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ABSTRACT. This paper is concerned with the existence of solutions to the
following double phase equation with logarithmic nonlinearity

—div (|Vu\p72Vu + u(z)|Vu\q72Vu) + ulP~2u + p(z)|ul? 2
= Ky (@) ul”” ~2u + AKa(@)ul”2ulog((ul) + 7Ks (@) ul~2u  in RV,

with dimension N > 2, parameters A\, v >0, 1 <p < g < N, u: RN — [0, 00)
is a Lipschitz continuous function, exponents ¢ < r < p* and 1 < 8 < p*.
Here, the weight functions K; and K3 are positive, while K2 may change sign
on RY. First, under quite general assumptions, we give basic properties of the
corresponding function space and prove a compactness results. Then, we study
the equation above for the two cases: the superlinear case (¢ < 8 < r < p*)
and the linear case (8 < r = ¢ < p*). Moreover, we deal with the radial
situation in the two previous cases.

1. INTRODUCTION

In this paper, we study the existence and properties of solutions for a quasilinear
equation, driven by an operator of double phase type and involving a logarithmic
nonlinearity as well as a critical Sobolev term. Namely, we deal with the following
equation

— div (|VulP7?Vu + p(2)|Vu|"*Vu) + [ulP"?u + p(z)|u]?

= Ky (@)|ul” "2u + AK2()[ul " *ulog(ju]) + vK3(x)ul""*u, in RY,

where the main operator on the left-hand side is the so-called double phase operator
satisfying the structural assumption:

(1.1)

(H1) 1<p<g<N,qg<p'= NN—% and p: RN — R, = [0,00) is Lipschitz

continuous such that u(-) € L (RY).

Here, we consider parameters A, v > 0 and exponents ¢ < r < p*, 1 < 8 < p*.
Concerning the functions K, Ko, K3: RV — R, along the paper, we assume the
following conditions:
(Hy) K1 € CRY)NL®RY), Ky(x) >0 for all z € RN and if {A,}neny C RY
is a sequence of Borel sets such that the Lebesque measure |A,| < R for all
n € N and some R > 0, then

lim Ki(z)dz =0,

n—oo
AnNBg(0)
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for some p > 0.
(H3) K3 € L*RY,RT), 0 < K3 < K; on RN, Ky € L}RYN) N L=°RY),
|Ka| < K1 on RN and there exist zg € RN and p > 0 such that

Ky(xz) >0  for x € B(xo,p).

The novelty of our work is the fact that we combine several different and interesting
phenomena in one single equation. More precisely, problem (1.1) contains

(i) a double phase operator;
(ii) a double lack of compactness, due to the free action of translation group in
RY and the critical Sobolev nonlinearity;
(iii) a logarithmic nonlinearity.
To the best of our knowledge, this is the first paper proving the existence of solutions
with the combined effects generated by the above features.
The double phase operator is related to the energy functional

u»—)/ﬂ(|Vu|p+u(x)\Vu|q) dz, (1.2)

where  is an arbitrary domain in RY. Clearly, the integrand has unbalanced
growth. The integral functional (1.2) was first introduced by Zhikov [33, 34, 35] to
provide models for strongly anisotropic materials in the framework of homogeniza-
tion. This functional belongs to a class of functionals with non-standard growth
conditions introduced by Marcellini in [25, 26]. The main characteristic of the dou-
ble phase functional (1.2) is the change of ellipticity on the set {z € Q: u(x) = 0}.
Indeed, its energy density exhibits ellipticity in the gradient of order ¢ in the set
{z € Q: pu(x) > e} for any fixed € > 0 and of order p on the points = where p(z) van-
ishes. Thus, the integrand in (1.2) switches between two different phases of elliptic
behaviours. The analysis of non-autonomous energy functionals with energy density
changing its ellipticity and growth properties according to a point has been devel-
oped in several remarkable papers, see for example, the works of Baroni-Colombo-
Mingione [7], Baroni-Kuusi-Mingione [8] and Colombo-Mingione [11]. A regularity
theory for local minimizers of energy functionals such as (1.2) was recently devel-
oped in the papers of De Filippis [14] and De Filippis-Mingione [15, 16]. Recently,
some contributions devoted to solve equations driven by the double phase opera-
tor in RY have been published, we refer to Ambrosio-Essebei [2], Arora-Fiscella-
Mukherjee-Winkert [3], Bahrouni-Radulescu [5], Bahrouni-Radulescu-Repovs [(],
Ge-Pucci [17], Ge-Yuan [18], Le [20], Liu-Dai [21], Li-Liu [22], Liu-Winkert [24]
and Steglinski [28]. However, all these works do not allow a logarithmic term on
the right-hand side of the problem.

Problems involving nonlinearities of logarithmic type have been widely studied
in literature dealing both with a local and a nonlocal structure and different types of
operators. In this context we refer to the contributions by Biswas-Bahrouni-Fiscella
[9], d’Avenia-Squassina-Zenari [13], Liang-Pu-Rédulescu [23], Tian [29] and Truong
[30] and the references therein. In particular in [29], Tian proved that the following
problem

—Au = a(z)ulog(|u|) in Q,
u=0 on 09

has at least two nontrivial solutions provided that a(-) changes sign on Q C R¥
with © being bounded. In [13], d’Avenia-Squassina-Zenari considered the following
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fractional logarithmic Schrodinger equation
(—A)*u+ W (z)u =ulog (ju]*), zeR",

where W: RY — R* is a continuous function. By employing the fractional log-
arithmic Sobolev inequality, the authors of [13] showed the existence of infinitely
many solutions. Moreover, Truong [30] studied the following fractional p-Laplacian
equations with logarithmic nonlinearity

(—A);u + V(x)|ulP~? = A(x)|u|P"2ulog(|u]), =€ RY,

where [: RV — R is a sign-changing weight function. Using the Nehari manifold
approach, the author in [30] proved the existence of at least two nontrivial solutions,
see also Biswas-Bahrouni-Fiscella [9] for the case of logarithmic fractional equations
with variable exponent.

