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SHENGDA ZENG, LESZEK GASIŃSKI, PATRICK WINKERT, AND YUNRU BAI

Abstract. The main goal of this paper is the study of an elliptic obstacle

problem with a double phase phenomena and a multivalued reaction term
which also depends on the gradient of the solution. Such term is called mul-

tivalued convection term. Under quite general assumptions on the data, we

prove that the set of weak solutions to our problem is nonempty, bounded
and closed. Our proof is based on a surjectivity theorem for multivalued map-

pings generated by the sum of a maximal monotone multivalued operator and

a bounded multivalued pseudomonotone mapping.

1. Introduction

Let Ω ⊆ RN be a bounded domain with Lipschitz boundary ∂Ω and let 1 <
p < q < N . We study the following double phase problem with a multivalued
convection term and obstacle effect

−div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
∈ f(x, u,∇u) in Ω,

u(x) ≤ Φ(x) in Ω,

u = 0 on ∂Ω,

(1.1)

where µ : Ω→ [0,∞) is Lipschitz continuous, f : Ω×R×RN → 2R is a multivalued
function depending on the gradient of the solution and Φ: Ω→ R is a given function.
The precise conditions on the data will be presented in Section 3.

The novelty of our work is the fact that we combine several different phenomena
in one problem. To be more precise problem (1.1) contains

(1) a double phase operator;
(2) a multivalued convection term;
(3) an obstacle restriction.

To the best of our knowledge, this is the first work which combines all these
phenomena in one problem. We are going to prove that problem (1.1) has at least
one solution. The proof is based on a surjectivity result of Le [20] for multivalued
mappings generated by the sum of a maximal monotone multivalued operator and
a bounded multivalued pseudomonotone mapping.

Since (1.1) is an obstacle problem, the solutions of (1.1) are supposed to be in
the set {

u ∈W 1,H
0 (Ω)

∣∣ u(x) ≤ Φ(x) for a. a.x ∈ Ω
}
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with a given obstacle Φ: Ω → R+ = [0,∞] where W 1,H(Ω) denotes the Sobolev-
Musielak-Orlicz space, see Section 2 for its definition. When Φ ≡ +∞, problem
(1.1) becomes the following double phase problem with multivalued convection term

−div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
∈ f(x, u,∇u) in Ω,

u = 0 on ∂Ω.

In addition, when f is a single-valued function, problem (1.1) reduces to

−div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
= f(x, u,∇u) in Ω,

u = 0 on ∂Ω,
(1.2)

which was recently studied by Gasiński-Winkert in [19].
Problems of type (1.2) are driven by the so-called double phase operator whose

name comes from the fact that its behavior depends on the points where µ vanishes
or not. Such problems go back to Zhikov who introduced such classes of operators
to describe models of strongly anisotropic materials by treating the functional

ω 7→
∫

(|∇ω|p + µ(x)|∇ω|q) dx, (1.3)

see [32], [33], [34] and the monograph of Zhikov-Kozlov-Oleinik [35]. Integral func-
tionals of the form (1.3) have been studied by several authors concerning regularity
results and non-standard growth. We refer to Baroni-Colombo-Mingione [4], [5], [7],
Baroni-Kussi-Mingione [6], Colombo-Mingione [12], [13], Cupini-Marcellini-Mascolo
[14] and Marcellini [23], [24] and the references therein.

Existence results for problems like (1.1) in the case of single-valued equations
without convection term have been obtained by several authors, see, for example,
Colasuonno-Squassina [11], Gasiński-Papageorgiou [15, Proposition 3.4], Gasiński-
Winkert [18], Liu-Dai [22], Perera-Squassina [29] and problems with other general
differential operator and a convection term by Gasiński-Papageorgiou [16].

Works which are closely related to ours dealing with certain types of double phase
problems can be found in Bahrouni-Rădulescu-Repovš [1], [2], Bahrouni-Rădulescu-
Winkert [3], Cencelj-Rădulescu-Repovš [10], Papageorgiou-Rădulescu-Repovš [26],
[27], Rădulescu [30] Zhang-Rădulescu [31] and the references therein.

