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Abstract. In this paper variational-hemivariational inequalities with nonho-
mogeneous Neumann boundary conditions are investigated. Under an appro-

priate oscillating behaviour of the nonlinear term, the existence of infinitely

many solutions to this type of problems, even under small perturbations of
nonhomogeneous Neumann boundary conditions, is established.

1. Introduction

The aim of this paper is to investigate variational-hemivariational inequalities
with a nonhomogeneous Neumann boundary condition. Precisely, let Ω be a non-
empty, bounded, open subset of the Euclidian space RN , N ≥ 1, with C1-boundary
∂Ω, let p ∈]N,+∞[, and let q ∈ L∞(Ω) satisfy q ≥ 0, q 6≡ 0. Our purpose is to
study the following problem: Find u ∈ K such that, for all v ∈ K,∫

Ω

|∇u(x)|p−2∇u(x) · ∇(v(x)− u(x))dx

+

∫
Ω

q(x)|u(x)|p−2u(x)(v(x)− u(x))dx

+

∫
Ω

λα(x)F ◦(u(x); v(x)− u(x))dx

+

∫
∂Ω

µβ(x)G◦(γu(x); γv(x)− γu(x))dσ ≥ 0,

(P)

where K is a closed convex subset of W 1,p(Ω) containing the constant functions,
and α ∈ L1(Ω), β ∈ L1(∂Ω), with α(x) ≥ 0 for a.a. x ∈ Ω, α 6≡ 0, β(x) ≥ 0
for a.a. x ∈ ∂Ω, and λ, µ are real parameters, with λ > 0 and µ ≥ 0. Here, F ◦

and G◦ stand for Clarke’s generalized directional derivatives of locally Lipschitz

functions F,G : R→ R given by F (ξ) =

∫ ξ

0

f(t)dt, G(ξ) =

∫ ξ

0

g(t)dt, ξ ∈ R, with

f, g : R → R locally essentially bounded functions, and γ : W 1,p(Ω) → Lp(∂Ω)
denotes the trace operator. If Ω =]a, b[⊆ R and h : {a, b} → R, then

∫
∂Ω
h(x)dσ

reads h(b) + h(a), so problem (P) makes sense even for N = 1.
A prototype of (P) for K = W 1,p(Ω) is the following boundary value problem

with nonsmooth potential and nonhomogeneous, nonsmooth Neumann boundary
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condition 
∆pu− q(x)|u|p−2u ∈ λα(x)∂F (u) in Ω,

|∇u|p−2 ∂u

∂ν
∈ −µβ(x)∂G(γu) on ∂Ω.

(N)

The main result of this paper is Theorem 3.1, which establishes, under an appro-
priate oscillating behavior of F and a suitable growth of G at infinity, the existence
of a precise interval for the real parameter λ such that, provided µ is small enough,
problem (P) admits infinitely many solutions. Some consequences and applications
are also pointed out (see Theorems 3.2, 3.3 and Section 4). Just as an example, we
illustrate the applicability of our approach by stating the following consequence of
our results in the special case of ordinary differential equations.

Theorem 1.1. Let f : R→ R be a non-negative, locally essentially bounded func-

tion and set F (ξ) =

∫ ξ

0

f(t) dt for all ξ ∈ R. Assume that

lim inf
ξ→+∞

F (ξ)

ξ2
= 0 and lim sup

ξ→+∞

F (ξ)

ξ2
= +∞.

Then, for each non-negative, continuous function g : R→ R such that

g∞ := lim
t→+∞

g(t)

t
< +∞,

and for every µ ∈
]
0, 1

8g∞

[
, there is a sequence of pairwise distinct functions {un} ⊂

W 2,2(]0, 1[) such that for all n ∈ N one has
−u′′n(x) + un(x) ∈ [f−(un(x)), f+(un(x))] for a.a. x ∈]0, 1[

u′n(0) = µg(un(0))

u′n(1) = −µg(un(1)),

(ON)

where f−(t) = lim
δ→0+

ess inf
|t−z|<δ

f(z) and f+(t) = lim
δ→0+

ess sup
|t−z|<δ

f(z) for all t ∈ R.