Concerning a double phase situation, we can just refer to Aberqi-Benslimane-
Elmassoudi-Ragusa [1] who studied the problem

— div (|[VulP7?Vu + p(2)|VulT*Vu) + V(2)u[P~>u
= AK (x)|u|"?ulog(|u|) in D, u|aD =0,

where D C M is an open bounded subset of a smooth complete compact Riemann-
ian N-manifold. By a variational technique on a suitable Nehari manifold, the
existence of a nonnegative solution of (1.3) has been proved whenever r € (1,p).

Motivated by the above papers, in this work we are interested in finding nontriv-
ial solutions for equation (1.1) in RY. First, we are going to prove a compactness
result for the double phase space W1*(RY) into a suitable weighted Lebesgue
space, in order to deal with the critical term. Then, we establish a result which
provides an estimate for the logarithmic nonlinearity. As applications of these ab-
stract tools, we distinguish two main situations for (1.1) depending on the behavior
of r: the superlinear case ¢ < f < r < p* and the linear case 8 < r = g < p*.

As we will see, the effects of the logarithmic nonlinearity and of the double
lack of compactness, due to the unboundedness of the domain and the presence
of criticality, prevent us from using variational methods in a standard way. In
particular, in order to deal with the superlinear logarithmic term, we strongly need
the nonlinearity of 5 exponent in (1.1). Indeed, we want to get a mountain pass
solution for (1.1) in this case. For this, we need a delicate asymptotic property of
the mountain pass level, as A goes to co. The proof of this asymptotic condition
is obtained by a tricky combination of the superlinear logarithmic term and of
the S-nonlinearity. Concerning the linear logarithmic case, we can get a solution
of (1.1) by minimization, under more delicate assumptions on data, in particular
considering K3 sufficiently small.

The outline of the paper is the following: in Section 2, we collect some prelimi-
nary results and we present the variational setting in which equation (1.1) will be
studied. In Section 3 we prove some abstract results as explained above. In Section
4 we deal with the two situations, that is, the superlinear and linear cases. Finally,
in the last section we study the existence of radial solution for equation (1.1), see
Section 5.

(1.3)
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2. VARIATIONAL SETTING

In this section, we first recall basic results about Musielak-Orlicz spaces in R,
As usual, we denote by L™(RY) the classical Lebesgue space equipped with the
norm | - ||, for 1 < m < oo. Moreover, W1™(RY) stands for the Sobolev spaces
endowed with the norm |V - |l + || - [lm, for any 1 < m < oco.

Let us consider the nonlinear function H: RY x [0,00) — [0, 00) defined by

H(z,t) =P + p(x)td,

by assuming that (Hp) holds true. Then, the Musielak-Orlicz Lebesgue space
L*(RY) is given by

L*(RN) = {u ‘ u: RY — R is measurable and oy (u) := / H(z, ju|) dz < oo}
RN

endowed with the Luxemburg norm

u
=1 —) <
lullye := it {7 >0 | on (£) <1},
where the modular function is given by
et i= [ Mo = [ [jaf + (o) ul" ] do
RN RN

In addition, we introduce the weighted space

LZ(RN) = {u ‘ u: RY — R is measurable and / p(x)|ul?de < oo}
RN

= ( [ u(w)uwdxf

While, the corresponding Musielak-Orlicz Sobolev space W1 (RY) is defined by
WLHRY) = {u e L*RY) \ IVul € LH(RN)}

with the seminorm

endowed with the norm

[l = IVullag + llulla,
where || Vullz = || [Vu|||%. Note that the norm ||u|; % on WLH(RY) is equivalent
to
P q » .
lu]] := inf {T > O‘ / {(W) + () (W> + ’E + p(x) ’E‘ } dz < 1} ,
RN T T T T
where

ofu) = [ (190 + (o) 1Val” + fuP + o)) o

is the associated modular. We know that L*(RY) and W1 (RY) are separa-
ble reflexive Banach spaces, see Liu-Dai [21, Theorem 2.7]. Moreover, C°(RY)
is dense in WM (RY), see Harjulehto-Histo [19, Proposition 6.4.4] and Crespo-
Blanco-Gasiniski-Harjulehto-Winkert [12, Theorems 2.24 and 2.28].

The following relations between the norm || - || and the corresponding modular
function p(-) can be found in Liu-Dai [21, Proposition 2.6].
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Lemma 2.1. Let (H;) be satisfied, u € WHH(RY) and ¢ > 0. Then the following
hold:

(i) for u # 0 we have ||ul| = ¢ if and only if o(%) = 1;
(i) [Jull <1 implies [|u]|? < o(u) < [|ul[?;

(iii) Jull > 1 implies [|u]]” < o(u) < [|ul[?.

The following embedding result can be found in Liu-Dai [21, Theorem 2.7].
Lemma 2.2. Let (H;) be satisfied. Then, the embedding W H(RN) — L™ (RN)
is continuous for any m € [p,p*]. Also, WLH(RN) — L™ (RN) is compact for any
m € [1,p*).

