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Abstract. We deal with discontinuous quasilinear elliptic variational-hemivariational

inequalities. By using the method of sub- and supersolution and based on the
results of S. Carl, we extend the theory for discontinuous problems. The proof

of the existence of extremal solutions within a given order interval of sub- and

supersolutions is the main goal of this paper. In the last part, we give an
example of the construction of sub- and supersolutions.

1. Introduction

Let Ω ⊂ RN , N ≥ 1, be a bounded domain with Lipschitz boundary ∂Ω. As
V = W 1,p(Ω) and V0 = W 1,p

0 (Ω), 1 < p < ∞, we denote the usual Sobolev spaces
with their dual spaces V ∗ = (W 1,p(Ω))∗ and V ∗0 = W−1,q(Ω), respectively (q is the
Hölder conjugate of p). In this paper, we consider the following elliptic variational-
hemivariational inequality

u ∈ K : 〈−∆pu+ F (u), v − u〉+

∫
Ω

jo(u; v − u)dx ≥ 0, ∀v ∈ K, (1.1)

where jo(s; r) denotes the generalized directional derivative of the locally Lipschitz
function j : R→ R at s in the direction r given by

jo(s; r) = lim sup
y→s,t↓0

j(y + tr)− j(y)

t
,

(cf. [7, Chapter 2]), and K ⊂ V0 is some closed and convex subset. The oper-
ator ∆pu = div(|∇u|p−2∇u) is the p-Laplacian, 1 < p < ∞, and F denotes the
Nemytskij operator related to the function f : Ω× R× R→ R given by

F (u)(x) = f(x, u(x), u(x)).

In [3] the method of sub-and supersolution was developed for variational-hemivariational
inequalities of the form (1.1) with F (u) ≡ f ∈ V ∗0 . The aim of this paper is the
generalization for discontinuous Nemytskij operators F : Lp(Ω) → Lq(Ω). Let us
consider some special cases of problem (1.1) as follows.

(i) For f ∈ V ∗0 , (1.1) is also a variational-hemivariational inequality which is
discussed in [3].

(ii) If f : Ω×R→ R is a Carathéodory function satisfying some growth condi-
tion and j = 0, then (1.1) is a classical variational inequality of the form

u ∈ K : 〈−∆pu+ F (u), v − u〉 ≥ 0, ∀v ∈ K,
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for which the method of sub- and supersolution has been developed in [5,
Chapter 5].

(iii) For K = V0, f ∈ V ∗0 and j : R → R smooth, (1.1) becomes a variational
equality of the form

u ∈ V0 : 〈−∆pu+ f + j′(u), ϕ〉 = 0, ∀ϕ ∈ V0,

for which the sub-supersolution method is well known.

2. Notations and hypotheses

For functions u, v : Ω → R, we use the notation u ∧ v = min(u, v), u ∨ v =
max(u, v),K ∧K = {u ∧ v : u, v ∈ K},K ∨K = {u ∨ v : u, v ∈ K}, and u ∧K =
{u} ∧K,u ∨K = {u} ∨K and introduce the following definitions.

Definition 2.1. A function u ∈ V is called a subsolution of (1.1) if the following
holds:

(1) u ≤ 0 on ∂Ω and F (u) ∈ Lq(Ω);
(2) 〈−∆pu+ F (u), w − u〉+

∫
Ω
jo(u;w − u)dx ≥ 0, ∀w ∈ u ∧K.

Definition 2.2. A function u ∈ V is called a supersolution of (1.1) if the following
holds:

(1) u ≥ 0 on ∂Ω and F (u) ∈ Lq(Ω);
(2) 〈−∆pu+ F (u), w − u〉+

∫
Ω
jo(u;w − u)dx ≥ 0, ∀w ∈ u ∨K.

Definition 2.3. The multivalued operator ∂j : R → 2R \ {∅} is called Clarke’s
generalized gradient of j defined by

∂j(s) := {ξ ∈ R : jo(s; r) ≥ ξr, ∀r ∈ R}.
We impose the following hypotheses for j and the nonlinearity f in problem

(1.1).

(A) There exists a constant c1 ≥ 0 such that

ξ1 ≤ ξ2 + c1(s2 − s1)p−1

for all ξi ∈ ∂j(si), i = 1, 2, and for all s1, s2 with s1 < s2.
(B) There is a constant c2 ≥ 0 such that

ξ ∈ ∂j(s) : |ξ| ≤ c2(1 + |s|p−1), ∀s ∈ R.

