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Abstract. We consider a nonlinear Dirichlet problem driven by the p-Laplace

operator and with a right-hand side which has a singular term and a parametric
superlinear perturbation. We are interested in positive solutions and prove a

bifurcation-type theorem describing the changes in the set of positive solutions

as the parameter λ > 0 varies. In addition, we show that for every admissible
parameter λ > 0 the problem has a smallest positive solution uλ and we

establish the monotonicity and continuity properties of the map λ→ uλ.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper, we
deal with the following nonlinear parametric singular problem

−∆pu = u−γ + λf(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(Pλ)

where 1 < p < ∞, 0 < γ < 1 and ∆p denotes the p-Laplace differential operator
defined by

∆pu = div
(
|∇u|p−2∇u

)
for all u ∈W 1,p

0 (Ω).

In the right-hand side of (Pλ), u−γ is the singular term while λf is the parametric
term with λ > 0 and a Carathéodory function f : Ω× R→ R, that is, x→ f(x, s)
is measurable for all s ∈ R and s→ f(x, s) is continuous for a.a.x ∈ Ω. We assume
that f(x, ·) exhibits (p−1)-superlinear growth near +∞ but without satisfying the
usual Ambrosetti-Rabinowitz condition, AR-condition for short. We are interested
in finding positive solutions and our goal is to determine how the set of positive
solutions of (Pλ) changes as the parameter λ > 0 varies. We are going to prove a
bifurcation-type result which produces a critical parameter value λ∗ > 0 such that

• problem (Pλ) has at least two positive solutions for all λ ∈ (0, λ∗);
• problem (Pλ) has at least one positive solution for λ = λ∗;
• problem (Pλ) has no positive solutions for all λ > λ∗.

This result was motivated by the work of Papageorgiou-Smyrlis [15] who proved
such a theorem for problem (Pλ) under the hypotheses that the perturbation term
f(x, ·) is (p − 1)-linear near 0+. This condition removes from consideration non-
linearities with a concave term near 0+. Our framework removes this restriction
and incorporates perturbations which exhibit the competing effects of concave and
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convex terms. This changes the geometry of the problem. Moreover, our growth
condition on f(x, ·) is more general than that in Papageorgiou-Smyrlis [15].

Nonlinear singular Dirichlet problems were also investigated in the papers of
Giacomoni-Schindler-Takáč [5], Papageorgiou-Rădulescu-Repovš [14] and Perera-
Zhang [16] for different settings and conditions.

2. Preliminaries and Hypotheses

Let X be a Banach space and let X∗ be its topological dual. We denote by 〈·, ·〉
the duality brackets to the pair (X∗, X). Given ϕ ∈ C1(X,R) we say that ϕ satisfies
the Cerami condition, C-condition for short, if every sequence {un}n≥1 ⊆ X such
that {ϕ(un)}n≥1 ⊆ R is bounded and such that (1 + ‖un‖X)ϕ′(un) → 0 in X∗ as
n→∞, admits a strongly convergent subsequence.

This is a compactness-type condition on the functional ϕ and leads to following
minimax theorem known as the mountain pass theorem.

Theorem 2.1. Let ϕ ∈ C1(X,R) be a functional satisfying the C-condition and let
u1, u2 ∈ X, ‖u2 − u1‖X > ρ > 0,

max{ϕ(u1), ϕ(u2)} < inf{ϕ(u) : ‖u− u1‖X = ρ} =: ηρ

and c = infγ∈Γ max0≤t≤1 ϕ(γ(t)) with Γ = {γ ∈ C ([0, 1], X) : γ(0) = u1, γ(1) =
u2}. Then c ≥ ηρ with c being a critical value of ϕ, that is, there exists û ∈ X such
that ϕ′(û) = 0 and ϕ(û) = c.

By W 1,p
0 (Ω) we denote the usual Sobolev space with norm ‖ · ‖. Thanks to the

Poincaré inequality we have

‖u‖ = ‖∇u‖p for all u ∈W 1,p
0 (Ω),

where ‖ · ‖p denotes the norm of Lp(Ω) and Lp
(
Ω;RN

)
, respectively. Furthermore,

we need the ordered Banach space C1
0 (Ω) = {u ∈ C1(Ω) : u

∣∣
∂Ω

= 0} and its positive
cone

C1
0 (Ω)+ =

{
u ∈ C1

0 (Ω) : u(x) ≥ 0 for all x ∈ Ω
}
.

This cone has a nonempty interior given by

int
(
C1

0 (Ω)+

)
=

{
u ∈ C1

0 (Ω)+ : u(x) > 0 for all x ∈ Ω and
∂u

∂n

∣∣∣∣
∂Ω

< 0

}
,

where n is the outward unit normal on ∂Ω.
The norm of RN is denoted by | · | and “·” stands for the inner product in RN .

For s ∈ R, we set s± = max{±s, 0} and for u ∈ W 1,p
0 (Ω) we define u±(·) = u(·)±.

It is well known that

u± ∈W 1,p
0 (Ω), |u| = u+ + u−, u = u+ − u−.

For u, v ∈W 1,p
0 (Ω) with u(x) ≤ v(x) for a.a.x ∈ Ω we define

[u, v] =
{
y ∈W 1,p

0 (Ω) : u(x) ≤ y(x) ≤ v(x) for a.a.x ∈ Ω
}
,

int
C1

0 (Ω)
[u, v] = the interior in C1

0 (Ω) of [u, v] ∩ C1
0 (Ω),

[u) =
{
y ∈W 1,p

0 (Ω) : u(x) ≤ y(x) for a.a.x ∈ Ω
}
.
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By | · |N we denote the Lebesgue measure on RN . By p∗ > 1 we denote the Sobolev
critical exponent for p defined by

p∗ =

{
Np
N−p if p < N,

+∞ if N ≤ p.

Finally, if h1, h2 ∈ L∞(Ω), then we write h1 ≺ h2 if and only if for every compact
K ⊆ Ω we have 0 < mK ≤ h2(x)− h1(x) for a.a.x ∈ K.

Let A : W 1,p
0 (Ω)→W−1.p′(Ω) = W 1,p

0 (Ω)∗ with 1
p + 1

p′ = 1 be defined by

〈A(u), ϕ〉 =

∫
Ω

|∇u|p−2∇u · ∇ϕdx for all u, ϕ ∈W 1,p
0 (Ω). (2.1)

The next proposition states the main properties of this map and it can be found in
Gasiński-Papageorgiou [4, Problem 2.192, p. 279].

Proposition 2.2. The map A : W 1,p
0 (Ω)→W−1,p′(Ω) defined in (2.1) is bounded,

that is, it maps bounded sets to bounded sets, continuous, strictly monotone, hence
maximal monotone and it is of type (S)+, that is,

un
w→ u in W 1,p

0 (Ω) and lim sup
n→∞

〈A(un), un − u〉 ≤ 0,

imply un → u in W 1,p
0 (Ω).

Moreover, we denote by λ̂1 the first eigenvalue of (−∆p,W
1,p
0 (Ω)) and by û1 ∈

W 1,p
0 (Ω) the corresponding positive, Lp-normalized, that is, ‖û1‖p = 1, eigenfunc-

tion. We know that λ̂1 > 0 and û1 ∈ int
(
C1

0 (Ω)+

)
, see Gasiński-Papageorgiou

[3].
Also, for a given ϕ ∈ C1(X,R) we denote by Kϕ the critical set of ϕ, that is,

Kϕ = {u ∈ X : ϕ′(u) = 0}.
Now we introduce the hypotheses on the nonlinearity f : Ω× R→ R.