Clearly, if f is a continuous function, then Theorem 1.1 ensures the existence of
infinitely many classical solutions to the Neumann boundary value problem (ON).
It is worth noticing that our results are completely novel, even for continuous non-
linearities f and g, because of the presence of nonhomogeneous boundary Neumann
condition (see (N)). We refer to [2] and [3], and the references therein, for smooth
Neumann problems in the homogeneous case. Moreover, we also observe that our
results and those of [11] are different since in [11] the Neumann boundary condition
is homogeneous and the type of oscillating behavior at infinity required for f implies
that f cannot be of constant sign, which is not necessary the case here. Regarding
the existence of infinitely many solutions for nonsmooth Neumann-type problems
we also mention the paper of Candito [5] and the work of Kristály-Motreanu (see
[9]) where in the second paper the authors don’t require that W 1,p(Ω) is contin-
uously embedded into C0(Ω). Recently, Kristály-Moroşanu have been described a
new competition phenomena between oscillatory and pure power terms (cf. [8])
while existence results for variational-hemivariational inequalities of type (P) were
established in [15] applying an abstract nonsmooth critical point result given in
[11].
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2. Preliminaries

In this Section we give a brief overview on some prerequisites on nonsmooth
analysis which are needed in the sequel. Let (X, ‖ · ‖) be a real Banach space. We
denote by X∗ the dual space of X, while 〈·, ·〉 stands for the duality pairing between
X∗ and X. A function h : X → R is called locally Lipschitz continuous when to
every x ∈ X there correspond a neighborhood Vx of x and a constant Lx ≥ 0 such
that

|h(z)− h(w)| ≤ Lx‖z − w‖,∀z, w ∈ Vx.
If x, z ∈ X, we write h◦(x; z) for the generalized directional derivative of h at the
point x along the direction z, i.e.,

h◦(x; z) := lim sup
w→x, t→0+

h(w + tz)− h(w)

t
,

(see [7, Chapter 2]). If h1, h2 : X → R are locally Lipschitz functions, we have

(h1 + h2)◦(x, z) ≤ h◦1(x, z) + h◦2(x, z), ∀x, z ∈ X. (2.1)

The generalized gradient of the function h at x, denoted by ∂h(x), is the set

∂h(x) := {x∗ ∈ X∗ : 〈x∗, z〉 ≤ h◦(x; z), ∀ z ∈ X} .

We say that x ∈ X is a (generalized) critical point of h when

h◦(x; z) ≥ 0, ∀ z ∈ X,

that clearly means 0 ∈ ∂h(x) (see [6]).
When a non-smooth function I : X →]−∞,+∞] is expressed as a sum of a locally

Lipschitz function, h : X → R, and a convex, proper and lower semicontinuous
function, j : X →]−∞,+∞], that is I := h+ j, a (generalized) critical point of I
is every u ∈ X such that

h◦(u; v − u) + j(v)− j(u) ≥ 0,

for all v ∈ X (see [13, Chapter 3] and [14]).
From now on, assume that X is a reflexive real Banach space, Φ : X → R is a

sequentially weakly lower semicontinuous functional, Υ : X → R is a sequentially
weakly upper semicontinuous functional, λ is a positive real parameter, j : X →
] −∞,+∞] is a convex, proper and lower semicontinuous functional and D (j) is
the effective domain of j. Write

Ψ := Υ− j and Jλ := Φ− λΨ = (Φ− λΥ) + λj.

We also assume that Φ is coercive and

D(j) ∩ Φ−1(]−∞, r[) 6= ∅ (2.2)

for all r > infX Φ. Moreover, by (2.2) and provided r > infX Φ, we can define

ϕ(r) = inf
u∈Φ−1(]−∞,r[)

(
sup

v∈Φ−1(]−∞,r[)
Ψ(v)

)
−Ψ(u)

r − Φ(u)
,

and

ϕ+ := lim inf
r→+∞

ϕ(r), ϕ− := lim inf
r→(infX Φ)+

ϕ(r).
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Assuming also that Φ and Υ are locally Lipschitz continuous functionals, in [4] it
is proved the following result, which is a version of [11, Theorem 1.1].

Theorem 2.1. Under the above assumptions on X, Φ and Ψ, one gets:

(a) If ϕ+ < +∞ then, for each λ ∈]0, 1
ϕ+ [, the following alternative holds:

either
(a1) Jλ possesses a global minimum,
or
(a2) there is a sequence {un} of critical points (local minima) of Jλ such

that lim
n→∞

Φ(un) = +∞.

(b) If ϕ− < +∞ then, for each λ ∈]0, 1
ϕ− [, the following alternative holds:

either
(b1) there is a global minimum of Φ which is also a local minimum of Jλ,
or
(b2) there is a sequence {un} of critical points (local minima) of Jλ, with

lim
n→∞

Φ(un) = inf
X

Φ, which weakly converges to a global minimum of

Φ.

We recall that the previous theorem is a non-smooth version of the Ricceri’s
variational principle (see [16]).