Let us denote
WhHERNY = {ue WH(RYN): v is radially symmetric} .

rad

By u being radially symmetric, we mean a function u: RY — R satisfying u(x) =
u(y) for any z,y € RN with |z| = |y|. In the last section, we look for solutions of

(1.1) in era’;ﬂ(RN ). For this, we need the following compact result given in Liu-Dai
[21, Theorem 2.8].

Lemma 2.3. Let (Hy) be satisfied. Then, the embedding era’(;{(RN) — L™(RY)
is compact for any m € (p,p*).

Now, let us recall the definition of a weak solution of equation (1.1).

Definition 2.4. We say that u € WM (RY) is a weak solution of (1.1) if

/ [|Vu|1F2 Vu- Vo + p(z) |[Vul!? Vu - Vv] dx
RN
+ / [|u|p_2 wv + p(z) [u]?? uv} dx
RN
_ / K (2)|uf”” ~2uvdz + /\/ Ko (2)]ul™2u log([u] v dz
RN RN

+ 7/ Ks(z)|u|?~2uv dz,
RN

for any v e WHH(RN)\ {0}.

The energy functional Iy: WH*(RY) — R associated to equation (1.1) is defined
by

1 1 |u|P”
1w = (IValg + i) + ¢ (19l + ) = [ Kol = do
p q RN p

—)\/ @|u|rlog(|u|)dm+/\/ KQ(x)|u|de—7/ MWW dz.
RN RN

T RN T2 g

Of course, weak solution of (1.1) are critical points of Iy. By Lemma 3.3, we will
see that I is well defined and of class CY(WLH(RY), R). Also, for I, we do not
specify dependence on parameter ~ since in Sections 4 and 5 we will consider either
y=Aor~vy=1.

A delicate property for I concerns the study of compactness in W17 (RY). For
this, we say that {u, }neny € WEHH(RY) is a Palais-Smale sequence for I at level
ceRif

I(up) — ¢ and Ii(u,)—0 in (Wl’H(RN))* as n — oo. (2.1)
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We say that Iy satisfies the Palais-Smale condition at level ¢ ((PS). condition
for short) if any Palais-Smale sequence {u,}n,en at level ¢ admits a convergent
subsequence in W17 (RY).

3. THE WEIGHTED LEBESGUE SPACE AND THE LOGARITHMIC TERM

In this section, we examine the continuous and the compact embedding of
WLH(RYN) in a suitable weighted Lebesgue spaces. Moreover, we give some new
logarithmic estimations that will be useful in the sequel. For this purpose we define,
for any 1 < s < oo, the following Lebesgue space

L (RN := {u: RY — R | u is measurable and /RN Ky (2)|u|dz < oo} ,

where K satisfying (Hs) multiplies the critical Sobolev term in (1.1).
We can prove the following compactness result.
Proposition 3.1. Let (Hs) be satisfied. Then, WH"(RN) — Li. (RN) is compact
for any s € (p,p*).
Proof. Let us fix s € (p,p*) and let € > 0. It is easy to see that
NN U
t—0 |t|1) T 5% |t|p* e

Thus, there exist numbers 0 < tg < t; and a positive constant C' > 0 such that
Ky (2)[t]* < eC(tP + [t77) + Xt .t (@) K (2) [P,
for any t € R and any € RY. We set
F(u) = ||ullp + [Jul5--

Let {un}nen € WEHH(RY) be a sequence such that u,, — u in WHH(RYN). By
Lemma 2.2 we have that {F(u,)}nen is bounded in R. Denoting

Ay = {z € RV ty < |up(2)| < t1},

it holds sup,,cy |An| < co. Hence, from (Hy), there exists a positive radius p > 0
such that
| K@l de<c0F@) + [ xalun@DK @)l dr
Bg(0) B (0)
< eCF(up) + 1 / Ky (z) dz (3.1)
B5(0)NA,
< (C"+t)e,
for any n € N sufficiently large. On the other hand, since u € L3, (RM), we know
that

lim Ky (z)|u|® de = 0.

From this, there exists r. > p > 0 such that

/ Ki(2)|ul*dx <e (3.2)
B

re (0)
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and by applying (3.1) we get
/ Ki(2)|u,|® dz < Ki(z)|u,|® dz < (C" + t])e.
B;_(0) Bg(0)
Therefore, by combining (3.2) and (3.3), we deduce that
/ Kl(a:)|un7u|sdx§2571/ Ki(2)(Jun|® + |ul®) de
Be_(0) Bg_(0)
<271+ O+ t])e.
Now, since s € (p,p*) and K; € L>(RY), by Lemma 2.2 we get that
lim Ky (z)|uy —ul®dx = 0.
n—o00 B, (0)

Combining (3.4) and (3.5), we conclude for € > 0 small enough, that

lim Ki(x)|u, —ul®de = 0.

n—roo Jpn
Consequently, we infer that

un = u in Li (RY) for any s € (p,p*).
This finishes the proof.

(3.4)

O

We conclude the section proving results which allow us to handle the logarithmic
nonlinearity in (1.1). First, we recall the following technical tool, whose proof can

be found in Xiang-Hu-Yang [32].

Lemma 3.2.
(i) For any o > 0, we have

1
log(t) < —t7  for any t € [1,00).
eo
(ii) For any o > 0, we have

1
t7] log(t)] < po for any t € (0,1).
o

Lemma 3.3. Let (Hy) — (Hs) be satisfied, u € WHH(RN)\ {0} and r € (p,p*).