2. Preliminaries

Let Ω be a bounded domain in RN and let 1 ≤ r ≤ ∞. We denote by Lr(Ω) :=
Lr(Ω;R) and Lr(Ω;RN ) the usual Lebesgue spaces endowed with the norms

‖u‖r :=

(∫
Ω

|u(x)|r dx
) 1

r

for all u ∈ Lr(Ω),

and

‖w‖r,N :=

(∫
Ω

‖w(x)‖rRN dx

) 1
r

for all w ∈ Lr(Ω;RN ),

respectively. In what follows, for simplicity, the norms of Lr(Ω;R) and Lr(Ω;RN )
are both denoted ‖ · ‖r, even if we do not mention it explicitly. Moreover, W 1,r(Ω)

and W 1,r
0 (Ω) stand for the Sobolev spaces endowed with the norms ‖ · ‖1,r and

‖ · ‖1,r,0, respectively. For any 1 < r <∞ we denote by r′ the conjugate of r, that
is, 1

r + 1
r′ = 1.

In the entire paper we suppose the following condition:
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H(µ): µ : Ω→ R+ = [0,∞) is Lipschitz continuous and 1 < p < q < N are chosen
such that

q

p
< 1 +

1

N
.

We consider the function H : Ω× R+ → R+ defined by

H(x, t) = tp + µ(x)tq for all (x, t) ∈ Ω× R+.

Based on the definition of H we are able to introduce the Musielak-Orlicz space
LH(Ω) given by

LH(Ω) =

{
u
∣∣∣ u : Ω→ R is measurable and ρH(u) :=

∫
Ω

H(x, |u|) dx < +∞
}

endowed with the Luxemburg norm

‖u‖H = inf
{
τ > 0

∣∣ ρH (u
τ

)
≤ 1
}
.

We know that LH(Ω) turns out to be uniformly convex and so it is a reflexive
Banach space. In addition, we introduce the seminormed function space

Lqµ(Ω) =

{
u
∣∣∣ u : Ω→ R is measurable and

∫
Ω

µ(x)|u|q dx < +∞
}

which is equipped with the seminorm ‖ · ‖q,µ given by

‖u‖q,µ =

(∫
Ω

µ(x)|u|q dx
) 1

q

.

It is known that the embeddings

Lq(Ω) ↪→ LH(Ω) ↪→ Lp(Ω) ∩ Lqµ(Ω)

are continuous, see Colasuonno-Squassina [11, Proposition 2.15 (i), (iv) and (v)].
Taking into account these embeddings we have the inequalities

min {‖u‖pH, ‖u‖
q
H} ≤ ‖u‖

p
p + ‖u‖qq,µ ≤ max {‖u‖pH, ‖u‖

q
H} (2.1)

for all u ∈ LH(Ω).
By W 1,H(Ω) we denote the corresponding Sobolev space which is defined by

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
equipped with the norm

‖u‖1,H = ‖∇u‖H + ‖u‖H,

where ‖∇u‖H = ‖|∇u|‖H.

By W 1,H
0 (Ω) we denote the completion of C∞0 (Ω) in W 1,H(Ω), that is,

W 1,H
0 (Ω) = C∞0 (Ω)

W 1,H(Ω)

Besides, from condition H(µ) and Colasuonno-Squassina [11, Proposition 2.18] we
can see that

‖u‖1,H,0 = ‖∇u‖H for all u ∈W 1,H
0 (Ω),
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is an equivalent norm on W 1,H
0 (Ω). Now we are able to rewrite (2.1) for the space

W 1,H
0 (Ω) in the form

min
{
‖u‖p1,H,0, ‖u‖

q
1,H,0

}
≤ ‖∇u‖pp + ‖∇u‖qq,µ ≤ max

{
‖u‖p1,H,0, ‖u‖

q
1,H,0

}
(2.2)

for all u ∈ W 1,H
0 (Ω). Since both spaces W 1,H(Ω) and W 1,H

0 (Ω) are uniformly
convex, we know that they are reflexive Banach spaces.