On the space W 1,p(Ω) we consider the norm

‖u‖ :=

(∫
Ω

(|∇u(x)|p + q(x)|u(x)|p)dx
) 1

p

,

which is equivalent to the usual one (see for instance [12, Section 1.1.15]). Set

c := sup
u∈W 1,p(Ω)\{0}

‖u‖∞
‖u‖

, (2.3)

where ‖u‖∞ := max
x∈Ω
|u(x)|. From (2.3) we infer that cp‖q‖1 ≥ 1. If Ω is convex, an

explicit upper bound for the constant c in (2.3) is

c ≤ 2
p−1
p max

 1

‖q‖
1
p

1

,
d

N
1
p

(
p− 1

p−N
|Ω|
) p−1

p ‖q‖∞
‖q‖1

 , (2.4)

where |Ω| denotes the Lebesgue measure of the set Ω and d := diam(Ω) (see, e.g.,
[1, Remark 1]). Finally, we set

A = lim inf
ξ→+∞

max
|t|≤ξ

(−F (t))

ξp
, B = lim sup

ξ→+∞

−F (ξ)

ξp
,

and

λ1 =
‖q‖1
‖α‖1pB

, λ2 =
1

‖α‖1pcpA
. (2.5)

3. Main Results

Our main result is the following.
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Theorem 3.1. Let α ∈ L1(Ω) and β ∈ L1(∂Ω) be nonnegative and non-zero func-
tions. Let f : R → R be a locally essentially bounded function and set F (ξ) =∫ ξ

0

f(t) dt for all ξ ∈ R. Assume that

A <
1

cp‖q‖1
B. (3.1)

Then, for each λ ∈]λ1, λ2[, where λ1, λ2 are given by (2.5), for each locally es-

sentially bounded function g : R → R, whose potential G(ξ) =

∫ ξ

0

g(t) dt, ξ ∈ R

satisfies

G∞ := lim sup
ξ→+∞

max|t|≤ξ(−G(t))

ξp
< +∞, (3.2)

lim inf
ξ→+∞

(−G(ξ)) > −∞, (3.3)

and for every µ ∈ [0, δ[, where

δ = δg,λ :=
1

β∗pcpG∞

(
1− λ

λ2

)
, (δ = +∞ if G∞ = 0) ,

with β∗ =
∫
∂Ω
β(x)dσ, problem (P) admits a sequence of weak solutions that is

unbounded in W 1,p(Ω).

Proof. Our aim is to apply Theorem 2.1. To this end, fix λ̄ ∈]λ1, λ2[ and let g be
a locally essentially bounded function satisfying our assumptions. Since λ̄ < λ2,
one has δ := δg,λ̄ > 0, so we can consider 0 ≤ µ̄ < δ. It follows that λ̄‖α‖1pcpA +
µ̄β∗pcpG∞ < 1, which implies

λ̄ <
1

‖α‖1pcpA+
µ̄

λ̄
β∗pcpG∞

. (3.4)

Let X be the Sobolev space W 1,p(Ω) endowed with the norm ‖ · ‖. For any u ∈ X,
set

Φ(u) :=
1

p
‖u‖p, Υ(u) :=

∫
Ω

α(x)[−F (u(x))]dx+
µ̄

λ̄

∫
∂Ω

β(x)[−G(γu(x)]dσ,

j(u) =

{
0, if u ∈ K,
+∞, otherwise,

Ψ(u) := Υ(u)− j(u), Jλ(u) := Φ(u)− λΨ(u).

Therefore,

Jλ̄(u) =
1

p
‖u‖p + λ̄

∫
Ω

α(x)F (u(x))dx+ µ̄

∫
∂Ω

β(x)G(γu(x)dσ + λ̄j(u), (3.5)

for all u ∈ X. Now, we claim that ϕ+ < +∞. Let {ρn} be a real sequence such
that lim

n→+∞
ρn = +∞ and

lim
n→+∞

max
|t|≤ρn

(−F (t))

ρpn
= A.

Denote rn =
1

p

(ρn
c

)p
and let v ∈ Φ−1(]−∞, rn[). Then, taking into account that

‖v‖p < prn and ‖v‖∞ ≤ c‖v‖, one has |v(x)| ≤ ρn for every x ∈ Ω. Therefore, it
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follows

ϕ(rn) ≤
sup

‖w‖p<prn

(∫
Ω

α(x)[−F (w(x))]dx+
µ̄

λ̄

∫
∂Ω

β(x)[−G(γw(x)]dσ − j(w)

)
rn

≤
‖α‖1 max

|t|≤ρn
(−F (t)) +

µ̄

λ̄
β∗ max
|t|≤ρn

(−G(t))

rn

= pcp‖α‖1
max
|t|≤ρn

(−F (t))

ρpn
+ pcp

µ̄

λ̄
β∗

max
|t|≤ρn

(−G(t))

ρpn
.