H: f : Ω × R → R is a Carathéodory function such that f(x, 0) = 0 for a.a.
x ∈ Ω and

(i) if a ∈ Ls(Ω) with s > N , then

0 < f(x, s) ≤ a(x)
(
1 + sr−1

)
for a.a.x ∈ Ω, for all s > 0 and for p < r < p∗;

(ii) if F (x, s) =
∫ s

0
f(x, t)dt, then

lim
s→+∞

F (x, s)

sp
= +∞ uniformly for a.a.x ∈ Ω;

(iii) if

η̂λ(x, s) =

[
1− p

1− γ

]
s1−γ + λ [f(x, s)s− pF (x, s)]

with λ > 0, then

η̂λ(x, s1) ≤ η̂λ(x, s2) + τλ(x)

for a.a.x ∈ Ω, for all 0 ≤ s1 ≤ s2 with τλ ∈ L1(Ω) and λ → τλ is
nondecreasing from (0,+∞) into L1(Ω);
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(iv) there exist c1 > 0 and q ≤ p such that

f(x, s) ≤ c1
[
sr−1 + sq−1

]
for a.a.x ∈ Ω and for all s ≥ 0;

(v) for every η > 0 there exists mη > 0 such that

f(x, s) ≥ mη

for a.a.x ∈ Ω and for all s ≥ η;

(vi) for every ρ > 0 there exists ξ̂ρ > 0 such that the function

s→ f(x, s) + ξ̂ρs
p−1

is nondecreasing on [0, ρ] for a.a.x ∈ Ω.

Remark 2.3. Since we are interested on positive solutions and the hypotheses above
concern the positive semiaxis R+ = [0,+∞), without any loss of generality, we may
assume that

f(x, s) = 0 for a.a.x ∈ Ω and for all s ≤ 0. (2.2)

Hypotheses H(ii), H(iii) imply that

lim
s→+∞

f(x, s)

sp−1
= +∞ uniformly for a.a.x ∈ Ω.

Hence, the perturbation term in (Pλ) is (p− 1)-superlinear in the second variable.
However, we do not employ the usual AR-condition for superlinear problems. Recall
that this condition says that there exist τ > p and M > 0 such that

0 < τF (x, s) ≤ f(x, s)s for a.a.x ∈ Ω and for all s ≥M, (2.3)

0 < ess inf
Ω

F (·,M). (2.4)

In fact this is a unilateral version of the AR-condition on account of (2.2). Inte-
grating (2.3) and using (2.4) we obtain the weaker condition

c2s
τ ≤ F (x, s) for a.a.x ∈ Ω, for all s ≥M and for some c2 > 0.

Hence, the AR-condition implies that f(x, ·) exhibits at least (τ − 1)-polynomial
growth. This excludes superlinear nonlinearities with slower growth near +∞ from
consideration. Instead we employ the quasimonotonicity condition on ηλ(x, ·) in
hypothesis H(iii). This condition is a slight generalization of a hypothesis introduced
by Li-Yang [11]. This superlinearity hypothesis is different from the one used by
Papageorgiou-Smyrlis [15]. There are easy ways to verify H(iii). For example,
condition H(iii) holds if there exists M > 0 such that

s→ s−γ + λf(x, s)

sp−1

is nondecreasing on [M,+∞) for a.a.x ∈ Ω or

s→ η̂λ(x, s)

is nondecreasing on [M,+∞), see Li-Yang [11].
Hypothesis H(iv) allows perturbations which have concave terms. This is excluded

from the hypotheses of Papageorgiou-Smyrlis [15]. Hypothesis H(iv) is satisfied if,
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for example, f(x, ·) is differentiable for a.a.x ∈ Ω and for every ρ > 0 there exists
cρ > 0 such that

f ′s(x, s) ≥ −cρsp−1

for a.a.x ∈ Ω and for all 0 ≤ s ≤ ρ.

Example 2.4. For the sake of simplicity we drop the x-dependence. The following
functions satisfy hypotheses H:

f1(s) = sτ−1 with p < τ < p∗,

f2(s) =

{
(s+)ϑ−1 if s ≤ 1,

sp−1[ln s+ 1] if 1 < s
with 1 < ϑ < p <∞.

Note that f2 fails to satisfy the AR-condition and it is outside the framework of
Papageorgiou-Smyrlis [15].

3. Positive Solutions

We introduce the following two sets

L = {λ > 0 : problem (Pλ) has a positive solution} ,
Sλ = {u : u is a positive solution of problem (Pλ)} .

Proposition 3.1. If hypotheses H hold, then L 6= ∅.

Proof. We consider the following purely singular Dirichlet problem

−∆pu = u−γ in Ω, u
∣∣
∂Ω

= 0, u > 0. (3.1)

From Papageorgiou-Smyrlis [15, Proposition 5] we know that problem (3.1) has a
unique positive solution ũ ∈ int

(
C1

0 (Ω)+

)
. Moreover, we consider the following

auxiliary Dirichlet problem

−∆pu = 1 in Ω, u
∣∣
∂Ω

= 0. (3.2)

Problem (3.2) has a unique solution e ∈ int
(
C1

0 (Ω)+

)
which can be shown easily.

For 1 < τ < +∞, we have eτ ∈ int
(
C1

0 (Ω)+

)
and using Proposition 2.1 of Marano-

Papageorgiou [12], see also Gasiński-Papageorgiou [4, Problem 4.180, p. 680], there
exists c3 > 0 such that û1 ≤ c3eτ and so

û
1
τ
1 ≤ c

1
τ
3 e,

which implies

e−γ ≤ c4û
− γτ
1 (3.3)

for some c4 > 0. From the Lemma in Lazer-McKenna [9] we know that

û
− γτ
1 ∈ Lτ (Ω).

This fact along with (3.3) gives

e−γ ∈ Lτ (Ω) and
∥∥e−γ∥∥

τ
≤ c4

∥∥û−γ1

∥∥ 1
τ

1
.

Hence

lim sup
τ→+∞

∥∥e−γ∥∥
τ
≤ c4. (3.4)
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On the other hand, from the Chebyshev inequality, we have

ητ
∣∣{e−γ ≥ η}∣∣

N
≤
∥∥e−γ∥∥τ

τ

with η > 0, or equivalently,

η
∣∣{e−γ ≥ η}∣∣ 1τ

N
≤
∥∥e−γ∥∥

τ
.

This facts yields

η ≤ lim inf
τ→+∞

∥∥e−γ∥∥
τ

provided
∣∣{e−γ ≥ η}∣∣

N
> 0. (3.5)

From (3.4) and (3.5) it follows that

e−γ ∈ L∞(Ω) and
∥∥e−γ∥∥

τ
→
∥∥e−γ∥∥∞ as τ → +∞.

Now let c5 > ‖e−γ‖∞ and m0 = ‖e‖∞. For t > 0 we consider the function

ϑ(t) =
tp−1 − c5t−γ

c1

[
mr−1

0 tr−1 +mq−1
0 tq−1

]
=

tp+γ−1 − c5
c1

[
mr−1

0 tr+γ−1 +mq−1
0 tq+γ−1

]
=

1

c1

[
mr−1

0 tr−p +mq−1
0 tq−p

] − c5

c1

[
mr−1

0 tr+γ−1 +mq−1
0 tq+γ−1

]
=

tp−q

c1

[
mr−1

0 tr−q +mq−1
0

] − c5

c1

[
mr−1

0 tr+γ−1 +mq−1
0 tq+γ−1

] .
Since q ≤ p < r we see that

ϑ(t)→ −∞ as t→ 0+ and ϑ(t)→ 0+ as t→ +∞.