Moreover, we assume that
lull =1 or / Ky (z)|u|"dz = 0.
]RN
Then, there is a constant C(p, q,r, K1, K3) > 0 such that

/N Ka(x)[u]"log(|ul) dz < C(p, ¢, 7, Ky, Ko)|ull".
R

Proof. 1t is easy to see that, due to assumption (3.6), we have

|ul

/ Ko(x)|ul" log(|u|) de = / Ks(x)|ul" log () dr = Ji + Ja,
RN RN

[l

where

J1 ::/ Ky (z)|u|" log (|u) dz,
{z€RN : Ky(2)>0} [l

(3.6)
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J2 ::/ Ky (x )|u|rlog( [ul ) dz.
{z€RN: Ky(z)<0} H ||

Let o1 > 0 be such that r 4+ o1 € (p,p*). Therefore, by Proposition 3.1, Lemma
3.2(ii) and condition (Hj), we obtain

n= Ko(@)lul 1og(")dx
{z€RN: K5(z)>0} ” ”

1
<L / Ko(@)[uf ™+ da
€01 {z€RN: Ky(x)>0}
1
<L / Ky (@)]u+ dz < Ollull",
€01 {z€RN : Ky (z)>0}

for some constant C > 0. We set
“i={z eRY: Ky(z) <0 and |u(z)| < [ul}.

Jy < / Ky (x |u|rlog<|| |||> dx

=/ —KQ(m)|u|’°log(|: :')

Let oo > 0 such that » — o2 € (p,p*). Then, from Proposition 3.1, Lemma 3.2(ii)
and condition (Hj) it follows that

Then we get

Jo < —Hu””z/ —Ko(x)|u|"~2 da
<l [ K@l do
< OHUIIT,
for suitable constant C' > 0. This concludes the proof. O

Lemma 3.4. Let (Hy) — (H3) be satisfied, w € WHH(RN)\ {0} and r € (p,p*).
Then it holds

|, Kelaul og((ul) dz < Clull +log(lul) | Kao)lul da,
where C = C(Ka,p,r,p*) is a positive constant.
Proof. We set
Q= {z eRY: [u(z)| < [ul|} and Qp:={zeRY: |[u(z)| > |u|}.
Then, we have
)
ul
|

K2 )ul|" log lul dz = Ks(x)|ul" log [u
[l o8 I
|

+ | Ka(z)[u|"log
Qo

: dx
: |) dx.
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Let us check the first integration. Taking into account Lemma 3.2(ii) with o = €,
for a suitable € > 0, joint with Lemma 2.2, we get

Ks(z)|u|" log ('“') da
«(ju)| &

o Jl
]\’
<" | |K2<x>|( lo
o Tl
, ul \"7° ( Jul \© U 3.7
el [ (125) () fos (i) ae @7
o \Jal) Ul Tl
1 , u r—e
Ll | (") da
€e ol ||UH
< Ollulf”

for a suitable constant C' > 0.
Next, we calculate the second integral. For that, using Lemma 3.2(i) with o =
p* — r, along with Lemma 2.2 again, we obtain

/ Ko (2)]ul" log ('“) dz < |\K2||OO/ Wlog( [u] ) dz
Qs (|| Q [|ul

1 ful \*
<||K ST — "l — d
1Ko s

IN

IA

p*—r) p*
T e
= Cllul]",
for a suitable C' = C(Ka,p,r,p*) > 0. Combining (3.7) and (3.8), we get the desired
assertion of the lemma. (]

4. THE EXISTENCE RESULTS
In this section, we distinguish two situations depending on the behavior of r.

4.1. The superlinear case. In this part, we discuss the existence of solutions
for (1.1) when the logarithmic term is superlinear, namely r > ¢. In order to
handle this sign-changing nonlinearity, we need that v = A. Hence, we consider the
following equation

— div (|VulP 2V + p(2)|Vu|T?Vu) + [ulP e+ p(z)|u]?
= K1 (2)[u|?” ~%u + AKa(2)|u)" " 2ulog(|u]) + AKs(z)|u’2u  in RV,
where 1 < p < ¢ < 8 < r < p*. Moreover, we assume a further assumption for
weight functions, such that
(Hy) Ko, K3 € LY(RY,RY) and there exists ¢ < o < 3 such that
e(r=p)r(B—
o) < = 50— )

Our main result is the existence of a mountain pass solution for (4.1).

(4.1)

o) Ks(z), for any x € RY.

Theorem 4.1. Let (Hy) - (Hy) be satisfied and let 1 < p < ¢ < B < r < p*.
Then, there exists \* > 0 such that, if A > \*, equation (4.1) admits at least one
nontrivial weak solution.
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Hence, we first study the mountain pass geometry of the functional Iy.

Lemma 4.2. Let (Hy) - (H3) be satisfied and let A > 0. Then we have the following
statements:
(i) there exist 6 = 6(A) > 0 and o = a(\) > 0 such that I(u) > « for any
u € WHHRN) with ||ul| = §;
(ii) there exist v € WLH(RY) and T = T(\,¢) > 0 such that | T%|| > & and
I(Ty) < 0.