Hence, ϕ+ ≤ lim sup
n→+∞

ϕ(rn) ≤ pcp‖α‖1A + pcp
µ̄

λ̄
β∗G∞. From (3.1) and (3.2) we

obtain

ϕ+ < +∞,
and our claim is proved. Moreover, taking into account (3.4), we get

λ̄ <
1

ϕ+
.

Next, we show that the function Jλ̄ in (3.5) is unbounded from below. Let {dn}
be a real sequence such that lim

n→+∞
dn = +∞ and

lim
n→+∞

(−F (dn))

dpn
= B. (3.6)

Set wn(x) = dn for all x ∈ Ω and n ∈ N. Clearly, wn ∈ K ⊂ W 1,p(Ω) for each
n ∈ N. We see that

‖wn‖p = dpn‖q‖1
and

Φ(wn)− λ̄Ψ(wn)

=
‖wn‖p

p
− λ̄

(∫
Ω

α(x)[−F (wn(x))]dx+
µ̄

λ̄

∫
∂Ω

β(x)[−G(γwn(x)]dσ

)
+ λ̄j(wn)

=
dpn‖q‖1
p

− λ̄
(
‖α‖1(−F (dn)) +

µ̄

λ̄
β∗(−G(dn))

)
,

thus

Jλ̄(wn) =
dpn‖q‖1
p

− λ̄
(
‖α‖1(−F (dn)) +

µ̄

λ̄
β∗(−G(dn))

)
. (3.7)

If B < +∞, by (2.5) and since λ̄ > λ1, we can take ε ∈
]
0, B − ‖q‖1

p‖α‖1λ̄

[
. From

(3.6) there exists νε such that

−F (dn) > (B − ε)dpn, ∀n > νε.

Combining with (3.7), one has

Jλ̄(wn) < dpn

(
‖q‖1
p
− λ̄‖α‖1(B − ε)

)
− µ̄β∗(−G(dn)).



VARIATIONAL-HEMIVARIATIONAL INEQUALITIES WITH SMALL PERTURBATIONS 7

Since
‖q‖1
p
− λ̄‖α‖1(B − ε) < 0 and, as known from (3.3), {(−G(dn))} is bounded

from below, it follows that lim
n→+∞

Jλ̄(wn) = −∞. If B = +∞, fix M >
‖q‖1
p‖α‖1λ̄

.

Then from (3.6) there exists νM such that

(−F (dn)) > Mdpn, ∀n > νM .

Arguing as before, one obtains

Jλ̄(wn) < dpn

(
‖q‖1
p
− λ̄‖α‖1M

)
− µ̄β∗(−G(dn)).

By the choice of M , we have lim
n→+∞

Jλ̄(wn) = −∞, which completes the proof that

Jλ̄ is unbounded from below. Then, from part (a) of Theorem 2.1, we know that
the function Jλ admits a sequence of critical points {un} ⊂ X such that ‖un‖ → ∞
as n→∞. The fact that un ∈ X is a critical point of Jλ reads as

(Φ− λ̄Υ)◦(un; v − un) + λ̄j(v)− λ̄j(un) ≥ 0 for all v ∈ X. (3.8)

It remains to prove that un solves problem (P). From (3.8) it follows that un ∈ K
and

(Φ− λ̄Υ)◦(un; v − un) ≥ 0 for all v ∈ K. (3.9)

By (3.9) and (2.1) we infer that

Φ′(un; v − un) + λ̄(−Υ)◦(un; v − un) ≥ 0 for all v ∈ K

or, equivalently, ∫
Ω

|∇un(x)|p−2∇un(x) · ∇(v(x)− un(x))dx

+

∫
Ω

q(x)|un(x)|p−2un(x)(v(x)− un(x))dx

+ λ̄(−Υ)◦(un, v − un) ≥ 0, ∀v ∈ K.

(3.10)

By using (2.1) and formula (2) on p. 77 in [7], we have

λ̄(−Υ)◦(un; v − un)

≤ λ̄
∫

Ω

α(x)F ◦(un(x); v(x)− un(x))dx+ µ̄

∫
∂Ω

β(x)G◦(γun(x); γv(x)− γun(x))dσ.