Therefore, there exists t0 > 0 such that

λ0 = ϑ(t0) = max [ϑ(t) : t > 0] > 0.

Let λ ∈ (0, λ0). We can find t > 0 such that ϑ(t) ≥ λ. Hence

tp−1 ≥ c5t−γ + λc1

[
mr−1

0 tr−1 +mq−1
0 tq−1

]
. (3.6)

We set u = te ∈ int
(
C1

0 (Ω)+

)
. Then, because of (3.6), hypothesis H(iv) and the

choice of c5,m0, we obtain

−∆pu = tp−1 [−∆pe]

= tp−1

≥ c5t−γ + λc1

[
mr−1

0 tr−1 +mq−1
0 tq−1

]
≥ u−γ + λc1

[
ur−1 + uq−1

]
≥ u−γ + λf(x, u) for a.a.x ∈ Ω.

(3.7)

Since u ∈ int
(
C1

0 (Ω)+

)
, as before, there exists ϑ ∈ (0, 1) small enough such that

ϑũ ≤ u. If ũ0 = ϑũ ∈ int
(
C1

0 (Ω)+

)
, then

−∆pũ0 = −∆p (ϑũ) = ϑp−1 (−∆pũ) = ϑp−1ũ−γ ≤ (ϑũ)
−γ

= ũ−γ0 (3.8)
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since ϑ ∈ (0, 1). Using the functions ũ0, u ∈ int
(
C1

0 (Ω)+

)
, we introduce the follow-

ing truncation of the reaction of problem (Pλ)

gλ(x, s) =


ũ0(x)−γ + λf (x, ũ0(x)) if s < ũ0(x),

s−γ + λf(x, s) if ũ0(x) ≤ s ≤ u(x),

u(x)−γ + λf (x, u(x)) if u(x) < s,

(3.9)

with λ ∈ (0, λ0). Evidently, gλ : Ω × R → R is a Carathéodory function. We set

Gλ(x, s) =
∫ s

0
gλ(x, t)dt and consider the functional ψλ : W 1,p

0 (Ω)→ R defined by

ψλ(u) =
1

p
‖∇u‖pp −

∫
Ω

Gλ(x, u)dx.

On account of Proposition 3 of Papageorgiou-Smyrlis [15] we have that ψλ ∈
C1(W 1,p

0 (Ω)). Moreover, from (3.9) it is clear that ψλ is coercive. The Sobolev
embedding theorem implies that ψλ is sequentially weakly lower semicontinuous.
So, by the Weierstraß-Tonelli theorem, there exists uλ ∈W 1,p

0 (Ω) such that

ψλ(uλ) = inf
[
ψλ(u) : u ∈W 1,p

0 (Ω)
]
.

Since uλ is a global minimizer, it fulfills ψ′λ(uλ) = 0, which is equivalent to

〈A(uλ), h〉 =

∫
Ω

gλ(x, uλ)hdx for all h ∈W 1,p
0 (Ω). (3.10)

Taking h = (ũ0 − uλ)
+ ∈ W 1,p

0 (Ω) in (3.10) gives, thanks to (3.9), (3.8) and the
fact that f ≥ 0,〈

A(uλ), (ũ0 − uλ)
+
〉

=

∫
Ω

[
ũ−γ0 + λf (x, ũ0)

]
(ũ0 − uλ)

+
dx

≥
∫

Ω

ũ−γ0 (ũ0 − uλ)
+
dx

≥
〈
A (ũ0) , (ũ0 − uλ)

+
〉
.

Because of the monotonicity of A, see Proposition 2.2, we obtain that ũ0 ≤ uλ.
Next, we choose h = (uλ − u)

+ ∈ W 1,p
0 (Ω) in (3.10). This gives, by applying (3.9)

and (3.7), that〈
A (uλ) , (uλ − u)

+
〉

=

∫
Ω

[
u−γ + λf (x, u)

]
(uλ − u)

+
dx ≤

〈
A (u) , (uλ − u)

+
〉
.

As before, by applying Proposition 2.2, it follows that uλ ≤ u. So, we have proved
that

uλ ∈ [ũ0, u] . (3.11)

From (3.9), (3.10), (3.11), it follows that

〈A(uλ), h〉 =

∫
Ω

[
u−γλ + λf(x, uλ)

]
hdx for all h ∈W 1,p

0 (Ω). (3.12)

Since ũ0 ∈ int
(
C1

0 (Ω)+

)
, as before, we have that ũ−γ0 ∈ Ls(Ω) for s > N and since

0 ≤ u−γλ ≤ ũ−γ0 , see (3.11), one has that u−γλ ∈ Ls(Ω). From (3.12) it follows that

−∆puλ(x) = uλ(x)−γ + λf(x, uλ(x)) for a.a.x ∈ Ω, uλ
∣∣
∂Ω

= 0. (3.13)
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From (3.13) and Proposition 1.3 of Guedda-Véron [7] we have that uλ ∈ L∞(Ω).
Let ξλ(x) = uλ(x)−γ + λf(x, uλ(x)). Then ξλ ∈ Ls(Ω), see hypothesis H(i). We
consider now the following linear Dirichlet problem

−∆v = ξλ in Ω, v
∣∣
∂Ω
.

This problem has a unique solution vλ which by the linear regularity theory belongs
to W 2,s(Ω), see Gilbarg-Trudinger [6, Theorem 9.9, p. 230]. Then, since s > N , the
Sobolev embedding theorem implies that

vλ ∈ C1,α
0 (Ω) with α = 1− N

s
. (3.14)

We set kλ(x) = ∇vλ(x). Then kλ ∈ C0,α(Ω,RN ), see (3.14). From (3.13) we obtain

−div
(
|∇uλ(x)|p−2∇uλ(x)− kλ(x)

)
= 0 for a.a.x ∈ Ω, uλ

∣∣
∂Ω

= 0.

Invoking Theorem 1 of Lieberman [10], we infer that uλ ∈ C1
0 (Ω)+ \ {0}. Fi-

nally from (3.13) and the nonlinear maximum principle, see for example, Gasinski-
Papageorgiou [3, Theorem 6.2.8, p. 738] and Pucci-Serrin [17, p. 120], we conclude
that uλ ∈ int

(
C1

0 (Ω)+

)
. It follows that (0, λ0) ⊆ L and so L 6= ∅. �

From the proof above we infer the following corollary.

Corollary 3.2. If hypotheses H hold and λ ∈ L, then Sλ ⊆ int
(
C1

0 (Ω)+

)
.

In the next proposition we show that L is in fact an interval.

Proposition 3.3. If hypotheses H hold, λ ∈ L and 0 < µ < λ, then µ ∈ L.