(C) (i) x 7→ f(x, r, u(x)) is measurable for all r ∈ R and for all measurable
functions u : Ω→ R.

(ii) r 7→ f(x, r, s) is continuous for all s ∈ R and for almost all x ∈ Ω.
(iii) s 7→ f(x, r, s) is decreasing for all r ∈ R and for almost all x ∈ Ω.
(iv) For a given ordered pair of sub- and supersolutions u, u of problem

(1.1), there exists a function k1 ∈ Lq+(Ω) such that |f(x, r, s)| ≤ k1(x)
for all r, s ∈ [u(x), u(x)] and for almost all x ∈ Ω.

By [2] the mapping x 7→ f(x, u(x), u(x)) is measurable for x 7→ u(x) measurable,
but the associated Nemytskij operator F : Lp(Ω)→ Lq(Ω) needs not necessarily be
continuous. In this paper we assume K has lattice structure, that is, K fulfills

K ∨K ⊂ K, K ∧K ⊂ K. (2.1)

We recall that the normed space Lp(Ω) is equipped with the natural partial ordering
of functions defined by u ≤ v if and only if v − u ∈ Lp+(Ω), where Lp+(Ω) is the set
of all nonnegative functions of Lp(Ω).
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3. Preliminaries

Here we consider (1.1) for a Carathéodory function h : Ω × R → R (i.e., x 7→
h(x, s) is measurable in Ω for all s ∈ R and s 7→ h(x, s) is continuous on R for
almost all x ∈ Ω), which fulfills the following growth condition:

|h(x, s)| ≤ k2(x) ∀s ∈ [u(x), u(x)] and for a.e. x ∈ Ω, (3.1)

where k2 ∈ Lq+(Ω) and [u, u] is some ordered pair in Lp(Ω), specified later. Note that
the associated Nemytskij operator H defined by H(u)(x) = h(x, u(x)) is continuous
and bounded from [u, u] ⊂ Lp(Ω) to Lq(Ω) (cf. [9]). Next we introduce the indicator
function IK : V0 → R ∪ {+∞} related to the closed convex set K 6= ∅ given by

IK(u) =

{
0 if u ∈ K,
+∞ if u 6∈ K,

which is known to be proper, convex and lower semicontinuous. The variational-
hemivariational inequality (1.1) can be rewritten as follows: Find u ∈ V0 such
that

〈−∆pu+H(u), v − u〉+ IK(v)− IK(u) +

∫
Ω

jo(u; v − u)dx ≥ 0, ∀v ∈ V0. (3.2)

If H(u) ≡ h ∈ V ∗0 , problem (3.2) is a special case of the elliptic variational-
hemivariational inequality in [5, Corollary 7.15] for which the method of sub- and
supersolutions was developed. In the next result, we show the existence of extremal
solutions of (3.2) for a Carathéodory function h = h(x, s).

Lemma 3.1. Let hypotheses (A),(B) and (2.1) be satisfied and assume the existence
of sub- and supersolutions u and u satisfying u ≤ u, u ∨K ⊂ K and u ∧K ⊂ K.
Furthermore we suppose that the Carathédory function h : Ω × R → R satisfies
(3.1). Then, (3.2) has a greatest solution u∗ and a smallest solution u∗ such that

u ≤ u∗ ≤ u∗ ≤ u, (3.3)

that is, u∗ and u∗ are solutions of (3.2) that satisfy (3.3), and if u is any solution
of (3.2) such that u ≤ u ≤ u, then u∗ ≤ u ≤ u∗.

Proof. The proof follows the same ideas as in the proof for H(u) ≡ h ∈ V ∗0 with
an additional modification. We only introduce a truncation operator related to the
functions u and u defined by

Tu(x) =


u(x) if u(x) > u(x),

u(x) if u(x) ≤ u(x) ≤ u(x),

u(x) if u(x) < u(x).

The mapping T is continuous and bounded from V into V which follows from
the fact that the functions min(·, ·) and max(·, ·) are continuous from V to itself
and that T can be represented as Tu = max(u, u) + min(u, u) − u (cf. [8]). In
the auxiliary problems of the proof of [5, Corollary 7.15], we replace h ∈ V ∗0 by
(H ◦ T )(u) and argue in an analogous way. �

An important tool in extending the previous result to discontinuous Nemytskij
operators is the next fixed point result. The proof of this Lemma can be found in
[4, Theorem 1.1.1].
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Lemma 3.2. Let P be a subset of an ordered normed space, G : P → P an
increasing mapping and G[P ] = {Gx | x ∈ P}.