Inserting this into (3.10) leads to∫
Ω

|∇un(x)|p−2∇un(x) · ∇(v(x)− un(x))dx

+

∫
Ω

q(x)|un(x)|p−2un(x)(v(x)− un(x))dx

+ λ̄

[∫
Ω

α(x)F ◦(un(x); v(x)− un(x))dx

+
µ̄

λ̄

∫
∂Ω

β(x)G◦(γun(x); γv(x)− γun(x))dσ

]
≥ 0

for every v ∈ K, which completes the proof. �



8 GABRIELE BONANNO, DUMITRU MOTREANU, AND PATRICK WINKERT

The solutions obtained in Theorem 3.1 for problem (P) corresponding to the
parameters λ and µ are local minima of the functional Jλ in (3.5) which is associated
to (P). The following corollary demonstrates that, if the functional Jλ satisfies the
Palais-Smale condition, there are solutions to (P) which are not local minima of
Jλ.

Corollary 3.1. Under the hypotheses of Theorem 3.1, assume in addition that

min{F (t)− 1

s
(−F )0(t; t), G(t)− 1

s
(−G)0(t; t)} ≥ −c1|t|θ−d1 for all t ∈ R, (3.11)

with constants 1 ≤ θ < p < s and c1, d1 ≥ 0. Let u ∈ W 1,p(Ω) be a solution
provided by Theorem 3.1 for (P) corresponding to λ̄ ∈]λ1, λ2[ and 0 ≤ µ̄ < δ , so
u is a local minimum of the functional Jλ in (3.5). If u is isolated, there exists
another solution w ∈W 1,p(Ω) for (P) corresponding to λ̄ and µ̄ which is not a local
minimum of Jλ.

Proof. Let us check that the functional Jλ : W 1,p(Ω) →] −∞,+∞] given in (3.5)
satisfies the Palais-Smale condition in the sense of [13, p. 64]. This amounts to
saying that whenever a sequence {un} ⊂ K is such that J(un) is bounded and

J0
λ
(un; v − un) ≥ −εn‖v − un‖ for all v ∈ K, (3.12)

with εn → 0+, contains a convergent subsequence. Setting v = 0 in (3.12) and
combining with the inequality Jλ(un) ≤M , for a constant M > 0, yield(

1

p
− 1

s

)
‖un‖p + λ̄

∫
Ω

α(x)[F (un(x))− 1

s
(−F )0(un;un)]dx

+ µ̄

∫
∂Ω

β(x)[G(γun(x))− 1

s
(−G)0(γun; γun)]dσ ≤M +

εn
s
‖un‖.

Using hypothesis (3.11), it is straightforward to prove that the sequence {un} is
bounded inW 1,p(Ω). Furthermore, since−∆p onW 1,p(Ω) fulfills the (S+) property,
by handling (3.12) we find that {un} contains a convergent subsequence, so the
Palais-Smale condition for the functional Jλ is satisfied. We are thus in a position
to apply [10, Theorem 4.2] to the functional Jλ from which we achieve the desired
conclusion. �

Remark 3.1. Relation (2.4) is useful to verify inequality (3.1) and to estimate the
numbers λ2 and δ in Theorem 3.1 provided the bounded domain Ω is convex.

Remark 3.2. Actually, Theorem 3.1 ensures that the sequence {un} of solutions
of problem (P) satisfies the following sharper inequality:∫

Ω

|∇un(x)|p−2∇un(x) · ∇(v(x)− un(x))dx

+

∫
Ω

q(x)|un(x)|p−2un(x)(v(x)− un(x))dx

+ λ̄U◦(un; v − un) + µ̄V ◦(un; v − un) ≥ 0, ∀v ∈ K,

where U(u) =
∫

Ω
α(x)F (u(x))dx and V (u) =

∫
∂Ω
β(x)G(γu(x))dσ for all u ∈

W 1,p(Ω).
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Remark 3.3. In Theorem 3.1 the function g may not have an oscillating behaviour
at infinity (see, for instance, Example 4.1 where g(u) =

√
|u|). On the other hand,

g must satisfy (3.2), namely it must have a suitable growth at infinity. It is worth
noticing that when (3.2) fails, that is,

lim sup
ξ→+∞

max|t|≤ξ(−G(t))

ξp
= +∞, (3.13)

the existence of infinitely many solutions to (P) can be again guaranteed, provided
that

G−∞ := lim inf
ξ→+∞

max|t|≤ξ(−G(t))

ξp
< +∞, (3.14)

(for which g is then oscillating at infinity) and assuming that f , possibly even not
oscillating at infinity, satisfies the following conditions:

B+ := lim sup
ξ→+∞

max
|t|≤ξ

(−F (t))

ξp
< +∞, lim inf

ξ→+∞
(−F (t)) > −∞. (3.15)

To be precise, the following result holds: Let α, β, f be as in the statement of The-

orem 3.1 and assume that f satisfies (3.15). Then, for each λ ∈
]
0,

1

‖α‖1pcpB+

[
,

for each locally essentially bounded function g : R→ R satisfying (3.13) and (3.14),
and for each µ ∈ ]0, δ[, where

δ := δg,λ :=
1

β∗pcpG−∞
(1− λ‖α‖1pcpB+) ,

(
δ = +∞ if G−∞ = 0

)
,

the problem (P) admits a sequence of weak solutions which is unbounded in W 1,p(Ω).