Proof. Since λ ∈ L there exists uλ ∈ Sλ ⊆ int
(
C1

0 (Ω)+

)
, see Corollary 3.2. Since

µ < λ and f ≥ 0, we have

−∆puλ(x) = uλ(x)−γ + λf(x, uλ(x)) ≥ uλ(x)−γ + µf(x, uλ(x))

for a.a.x ∈ Ω. Recall that ũ ∈ int
(
C1

0 (Ω)+

)
is the unique solution of (3.1). Since

uλ ∈ int
(
C1

0 (Ω)+

)
there exists t ∈ (0, 1) small enough such that tũ ≤ uλ. We set

ũ∗ = tũ ∈ int
(
C1

0 (Ω)+

)
and introduce the following truncation nonlinearity

ĝµ(x, s) =


ũ∗(x)−γ + µf (x, ũ∗(x)) if s < ũ∗(x),

s−γ + µf(x, s) if ũ∗(x) ≤ s ≤ uλ(x),

uλ(x)−γ + µf(x, uλ(x)) if uλ(x) < s,

(3.15)

which is a Carathéodory function. We set Ĝµ(x, s) =
∫ s

0
ĝµ(x, t)dt and consider the

functional ψ̂µ : W 1,p
0 (Ω)→ R defined by

ψ̂µ(u) =
1

p
‖∇u‖pp −

∫
Ω

Ĝµ(x, u)dx.

As before, we have ψ̂µ ∈ C1(W 1,p
0 (Ω)), see Papageorgiou-Smyrlis [15, Proposition

3]. From (3.15) it is clear that ψ̂λ is coercive. Also, it is sequentially weakly lower

semicontinuous. So, by the Weierstraß-Tonelli theorem there exists uµ ∈ W 1,p
0 (Ω)

such that

ψ̂µ (uµ) = inf
[
ψ̂µ(u) : u ∈W 1,p

0 (Ω)
]
.
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Hence, ψ̂′µ(uµ) = 0 which is equivalent to

〈A(uµ), h〉 =

∫
Ω

ĝµ(x, uµ)hdx for all h ∈W 1,p
0 (Ω). (3.16)

We choose h = (ũ∗ − uµ)
+ ∈ W 1,p

0 (Ω) in (3.16). Then, using (3.15), f ≥ 0, (3.1)
and ũ∗ = tũ for 0 < t < 1, we obtain

〈A(uµ), (ũ∗ − uµ)
+〉 =

∫
Ω

[
ũ−γ∗ + µf (x, ũ∗)

]
(ũ∗ − uµ)

+
dx

≥
∫

Ω

ũ−γ∗ (ũ∗ − uµ)
+
dx

≥
〈
A (ũ∗) , (ũ∗ − uµ)

+
〉
.

Hence, by Proposition 2.2, ũ∗ ≤ uµ. Next, we choose h = (uµ − uλ)
+ ∈ W 1,p

0 (Ω)
in (3.16). Then, as before, by applying (3.15) and since f ≥ 0, µ < λ and uλ ∈ Sλ
we obtain 〈

A (uµ) , (uµ − uλ)
+
〉

=

∫
Ω

[
u−γλ + µf (x, uµ)

]
(uµ − uλ)

+
dx

≤
[
u−γλ + λf (x, uλ)

]
(uµ − uλ)

+
dx

=
〈
A (uλ) , (uµ − uλ)

+
〉
.

Using Proposition 2.2 we see that uµ ≤ uλ.
So, we have proved that

uµ ∈ [ũ∗, uλ] . (3.17)

From (3.15), (3.16) and (3.17) we infer that uµ ∈ Sµ ⊆ int
(
C1

0 (Ω)+

)
and so µ ∈

L. �

A useful byproduct of the proof above is the following corollary.

Corollary 3.4. If hypotheses H hold, 0 < µ < λ ∈ L and uλ ∈ Sλ ⊆ int
(
C1

0 (Ω)+

)
,

then µ ∈ L and there exists uµ ∈ Sµ ⊆ int
(
C1

0 (Ω)+

)
such that uλ − uµ ∈ C1

0 (Ω)+ \
{0}.

In fact using hypotheses H(v), (vi) we can improve the conclusion of the corollary
above.

Proposition 3.5. If hypotheses H hold, 0 < µ < λ ∈ L and if uλ ∈ Sλ ⊆
int
(
C1

0 (Ω)+

)
, then µ ∈ L and there exists uµ ∈ Sµ ⊆ int

(
C1

0 (Ω)+

)
such that

uλ − uµ ∈ int
(
C1

0 (Ω)+

)
.

Proof. From Corollary 3.4 we already know that µ ∈ L and we can find uλ ∈ Sµ ⊆
int
(
C1

0 (Ω)+

)
such that uλ − uµ ∈ C1

0 (Ω)+ \ {0}. Let ρ = ‖uλ‖∞ and let ξ̂ρ > 0

be as postulated by hypothesis H(vi). Since uµ ∈ Sµ ⊆ int
(
C1

0 (Ω)+

)
, uλ ∈ Sλ ⊆



10 N. S. PAPAGEORGIOU AND P. WINKERT

int
(
C1

0 (Ω)+

)
, uµ ≤ uλ and because of hypotheses H(v), (vi) we derive

−∆puµ(x) + λξ̂ρuµ(x)p−1 − uµ(x)−γ

= µf (x, uµ(x)) + λξ̂ρuµ(x)p−1

= λf (x, uµ(x)) + λξ̂ρuµ(x)p−1 − (λ− µ)f(x, uµ(x))

< λf (x, uλ(x)) + λξ̂ρuλ(x)p−1

= −∆puλ(x) + λξ̂ρu
p−1
λ − uλ(x)−γ

(3.18)

for a.a.x ∈ Ω. Let ĥ0(x) = (λ− µ)f(x, uµ(x)). Since uµ ∈ int
(
C1

0 (Ω)+

)
and using

hypothesis H(v), we see that 0 ≺ ĥ0. Therefore, from (3.18) and the singular strong
comparison principle, see Papageorgiou-Smyrlis [15, Proposition 4], we conclude
that uλ − uµ ∈ int

(
C1

0 (Ω)+

)
. �

We set λ∗ = supL.

Proposition 3.6. If hypotheses H hold, then λ∗ <∞.

Proof. Recall that

lim
s→+∞

f(x, s)

sp−1
= +∞ uniformly for a.a.x ∈ Ω,

see hypotheses H(ii), (iii). Therefore, for a given k > λ̂1, there exists M > 0 such
that

f(x, s) ≥ ksp−1 for a.a.x ∈ Ω and for all s ≥M. (3.19)

On the other hand, we have

s−γ + λf(x, s) ≥M−γ + λf(x, s) (3.20)

for a.a.x ∈ Ω, for all 0 ≤ s ≤M and for all λ > 0. Note that, since f ≥ 0,

lim
s→0+

M−γ + λf(x, s)

sp−1
= +∞ uniformly for a.a.x ∈ Ω,

which implies that there exists δλ > 0 such that

M−γ + λf(x, s) ≥ λ̂1s
p−1 for a.a.x ∈ Ω and for all 0 ≤ s ≤ δλ.

