DISCONTINUOUS VARIATIONAL-HEMIVARIATIONAL
INEQUALITIES INVOLVING THE P-LAPLACIAN

PATRICK WINKERT

ABSTRACT. We deal with discontinuous quasilinear elliptic variational-hemivariational
inequalities. By using the method of sub- and supersolution and based on the

results of S. Carl, we extend the theory for discontinuous problems. The proof

of the existence of extremal solutions within a given order interval of sub- and
supersolutions is the main goal of this paper. In the last part, we give an
example of the construction of sub- and supersolutions.

1. INTRODUCTION

Let © ¢ RN, N > 1, be a bounded domain with Lipschitz boundary 9. As
V = Whr(Q) and Vo = W, P(Q),1 < p < oo, we denote the usual Sobolev spaces
with their dual spaces V* = (W1P(Q))* and V5 = W~14(Q), respectively (q is the
Holder conjugate of p). In this paper, we consider the following elliptic variational-
hemivariational inequality

ve K: (—Apu+F(u),v—u)+ / 7°(u;v —uw)dx >0, Yo e K, (1.1)
Q

where j°(s;7) denotes the generalized directional derivative of the locally Lipschitz

function j : R — R at s in the direction r given by

7°(s;7) = limsup Jly+tr) —jly)
' y—s,t]0 t ’

(cf. [7, Chapter 2]), and K C Vj is some closed and convex subset. The oper-
ator Apu = div(|Vu[P~2Vu) is the p-Laplacian, 1 < p < oo, and F denotes the
Nemytskij operator related to the function f : Q2 x R x R — R given by
F(u)(z) = f(z, u(z), u(z)).
In [3] the method of sub-and supersolution was developed for variational-hemivariational
inequalities of the form (1.1) with F(u) = f € V. The aim of this paper is the
generalization for discontinuous Nemytskij operators F' : LP(Q2) — L9(€2). Let us
consider some special cases of problem (1.1) as follows.
(i) For f € Vi, (1.1) is also a variational-hemivariational inequality which is
discussed in [3].
(ii) If f: Q@ xR — R is a Carathéodory function satisfying some growth condi-
tion and j = 0, then (1.1) is a classical variational inequality of the form

weK: (=Apu+F(u),v—u)>0, Yvek,
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for which the method of sub- and supersolution has been developed in [5,
Chapter 5].

(iii) For K = Vp, f € V§ and j : R — R smooth, (1.1) becomes a variational
equality of the form

weVo: (=Apu+f+75(u),p)=0, Ve,

for which the sub-supersolution method is well known.

2. NOTATIONS AND HYPOTHESES

For functions u,v :  — R, we use the notation u A v = min(u,v),u Vv =
max(u,v), K NA\K ={uAv:u,ve K}, KVK={uVv:uve€ K} and u AN K =
{u} NK,uV K = {u} V K and introduce the following definitions.

Definition 2.1. A function u € V is called a subsolution of (1.1) if the following
holds:

(1) w<0 on 0N and F(u) € L1(Q);

(2) (-Apu+ F(u),w—u) + [i°(ww—u)dr >0, YweuAK.
Definition 2.2. A function@ € V is called a supersolution of (1.1) if the following
holds:

(1) w>0 on 00 and F(u) € L1(Q);

(2) (-A,@+ F(u),w—1u) + [, j°@w—u)dz >0, YweuVK.
Definition 2.3. The multivalued operator 97 : R — 28\ {0} is called Clarke’s
generalized gradient of j defined by

9j(s):={£€R:j°%s;r) > &r,Vr € R}

We impose the following hypotheses for j and the nonlinearity f in problem
(1.1).

(A) There exists a constant ¢; > 0 such that

L <& Fa(sa—s1)P!
for all & € 9j(s;),7 = 1,2, and for all s1,s2 with s1 < ss.
(B) There is a constant ¢z > 0 such that
£€0j(s): €] <ca(1+sP7Y), VseR.