Now we point out two significant special cases of Theorem 3.1.

Theorem 3.2. Let α ∈ L1(Ω) and β ∈ L1(∂Ω) be nonnegative and non-zero.
Let f : R → R be a non-positive, locally essentially bounded function, and set

F (ξ) =

∫ ξ

0

f(t) dt for every ξ ∈ R. Assume that

lim inf
ξ→+∞

−F (ξ)

ξp
<

1

cp‖q‖1
lim sup
ξ→+∞

−F (ξ)

ξp
. (3.16)

Then, for each λ ∈]λ1, λ2[, where λ1, λ2 are given by (2.5), for each non-positive,

locally essentially bounded function g : R → R, whose potential G(ξ) =

∫ ξ

0

g(t) dt,

ξ ∈ R, satisfies

G∞ := lim sup
ξ→+∞

−G(ξ)

ξp
< +∞,

and for every µ ∈ [0, δ[, where

δ = δg,λ :=
1

(
∫
∂Ω
β(x)dσ)pcpG∞

(
1− λ‖α‖1pcp lim inf

ξ→+∞

(−F (ξ))

ξp

)
,

problem (P) admits a sequence of weak solutions that is unbounded in W 1,p(Ω).
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Remark 3.4. In Theorem 3.2 the assumption (3.16) can be written

lim inf
ξ→+∞

F (ξ)

ξp
< cp‖q‖1 lim sup

ξ→+∞

F (ξ)

ξp
,

as well as

]λ1, λ2[ =

− ‖q‖1

‖α‖1p lim inf
ξ→+∞

F (ξ)

ξp

,− 1

‖α‖1pcp lim sup
ξ→+∞

F (ξ)

ξp


and

δ = − 1

(
∫
∂Ω
β(x)dσ)pcp

(
lim inf
ξ→+∞

G(ξ)

ξp

) (1 + λ‖α‖1pcp lim sup
ξ→+∞

F (ξ)

ξp

)
.

Theorem 3.3. Let α ∈ L1(Ω) and β ∈ L1(∂Ω) be nonnegative and non-zero. Let
f : R → R be a non-positive, locally essentially bounded function and set F (ξ) =∫ ξ

0

f(t) dt for every ξ ∈ R. Assume that

lim inf
ξ→+∞

−F (ξ)

ξp
= 0 and lim sup

ξ→+∞

−F (ξ)

ξp
= +∞.

Then, for each non-positive, locally essentially bounded function g : R → R such
that

g∞ := lim
ξ→+∞

−g(ξ)

ξp−1
< +∞,

and for every µ ∈ [0, δ[, where

δ = δg :=
1

(
∫
∂Ω
β(x)dσ)cpg∞

,

there is an unbounded sequence {un} ⊂W 1,p(Ω) such that∫
Ω

|∇un(x)|p−2∇un(x) · ∇(v(x)− un(x))dx

+

∫
Ω

q(x)|un(x)|p−2un(x)(v(x)− un(x))dx

+

∫
Ω

α(x)F ◦(un(x); (v(x)− un(x)))dx

+ µ

∫
∂Ω

β(x)G◦(γun(x); (γv(x)− γun(x)))dσ ≥ 0

for all v ∈ K.

Remark 3.5. We explicitly observe that in Theorem 3.1 no symmetry assumptions
on the nonlinear term is done. On the other hand, the case N ≤ p cannot be studied
by this method since the embedding of W 1,p(Ω) in C0(Ω) fails and ϕ+ cannot be
upper estimated, without further assumptions on the nonlinear term.

Remark 3.6. An example of application of previous results is given in the next
section (see Example 4.1).
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If F oscillates at zero, we can give an analogous result as in Theorem 3.1. To
this end, let

A = lim inf
ξ→0+

max
|t|≤ξ

(−F (t))

ξp
, B = lim sup

ξ→0+

−F (ξ)

ξp
,

and

λ1 =
‖q‖1
‖α‖1pB

, λ2 =
1

‖α‖1pcpA
. (3.17)

Then, our result reads as follows.