(1) If G[P ] has a lower bound in P and the increasing sequences of G[P ] con-
verge weakly in P , then G has the least fixed point x∗, and x∗ = min{x |
Gx ≤ x}.

(2) If G[P ] has an upper bound in P and the decreasing sequences of G[P ]
converge weakly in P , then G has the greatest fixed point x∗, and x∗ =
max{x | x ≤ Gx}.

4. Main results

One of our main results is the following theorem.

Theorem 4.1. Let hypotheses (A)–(C), (2.1) be satisfied and assume the existence
of sub- and supersolutions u and u satisfying u ≤ u, u ∨K ⊂ K and u ∧K ⊂ K.
If f is right-continuous (resp., left-continuous) in the third argument, then there
exists a greatest solution u∗ (resp., a smallest solution u∗) of (1.1) in the order
interval [u, u].

Proof. We choose a fixed element z ∈ [u, u] which is a supersolution of (1.1) satis-
fying z ∧K ⊂ K and consider the following auxiliary problem:

u ∈ K : 〈−∆pu+ Fz(u), v − u〉+

∫
Ω

jo(u; v − u)dx ≥ 0, ∀v ∈ K, (4.1)

where Fz(u)(x) = f(x, u(x), z(x)). It is readily seen that the mapping (x, u) 7→
f(x, u, z(x)) is a Carathéodory function satisfying some growth condition as in
(3.1). Since Fz(z) = F (z), z is also a supersolution of (4.1). By Definition 2.1, we
have for a given subsolution u of (1.1)

〈−∆pu+ F (u), w − u〉+

∫
Ω

jo(u;w − u)dx ≥ 0, ∀w ∈ u ∧K.

Setting w = u−(u−v)+ for all v ∈ K and using the monotonicity of f with respect
to s, we get

0 ≥ 〈−∆pu+ F (u), (u− v)+〉 −
∫

Ω

jo(u;−(u− v)+)dx

≥ 〈−∆pu+ Fz(u), (u− v)+〉 −
∫

Ω

jo(u;−(u− v)+)dx, ∀v ∈ K,

which shows that u is also a subsolution of (4.1). Lemma 3.1 implies the existence
of a greatest solution u∗ ∈ [u, z] of (4.1). Now we introduce the set A given by
A := {z ∈ V : z ∈ [u, u] and z is a supersolution of (1.1) satisfying z ∧K ⊂ K} and
define the operator L : A→ K by z 7→ u∗ =: Lz. This means that the operator L
assigns to each z ∈ A the greatest solution u∗ of (4.1) in [u, z]. In the next step we
construct a decreasing sequence as follows:

u0 := u

u1 := Lu0 with u1 ∈ [u, u0]

u2 := Lu1 with u2 ∈ [u, u1]

...

un := Lun−1 with un ∈ [u, un−1].

(4.2)
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As un ∈ [u, un−1], we get un(x)↘ u(x) for a.e. x ∈ Ω. Furthermore, the sequence
un is bounded in V0, that is, ‖un‖V0 ≤ C for all n and due to the monotony of un
and the compact embedding V0 ↪→ Lp(Ω), we obtain

un ⇀ u in V0,

un → u in Lp(Ω) and a.e. pointwise in Ω.
(4.3)

The fact that un is a solution of (4.1) with z = un−1 and v = u ∈ K results in

〈−∆pun, un − u〉 ≤ 〈Fun−1(un), u− un〉+

∫
Ω

jo(u;u− un)dx.

Applying Fatou’s Lemma, (4.3), and the upper semicontinuity of jo(·, ·) yields

lim sup
n→∞

〈−∆pun, un − u〉

≤ lim sup
n→∞

‖k‖Lq(Ω)‖u− un‖Lp(Ω)︸ ︷︷ ︸
→0

+

∫
Ω

lim sup
n→∞

jo(u;u− un)︸ ︷︷ ︸
≤jo(u;0)=0

dx ≤ 0,

which by the S+-property of −∆p on V0 along with (4.3) implies

un → u in V0.