Proof. (i) Let u € WHH(RYN) with |lul| < 1 and let s > 0 such that r + s € (g,p*).
By Proposition 3.1, Lemmas 2.1, 3.2, Holder’s and Young’s inequalities, we get

I(u) > 19( >—3/ Ko () ul logJu]) de
{z€RN: |u(z)|>1}

——/ Ky () |ul” dx—f/ Ks(2)|ul’ dz

(4.2)
O s AC
—ful "t~ 3|| I8

\/

L

1 C Coh N
lull - <pl n % + 250

where C1, Cs, C5 are positive constants. Now, we take § > 0 such that

1
B—q

I V

1
4q( + Gy /\C3>
Then, by (4.2), we infer that Iy (u) > i—q =: a for any u € WHH(RY) with ||ul| = 6.
(ii) Let ¢ € WEH(RY) with ¢ > 0 such that

|, atalol tox(lu o > . (13)

0 < min ¢ 1,

For t > 1, we have

1 1
I\(ty) = » (IVEl5 + [[t|5) + p (IVtlld .+ Iteld,.)
_ Kl(m) p* o KQ(.’E) T
L = [ 2 e o) da
+ A/RN Kigx) |t dz — )\/RN K?’;J)Itwlﬂ dz (4.4)

_
=5 (VDI + 1l5) + (I\lelq,u +1¥lg )

K . K .
S T

Since p < ¢ < r < p*, we can take vg = T with T = T(\) > 1 large enough,
concluding the proof. O

Thanks to Lemma 4.2, by Willem [31] we can set the positive critical mountain
pass value by

cy = inf sup Iy
inf sup (v(¥))
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with
D= {yeC (0,1, WHRY)) : 7(0) =0, Iy (¥(1)) < 0}.
We first prove that ¢y can be controlled by the threshold € set as
1 1 p*
SIEREL P s
g p
where o is given in (Hy), while S > 0 is the best constant of the Sobolev embedding
WEe(RN) — LE (RY), considering Ky € L®(RY), set here as
[Vullp + [lullp

weWp(RN) H[Kl}ﬁqu
.

S = (4.6)

Lemma 4.3. Let (Hy) - (Hy) be satisfied. Then there exists A\* > 0 such that
cx < T for any A > \*.

Proof. Fix A > 0 and let ¢ € WM (RY) as constructed in Lemma 4.2. That is,
¥ > 0 and (4.3) holds true. By (4.4) we have lim;_,o I)(t1)) = —oco. Then, there
exists tx > 0 satisfying Iy (1)) = sup;>q Ix(t)). Hence, (I} (tx¢)),) = 0 so that

B IVRIE + 1pE) + 47 (IVel2, + vl12,)

= /RN Ki(2)[9P" de + Aty /RN Ka(@)lgl log(taw)dz 4 oy

+ a0 /N Ks(z)[¢]? dz.
R

We claim that {¢ty}aso is bounded. Indeed, denoting by A = {\ > 0: t\ > 1}, we
see that

1) 28 [ Kal@)lol do for any A€ A
]RN

as A > 0, ¢ > 0 and by (4.3). Hence, we get the boundedness of {t)}rca. Clearly
by the construction of A also {#x}xc(r\a) is bounded. This proofs the claim.

We fix now a sequence {\, }nen C RT such that \, — oo as n — oco. Clearly
{tx, }nen is bounded. Hence, there exist a number t; > 0 and a subsequence of
{An}nen, that we still denote by {\, }nen, such that ¢y, — to as n — oco.

We claim that tg = 0. Indeed, if ¢ty > 0 then by the dominated convergence
theorem we have

/]RN Ko(x)|¥|" log(|tr, ]) de — /RN Ko (x)|v|" log(Jtor]) de as n — co.  (4.8)
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Also, by Lemma 3.2 with o = r — 3, we get
[ K@t do+ [ Kalo)tavl log(ltou) do
RN RN

~ [ Ka@ltovdz+ Ka(@)ltou o ltow) da
RN {zeRN: Jtop(x)|<1}
+ Ka(a) o og([to0]) d (4.9)
(2€RN - [to(z)[>1}
> [ Ka@ltovds - Ka(a)ltou " log(ftov | dz
RN {zeRN: [top(a)[<1}

> [ [ate) - gt o a > o

where the last inequality follows from (Hy), since Z,((é :(‘3 < 1 being r > B. Thus,
recalling that A\, — oo, from (4.7) with A = \,,, we get

(R T R (A a)

s [’f’ill / Kl(w)lwlp*dx“n(tinl [ Ea@r ol v1) do
RN RN

+t§;1/RN Kguwdx)] = o0,

that is the desired contradiction. Hence, tg = 0 and t), — 0 as A — oo, since the
sequence {\, }nen is arbitrary.

Consider now the path vo(t) = tT% for ¢t € [0, 1], with T given in Lemma 4.2.
Clearly, 790 € I'. Then, Lemma 4.2 gives

0<cy< Jnax Ii(v(t)) < sup IA(WJ) = I\(txv)

oltsi) +A [ 22

K3(x)
Ry B

K
ol do = [ F2 g tog ) da

- |ta)]? de.

(4.10)
We claim that {)\tf} A>0 is bounded. Suppose not, then there exists a sequence
{)\ntfn }n>1 such that )\ntfn — 00 as n — co. Thus, by (4.10) along with the fact
that ty, — 0 as n — oo, we get

Cxn t/\n’(/) e B/ K2 |¢|T
)\ntfn T Aty

r— r K
w0 [ %w og(ler, v e = [ E5 o

from which we conclude that, by sending n — oo and since § < 7,

0< f/ Ks3(z)|y|? dz < 0.
]RN

0<

This is a contradiction.
Thus, being {Atf};»o bounded and considering r > 8, by (4.10) again we get
limy_,o ¢x = 0. Then, we can conclude the proof of the lemma. O



DOUBLE PHASE PROBLEMS WITH LOGARITHMIC NONLINEARITY 13

Now, we discuss the compactness property for the functional I given by the
Palais-Smale condition.