Furthermore, we have the following compact embedding

W 1,H
0 (Ω) ↪→ Lr(Ω) (2.3)

for each 1 < r < p∗, where p∗ is the critical exponent to p given by

p∗ :=
Np

N − p
, (2.4)

see Colasuonno-Squassina [11, Proposition 2.15].
Let us now consider the eigenvalue problem for the r-Laplacian with homoge-

neous Dirichlet boundary condition and 1 < r <∞ which is defined by

−∆ru = λ|u|r−2u in Ω,

u = 0 on ∂Ω.
(2.5)

A number λ ∈ R is an eigenvalue of
(
−∆r,W

1,r
0 (Ω)

)
if problem (2.5) has a

nontrivial solution u ∈ W 1,r
0 (Ω) which is called an eigenfunction corresponding

to the eigenvalue λ. We denote by σr the set of eigenvalues of
(
−∆r,W

1,r
0 (Ω)

)
.

From Lê [21] we know that the set σr has a smallest element λ1,r which is positive,
isolated, simple and it can be variationally characterized through

λ1,r = inf

{
‖∇u‖rr
‖u‖rr

: u ∈W 1,r
0 (Ω), u 6= 0

}
.

Let A : W 1,H
0 (Ω)→W 1,H

0 (Ω)∗ be the operator defined by

〈A(u), v〉H :=

∫
Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇v dx, (2.6)

for u, v ∈ W 1,H
0 (Ω), where 〈·, ·〉H is the duality pairing between W 1,H

0 (Ω) and its

dual space W 1,H
0 (Ω)∗. The properties of the operator A : W 1,H

0 (Ω) → W 1,H
0 (Ω)∗

are summarized in the following proposition, see Liu-Dai [22].

Proposition 2.1. The operator A defined by (2.6) is bounded, continuous, mono-
tone (hence maximal monotone) and of type (S+).

Next, we recall the notions of pseudomonotonicity and generalized pseudomono-
tonicity for multivalued operators (see Gasiński-Papageorgiou [17, Definition 1.4.8]).

Definition 2.2. Let X be a real reflexive Banach space. The operator A : X → 2X
∗

is called

(a) pseudomonotone if the following conditions hold:
(i) The set A(u) is nonempty, bounded, closed and convex for all u ∈ X.

(ii) A is upper semicontinuous from each finite-dimensional subspace of X
to the weak topology on X∗.
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(iii) if {un} ⊂ X with un ⇀ u in X and if u∗n ∈ A(un) is such that

lim sup
n→∞

〈u∗n, un − u〉X∗×X ≤ 0,

then to each element v ∈ X, exists u∗(v) ∈ A(u) with

〈u∗(v), u− v〉X∗×X ≤ lim inf
n→∞

〈u∗n, un − v〉X∗×X .

(b) generalized pseudomonotone if the following holds: Let {un} ⊂ X and
{u∗n} ⊂ X∗ with u∗n ∈ A(un). If un ⇀ u in X and u∗n ⇀ u∗ in X∗

and if

lim sup
n→∞

〈u∗n, un − u〉X∗×X ≤ 0,

then the element u∗ lies in A(u) and

〈u∗n, un〉X∗×X → 〈u
∗, u〉X∗×X .

It is not difficult to see that every pseudomonotone operator is generalized pseu-
domonotone, see, for example, Carl-Le-Motreanu [9, Proposition 2.122] or Gasiński-
Papageorgiou [17, Proposition 1.4.11]. However, under the additional assumption of
boundedness, we obtain the converse statement, see, for example, Carl-Le-Motreanu
[9, Proposition 2.123] or Gasiński-Papageorgiou [17, Proposition 1.4.12].

Proposition 2.3. Let X be a real reflexive Banach space and assume that A : X →
2X
∗

satisfies the following conditions:

(i) For each u ∈ X we have that A(u) a is nonempty, closed and convex subset
of X∗.

(ii) A : X → 2X
∗

is bounded.
(iii) If un ⇀ u in X and u∗n ⇀ u∗ in X∗ with u∗n ∈ A(un) and if

lim sup
n→∞

〈u∗n, un − u〉X∗×X ≤ 0,

then u∗ ∈ A(u) and

〈u∗n, un〉X∗×X → 〈u
∗, u〉X∗×X .

Then the operator A : X → 2X
∗

is pseudomonotone.