The right-continuity of f and the strong convergence of the decreasing sequence
(un) along with the upper semicontinuity of jo(·; ·) allow us to pass to the lim sup
in (4.1), where u (resp., z) is replaced by un (resp., un−1). We have

0 ≤ lim sup
n→∞

〈−∆pun + Fun−1
(un), v − un〉+ lim sup

n→∞

∫
Ω

jo(un; v − un)dx

≤ lim
n→∞

〈−∆pun + Fun−1(un), v − un〉+

∫
Ω

lim sup
n→∞

jo(un; v − un)dx

≤ 〈−∆pu+ Fu(u), v − u〉+

∫
Ω

jo(u; v − u)dx, ∀v ∈ K.

This shows that u is a solution of (1.1) in the order interval [u, u]. Now, we still
have to prove that u is the greatest solution of (1.1) in [u, u]. Let ũ be any solution
of (1.1) in [u, u]. Because of the fact that K has lattice structure, ũ is also a
subsolution of (1.1), respectively, a subsolution of (4.1). By the same construction
as in (4.2) we obtain.

ũ0 := u

ũ1 := Lu0 with ũ1 ∈ [ũ, u0]

ũ2 := Lu1 with ũ2 ∈ [ũ, u1]

...

ũn := Lun−1 with ũn ∈ [ũ, un−1].

(4.4)

Obviously, the sequences in (4.2) and (4.4) create the same extremal solutions un
and ũn, which implies that ũ ≤ ũn = un for all n. Passing to the limit delivers the
assertion. The existence of a smallest solution can be shown in a similar way. �

In the next theorem we will prove that only the monotony of f in the third
argument is sufficient for the existence of extremal solutions. The function f needs
neither be right-continuous nor left-continuous.
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Theorem 4.2. Assume that hypotheses (A)–(C), (2.1) are valid and let u and u
be sub- and supersolutions of (1.1) satisfying u ≤ u , u ∨K ⊂ K and u ∧K ⊂ K.
Then there exist extremal solutions u∗ and u∗ of (1.1) with u ≤ u∗ ≤ u∗ ≤ u.

Proof. As in the proof of Theorem 4.1, we consider the following auxiliary problem:

u ∈ K : 〈−∆pu+ Fz(u), v − u〉+

∫
Ω

jo(u; v − u)dx ≥ 0, ∀v ∈ K, (4.5)

where Fz(u)(x) = f(x, u(x), z(x)). We define again the set A := {z ∈ V : z ∈ [u, u]
and z is a supersolution of (1.1) satisfying z ∧ K ⊂ K} and introduce the fixed
point operator L : A → K by z 7→ u∗ =: Lz. For a given supersolution z ∈ A, the
element Lz is the greatest solution of (4.5) in [u, z], and thus it holds u ≤ Lz ≤ z for
all z ∈ A which implies L : A→ [u, u]. Because of (2.1), Lz is also a supersolution
of (4.5) satisfying

〈−∆pLz + Fz(Lz), w − Lz〉+

∫
Ω

jo(Lz;w − Lz)dx ≥ 0, ∀w ∈ Lz ∨K.

By the monotonicity of f with respect to Lz ≤ z and using the representation
w = Lz + (v − Lz)+ for any v ∈ K, we obtain

0 ≤ 〈−∆pLz + Fz(Lz), (v − Lz)+〉+

∫
Ω

jo(Lz; (v − Lz)+)dx

≤ 〈−∆pLz + FLz(Lz), (v − Lz)+〉+

∫
Ω

jo(Lz; (v − Lz)+)dx, ∀v ∈ K.

Consequently, Lz is a supersolution of (1.1). This shows L : A→ A.
Let v1, v2 ∈ A and assume that v1 ≤ v2. Then we have

Lv1 ∈ [u, v1] is the greatest solution of

〈−∆pu+ Fv1(u), v − u〉+

∫
Ω

jo(u; v − u)dx ≥ 0, ∀v ∈ K,
(4.6)

Lv2 ∈ [u, v2] is the greatest solution of

〈−∆pu+ Fv2(u), v − u〉+

∫
Ω

jo(u; v − u)dx ≥ 0, ∀v ∈ K.
(4.7)

Since v1 ≤ v2, it follows that Lv1 ≤ v2 and due to (2.1), Lv1 is also a subsolution
of (4.6), that is, (4.6) holds, in particular, for v ∈ Lv1 ∧K, that is,

〈−∆pLv1 + Fv1(Lv1), (Lv1 − v)+〉 −
∫

Ω

jo(Lv1;−(Lv1 − v)+)dx ≤ 0, ∀v ∈ K.