Theorem 3.4. Let α ∈ L1(Ω) and β ∈ L1(∂Ω) be nonnegative and non-zero func-
tions. Let f : R → R be a locally essentially bounded function and set F (ξ) =∫ ξ

0

f(t) dt for all ξ ∈ R. Assume that

A <
1

cp‖q‖1
B.

Then, for each λ ∈]λ1, λ2[, where λ1, λ2 are given by (3.17), for each locally es-

sentially bounded function g : R → R, whose potential G(ξ) =

∫ ξ

0

g(t) dt, ξ ∈ R

satisfies

G0 := lim sup
ξ→0+

max|t|≤ξ(−G(t))

ξp
< +∞,

lim inf
ξ→0+

(−G(ξ)) ≥ 0,

and for every µ ∈ [0, δ[, where

δ = δg,λ :=
1

β∗pcpG0

(
1− λ

λ2

)
, (δ = +∞ if G0 = 0) ,

with β∗ =
∫
∂Ω
β(x)dσ, problem (P) admits a sequence of distinct weak solutions

converging uniformly to zero.

Proof. The proof can be done similarly as the proof of Theorem 3.1 by applying
part (b) of Theorem 2.1 instead of part (a), thus obtaining the assertion. �

4. Applications and Examples

Here we present an application of Theorem 3.1 to an ordinary differential problem
with discontinuous nonlinearities.

Theorem 4.1. Let α ∈ L1(]0, 1[) be a non-negative and non-zero function and let
β1, β0 be non-negative constants such that at least one of them is positive. Let
f : R → R be a non-positive, locally essentially bounded function and set F (ξ) =∫ ξ

0

f(t) dt for every ξ ∈ R. Assume that

lim inf
ξ→+∞

−F (ξ)

ξ2
<

1

2
lim sup
ξ→+∞

−F (ξ)

ξ2
. (4.1)
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Then, for each λ ∈

 1

‖α‖12 lim sup
ξ→+∞

−F (ξ)

ξ2

,
1

‖α‖14 lim inf
ξ→+∞

−F (ξ)

ξ2

, for each non-

positive, continuous function g : R→ R, whose potential G(ξ) =

∫ ξ

0

g(t) dt, ξ ∈ R,

satisfies

G∞ := lim sup
ξ→+∞

−G(ξ)

ξ2
< +∞,

and for every µ ∈ [0, δ[, where

δ = δg,λ :=
1

(β1 + β0)4G∞

(
1− λ‖α‖14 lim inf

ξ→+∞

−F (ξ)

ξp

)
,

there is a sequence of pairwise distinct functions {un} ⊂ W 2,2(]0, 1[) such that for
all n ∈ N one has

u′′n(x)− un(x) ∈ [λα(x)f−(un(x)), λα(x)f+(un(x))] for a.a. x ∈]0, 1[

u′n(0) = µβ0g(un(0))

u′n(1) = −µβ1g(un(1)).

(N1)

Proof. The result is a consequence of Theorem 3.2. For the sake of clarity, we first
point out three facts specific for the ordinary differential case that enable us to
adapt the proof of Theorem 3.1 to this situation. The first one is the inequality∫

∂Ω

β(x)[−G(γu(x)]dσ = β(1)[−G(u(1))] + β(0)[−G(u(0))]

≤ β(1) max
|ξ|≤ρn

[−G(ξ)] + β(0) max
|ξ|≤ρn

[−G(ξ)] = (β(1) + β(0)) max
|ξ|≤ρn

[−G(ξ)]

for all ‖u‖p < prn, from which we derive

ϕ+ ≤ lim sup
n→+∞

ϕ(rn) ≤ pcp‖α‖1A+ pcp
µ̄

λ̄
(β(1) + β(0))G∞.

The second one is the estimate∫
∂Ω

β(x)[−G(γwn(x)]dσ

= (β(1) + β(0))[−G(dn)] ≥ (β(1) + β(0)) lim inf
ξ→+∞

(−G(ξ)) ≥ 0,

from which we deduce lim
n→+∞

Jλ̄(wn) = −∞. The last one is

[∫
∂Ω

β(x)G(γun(x); (γv(x)− γun(x)))dσ

]◦
= [β(1)G(un(1); v(1)− un(1)) + β(0)G(un(0); v(0)− un(0))]

◦

≤ β(1)G◦(un(1); v(1)− un(1)) + β(0)G◦(un(0); v(0)− un(0)),
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from which it turns out∫ 1

0

|u′n(x)|p−2u′n(x) · (v′(x)− u′n(x))dx

+

∫ 1

0

q(x)|un(x)|p−2un(x)(v(x)− un(x))dx

+ λ̄

∫ 1

0

α(x)F ◦(un(x); v(x)− un(x))dx

+ µ̄ [β(1)G◦(un(1); v(1)− un(1)) + β(0)G◦(un(0); v(0)− un(0))] ≥ 0, ∀v ∈ K.