Combining this with (3.20) we see that

s−γ + λf(x, s) ≥ λ̂1s
p−1 for a.a.x ∈ Ω and for all 0 ≤ s ≤ δλ. (3.21)

Finally, note that on account of hypothesis H(v), there exists λ̃ ≥ 1 large enough
such that

s−γ + λ̃f(x, s) ≥M−γ + λ̃mδλ̃
≥ λ̂1M

p−1 ≥ λ̂1s
p−1 (3.22)

for a.a.x ∈ Ω and for all δλ̃ ≤ s ≤ M . Combining (3.19), (3.21), and (3.22) we
conclude that

s−γ + λ̃f(x, s) ≥ λ̂1s
p−1 for a.a.x ∈ Ω and for all s ≥ 0. (3.23)

Let λ > λ̃ and suppose that λ ∈ L. There exists uλ ∈ Sλ ⊆ int
(
C1

0 (Ω)+

)
. Let

t > 0 be such that

tû1 ≤ uλ. (3.24)
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Assume that t > 0 is the largest positive real number for which (3.24) holds. Let

ρ = ‖uλ‖∞ and let ξ̂ρ > 0 be as postulated by hypothesis H(vi). Applying (3.24),
hypothesis H(vi) and (3.23) gives

−∆puλ(x) + λξ̂ρuλ(x)p−1 − uλ(x)−γ

= λf (x, uλ(x)) + λξ̂ρuλ(x)p−1

≥ λf (x, tû1(x)) + λξ̂ρ (tû1(x))
p−1

= λ̃f (x, tû1(x)) + λξ̂ρ (tû1(x))
p−1

+
(
λ− λ̃

)
f (x, tû1(x))

≥ λ̂1 (tû1(x))
p−1

+ λξ̂ρ (tû1(x))
p−1

≥ −∆p (tû1(x)) + λξ̂ρ (tû1(x))
p−1 − (tû1(x))

−γ
for a.a.x ∈ Ω.

(3.25)

We set h̃0(x) =
(
λ− λ̃

)
f (x, tû1(x)). We see that since û1 ∈ int

(
C1

0 (Ω)+

)
and be-

cause of hypothesis H(v), we have 0 ≺ h̃0. Therefore, from (3.25) and Papageorgiou-
Smyrlis [15, Proposition 4] we infer that uλ − tû1 ∈ int

(
C1

0 (Ω)+

)
which con-

tradicts the maximality of t > 0, see (3.24). This shows that λ 6∈ L and so

λ∗ ≤ λ̃ < +∞. �

Next we show that the critical parameter λ∗ > 0 is admissible.

Proposition 3.7. If hypotheses H hold, then λ∗ ∈ L.

Proof. Consider a sequence {λn}n≥1 ⊆ (0, λ∗) ⊆ L such that λn → (λ∗)− as
n → ∞. From the proof of Proposition 3.3 we know that there exists un ∈ Sλn ⊆
int
(
C1

0 (Ω)+

)
for each n ∈ N such that

{un}n≥1 is increasing and ũ∗ = tũ ≤ un for all n ∈ N. (3.26)

Let ψ̂λn ∈ C1(W 1,p
0 (Ω)) be as in the proof of Proposition 3.3 resulting from the

truncation of the reaction of (Pλ) with λ replaced by λn at {ũ∗(x), un+1(x)} =

{tũ(x), un+1(x)}, see (3.15). We know that un ∈ [ũ∗, un+1] is the minimizer of ψ̂λn .
Therefore, because of (3.15) with uλ = un+1 and hypothesis H(v), we have

ψ̂λn(un) ≤ ψ̂λn (ũ∗) =
1

p
‖∇ũ∗‖pp −

∫
Ω

[
ũ1−γ + λnf (x, ũ∗) ũ∗

]
dx

=
tp

p
‖∇ũ‖pp − t

1−γ
∫

Ω

ũ1−γdx− λn
∫

Ω

f (x, ũ∗) ũ∗dx

<
tp

p
‖∇ũ‖pp − t

1−γ
∫

Ω

ũ1−γdx.

(3.27)

We know that

‖∇ũ‖pp =

∫
Ω

ũ1−γdx,

see (3.27). Hence, since t ∈ (0, 1),

tp ‖∇ũ‖pp ≤ t
1−γ

∫
Ω

ũ1−γdx.

This finally gives

ψ̂λn(un) < 0 for all n ∈ N, (3.28)

see (3.27).
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Consider now the Carathéodory function g̃λn : Ω× R→ R defined by

g̃λn(x, s) =

{
ũ∗(x)−γ + λnf (x, ũ∗(x)) if s ≤ ũ∗(x),

s−γ + λnf(x, s) if ũ∗(x) < s.
(3.29)

We set G̃λn(x, s) =
∫ s

0
g̃λn(x, t)dt and consider the C1-functional ϕ̃λn : W 1,p

0 (Ω)→
R defined by

ϕ̃λn(u) =
1

p
‖∇u‖pp −

∫
Ω

G̃λn(x, u)dx.

Note that

ϕ̃λn
∣∣
[ũ∗,un+1]

= ψ̂λn
∣∣
[ũ∗,un+1]

.

Then, see (3.28), we have ϕ̃λn(un) < 0 for all n ∈ N and so

‖∇un‖pp −
∫

Ω

pG̃λn(x, un)dx < 0.

Applying (3.29) and the fact that un ∈ [ũ∗, un+1] leads to

‖∇un‖pp −
∫

Ω

p
[
ũ1−γ
∗ + λnf (x, ũ∗)

]
ũ∗dx

− p

1− γ

∫
Ω

[
u1−γ
n − u1−γ

∗
]
− λnp

∫
Ω

[F (x, un)− F (x, ũ∗)] dx < 0.

(3.30)

Moreover, we know that

〈A(un), h〉 =

∫
Ω

g̃λn(x, un)hdx for all h ∈W 1,p
0 (Ω) and for all n ∈ N. (3.31)

Choosing h = un ∈ W 1,p
0 (Ω) in (3.31) and applying (3.29) and the fact that un ∈

[ũ∗, un+1] yields

−‖∇un‖pp +

∫
Ω

[
u1−γ
n + λnf(x, un)un

]
dx = 0 for all n ∈ N. (3.32)

Adding (3.30) and (3.32) we obtain∫
Ω

η̂λn(x, un)dx ≤M1 for some M1 > 0 and for all n ∈ N. (3.33)

Suppose that {un}n≥1 ⊆ W 1,p
0 (Ω) is not bounded. By passing to a subsequence if

necessary, we may assume that ‖un‖ → +∞. We set yn = un
‖un‖ for n ∈ N. Then

we have ‖yn‖ = 1 and yn ≥ 0 for all n ∈ N. So, we may assume that

yn
w→ y in W 1,p

0 (Ω) and yn → y in Lr(Ω), with y ≥ 0. (3.34)

First assume that y 6= 0 and set Ω∗ = {x ∈ Ω : y(x) > 0}. We have |Ω∗|N > 0 and
un(x)→ +∞ for all x ∈ Ω∗. We have

F (x, un(x))

‖un‖p
=
F (x, un(x))

un(x)p
yn(x)p → +∞ for a.a.x ∈ Ω∗

and so, by Fatou’s Lemma, ∫
Ω∗

F (x, un)

‖un‖p
dx→ +∞. (3.35)
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Since F ≥ 0, we have ∫
Ω∗

F (x, un)

‖un‖p
dx ≤

∫
Ω

F (x, un)

‖un‖p
dx

and so, by (3.35), ∫
Ω

F (x, un)

‖un‖p
dx→ +∞. (3.36)

Hypothesis H(iii) implies that

0 ≤ η̂λn(x, un(x)) + τλ∗(x) for a.a.x ∈ Ω and for all n ∈ N.
Then

p

1− γ
un(x)1−γ + pF (x, un(x)) ≤ un(x)1−γ + λnf(x, un(x))un(x) + τλ∗(x) (3.37)

for a.a.x ∈ Ω and for all n ∈ N.
From (3.31) with h = un ∈W 1,p

0 (Ω) we obtain by using (3.29) and (3.26)

‖∇un‖pp =

∫
Ω

[
u1−γ
n + λnf(x, un)un

]
dx for all n ∈ N. (3.38)

Applying (3.38) in (3.37) gives

pλn

∫
Ω

F (x, un)dx ≤ ‖∇un‖pp + ‖τλ∗‖1 .