(C) (i) =z — f(x,r,u(x)) is measurable for all r € R and for all measurable
functions v : 2 — R.
(ii) r — f(z,r, ) is continuous for all s € R and for almost all z € Q.
(iii) s+ f(z,r,s) is decreasing for all r € R and for almost all z € Q.
(iv) For a given ordered pair of sub- and supersolutions u,u of problem
(1.1), there exists a function k1 € L% () such that |f(z,r,s)| < k()
for all r, s € [u(x),w(z)] and for almost all z € 2.
By [2] the mapping z — f(z,u(x),u(z)) is measurable for z — u(x) measurable,
but the associated Nemytskij operator F': LP(2) — L(€2) needs not necessarily be
continuous. In this paper we assume K has lattice structure, that is, K fulfills

KVKCK, KNK CK. (2.1)
We recall that the normed space LP () is equipped with the natural partial ordering

of functions defined by u < v if and only if v — u € L% (Q), where L% (Q2) is the set
of all nonnegative functions of LP(Q).
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3. PRELIMINARIES

Here we consider (1.1) for a Carathéodory function A : @ x R — R (i.e., x —
h(z,s) is measurable in € for all s € R and s — h(z,s) is continuous on R for
almost all z € ), which fulfills the following growth condition:

|h(z,s)| < ko(x) Vs € [u(x),u(z)] and for a.e. € Q, (3.1)

where kg € L% (Q2) and [u, 7] is some ordered pair in LP(9), specified later. Note that
the associated Nemytskij operator H defined by H (u)(z) = h(z,u(z)) is continuous
and bounded from [u,w] C LP(Q2) to L1(£2) (cf. [9]). Next we introduce the indicator
function I'x : Vj — R U {400} related to the closed convex set K # () given by

L (u) 0 if ue K,
u) =
K +oo if ug K,

which is known to be proper, convex and lower semicontinuous. The variational-
hemivariational inequality (1.1) can be rewritten as follows: Find u € V4 such
that

(—Apu+ H(u),v —u) + Ix(v) — Ix(u) + / Jo(u;v —w)de >0, Voe Vs (3.2)
Q
If H(u) = h € Vy, problem (3.2) is a special case of the elliptic variational-
hemivariational inequality in [5, Corollary 7.15] for which the method of sub- and
supersolutions was developed. In the next result, we show the existence of extremal
solutions of (3.2) for a Carathéodory function h = h(x, s).

Lemma 3.1. Let hypotheses (A),(B) and (2.1) be satisfied and assume the existence
of sub- and supersolutions u and U satisfying u <u, uVK C K anduNK C K.
Furthermore we suppose that the Carathédory function h :  x R — R satisfies
(3.1). Then, (3.2) has a greatest solution u* and a smallest solution u, such that

u < u, <u* <, (3.3)

that is, u, and u* are solutions of (3.2) that satisfy (3.3), and if u is any solution
of (3.2) such that u < u <@, then u, < u < u*.

Proof. The proof follows the same ideas as in the proof for H(u) = h € V with
an additional modification. We only introduce a truncation operator related to the
functions v and w defined by

u(x) if u(z) > u(x),
Tu(z) = < u(x) if u(z) < wu(z) <u(z),
u(x) if u(z) < u(x).

The mapping T is continuous and bounded from V into V which follows from
the fact that the functions min(-,-) and max(-,-) are continuous from V to itself
and that T can be represented as Tuw = max(u,u) + min(u,u) — u (cf. [8]). In
the auxiliary problems of the proof of [5, Corollary 7.15], we replace h € Vj by
(H oT)(u) and argue in an analogous way. O

An important tool in extending the previous result to discontinuous Nemytskij
operators is the next fixed point result. The proof of this Lemma can be found in
[4, Theorem 1.1.1].



4 PATRICK WINKERT

Lemma 3.2. Let P be a subset of an ordered mormed space, G : P — P an
increasing mapping and G[P] = {Gz | z € P}.
(1) If GIP] has a lower bound in P and the increasing sequences of G[P] con-
verge weakly in P, then G has the least fized point x,., and x, = min{z |
Gz < z}.
(2) If G[P] has an upper bound in P and the decreasing sequences of G[P]
converge weakly in P, then G has the greatest fived point x*, and x* =
max{z | z < Gz}.