Lemma 4.4. Let (Hy) — (H3) be satisfied and let X > 0. Let {uy, }nen € WHH(RY)
be a bounded (PS). sequence with ¢ € R. Then, up to a subsequence, Vu,(x) —
Vu(z) a.e.in RN asn — oo.

Proof. Since {uy }neny C WEHH(RY) is bounded, using the reflexivity of W7 (RN),

there exists u € WHH(RY) such that u, — u in WHH(RV).
For any k € N| let T;,: R — R be the truncation function defined by

Tu(t) = tif [t <k,
YT RL A |t > ke

[]
Let ¢ > 0 be a constant such that r + & —1 € (p,p*). By Proposition 3.1 and
Lemma 3.2 we have

[ @)l log(funl) T~ ) da
RN
< /RN [ K2 ()] [un|" ™" [Yog(fun )| 1T (un — u)| da

<

/ 1Ko ()]t "~ Lo ()| [Tt — )] d
{z€RN: |uy, (z)|<1}

+/ | K2 ()| [un | [Nog(Jun )] [T (un — )| dz
{z€eRN: |un (2)[>1}

_t
e(r—1)
1

+— | [Ka(@)| |un|"T T (up — w)| da
eg JrN

k Ck
Si/ |Ko(z)|dz + —
e(r—1) Jgn ee
< C'k,
where C, C’ are two positive constants. Using (4.11) and considering a cut-off

function ¢ € C(RY,[0,1]) with pr = 1 on a ball Bg with generic radius R > 0,
the rest of the proof is similar to that of Autuori-Pucci [4, Theorem 4.4]. O

Lemma 4.5. Let (H,) — (Hy) be satisfied and let A > 0. Let {u, fney C WHH(RN)
be a bounded (PS). sequence with ¢ < € as given in (4.5). Then there exists
u € WHH(RN) such that, up to a subsequence, u, — u in WHH(RN) as n — oo.

Proof. Fix ¢ < ¢ and let {u,}nen be a bounded (PS). sequence in W1HH(RN),
satisfying (2.1). By Proposition 3.1 and Lemma 4.4, there exists a subsequence,
still denoted by {uy }nen, and u € WHH(RY) such that

Uy —u in WHHRY),  w, — uin L (RV),

(4.11)

/ | ()| [T (i — )]
RN

K (= )

. — 1, u, —uin L, (RY) for any s € (p,p*), (4.12)

Uy () = u(x) a.e.in RN, Vu,(z) — Vu(z) a.e.in RY.
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Since the sequences {|Vu,|P~2Vu, }nen and {u(x)i |V, |72V, fnen are bounded
in L (RN) and LY (RN), respectively, we deduce that

n—oo

lim . [Vun [P*Vu, - Vude = || Vul|B, (4.13)
R
lim w(x) |V, |12V, - Vudr = IVaulld .- (4.14)
n—oo Jpn
Furthermore, using Lemma 4.4 and the Lemma of Brézis-Lieb [10], we obtain
[Vun|[y = [[Vun = Vull§ = [[Vullf + o(1),
[unll} = llun = ully = [[ull} + o(1),
IVunllg,, = IVun = Vullg,, = [[Vul[g ., + o(1),
g = Ilull,. +o(1), (4.15)

3 T
[

[unllg, = llun —u

s
o

ot

[t | = i o = = ]+ o),

o
as m — 0o.

Now, let s € (p,r) and let € > 0 be such that r + & € (p,p*). In light of
Proposition 3.1 and Lemma 3.2, condition (H3) and Hélder’s inequality, we infer
that

| /N K ()] 2t 10g ) (1 — ) da

R

S/ | K2 ()] [un] "~ [log(Jun|)| [un — uldz
RN

= / [ Ko ()] fun|"~" [Tog(lun )| |un — ul dz
{z€RN: |u, (z)|<1}

+/ | Ko()] |un|" ™" [log(|un|)| |un — ul dz
{z€RN: |u, (z)|>1}

! 4.16
= m/ﬂw K2 ()] [un]* ™ un — ul dz (4.16)
1
K nr+s—1 W —uld
g [ @l o
1 1 s—1 1 s
~e(r—2s) H[Kl]su" s (K] fun *U|HS
1 K 1 r+e—1 K 1 rde
] Lt I e

— 0 as n — oo,
for a suitable C' > 0. Thus, by (2.1) and (4.12) — (4.16), we get
o(1) = (I} (un), tn — u)

- / (|Vtn P72V, + () |V, |72 Vuy,) - (Vu, — Vu) dz
RN

+ / ([tnP 21+ () ] 210) (1, — ) iz
RN
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- /RN K (z)|un

- A N KQ(z)|un|T72un log(|un|)(up — u) da
R

— )\/ Ks(2)|tn]? 2 (uy, — u) da
RN
= [IVunlly = [IVully + llunlly = llullf + IVunllg . = [Vullg,

P =20 (U — u) dz

p* ERa
o w3 = Nl - |l o,

1517w,

as n — 0o. Hence by (4.12) and (4.15), we conclude that
IVun = Vullg + lun = wllf + [IVun = Vullg , + lun —ullg,

p* . (4.17)
+o(1)=1" +o(1).