Hence

pλn

∫
Ω

F (x, un)

‖un‖p
dx ≤ ‖∇yn‖pp +

‖τλ∗‖1
‖un‖p

for all n ∈ N. (3.39)

Comparing (3.36) and (3.39) we have a contradiction.

Next suppose that y = 0. For µ > 0 we set vn = (pµ)
1
p yn for all n ∈ N. Then

vn ∈ int
(
C1

0 (Ω)+

)
and vn → 0 in Lr(Ω), see (3.34) and recall that y = 0. Then, by

(3.29), we get ∫
Ω

G̃λn(x, vn)dx→ 0 as n→∞. (3.40)

Since ‖un‖ → +∞, there exists a number n0 ∈ N such that

(pµ)
1
p

1

‖un‖
≤ 1 for all n ≥ n0. (3.41)

Moreover, let tn ∈ [0, 1] be such that

ϕ̃λn(tnun) = max
0≤t≤1

ϕ̃λn(tun), n ∈ N.

Applying (3.41), the representation ‖yn‖ = 1 for all n ∈ N and (3.40) leads to

ϕ̃λn(tnun) ≥ ϕ̃λn(vn) for all n ≥ n0

= µ‖∇yn‖pp −
∫

Ω

G̃λn(x, vn)dx

= µ−
∫

Ω

G̃(x, vn)dx ≥ µ

2
for all n ≥ n1 ≥ n0.

(3.42)

But recall that µ > 0 is arbitrary. So, from (3.42) we infer that

ϕ̃λn(tnun)→ +∞ as n→∞. (3.43)
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We have

ϕ̃λn(0) = 0 and ϕ̃λn(un) < 0 for all n ∈ N.

From this and (3.43) it follows that tn ∈ (0, 1) for all n ≥ n2. Therefore, we obtain

d

dt
ϕ̃λn(tun)

∣∣
t=t0

= 0 for all n ≥ n2

which means

‖∇(tnun)‖pp =

∫
Ω

g̃λn(x, tnun)undx

and so

pϕ̃λn(tnun) + p

∫
Ω

G̃λn(x, tnun)dx =

∫
Ω

g̃λn(x, tnun)(tnun)dx.

Then we use hypothesis H(iii), (3.29) and recall that tn ∈ (0, 1) for all n ≥ n2 to
get

pϕ̃λn(tnun) ≤
∫

Ω

η̂λn(x, un)dx+M2

for some M2 > 0 and for all n ≥ n2. Taking (3.43) into account gives∫
Ω

η̂λn(x, un)dx→ +∞ as n→∞.

But this last convergence contradicts (3.33).

It follows that {un}n≥1 ⊆W 1,p
0 (Ω) is bounded and so we may assume that

un
w→ u∗ in W 1,p

0 (Ω) and un → u∗ in Lr(Ω) with u∗ ≥ ũ∗. (3.44)

Choosing h = un − u∗ ∈ W 1,p
0 (Ω) in (3.31), recalling that u−γn ∈ Lr

′
(Ω) with

1
r + 1

r′ = 1, passing to the limit as n→∞ and applying (3.44) results in

lim
n→∞

〈A(un), un − u∗〉 = 0.

Since A has the (S)+-property, see Proposition 2.2, we infer that

un → u∗ in W 1,p
0 (Ω). (3.45)

So, if we pass to the limit in (3.31) and apply (3.45), then we obtain

〈A(u∗), h〉 =

∫
Ω

g̃λ∗(x, u
∗)hdx for all h ∈W 1,p

0 (Ω) with u∗ ≥ ũ∗.

Therefore, we have

〈A(u∗), h〉 =

∫
Ω

[
(u∗)−γ + λ∗f(x, u∗)

]
hdx for all h ∈W 1,p

0 (Ω).

Hence, u∗ ∈ Sλ∗ ⊆ int
(
C1

0 (Ω)+

)
and λ∗ ∈ L. �

In summary, we have proved that

L = (0, λ∗] .

Next we show that we have two solutions for all λ ∈ (0, λ∗).

Proposition 3.8. If hypotheses H hold and 0 < λ < λ∗, then problem (Pλ) has
two positive solutions u0, û ∈ int

(
C1

0 (Ω)+

)
.
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Proof. From Proposition 3.7 we know that λ∗ ∈ L. So, there exists u∗ ∈ Sλ∗ ⊆
int
(
C1

0 (Ω)+

)
, see Corollary 3.2. According to Proposition 3.5 we can find u0 ∈

Sλ ⊆ int
(
C1

0 (Ω)+

)
such that

u∗ − u0 ∈ int
(
C1

0 (Ω)+

)
. (3.46)

Moreover, let ϑ ∈ (0, λ) ⊆ L and uϑ ∈ Sϑ ⊆ int
(
C1

0 (Ω)+

)
be such that

u0 − uϑ ∈ int
(
C1

0 (Ω)+

)
, (3.47)

again by Proposition 3.5. From (3.46) and (3.47) it follows that

u0 ∈ int
C1

0 (Ω)
[uϑ, u

∗] . (3.48)

We consider the Carathéodory functions kλ, k̂λ : Ω× R→ R defined by

kλ(x, s) =

{
uϑ(x)−γ + λf(x, uϑ(x)) if s ≤ uϑ(x),

s−γ + λf(x, s) if uϑ(x) < s
(3.49)

and

k̂λ(x, s) =


uϑ(x)−γ + λf(x, uϑ(x)) if s < uϑ(x),

s−γ + λf(x, s) if uϑ(x) ≤ s ≤ u∗(x),

u∗(x)−γ + λf(x, u∗(x)) if u∗(x) < s.

(3.50)

We set Kλ(x, s) =
∫ s

0
kλ(x, t)dt, K̂λ(x, s) =

∫ s
0
k̂λ(x, t)dt and consider the C1-

functionals σλ, σ̂λ : W 1,p
0 (Ω)→ R defined by

σλ(u) =
1

p
‖∇u‖pp −

∫
Ω

Kλ(x, u)dx,

σ̂λ(u) =
1

p
‖∇u‖pp −

∫
Ω

K̂λ(x, u)dx.

From (3.49) and (3.50) it is clear that

σλ
∣∣
[uϑ,u∗]

= σ̂λ
∣∣
[uϑ,u∗]

. (3.51)

Moreover, as in the proof of Proposition 3.1, using (3.49) and (3.50), we show that

Kσλ ⊆ [uϑ) ∩ int
(
C1

0 (Ω)+

)
and Kσ̂λ ⊆ [uϑ, uλ] ∩ int

(
C1

0 (Ω)+

)
. (3.52)

From (3.52) we see that we may assume that Kσ̂λ = {u0}, otherwise we already
have a second positive solution for problem (Pλ), see (3.50) and (3.52).