Furthermore, we will state the following surjectivity theorem for multivalued
mappings which is formulated by the sum of a maximal monotone multivalued
operator and a bounded multivalued pseudomonotone mapping. The following
theorem was proved in Le [20, Theorem 2.2]. We use the notation BR(0) := {u ∈
X : ‖u‖X < R}.

Theorem 2.4. Let X be a real reflexive Banach space, let F : D(F ) ⊂ X → 2X
∗

be
a maximal monotone operator, let G : D(G) = X → 2X

∗
be a bounded multivalued

pseudomonotone operator and let L ∈ X∗. Assume that there exist u0 ∈ X and
R ≥ ‖u0‖X such that D(F ) ∩BR(0) 6= ∅ and

〈ξ + η − L, u− u0〉X∗×X > 0

for all u ∈ D(F ) with ‖u‖X = R, for all ξ ∈ F (u) and for all η ∈ G(u). Then the
inclusion

F (u) +G(u) 3 L
has a solution in D(F ).
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3. Main results

We assume the following hypotheses on the multivalued nonlinearity f : Ω×R×
RN → 2R.

H(f): The multivalued convection mapping f : Ω× R× RN → 2R has nonempty,
compact and convex values such that

(i) the multivalued mapping x 7→ f(x, s, ξ) has a measurable selection for
all (s, ξ) ∈ R× RN ;

(ii) the multivalued mapping (s, ξ) 7→ f(x, s, ξ) is upper semicontinuous;

(iii) there exists α ∈ L
q1

q1−1 (Ω) and a1, a2 ≥ 0 such that

|η| ≤ a1|ξ|p
q1−1
q1 + a2|s|q1−1 + α(x)

for all η ∈ f(x, s, ξ), for a. a.x ∈ Ω, for all s ∈ R and for all ξ ∈ RN ,
where 1 < q1 < p∗ with the critical exponent p∗ given in (2.4);

(iv) there exist w ∈ L1
+(Ω) and b1, b2 ≥ 0 is such that

b1 + b2λ
−1
1,p < 1,

and

ηs ≤ b1|ξ|p + b2|s|p + w(x)

for all η ∈ f(x, s, ξ), for a. a.x ∈ Ω, for all s ∈ R and for all ξ ∈ RN ,
where λ1,p is the first eigenvalue of the Dirichlet eigenvalue problem
for the p-Laplacian, see (2.5).

Let K be a subset of W 1,H
0 (Ω) defined by

K :=
{
u ∈W 1,H

0 (Ω)
∣∣ u(x) ≤ Φ(x) for a. a.x ∈ Ω

}
, (3.1)

where Φ is a function such that

Φ: Ω→ [0,+∞]. (3.2)

It is obvious that the set K is a nonempty, closed and convex subset of W 1,H
0 (Ω).

Remark 3.1. From assumption (3.2) we see that 0 ∈ K.

The weak solutions for problem (1.1) are understood in the following sense.

Definition 3.2. We say that u ∈ K is a weak solution of problem (1.1) if there

exists η ∈ L
q1

q1−1 (Ω) such that η(x) ∈ f(x, u(x),∇u(x)) for a. a.x ∈ Ω and∫
Ω

(
|∇u|p−2∇u · ∇(v − u) + µ(x)|∇u|q−2∇u · ∇(v − u)

)
dx =

∫
Ω

η(x)(v − u) dx

for all v ∈ K, where K is given by (3.1).

The main result of this paper is stated as the next theorem.

Theorem 3.3. Assume that H(µ) and H(f) hold. Then the set of solutions of
problem (1.1), denoted by S, is nonempty, bounded and closed.

Proof. We first prove that problem (1.1) has at least one solution.