-

We claim that [ = 0. Assume instead | > 0. Then, by (4.6) and (4.17), we can see

that

= |t o — )

1> Sv7, (4.18)
On the other hand, by Lemma 3.2 and condition (Hy), we have

I () = =4 ) 00)

> (52t (5= 0) [ @t o

1 1 1 1
A ( - ) Ka(a)[unl do + A ( - ) [ B () ds
RN g T RN

o p
1 1 . 1 1
> ( - ) / Ky ()|un P dz + A ( — ) / Ks(@)|up|” dz
o p RN g 6 {zeRN: |u, (z)|<1}
1 1 -
L ( - ) / K (@) " log|un ) da
o 1) J{zeRN: ju, (2)|<1}

11 . 11
> (L) [ (L) [ K (a)unl® da
o P RN o /8 {z€RN: |up(z)|<1}

. <<Am> ((17 ) 1) /{ ey @l da
> (55 [ @l as

' A/{vcew: fun ()] <1} Ki - ;) Ka(z) - (e(rl@)) (i - 71,) K2(~’C)] lun|? da
> (5-5) [ sl ae

which implies, by using (2.1), (4.12) and (4.15), that

= (o) (e

P
p*) .



16 A. BAHROUNI, A. FISCELLA, AND P. WINKERT

Therefore, from (4.5) and (4.18) we conclude that
1 1 *
e>c> ( - ) 575,
o p*
Thus, we get a contradiction which yields that [ = 0. Hence, by (4.17), we prove
our desired result. O

Proof of Theorem 4.1 completed. We show the statement via the mountain
pass theorem. Indeed, by Lemma 4.2 together with the mountain pass theorem
without (PS) condition, see Willem [31, Theorems 1.15 and 2.8], there exists a
(PS)., sequence {u, }neny C WEH(RYN) of I.

Now, we show that {u, },en is bounded in W1#(RY) arguing by contradiction.
Then, going to a subsequence, still denoted by {u, }nen, we have nhHH;O lun] = oo
and |luy|| > 1 for any n € N. Let 0 > 0 besuch that l <p<g<o < <r <p*.
Thus, invoking Lemmas 2.1 and 3.2 along with Young’s inequality, we get

o(1) + ¢+ Cllun|

1
= I(un) — ;(I’(un),un>
1 1 1 1
> (5= 5) Fulg 4 llf) + (5 = 5 ) (1l + )
1 1 * 1 1
—(==2) | K@ de = (=== [ Ko(@)ua| log(lun])d
(5= 2) [ sl ae -3 (7= 2) [ Katollual 1)

1 1 1 1
> (2=l -a(3-1) | K)o, ) da
q g r a {z€RN : |un (z)|>1]}

1 1
- A ( - ) / Ko(x)|un|" log(Jun|) dv
"0/ J{zeRN: Jua|<1]}

1 1 1 1
> ( — ) lunl|? + Cs ( — ) Ky(z)dz,
T ag RN

q o
where C' is a positive constant. This leads to a contradiction. Hence {u, }nen is
bounded in W1 (RY). By Lemma 4.3 we can apply Lemma 4.5 to {u, }nen, S0
that there exists a weak solution u € WL (RY) of (4.1) such that I (u) = ¢y > 0.

4.2. The linear case. In this subsection, we study equation (1.1) when the loga-
rithmic term is linear, namely » = q. Here, we assume that v = 1. More precisely,
we consider the equation

— div (|VulP"2Vu + u(2)| Va2 V) + [uP?u + p(z)|u]? 2
= Ky (2)|ul?” ~2u + Ky () |[u|* 2ulog(|u]) + Ks(z)|u/’"2u in RV,
where 1 < 8 < p < ¢ < p*. For this, we assume a new structural assumption
(H3) Ky € LYRN,RT) 0 L®RN, RT) with 0 < Ky < Ky in RN, while K3 €
LYRN, RN L5 (RY,RY) with 0 < K3 < Ky on RY.
The main result of this part is the following theorem.

Theorem 4.6. Let (Hy) — (H2) and (HVL;) be satisfied and let 1 < p < f < ¢ < p*.
Then, for any A > 0, there exists ky > 0 such that if

maX{HKC"‘Hl ) ||K3||#} < k)\,

(4.19)
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equation (4.19) admits at least one nontrivial weak solution.

17

Lemma 4.7. Let (Hy) - (Hz) and (E;,) be satisfied and let A > 0. Then, there exist
Sx, ax, my > 0 such that I (u) > ay > 0 for any u € WHH(RN) with ||lu| = 43,

whenever

15l < ma.

Proof. Let u € WHH(RY) with ||ul| < 1 and let A > 0. Let us choose s > 0 such
that ¢+ s € (¢,p*). By Lemmas 2.1 and 3.2, Holder and Young inequalities, we get

(

(-—f/ Ko ()]l log(ful) da
{zeRN: |u(x)|[>1}

f—/ Ky (z)|ul?” dxf/ Ks(z)|u|? dz

C Cs
> *||U||q - < +/\> [ull** — C3)| K| _a [ull®
q p q
1 SN . (a—B)(28Cs)77
> gl = (5422 e -
q q
where C3 is a positive constant. Set §, > 0 such that
1
. s
) < min | 1, - e
1 (G +2)
Then, by (4.20), we infer that
8
5‘7 — 28C.)a-F _a_
) > % - WZDCIOITT ey mn por =
q q P
Let 5
51
my = A B °

[80—5) 2807

Then, if ||K3||# < my , we obtain

QA
= 8
for any u € WHH(RY) with |ju|| = 65. The proof is completed.

I(u) > =: )

Consider the minimizer

My, := inf I
A UGB}?O,(SX) )\(U)’

where §) is defined in Lemma 4.7. For this, we have the following control.