From (3.50) and since u−γϑ ∈ Lp
′
(Ω) we infer that σ̂λ is coercive and from

the Sobolev embedding theorem, we know that σ̂λ is sequentially weakly lower
semicontinuous. Therefore, we can find u∗0 ∈W

1,p
0 (Ω) such that

σ̂λ (u∗0) = inf
[
σ̂λ(u) : u ∈W 1,p

0 (Ω)
]
. (3.53)

That means u∗0 ∈ Kσ̂λ and so u∗0 = u0. From (3.48), (3.51) and (3.53) it follows
that u0 is a local C1

0 (Ω)-minimizer of σλ and from [5] and [13] we know that

u0 is a local W 1,p
0 (Ω)-minimizer of σλ. (3.54)
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We assume that Kσλ is finite or otherwise, on account of (3.49) and (3.52), we
already have an infinity of positive smooth solutions for problem (Pλ) and so we
are done. From (3.54) we infer that there exists ρ ∈ (0, 1) small enough such that

σλ(u0) < inf [σλ(u) : ‖u− u0‖ = ρ] = mλ, (3.55)

see Aizicovici-Papageorgiou-Staicu [1, Proof of Proposition 29].
Hypothesis H(ii) implies that if u ∈ int

(
C1

0 (Ω)+

)
, then

σλ(tu)→ −∞ as t→ +∞. (3.56)

Claim: σλ satisfies the C-condition.
Consider a sequence {un}n≥1 ⊆W 1,p

0 (Ω) such that

|σλ(un)| ≤M3 for some M3 > 0 and for all n ∈ N, (3.57)

(1 + ‖un‖)σ′λ(un)→ 0 in W−1,p′(Ω) as n→∞. (3.58)

From (3.58) we have∣∣∣∣〈A(un), h〉 −
∫

Ω

kλ(x, un)hdx

∣∣∣∣ ≤ εn‖h‖
1 + ‖un‖

(3.59)

for all h ∈ W 1,p
0 (Ω) with εn → 0+. We choose h = −u−n ∈ W

1,p
0 (Ω) in (3.59) and

use (3.49) to obtain∥∥∇u−n ∥∥pp ≤ c6 ∥∥u−n ∥∥ for some c6 > 0 and for all n ∈ N.

Hence

{un}n≥1 ⊆W 1,p
0 (Ω) is bounded. (3.60)

Then from (3.57) and (3.60) it follows that∥∥∇u+
n

∥∥p
p
−
∫

Ω

pK̂λ(x, u+
n )dx ≤M4 for some M4 > 0 and for all n ∈ N.

This implies ∥∥∇u+
n

∥∥p
p
−
∫
{u+

n≤uϑ}
p
[
u−γϑ + λf(x, uϑ)

]
u+
n dx

− p

1− γ

∫
{uϑ<u+

n}

[(
u+
n

)1−γ − u1−γ
ϑ

]
dx

− pλ
∫
{uϑ<u+

n}

[
F (x, u+

n )− F (x, uϑ)
]
≤M4

for all n ∈ N and so∥∥∇u+
n

∥∥p
p
− p

1− γ

∫
Ω

(
u+
n

)1−γ
dx− pλ

∫
Ω

F (x, u+
n )dx ≤M5 (3.61)

for some M5 > 0 and for all n ∈ N. Moreover, we choose h = u+
n ∈ W

1,p
0 (Ω) in

(3.59) which gives

−
∥∥∇u+

n

∥∥p
p

+

∫
{u+

n≤uϑ}

[
u−γϑ + λf(x, uϑ)

]
u+
n dx

+

∫
{uϑ<u+

n}

[(
u+
n

)−γ
+ λf(x, u+

n )
]
u+
n dx ≤ εn
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for all n ∈ N. This leads to

−
∥∥∇u+

n

∥∥p
p

+

∫
Ω

(
u+
n

)1−γ
dx+ λ

∫
Ω

f(x, u+
n )u+

n dx ≤M6 (3.62)

for some M6 > 0 and for all n ∈ N. Adding (3.61) and (3.62) yields∫
Ω

η̂λ(x, u+
n )dx ≤M7 for some M7 > 0 and for all n ∈ N. (3.63)

Applying (3.63) and reasoning as in the proof of Proposition 3.7 (see the part of

the proof after (3.33)), we show that {u+
n }n≥1 ⊆ W 1,p

0 (Ω) is bounded and so, due

to (3.60), {un}n≥1 ⊆W 1,p
0 (Ω) is bounded as well.

So, we may assume that

un
w→ u in W 1,p

0 (Ω) and un → u in Lr(Ω). (3.64)

Choosing h = un − u ∈ W 1,p
0 (Ω), passing to the limit as n → ∞ and applying

(3.64), we obtain

lim
n→∞

〈A(un), un − u〉 = 0,

which by the (S)+-property of A, see Proposition 2.2, results in un → u in W 1,p
0 (Ω).

Therefore, σλ satisfies the C-condition and this proves the Claim.
On account of (3.55), (3.56) and the Claim, we are able to apply the mountain

pass theorem stated as Theorem 2.1 and find û ∈W 1,p
0 (Ω) such that

û ∈ Kσλ ⊆ [uϑ) ∩ int
(
C1

0 (Ω)+

)
and mλ ≤ σλ (û) , (3.65)

see (3.52). From (3.49), (3.55) and (3.65) we conclude that û ∈ Sλ ⊆ int
(
C1

0 (Ω)+

)
and û 6= u0. This finishes the proof. �

Summarizing the situation for the positive solution of problem (Pλ) as the pa-
rameter λ > 0 varies, we can state the following bifurcation-type theorem.

Theorem 3.9. If hypotheses H hold, then there exist λ∗ > 0 such that the following
is satisfied:

(a) problem (Pλ) has at least two positive solutions u0, û ∈ int
(
C1

0 (Ω)+

)
for

all λ ∈ (0, λ∗);
(b) problem (Pλ) has at least one positive solution u∗ ∈ int

(
C1

0 (Ω)+

)
for λ =

λ∗;
(c) problem (Pλ) has no positive solution for all λ > λ∗.

4. Minimal Positive Solutions

In this section we show that problem (Pλ) has a smallest positive solution
u ∈ int

(
C1

0 (Ω)+

)
for every λ ∈ L = (0, λ∗] and we prove the monotonicity and

continuity properties of the map λ→ uλ.
From Filippakis-Papageorgiou [2] we know that the solution set Sλ is downward

directed for every λ ∈ L = (0, λ∗], that is, if u1, u2 ∈ Sλ, then there exists u ∈ Sλ
such that u ≤ u1 and u ≤ u2.

Proposition 4.1. If hypotheses H hold and λ ∈ L = (0, λ∗], then problem (Pλ) has
a smallest positive solution uλ ∈ Sλ ⊆ int

(
C1

0 (Ω)+

)
, that is, uλ ≤ u for all u ∈ Sλ.
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Proof. Invoking Lemma 3.10 of Hu-Papageorgiou [8, p. 178] we know that there
exists a decreasing sequence {un}n≥1 ⊆ Sλ such that inf Sλ = infn≥1 un. Recall
that Sλ is downward directed.

Claim: ũ ≤ un for all n ∈ N (see the proof of Proposition 3.1)
Fix n ∈ N and let ϑ ∈ (0, λ) ⊆ L. According to Proposition 3.5 there exists

uϑ ∈ Sϑ ⊆ int
(
C1

0 (Ω)+

)
such that un − uϑ ∈ int

(
C1

0 (Ω)+

)
. We introduce the

Carathéodory function en : Ω× R→ R defined by

en(x, s) =


uϑ(x)−γ if s < uϑ(x),

s−γ if uϑ(x) ≤ s ≤ un(x),

un(x)−γ if un(x) < s.

(4.1)

We set En(x, s) =
∫ s

0
en(x, t)dt and consider the C1-functional γn : W 1,p

0 (Ω) → R
defined by

γn(u) =
1

p
‖∇un‖pp −

∫
Ω

En(x, u)dx.