4. MAIN RESULTS

One of our main results is the following theorem.

Theorem 4.1. Let hypotheses (A)—(C), (2.1) be satisfied and assume the existence
of sub- and supersolutions u and w satisfying u <u, uVK C K anduNK C K.
If f is right-continuous (resp., left-continuous) in the third argument, then there
exists a greatest solution u* (resp., a smallest solution u,) of (1.1) in the order
interval [u,a).

Proof. We choose a fixed element z € [u, @] which is a supersolution of (1.1) satis-
fying 2 A K C K and consider the following auxiliary problem:

ue K : (—Apu—i—FZ(u),v—u>—i—/jo(u;v—u)dac207 Yo € K, (4.1)
Q

where F,(u)(z) = f(z,u(x), z(z)). It is readily seen that the mapping (z,u) —
f(z,u, z(x)) is a Carathéodory function satisfying some growth condition as in
(3.1). Since F.(z) = F(z), z is also a supersolution of (4.1). By Definition 2.1, we
have for a given subsolution w of (1.1)

(—APQ—I—F(Q),UJ—@+/j°(y;w—g)dx20, Vw e u N K.
Q

Setting w = u— (u—wv)™ for all v € K and using the monotonicity of f with respect
to s, we get

oz«ﬁ»u+F@xm—vw>—[ﬁ%m—@—UVMx

> (Bt Fow), (w=0)) = [ lw—(w—v)")de, Ve K,
Q
which shows that u is also a subsolution of (4.1). Lemma 3.1 implies the existence
of a greatest solution u* € [u,z] of (4.1). Now we introduce the set A given by
A:={2€V:z€[uu and z is a supersolution of (1.1) satisfying 2z A K C K} and
define the operator L : A — K by z — u* =: Lz. This means that the operator L
assigns to each z € A the greatest solution u* of (4.1) in [u, z]. In the next step we
construct a decreasing sequence as follows:

Uy = U

uy = Lug  with uy € [u, ug]

up = Luy  with wuy € [u,u1] (4.2)

Up = Lup—1  with w, € [u, up—1].
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As uy, € [u,up—1], we get u, () \y u(x) for a.e. x € Q. Furthermore, the sequence
Uy, is bounded in Vp, that is, ||u,|lv, < C for all n and due to the monotony of u,
and the compact embedding Vj < LP(2), we obtain

u, = u in Vj,

un, = u in LP(Q) and a.e. pointwise in Q. (43)

The fact that u, is a solution of (4.1) with z = u,_1 and v = u € K results in

(= Attty — ) < (Fu,_ (tn)s 1t — ) + / 5w 0 — wn)de
Q

Applying Fatou’s Lemma, (4.3), and the upper semicontinuity of j°(-,-) yields

lim sup(—Apuy, uy, — u)
n—oo

< limsup ||k (o) |u — unl|Lr () —|—/ lim sup j°(u; u — uy,) dz < 0,
n—o0

Q n—oo

—0 <j°(u;0)=0
which by the Sy-property of —A, on V; along with (4.3) implies
Un, —> u in V.

The right-continuity of f and the strong convergence of the decreasing sequence
(up,) along with the upper semicontinuity of j°(-;-) allow us to pass to the lim sup
in (4.1), where u (resp., z) is replaced by u, (resp., u,—1). We have

0 < limsup(—Apuy, + Fy, ,(un),v — uy) + limsup/ 7 (un; v — up )dz
Q

n—oQ n—oo

< lim (—Apuy + Fy,  (Un), v — up) + / lim sup j°(tun; v — uy )de
Q

n—00 n—o0o

<{=Apu+ Fy(u),v —u) + / J°(u;v —u)de, Vv e K.
Q
This shows that u is a solution of (1.1) in the order interval [u,@]. Now, we still
have to prove that u is the greatest solution of (1.1) in [u,@]. Let @ be any solution
of (1.1) in [u,u]. Because of the fact that K has lattice structure, @ is also a
subsolution of (1.1), respectively, a subsolution of (4.1). By the same construction
as in (4.2) we obtain.