Let i : W 1,H
0 (Ω)→ Lq1(Ω) be the embedding operator from W 1,H

0 (Ω) to Lq1(Ω)

with its adjoint operator i∗ : Lq
′
1(Ω)→W 1,H

0 (Ω)∗. Since 1 < q1 < p∗ the embedding
operator i is compact and so i∗ as well. However, from hypotheses H(f)(i) and (iii),
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we can use the same process as the proof of Papageorgiou-Vetro-Vetro [28, Propo-

sition 3] to see that the Nemytskij operator Ñf : W 1,H
0 (Ω) ⊂ Lq1(Ω) → 2L

q′1 (Ω)

associated to the multivalued mapping f given by

Ñf (u) :=
{
η ∈ Lq

′
1(Ω)

∣∣ η(x) ∈ f(x, u(x),∇u(x)) for a. a.x ∈ Ω
}

for all u ∈W 1,H
0 (Ω) is well-defined.

Set Nf := i∗ ◦ Ñf : W 1,H
0 (Ω) → 2W

1,H
0 (Ω)∗ . Also, let us consider the indicator

function IK : W 1,H
0 (Ω)→ R := R ∪ {+∞} of K defined by

IK(u) :=

{
0 if u ∈ K,
+∞ otherwise.

Under the definitions above, it is not difficult to see that u ∈ K is a weak solution
of problem (1.1), see Definition 3.2, if and only if u solves the following inequality:

Find u ∈ K and η ∈ Nf (u) such that

〈A(u)− η, v − u〉H + IK(v)− IK(u) ≥ 0 (3.3)

for all v ∈W 1,H
0 (Ω) where A : W 1,H

0 (Ω)→W 1,H
0 (Ω)∗ is given in (2.6).

Consider the multivalued operator A : W 1,H
0 (Ω) → 2W

1,H
0 (Ω)∗ defined by

A(u) = A(u)−Nf (u) for all u ∈W 1,H
0 (Ω).

Then, using a standard procedure, we can reformulate problem (3.3) to the following
inclusion problem: Find u ∈ K such that

A(u) + ∂IK(u) 3 0, (3.4)

where the notation ∂IK stands for the subdifferential of IK in the sense of convex
analysis.

We are going to apply the surjectivity result for multivalued pseudomonotone

operators, see Theorem 2.4. To this end, for any u ∈ W 1,H
0 (Ω) and η ∈ Nf (u), by

condition H(f)(iii), we obtain

‖η‖q
′
1

W 1,H
0 (Ω)∗

≤ ‖i∗‖q
′
1‖ξ‖q

′
1

Lq′1 (Ω)
= ‖i∗‖q

′
1

∫
Ω

|ξ(x)|q
′
1 dx

≤ C0

∫
Ω

(
a1|∇u(x)|p

q1−1
q1 + a2|u(x)|q1−1 + α(x)

)q′1
dx

≤ C1

(
‖∇u‖pp + ‖u‖q1q1 + ‖α‖q

′
1

q′1

) (3.5)

for some C0, C1 > 0, where ξ ∈ Ñf (u) is such that η = i∗ξ. This combined with

W 1,H
0 (Ω) ⊂ W 1,p

0 (Ω), W 1,H
0 (Ω) ⊂ Lq1(Ω), 1 < q1 < p∗ and Proposition 2.1 implies

that A : W 1,H
0 (Ω) → 2W

1,H
0 (Ω)∗ is a bounded mapping.

We claim that A is pseudomonotone. In order to prove this, we are going to
apply Proposition 2.3. Indeed, by hypotheses H(f) we know that A has nonempty,
closed and convex values. Moreover, as we just showed, A is a bounded mapping.
So, it is enough to verify that A is a generalized pseudomonotone operator.
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Let {un} ⊂W 1,H
0 (Ω), {u∗n} ⊂W

1,H
0 (Ω)∗ and u ∈W 1,H

0 (Ω) be such that

un ⇀ u in W 1,H
0 (Ω), u∗n ⇀ u∗ in W 1,H

0 (Ω)∗, (3.6)

u∗n ∈ A(un) for all n ∈ N,
lim sup
n→∞

〈u∗n, un − u〉H ≤ 0. (3.7)

So, for each n ∈ N, we are able to find an element ξn ∈ Ñf (un) such that

u∗n = A(un)− i∗ξn. From the fact that the embedding from W 1,H
0 (Ω) to Lq1(Ω) is

compact, see (2.3), we have un → u in Lq1(Ω). Moreover, from (3.5), we see that

the sequence {ξn} is bounded in Lq
′
1(Ω). So, (3.7) leads to

lim sup
n→∞

〈A(un), un − u〉H ≤ lim sup
n→∞

〈A(un), un − u〉H − lim sup
n→∞

〈ξn, un − u〉Lq1 (Ω)

≤ lim sup
n→∞

〈A(un)− i∗ξn, un − u〉H

= lim sup
n→∞

〈u∗n, un − u〉H ≤ 0.