Using the monotonicity of f with respect to s yields

0 ≥ 〈−∆pLv1 + Fv1(Lv1), (Lv1 − v)+〉 −
∫

Ω

jo(Lv1;−(Lv1 − v)+)dx

≥ 〈−∆pLv1 + Fv2(Lv1), (Lv1 − v)+〉 −
∫

Ω

jo(Lv1;−(Lv1 − v)+)dx, ∀v ∈ K.

and hence Lv1 is a subsolution of (4.7). By Lemma 3.1, we know there exists a
greatest solution of (4.7) in [Lv1, v2]. But Lv2 is the greatest solution of (4.7) in
[u, v2] ⊇ [Lv1, v2] and therefore, Lv1 ≤ Lv2. This shows that L is increasing.
In the last step we have to prove that any decreasing sequence of L(A) converges
weakly in A. Let (un) = (Lzn) ⊂ L(A) ⊂ A be a decreasing sequence. The same
argument as in the proof of Theorem 4.1 delivers un(x) ↘ u(x) a.e. in Ω. The
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boundedness of un in V0, and the compact imbedding V0 ↪→ Lp(Ω) along with the
monotony of un implies

un ⇀ u in V0,

un → u in Lp(Ω) and a.e. x in Ω.

Since un ∈ K solves (4.5), it follows u ∈ K. From (4.5) with u replaced by un and
v by u and with the fact that (s, r) 7→ jo(s; r) is upper semicontinuous, we obtain
by applying Fatou’s Lemma

lim sup
n→∞

〈−∆pun, un − u〉 ≤ lim sup
n→∞

〈Fzn(un), u− un〉+ lim sup
n→∞

∫
Ω

jo(un;u− un)dx

≤ lim sup
n→∞

〈Fzn(un), u− un〉︸ ︷︷ ︸
→0

+

∫
Ω

lim sup
n→∞

jo(un;u− un)︸ ︷︷ ︸
≤jo(u;0)=0

dx

≤ 0.

The S+-property of −∆p provides the strong convergence of (un) in V0. As Lzn =
un is also a supersolution of (4.5), Definition 2.2 yields

〈−∆pun + Fzn(un), (v − un)+〉+

∫
Ω

jo(un; (v − un)+)dx ≥ 0, ∀v ∈ K.

Due to zn ≥ un ≥ u and the monotonicity of f , we get

0 ≤ 〈−∆pun + Fzn(un), (v − un)+〉+

∫
Ω

jo(un; (v − un)+)dx

≤ 〈−∆pun + Fu(un), (v − un)+〉+

∫
Ω

jo(un; (v − un)+)dx, ∀v ∈ K,

and, since the mapping u 7→ u+ = max(u, 0) is continuous from V0 to itself (cf.
[8]), we can pass to the upper limit on the right hand side for n→∞. This yields

〈−∆pu+ Fu(u), (v − u)+〉+

∫
Ω

jo(u; (v − u)+)dx ≥ 0, ∀v ∈ K,

which shows that u is a supersolution of (1.1), that is, u ∈ A. As u is an upper
bound of L(A), we can apply Lemma 3.2, which yields the existence of a greatest
fixed point u∗ of L in A. This implies that u∗ must be the greatest solution of (1.1)
in [u, u]. By analogous reasoning, one shows the existence of a smallest solution u∗
of (1.1). This completes the proof of the theorem. �

Application

In the last part, we give an example of the construction of sub- and supersolutions
of problem (1.1). We denote by λ1 > 0 the first eigenvalue of (−∆p, V0) and by

ϕ1 the eigenfunction of (−∆p, V0) corresponding to λ1 satisfying ϕ1 ∈ int(C1
0 (Ω)+)

and ‖ϕ‖p = 1 (cf. [1]). Here, int(C1
0 (Ω)+) describes the interior of the positive cone

C1
0 (Ω)+ given by

int(C1
0 (Ω)+) =

{
u ∈ C1

0 (Ω) : u(x) > 0,∀x ∈ Ω, and
∂u

∂n
(x) < 0,∀x ∈ ∂Ω

}
.

We suppose the following conditions for f and Clarke’s generalized gradient of j,
where λ > λ1 is any fixed constant:
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(D) (i) lim
|s|→∞

f(x, s, s)

|s|p−2s
= +∞, uniformly with respect to a.a. x ∈ Ω.