Uy :=7T
uy := Luy with uy € [a, ’LL()}

Uy := Luy with uy € [U,u] (4.4)

Up = Lup—1 with u, € [, up—1].
Obviously, the sequences in (4.2) and (4.4) create the same extremal solutions wu,,
and u,, which implies that @ < u,, = u,, for all n. Passing to the limit delivers the
assertion. The existence of a smallest solution can be shown in a similar way. [

In the next theorem we will prove that only the monotony of f in the third
argument is sufficient for the existence of extremal solutions. The function f needs
neither be right-continuous nor left-continuous.
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Theorem 4.2. Assume that hypotheses (A)-(C), (2.1) are valid and let u and @
be sub- and supersolutions of (1.1) satisfyingu <u ,uVK C K anduANK C K.
Then there exist extremal solutions u* and w, of (1.1) with u < u, < u* <.

Proof. As in the proof of Theorem 4.1, we consider the following auxiliary problem:

ve K: (—Apu+ F,(u),v—u)+ / J°(uv —u)de >0, YveK, (4.5)
Q

where F,(u)(x) = f(z,u(z), z(z)). We define again the set A:={z €V :z € [u,T]
and z is a supersolution of (1.1) satisfying z A K C K} and introduce the fixed
point operator L : A — K by z — u* =: Lz. For a given supersolution z € A, the
element Lz is the greatest solution of (4.5) in [u, 2], and thus it holds u < Lz < z for
all z € A which implies L : A — [u,7]. Because of (2.1), Lz is also a supersolution
of (4.5) satisfying

(—Ap,Lz + F,(Lz),w — Lz) +/ J°(Lz;w — Lz)de >0, Yw e LzV K.
Q

By the monotonicity of f with respect to Lz < z and using the representation
w= Lz + (v— Lz)" for any v € K, we obtain

0 < (A Lz + F.(L), (v — L)) + / (L2 (v — L) )da
Q

<(=A,Lz+ Fr.(Lz),(v — L2)") + / j°(Lz; (v — Lz)Y)dz, Vv e K.
Q

Consequently, Lz is a supersolution of (1.1). This shows L: A — A.
Let v1,v9 € A and assume that v; < vy. Then we have

Lv; € [u,v1] is the greatest solution of

4.6
(—Apu+Fv1(u),v—u>+/j°(u;v—u)dw20, Yo € K, (4.6)
Q
Lvs € [u,vs] is the greatest solution of
(4.7)

(—Apu + Fy,(u),v —u) + / Jo(uw;v —u)de >0, Yo € K.
Q

Since v1 < vg, it follows that Lv; < vy and due to (2.1), Lv; is also a subsolution

of (4.6), that is, (4.6) holds, in particular, for v € Lv; A K, that is,

(=ApLvy + F,, (Lvy), (Lvy —v)t) — / j°(Lvy; —(Lvy —v)M)dx <0, Vv e K.
Q
Using the monotonicity of f with respect to s yields

0> (=Ap,Lvy + F,,(Lv1), (Lvy — v)t) — /Qjo(Lvl; —(Lvy —v))dx

> (=A,Lvy + F,,(Lvy), (Lvy —v)t) — / j°(Lvy; —(Lvy —v)M)dz, Vv e K.
Q

and hence Lv; is a subsolution of (4.7). By Lemma 3.1, we know there exists a
greatest solution of (4.7) in [Lvy, vs]. But Luy is the greatest solution of (4.7) in
[u, v2] D [Lvy,ve] and therefore, Lv; < Lwvy. This shows that L is increasing.

In the last step we have to prove that any decreasing sequence of L(A) converges
weakly in A. Let (u,) = (Lz,) C L(A) C A be a decreasing sequence. The same
argument as in the proof of Theorem 4.1 delivers wu,(z) N\, u(z) a.e. in Q. The
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boundedness of u,, in Vj, and the compact imbedding Vj < LP(2) along with the
monotony of u, implies

u, = u in Vj,
U, > u in LP(Q) and a.e. z in Q.
Since u, € K solves (4.5), it follows v € K. From (4.5) with u replaced by u,, and

v by u and with the fact that (s,r) — j°(s;r) is upper semicontinuous, we obtain
by applying Fatou’s Lemma

lim sup(—Apup, uy, — u) < limsup(F,, (u,), w — up) + lim sup/ 7% (Un;u — uy)dx
Q

n—roo n—r oo n—r oo

< limsup(Fy, (tn), u — Uy) +/ lim sup 7°(up; u — uy,) de
¢

n— 00 ) n—oo

—0 <j°(u30)=0
<0.