(4.20)

(4.21)

Lemma 4.8. Let (Hy) — (Hs) and (Hs) be satisfied and let A > 0. Then —oo <

My < 0.

Proof. Exploiting the proof of Lemma 4.7, we prove that M) > —oo. Using (E’;,),

there is a function ¢ € WH#(RY) such that

I(t)) = tp mvww+www>+—3fmku W+ IV,
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q A q
A [ Ka(@leltog(itv)) da+ 2 | Ka(w) ] da)
RN q JrN

=B x _ Ks(x) 3 :|
[ ma- [ ) <o

for ¢ > 0 small enough. In the previous inequality we used the fact that 8 < p.
Thus we conclude the proof. (Il

Now, we get the compactness property for Iy, under the threshold cx given by

= <p _q> gt PP (‘I_ﬁ) ’ ( 295 ) T (4.22)

2p*q B qB p*—q
with S set as in (4.6).

Lemma 4.9. Let (Hy) — (Hs) and (Hs) be satisfied and let X\ > 0. Let {uy nen C
WLH(RN) be a bounded (PS). sequence with ¢ < cr. Then there exists u €
WLH(RN) such that, up to a subsequence, u, — u in W (RY) as n — co.

Proof. Fix ¢ < ck and let {u,}n,en be a bounded (PS). sequence in WL#(RY)
satisfying (2.1). Arguing as in the proof of Lemma 4.5, we can find that
> 877, (4.23)
with [ given in (4.12).
Next, by Lemma 3.2 and Young’s inequality, considering also assumption (Hs),
we have

Iy (1) — §<I;<un>,un>
1 1 1

« 1
> - - = Ki(z unpdx+<) Ks(2)|u,|? dx
(2= [ Bl -2 [ K@l

P B

P —q . p = (q—ﬁ)p*“* ( 293 )P*—‘*
> Ky (x)|up|? da — — K31,
<2p*q> RN 1) B qap P*—q 1Kl

which implies, by using (2.1), (4.12) and (4.15), that

* * 1 P~
c> <pq> (lp + H[Kﬂ?‘u )
2p*q p*

¥

P B
P =B (a=B\"P [ 2¢B \7F
B ( qap ) (p*—q> 1l

Therefore, from (4.23) and again (EL we conclude that

* *
c > <p q) SPE*P
2p*q

P B
*— — =5 [ 2 B
- 5 : (qqﬂﬁ) (p*qﬁq) 1l

Thus, we get a contradiction from (4.22) and we know that [ = 0. Hence, by (4.17),
our desired result follows. d
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Proof of Theorem 4.6 completed. Let A > 0 and let us set
. -1

p* -T pfip p* - ﬂ r—= B pffﬁ QT/B e
m:= SP
2p*r 8 rB pr—r
Then, we define k) := min {my, m}, with my given in (4.21).
Now, let us assume that

mase {|| Kslls, |17+, } < .

By Lemmas 4.7, 4.8 and applying the Ekeland’s variational principle for the com-
plete metric space B(0,4,), then there exists a (PS) s, sequence {vy,}, C B(0,d).
Again, from Lemma 4.8 we have M) < 0. Thus, since when ||K3|l; < m we have
that cx > 0, with ¢k given in (4.22), we can apply Lemma 4.9 to {v,}, and this
time we get v € WHH(RY) a weak solution of (4.19) such that Iy(v) = My < 0.

5. RADIAL SOLUTION FOR THE DOUBLE PHASE EQUATION

In this section, we study the existence of radial solution for equation (1.1) when
K7 = 1. In addition, we need the following structural assumption

(Hs) p, Ko and K3 are three radial functions.
The main result of this section reads as follows.

Theorem 5.1. Let (Hy) — (Hy) and (Hs) be satisfied.

(i) Suppose that (H3) — (Hy) hold true. If 1l <p < qg< B <7 <p* andy= A,
then for any A > \*, with \* as given in Lemma /.3, equation (1.1) admits
at least one nontrivial radial weak solution.

(ii) Suppose that (Hs) holds true. If 1 < S <p<q=71 <p* andy =1,
then for any A > 0 equation (1.1) admits at least one nontrivial radial weak
solution.

Proof. (i) Using Theorem 2.3 and replacing W1 (RN) by WLH(RY) in combina-
tion with the argument employed in the proof of Theorem 4.1, I\ admits a nontrivial
critical point ug € er H(RN ). Next, we will show that u is a critical point of I
in the space WL*(RY). To this end, we will apply the Principle of Symmetric
Criticality, see Palais [27]. Thus, let O(N) denotes the group of rotations in RY

and the action O(N) x WLH(RYN) — WLH(RY) is given by

(gu)(z) = u(g(z)) for any x € RY,
which is isometric. Furthermore, since p is a radial function, the functional I is
invariant under the action of g, since for any g € O(N) and any u € WHH(RY),
we have

In(gu) = o(gu) — / |gulp dw—A/ Kl )Igul log(|gul) dz
+>\/ K2 |g I"d —/\/ K3 gu|? dz

= olu) — m T — 7K2 )ur og(|gul) dz

— o(w) / " d A/R [uf" log(|gu]) d

N p

K
/ 3( u|? dz.
RN

+A
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From the above information, it is easy to check that
Fix(O(N)) = {u € WH*(RY): gu = u for any g € O(N)} = WhHERN),

rad
Hence by the Principe of Symmetric Criticality of Palais, ug is a nontrivial critical
point of I, in WLH*(RY).
(ii) The second assertion follows by combining the above argument with the
existence result of Theorem 4.6. O
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