(ii) lim
s→0

f(x, s, s)

|s|p−2s
= −λ, uniformly with respect to a.a. x ∈ Ω.

(iii) lim
s→0

ξ

|s|p−2s
= 0, uniformly with respect to a.a. x ∈ Ω, for all

ξ ∈ ∂j(s).

(iv) f is bounded on bounded sets.

Proposition 4.3. Assume hypotheses (A), (B), (C)(i)–(iv), and (D). Then there
exists a constant aλ such that aλe and −aλe are supersolution and subsolution of
problem (1.1), where e ∈ int(C1

0 (Ω)+) is the unique solution of −∆pu = 1 in V0.
Moreover, −εϕ1 is a supersolution and εϕ1 is a subsolution of (1.1) provided that
ε > 0 is sufficiently small.

Proof. A sufficient condition for a subsolution u ∈ V of problem (1.1) is u ≤ 0 on
∂Ω, F (u) ∈ Lq(Ω) and

−∆pu+ F (u) + ξ ≤ 0 in V ∗0 , ∀ξ ∈ ∂j(u). (4.8)

Multiplying (4.8) with (u − v)+ ∈ V0 ∩ Lp+(Ω) and using the fact jo(u;−1) ≥ −ξ,
for all ξ ∈ ∂j(u), yield

0 ≥ 〈−∆pu+ F (u) + ξ, (u− v)+〉

= 〈−∆pu+ F (u), (u− v)+〉+

∫
Ω

ξ(u− v)+dx

≥ 〈−∆pu+ F (u), (u− v)+〉 −
∫

Ω

jo(u;−1)(u− v)+dx

= 〈−∆pu+ F (u), (u− v)+〉 −
∫

Ω

jo(u;−(u− v)+)dx, ∀v ∈ K,

and thus, u is a subsolution of (1.1). Analogously, u ∈ V is a supersolution of
problem (1.1) if u ≥ 0 on ∂Ω, F (u) ∈ Lq(Ω), and if the following inequality is
satisfied,

−∆pu+ F (u) + ξ ≥ 0 in V ∗0 , ∀ξ ∈ ∂j(u).

The main idea of this proof is to show the applicability of [6, Lemma 2.1–2.3].
We put g(x, s) = f(x, s, s) + ξ + λ|s|p−2s for ξ ∈ ∂j(s) and notice that in our
considerations the nonlinearity g needs not be a continuous function. In view of
assumption (B), we see at once that

|ξ|
|s|p−1

≤ c, for |s| ≥ k > 0,∀ξ ∈ ∂j(s),

where c is a positive constant. This fact and the condition (D) yield the following
limit values:

lim
|s|→∞

g(x, s)

|s|p−2s
= +∞, lim

s→0

g(x, s)

|s|p−2s
= 0.

By [6, Lemma 2.1–2.3], we obtain a pair of positive sub- and supersolutions given
by u = εϕ1 and u = aλe, respectively, a pair of negative sub- and supersolutions
given by u = −aλe and u = −εϕ1. �
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In order to apply Theorem 4.2, we need to satisfy the assumptions

u ∨K ⊂ K, u ∧K ⊂ K, K ∨K ⊂ K, K ∧K ⊂ K, (4.9)

which depend on the specific K. For example, we consider an obstacle problem
given by

K = {v ∈ V0 : v(x) ≤ ψ(x) for a.e. x ∈ Ω}, ψ ∈ L∞(Ω), ψ ≥ C > 0, (4.10)

where C is a positive constant. One can show that for the positive pair of sub- and
supersolutions in Proposition 4.3, all these conditions in (4.9) with respect to the
closed convex set K defined in (4.10) can be satisfied.

Example 4.4. The function f : R× R→ R defined by

f(r, s) =


−(λ+ 1)|s|p−2s+ |r|p−1r for s < −1,

−λ|s|p−2s+ |r|p−1r for − 1 ≤ s ≤ 1,

−(λ+ 1)|s|p−2s+ |r|p−1r for s > 1

fulfills the assumption (C)(i)–(iv) with respect to u, u defined in Proposition 4.3.
Moreover f satisfies the conditions (D)(i)–(ii),(D)(iv), where λ > λ1 is fixed.

Acknowledgement: I would like to express my thanks to S. Carl for some
helpful and valuable suggestions.
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