The S;-property of —A,, provides the strong convergence of (u,,) in Vy. As Lz, =
uy, is also a supersolution of (4.5), Definition 2.2 yields

<—Apun + F., (tn), (v — un)+> + / J% (tn; (v — un)Jr)dx >0, VvekK.
Q
Due to z, > u, > u and the monotonicity of f, we get

0 < (—Aptin + Fu (tn), (0 — ) ™) + /Q 59 (um: (0 — ) P )d

< (=Apup + Fy(un), (v —up)™) + / 5 (un; (v = up)")dz, Vv € K,
Q
and, since the mapping v + u™ = max(u,0) is continuous from Vj to itself (cf.
[8]), we can pass to the upper limit on the right hand side for n — oo. This yields

(=Apu+ Fy(u), (v —u)™) + / 7°(u; (v —uw)F)de >0, VYoveK,
Q

which shows that u is a supersolution of (1.1), that is, u € A. As @ is an upper

bound of L(A), we can apply Lemma 3.2, which yields the existence of a greatest

fixed point u* of L in A. This implies that u* must be the greatest solution of (1.1)

in [u,w]. By analogous reasoning, one shows the existence of a smallest solution u,

of (1.1). This completes the proof of the theorem. d

APPLICATION

In the last part, we give an example of the construction of sub- and supersolutions
of problem (1.1). We denote by A; > 0 the first eigenvalue of (—A,,V,) and by
¢1 the eigenfunction of (—A,, Vg) corresponding to A1 satisfying ¢ € int(C(2)4)
and ||¢|l, = 1 (cf. [1]). Here, int(C{(22)4) describes the interior of the positive cone
C} (), given by

int(C3(Q)4) = {u € C3(Q) s u(xr) > 0,Vr € Q, and %(x) <0,Vx € 5‘9} .

We suppose the following conditions for f and Clarke’s generalized gradient of j,
where A > A; is any fixed constant:
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D) @) N f(x;_s,zs) = 400, uniformly with respect to a.a. = € Q.

s|—oo |S S

N f(,s,s) . .

(ii) lim L HT = —)\, uniformly with respect to a.a. z € Q.
s— S

(iii) hr%'l? = 0, uniformly with respect to a.a. z € €, for all
S— S S
€€ 0j(s).

(iv) f is bounded on bounded sets.

Proposition 4.3. Assume hypotheses (A), (B), (C)(i)-(iv), and (D). Then there
exists a constant ay such that axe and —axe are supersolution and subsolution of
problem (1.1), where e € int(C§(Q) ) is the unique solution of —Ayu = 1 in Vp.
Moreover, —ep1 is a supersolution and epy is a subsolution of (1.1) provided that
e > 0 s sufficiently small.

Proof. A sufficient condition for a subsolution u € V' of problem (1.1) is u < 0 on
00, F(u) € LI(Q) and
—Apu+F(u)+£<0 inVy, VEedj(u). (4.8)
Multiplying (4.8) with (v —v)* € Vo N LA () and using the fact j°(u; —1) > —¢,
for all & € 9j(u), yield
0> (—-Apu+ F(u) +¢&, (u—v)Jr

= (—Apu+ F(u), (u—v) /fu—vﬂix

> (~Apu+ Fu), (u—v)") - /Q J(u —1)(w— ) de

= (—Apu+ F(u), (u—v)") - / 3°(w; —(u —v)")dw, Vv €K,
Q
and thus, u is a subsolution of (1.1). Analogously, @ € V is a supersolution of
problem (1.1) if @ > 0 on 09, F(u) € L(Q), and if the following inequality is
satisfied,
-Ayu+F@)+£>0 inVy, VEeojm).