This fact along with (3.6) and the (S+)-property of A, see Proposition 2.1, implies

that un → u in W 1,H
0 (Ω). This yields

〈u∗n, un〉H → 〈u∗, u〉H and A(un)→ A(u) in W 1,H
0 (Ω)∗,

due to the continuity of A, see Proposition 2.1.

Since ξn ∈ Ñf (un) we have ξn(x) ∈ f(x, un(x),∇un(x)) for a. a.x ∈ Ω. However,

(3.5) and (3.6) imply that the sequence {ξn} is bounded in Lq
′
1(Ω). Passing to a

subsequence if necessary, we may suppose that ξn ⇀ ξ in Lq
′
1(Ω) for some ξ ∈

Lq
′
1(Ω). Employing Mazur’s theorem, we are able to find a sequence {ηn} of convex

combinations of {ξn} such that

ηn → ξ in Lq
′
1(Ω).

Therefore, we can say that

ηn(x)→ ξ(x) for a. a.x ∈ Ω, (3.8)

see Migórski-Ochal-Sofonea [25, Theorem 2.39].
From (3.6) and condition H(f)(iii) we see that the sequence {ξn(x)} is bounded

for a. a.x ∈ Ω. So, by (3.8), we find a subsequence {ξn(x)} for a. a.x ∈ Ω, still
denoted by {ξn(x)}, such that

ξn(x)→ ξ(x) as n→∞.

Keeping in mind that un → u in W 1,H
0 (Ω) and W 1,H

0 (Ω) ⊂W 1,p
0 (Ω) leads to

un(x)→ u(x) and ∇un(x)→ ∇u(x) as n→∞.
Combining the convergence properties above along with the upper semicontinuity
of (s, ζ) 7→ f(x, s, ζ) and Proposition 3.12 in Migórski-Ochal-Sofonea [25] we obtain

ξ(x) ∈ f(x, u(x),∇u(x)) for a. a.x ∈ Ω.

This means that ξ ∈ Ñf (u), namely, i∗ξ ∈ Nf (u). Therefore, we have u∗ =
A(u) + i∗ξ ∈ A(u) which implies that A is generalized pseudomonotone.

Because A is a bounded operator with nonempty, closed and convex values, we
are now in the position to apply Proposition 2.3 in order to conclude that A is a
pseudomonotone operator.
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Furthermore, we are going to prove that there exists a constant R > 0 such that

〈u∗ + η, u〉H > 0 (3.9)

for all u∗ ∈ A(u), for all η ∈ ∂IK(u) and for all u ∈W 1,H
0 (Ω) with ‖u‖1,H,0 = R.

For any u∗ ∈ A(u), we can find ξ ∈ Ñf (u) such that u∗ = A(u) − i∗ξ. Recall
that 0 ∈ K, one has

〈u∗ + η, u〉H ≥
∫

Ω

|∇u|p−2∇u · ∇u dx+

∫
Ω

µ(x)|∇u|q−2∇u · ∇u dx

−
∫

Ω

ξ(x)u(x) dx+ IK(u)− IK(0)

≥
∫

Ω

|∇u|p−2∇u · ∇u dx+

∫
Ω

µ(x)|∇u|q−2∇u · ∇u dx

−
∫

Ω

ξ(x)u(x) dx+ IK(u)

≥ ‖∇u‖pp + ‖∇u‖qq,µ −
∫

Ω

ξ(x)u(x) dx+ IK(u).