From (4.1) it is clear that γn is coercive and the Sobolev embedding theorem
implies that γn is sequentially weakly lower semicontinuous. Therefore, we find
ũ0 ∈W 1,p

0 (Ω) such that

γn (ũ0) = inf
[
γn(u) : u ∈W 1,p

0 (Ω)
]
.

In particular, we have γ′n(ũ0) = 0 which says that

〈A (ũ0) , h〉 =

∫
Ω

en (x, ũ0)hdx for all h ∈W 1,p
0 (Ω). (4.2)

We choose h = (uϑ − ũ0)
+ ∈W 1,p

0 (Ω) in (4.2). Then, applying (4.1), the nonnega-
tivity of f and the fact that uϑ ∈ Sϑ gives〈

A (ũ0) , (uϑ − ũ0)
+
〉

=

∫
Ω

u−γϑ (uϑ − ũ0)
+
dx

≤
∫

Ω

[
u−γϑ + ϑf (x, uϑ)

]
(uϑ − ũ0)

+
dx

=
〈
A(uϑ), (uϑ − ũ0)

+
〉
.

Proposition 2.2 then implies uϑ ≤ ũ0. In the same way, choosing h = (ũ0 − un)
+ ∈

W 1,p
0 (Ω) in (4.2) and applying again (4.1), f ≥ 0 and un ∈ Sλ results in〈

A (ũ0) , (ũ0 − un)
+
〉

=

∫
Ω

u−γn (ũ0 − un)
+
dx

≤
∫

Ω

[
u−γn + λf(x, un)

]
(ũ0 − un)

+
dx

=
〈
A(un), (ũ0 − un)

+
〉
.

As before, by Proposition 2.2, we obtain ũ0 ≤ un. So, we have proved that

ũ0 ∈ [uϑ, un]. (4.3)

From (4.1) and (4.3) it follows that ũ0 is a positive solution of the auxiliary problem
(3.1). Therefore, ũ0 = ũ which implies ũ ≤ un for all n ∈ N. This proves the Claim.
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We have

〈A(un), h〉 =

∫
Ω

[
u−γn + λf(x, un)

]
hdx (4.4)

for all h ∈ W 1,p
0 (Ω) and for all n ∈ N. Since 0 ≤ un ≤ u1 for all n ≥ 1, from (4.4)

with h = un ∈W 1,p
0 (Ω) and using hypothesis H(iv), we infer that

{un}n≥1 ⊆W 1,p
0 (Ω) is bounded.

So, we may assume that

un
w→ uλ in W 1,p

0 (Ω) and un → uλ in Lp(Ω). (4.5)

Moreover, we can say that

un(x)−γ → uλ(x)−γ for a.a.x ∈ Ω.

From the Claim we know that

0 ≤ un(x)−γ ≤ ũ(x)−γ for a.a.x ∈ Ω.

Since ũ(·)−γ ∈ Lp′(Ω), see the proof of Proposition 3.1, from Gasiński-Papageorgiou
[4, Problem 1.19, p. 38], we have

u−γn
w→ u−γλ in Lp

′
(Ω). (4.6)

Therefore, if we choose h = un−uλ ∈W 1,p
0 (Ω) in (4.4), pass to the limit as n→∞

and use (4.5) as well as (4.6), then

lim
n→∞

〈A(un), un − uλ〉 = 0,

which again by Proposition 2.2 leads to

un → uλ in W 1,p
0 (Ω). (4.7)

So, if we pass to the limit in (4.4) as n→∞ and use (4.5), (4.6), (4.7), we obtain

〈A (uλ) , h〉 =

∫
Ω

[
u−γλ + λf (x, uλ)

]
hdx for all h ∈W 1,p

0 (Ω).

From the Claim it follows that ũ ≤ uλ. Therefore we conclude that

uλ ∈ Sλ ⊆ int
(
C1

0 (Ω)+

)
and uλ = inf Sλ.

�

In the next proposition we examine the map λ→ uλ from L = (0, λ∗] into C1
0 (Ω)

and determine the monotonicity and continuity properties of this map.

Proposition 4.2. If hypotheses H hold, then the map λ → uλ from L = (0, λ∗]
into C1

0 (Ω) is

(a) strictly increasing, that is,

0 < ϑ < λ ≤ λ∗ implies uλ − uϑ ∈ int
(
C1

0 (Ω)+

)
;

(b) left continuous.
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Proof. (a) From Proposition 3.5 we know that there exists uϑ ∈ Sϑ ⊆ int
(
C1

0 (Ω)+

)
such that uλ − uϑ ∈ int

(
C1

0 (Ω)+

)
and so, since uϑ ≤ uϑ, it follows uλ − uϑ ∈

int
(
C1

0 (Ω)+

)
. So, the map λ→ uλ is strictly increasing.

(b) Suppose that {λn, λ}n≥1 ⊆ L = (0, λ∗] and assume that λn → λ−. We set

un = uλn ∈ Sλn ⊆ int
(
C1

0 (Ω)+

)
for all n ∈ N. We have

〈A (un) , h〉 =

∫
Ω

[
u−γn + λnf (x, un)

]
hdx (4.8)

for all h ∈W 1,p
0 (Ω) and for all n ∈ N. Moreover, by Proposition 4.1,

0 ≤ u1 ≤ un ≤ uλ∗ . (4.9)

On account of (4.9) and by the choice h = un ∈ W 1,p
0 (Ω) in (4.8), we infer that

{un}n≥1 ⊆W 1,p
0 (Ω) is bounded. We have

−∆pun = u−γn + λnf(x, un) in Ω,

un = 0 on ∂Ω,

for all n ∈ N. From (4.9) we see that

0 ≤ u−γn ≤ u−γ1 ∈ Ls(Ω) with s > N and for all n ∈ N,

see also H(i). Similarly, (4.9) and hypothesis H(i) imply that

{f (·, un(·))}n≥1 ⊆ L
s(Ω) is bounded.

Then Proposition 1.3 of Guedda-Véron [7] implies that

‖un‖∞ ≤M8 for some M8 > 0 and for all n ∈ N.

From this as in the proof of Proposition 3.1 and using Theorem 2.1 of Lieberman
[10], there exist α ∈ (0, 1) and M9 > 0 such that

un ∈ C1,α
0 (Ω) and ‖un‖C1,α

0 (Ω) ≤M9 for all n ∈ N. (4.10)

Then, (4.10), the compact embedding of C1,α
0 (Ω) into C1

0 (Ω) and the monotonicity
of the sequence {un}n≥1 imply that

un → ũλ in C1
0 (Ω).

We claim that ũλ = uλ. If this is not the case, we can find z0 ∈ Ω such that
uλ(z0) < ũλ(z0) which implies uλ(z0) < un(z0) for all n ≥ n0. But this contradicts
(a). Therefore, ũλ = uλ and so λ→ uλ is left continuous. �

Summarizing the situation concerning the minimal positive solution of problem
(Pλ), we can state the following theorem.

Theorem 4.3. If hypotheses H hold and λ ∈ L = (0, λ∗], then problem (Pλ) has a
smallest positive solution uλ ∈ int

(
C1

0 (Ω)+

)
and the map λ→ uλ from L = (0, λ∗]

into C1
0 (Ω) is

• strictly increasing, that is, 0 < ϑ < λ ≤ λ∗ implies uλ−uϑ ∈ int
(
C1

0 (Ω)+

)
;

• left continuous.
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