due to (3.23),

we obtain ∥wn∥∞ → 0 as n → +∞. In addition, there exists a number n0 ∈ N
such that |wn(x)| ≤ ξ

2 for a.a.x ∈ Ω and for all n ≥ n0. From this we deduce that
Ψ(wn(x)) = 1 for a.a.x ∈ Ω and for all n ≥ n0, see (3.1). From this and (3.2) we
see that wn is a sign-changing solution of problem (1.5) for all n > n0. □
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[17] P. Harjulehto, P. Hästö, “Orlicz Spaces and Generalized Orlicz Spaces”, Springer, Cham,

2019.

[18] S. Hu, N.S. Papageorgiou, “Handbook of Multivalued Analysis. Vol. I”, Kluwer Academic
Publishers, Dordrecht, 1997.



ON CRITICAL LOGARITHMIC DOUBLE PHASE PROBLEMS 17

[19] R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its

applications to elliptic equations, J. Funct. Anal. 225 (2005), no. 2, 352–370.
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