(3.10)

Note that IK : W 1,H
0 → R is a proper, convex and lower semicontinuous func-

tion. Hence, we can apply Proposition 1.3.1 in Gasiński-Papageorgiou [17] to find
aK , bK > 0 such that

IK(v) ≥ −aK‖v‖1,H,0 − bK for all v ∈W 1,H
0 (Ω). (3.11)

Additionally, hypothesis H(f)(iv) implies∫
Ω

ξ(x)u(x) dx ≤ b1‖∇u‖pp + b2‖u‖pp + ‖w‖1. (3.12)

Applying (3.11) and (3.12) in (3.10) and taking W 1,H
0 (Ω) ⊆W 1,p

0 (Ω) as well as

‖u‖pp ≤ λ−1
1,p‖∇u‖pp for all u ∈W 1,p

0 (Ω),

into account, we get

〈u∗ + η, u〉H
≥ ‖∇u‖pp + ‖∇u‖qq,µ − b1‖∇u‖pp − b2‖u‖pp − ‖w‖1 − aK‖u‖1,H,0 − bK
≥
(
1− b1 − b2λ−1

1,p

)
‖∇u‖pp + ‖∇u‖qq,µ − ‖w‖1 − aK‖u‖1,H,0 − bK

≥
(
1− b1 − b2λ−1

1,p

) (
‖∇u‖pp + ‖∇u‖qq,µ

)
− ‖w‖1 − aK‖u‖1,H,0 − bK

≥
(
1− b1 − b2λ−1

1,p

)
min

{
‖u‖p1,H,0, ‖u‖

q
1,H,0

}
− ‖w‖1 − aK‖u‖1,H,0 − bK ,

where the last inequality is obtained by using inequality (2.2). Since 1 < p < q < N
and b1 + b2λ

−1
1,p < 1, we can take R0 > 0 large enough such that for all R ≥ R0 it

holds (
1− b1 − b2λ−1

1,p

)
min {Rp, Rq} − ‖w‖1 − aKR− bK > 0.

Therefore, inequality (3.9) is valid.

Note that ∂IK : W 1,H
0 (Ω)→ 2W

1,H
0 (Ω)∗ is a maximal monotone operator. There-

fore, we can apply Theorem 2.4 for F = ∂IK , G = A and L = 0. This shows that
inclusion (3.4) has at least one solution u ∈ K which is a solution of (3.3) and so,
a solution from (1.1) in the sense of Definition 3.2. Thus, S 6= ∅.
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Next, we are going to show that the set of solutions of problem (1.1) is closed in

W 1,H
0 (Ω). Let {un} ⊂ S be a sequence such that

un → u in W 1,H
0 (Ω) (3.13)

for some u ∈W 1,H
0 (Ω). So, for each n ∈ N, there exists ξn ∈ Ñf (un) such that

〈A(un), v − un〉H + 〈ξn, v − un〉Lq1 (Ω) + IK(v)− IK(un) ≥ 0 (3.14)

for all v ∈ W 1,H
0 (Ω). Hypothesis H(f)(iii) and the convergence in (3.13) ensure

that {ξn} is bounded in Lq
′
1(Ω). So, we may assume that

ξn ⇀ ξ in Lq
′
1(Ω).

As before, from Mazur’s theorem and the upper semicontinuity of (s, η) 7→ f(x, s, η),
we can show that

ξ(x) ∈ f(x, u(x),∇u(x)) for a. a.x ∈ Ω,

that is, ξ ∈ Ñf (u). Passing to the upper limit in (3.14) as n → ∞ and taking
the lower semicontinuity of IK into account it follows that u ∈ K is a solution of
problem (1.1). Hence, S is closed.

In the last part of the proof we need to show that S is bounded. If K is bounded,
the desired conclusion holds automatically. Let us suppose that K is unbounded
and in addition, let us assume that S is unbounded. Then, there exists a sequence
{un} ⊆ S such that

‖un‖1,H,0 → +∞. (3.15)

As before, see (3.10), we can show via a simple calculation that

0 ≥ 〈A(un)− i∗ξn, un〉H
≥
(
1− b1 − b2λ−1

1,p

)
min

{
‖un‖p1,H,0, ‖un‖

q
1,H,0

}
− ‖w‖1 − aK‖un‖1,H,0 − bK

for some ξn ∈ Ñf (un) where we have used the fact that 0 ∈ K. Combining the
inequality above and (3.15) yields a contradiction. Therefore, S is bounded. �
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