The proof of Theorem 4.1 is carried out as follows. Fix λ̄ and µ̄ as in the
conclusion of Theorem 4.1. We may apply Theorem 3.2 (see also Remark 3.2) by
choosing Ω =]0, 1[, p = 2, q ≡ 1, K = W 1.2(]0, 1[), and noticing that hypothesis
(4.1) in conjunction with (2.4) implies that (3.16) holds true. Then there exists an
unbounded sequence {un} ⊂W 1.2(]0, 1[) such that∫ 1

0

u′n(x)v′(x)dx+

∫ 1

0

un(x)v(x)dx

+ λ̄U◦(un; v) + µ̄ [β1G
◦(un(1); v(1)) + β0G

◦(un(0); v(0))] ≥ 0, ∀v ∈W 1.2(]0, 1[),

where β0 = β(0) and β1 = β(1), while the function U was introduced in Remark
3.2. Setting

Tn(v) =−
[∫ 1

0

u′n(x)v′(x)dx+

∫ 1

0

un(x)v(x)dx

]
− µ̄ [β1g(un(1))v(1) + β0g(un(0))v(0)]

for all v ∈W 1.2(]0, 1[), we see that Tn is linear and continuous on W 1.2(]0, 1[), and
Tn ∈ λ̄∂U(un). Taking into account that W 1.2(]0, 1[) is continuously and densely
embedded in L2(]0, 1[), from [6, Theorem 2.2] we know that there is hn ∈ L2(]0, 1[)
such that

−
[∫ 1

0

u′n(x)v′(x)dx+

∫ 1

0

un(x)v(x)dx

]
− µ̄ [β1g(un(1))v(1) + β0g(un(0))v(0)]

=

∫ 1

0

hn(x)v(x)dx

for all v ∈W 1.2(]0, 1[). This ensures that un is the unique solution of the problem u′′ − u = hn(x) in ]0, 1[
u′(0) = −µ̄β0g(u(0))
u′(1) = µ̄β1g(u(1))

and, in addition, un ∈ W 2.2(]0, 1[). Moreover, since Tn ∈ λ̄∂U(un), we deduce
through [6, Corollary, p. 111] that

hn(x) ∈ [λ̄α(x)f−(un(x)), λ̄α(x)f+(un(x)] for a.a. x ∈]0, 1[.

Hence the conclusion regarding problem (N1) is obtained with un = un.
�

Remark 4.1. Theorem 1.1 in the Introduction is a direct consequence of Theorem
4.1.
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Example 4.1. Set

an :=
2n!(n+ 2)!− 1

4(n+ 1)!
, bn :=

2n!(n+ 2)! + 1

4(n+ 1)!

for every n ∈ N and define the nonnegative (discontinuous) function fp : R→ R by

fp(t) =

{
2(n+ 1)![np−1(n+ 1)!p−(n− 1)p−1n!p] if t ∈ ∪n∈N]an, bn[,

0 otherwise.

Denoting Fp(ξ) =

∫ ξ

0

fp(t) dt for every ξ ∈ R, a simple computation shows that

lim inf
ξ→+∞

Fp(ξ)

ξp
= 0 and lim sup

ξ→+∞

Fp(ξ)

ξp
= +∞. Owing to Theorem 3.3, there is a

sequence of pairwise distinct functions {un} ⊂W 1,p(Ω) such that∫
Ω

|∇un(x)|p−2∇un(x) · ∇(v(x)− un(x))dx

+

∫
Ω

|un(x)|p−2un(x)(v(x)− un(x))dx

+

∫
Ω

(−F )◦(un(x); v(x)− un(x))dx

+

∫
∂Ω

[−|γun(x)|
p−1
2 )](γv(x)− γun(x))dσ ≥ 0, ∀v ∈ K.

In particular, Theorem 4.1 ensures that there is a sequence of pairwise distinct
functions {un} ⊂W 2,2(]0, 1[) such that for all n ∈ N there holds

−u′′n(x) + un(x) ∈ [f−2 (u(x)), f+
2 (u(x))] for a.a. x ∈]0, 1[

u′n(0) = −
√
|(un(0)|

u′n(1) =
√
|(un(1)|.

Acknowledgement: The authors are grateful to the referees for the careful
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