The main idea of this proof is to show the applicability of [6, Lemma 2.1-2.3].
We put g(z,s) = f(z,s,8) + & + Ns|P72s for € € 9j(s) and notice that in our
considerations the nonlinearity g needs not be a continuous function. In view of
assumption (B), we see at once that

S o for fs| > k> 0,€ € 95(s),

|s|p=t —

where c is a positive constant. This fact and the condition (D) yield the following
limit values:

g(z,s) . glz,s)
=400 lim =0
ls|—>oc |s[P~2s oo |s|P—2s

By [6, Lemma 2.1-2.3], we obtain a pair of positive sub- and supersolutions given
by u = €p; and w = aye, respectively, a pair of negative sub- and supersolutions
given by u = —aye and u = —cyp;. [l



DISCONTINUOUS VARIATIONAL-HEMIVARIATIONAL INEQUALITIES 9

In order to apply Theorem 4.2, we need to satisfy the assumptions
uVWKCK, uAKCK, KVKCK, KAKCK, (4.9)

which depend on the specific K. For example, we consider an obstacle problem
given by

K={veVy:v(x) <yx) forae zecQ}, ¢»el>™), ¢»>C>0, (4.10)
where C is a positive constant. One can show that for the positive pair of sub- and

supersolutions in Proposition 4.3, all these conditions in (4.9) with respect to the
closed convex set K defined in (4.10) can be satisfied.

Example 4.4. The function f: R x R — R defined by

—(A+1)[s]P72s + |rp~ir for s < —1,
f(r,s) =< =\|s|P~2s + |[r|P~1r for —1<s<1,
—(A+1)|s[P72s + |r[P~tr fors>1

fulfills the assumption (C)(i)—-(iv) with respect to u,u defined in Proposition 4.5.
Moreover f satisfies the conditions (D)(i)-(ii),(D)(iv), where A > Ay is fized.

Acknowledgement: I would like to express my thanks to S. Carl for some
helpful and valuable suggestions.

REFERENCES

[1] A. Anane. Simplicité et isolation de la premiére valeur propre du p-laplacien avec poids. C. R.
Acad. Sci. Paris Sér. I Math., 305(16):725-728, 1987.

[2] J. Appell and P. P. Zabrejko. Nonlinear superposition operators, volume 95 of Cambridge
Tracts in Mathematics. Cambridge University Press, Cambridge, 1990.

[3] S. Carl. Existence and comparison results for variational-hemivariational inequalities. J. In-

equal. Appl., (1):33—-40, 2005.

S. Carl and S. Heikkila. Nonlinear differential equations in ordered spaces, volume 111 of

Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Chapman

& Hall/CRC, Boca Raton, FL, 2000.

[5] S. Carl, V. K. Le, and D. Motreanu. Nonsmooth variational problems and their inequalities.

Springer Monographs in Mathematics. Springer, New York, 2007. Comparison principles and

applications.

S. Carl and D. Motreanu. Sign-changing and extremal constant-sign solutions of nonlinear

elliptic problems with supercritical nonlinearities. Comm. Appl. Nonlinear Anal., 14(4):85—

100, 2007.

[7] F. H. Clarke. Optimization and nonsmooth analysis, volume 5 of Classics in Applied Math-

ematics. Society for Industrial and Applied Mathematics (STAM), Philadelphia, PA, second

edition, 1990.

J. Heinonen, T. Kilpeldinen, and O. Martio. Nonlinear potential theory of degenerate elliptic

equations. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press,

New York, 1993. Oxford Science Publications.

[9] E. Zeidler. Nonlinear functional analysis and its applications. II/B. Springer-Verlag, New
York, 1990. Nonlinear monotone operators, Translated from the German by the author and
Leo F. Boron.

4

6

8

MARTIN-LUTHER-UNIVERSITAT HALLE-WITTENBERG, INSTITUT FUR MATHEMATIK, THEODOR-
LIESER-STRASSE 5, 06120 HALLE, GERMANY
E-mail address: patrick.winkert@mathematik.uni-halle.de



	1. Introduction
	2. Notations and hypotheses
	3. Preliminaries
	4. Main results
	Application
	References

