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ABSTRACT. In this paper, we study parametric quasilinear elliptic equations
driven by the double phase operator, where the right-hand side consists of a
singular term and a sublinear term. By combining a new Hopf’s Lemma with
truncation techniques and an abstract critical point theorem, we establish the
existence of three bounded positive solutions and provide an explicit upper
bound for the parameter.

1. INTRODUCTION

The following functional prototype was first introduced and investigated by
Zhikov [50] in the context of strongly anisotropic materials:

uka/’cvup u(z ﬂvuw>d@ (1.1)

where 1 < p < g and p € L>°(Q) is a nonnegative weight function. The associated
Euler-Lagrange operator is the so-called double phase operator, given by

div (|Vul[P7?Vu + p(z)|Vul|?*Vu). (1.2)

According to Marcellini’s terminology [32, 33], the functional (1.1) belongs to the
class of integral functionals with non-standard growth conditions. Its energy density
exhibits ellipticity of order ¢ at points = € Q where p(z) > 0, and ellipticity of order
p at points where p(z) = 0. Furthermore, the energy density associated with (1.1)
can also serve to model the viscosity coefficients of certain non-Newtonian fluids,

see Liu-Dai [28] for further details. For a mathematical study of such integral
functionals with (p, ¢)-growth we refer to the works of Baroni-Colombo-Mingione
[8, 9, 10], Baroni-Kuusi-Mingione [1 1], Colombo-Mingione [16, 17], Byun-Oh [15],
De Filippis—Palatucci [20], Marcellini [32, 33], Ok [34], Ragusa—Tachikawa [12] and

the references therein.

Given a bounded domain Q C RN, N > 1 with boundary 99 of class C™', in
this paper we study quasilinear elliptic equations involving singular terms of the
form

—div (|VuP?Vu + p()|Vul!?Vu) = X (€(z)u™* + f(z,u)) inQ,
u>0 inQ,  (1.3)
u=20 on 02,
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where )\ is positive parameter and the following conditions are supposed:
(H (i) N<p<gqand0 < pu(-) e CO(Q);

(i) 0<a<1,&eCOP(Q) for some 0 < B < 1and €(z) >0 for all x €

(iii) there exist 0 < go(-) € C3(Q2) and ¥ > N such that &(+)go(-)™® €
L?(Q).
(iv) f: Qx][0,00) — Ris a Carathéodory function and there exist constants

S0 > 0, ¢o > 0 such that f(x,s) > cp&(z) for some s € [0, sg] and for
a.a.r €

(v) lim £zs)

s——+o0 | ‘P

= (0 uniformly for a.a.x € €);

(vi) there ex1sts an open ball of radius Ry centered at yy, denoted by
B(yo, Ro) (C Q), such that the inequality

/yo,Ro / qp)% x)s~* + f(z,s)) dsdz
[ e e

holds, where u is a subsolution of (1.3) given in Lemma 3.2 and u; is
defined by

C(qp) S Q \ B(:‘/O,RO)a
ui(z) = C(qp)” — 735 (Jz| — Ro), = € B(yo, Ro) \ B(yo,0Ry),
C(qp)p + Ry, x € B(yo,0Ry),

where 0 < 6 < 1, p > 0 is defined in (4.4), and C denotes the embed-
ding constant of W, ?(Q) < C(€).

The occurrence of the singular term in (1.3) is motivated by various physical
models, including the motion of a body through a viscous fluid, the flow field above a
moving conveyor belt, shock waves propagating over smooth surfaces, heterogeneous
chemical catalysis, and glacial advance. For further discussion and related results,
we refer to Ackroyd [1], Aris [2], Crandall-Rabinowitz—Tatar [18], Shi-Yao [15],
Sun-Wu-Long [18], Sun-Wu [17], and the references therein.

In the literature, considerable attention has been devoted to singular double
phase problems of the form

—div (|Vu[P*Vu + p(2)|Vul!*Vu) = A(z)u™® + 7f(z,u) inQ,
u>0 in Q, (1.4)
u=0 on 0f.

From a mathematical perspective, the presence of the singular term introduces
substantial and intriguing challenges. Liu-Dai-Papageorgiou-Winkert [29] studied
problem (1.4) in the case A = 1 and f(x,u) = u"~! with r > ¢, and established
the existence of two positive solutions whenever 0 < 7 < 7* for a suitable 7% > 0.
Their result was generalized by Bai-Gasiriski-Papageorgiou [6] to the case of a
general (¢ — 1)-superlinear nonlinearity f while Liu-Papageorgiou [30] considered
the setting £(-) = 7 = 1 and f(x,u) = n(z)u"~! with r > ¢, obtaining the same
multiplicity result as in [29]. Papageorgiou—Repovs—Vetro [39] investigated the case

[l= =
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p>q, A=1,and f(z,u) = u"~! with r > p, again deriving analogous conclusions.
In a related direction, Liu-Winkert [31] extended the analysis of [29] to the whole
space RY. Further refinements include the work of Bai-Papageorgiou—Zeng [7],
who considered £(-) = 1 and a (¢ — 1)-superlinear nonlinearity f. They showed
the existence of a bifurcation-type threshold 7* > 0 depending on A\, where \ has
to be sufficiently large, such that problem (1.4) admits at least two bounded pos-
itive solutions if 0 < 7 < 7%, at least one positive solution if 7 = 7%, and no
positive solution if 7 > 7*. Papageorgiou—Radulescu—Zhang [37] studied (1.4) un-
der variable exponents p, ¢, « being Lipschitz continuous with 0 < a(z) < 1, and
proved a similar bifurcation phenomenon as in [7]. On the other hand, Failla—
Gasinski-Papageorgiou—Skupien [21] considered the case A =7 =1 with a (p — 1)-
sublinear nonlinearity f, proving the existence of a bounded positive solution and,
under an additional monotonicity assumption on f, its uniqueness. Papageorgiou—
Réadulescu—Yuan [36] analyzed (1.4) for a > 1, A\ =7 =1, and f(z,u) = n(z)u" !
with r < p, establishing the existence of positive solutions while Papageorgiou—
Ré&dulescu-Zhang [38] addressed the case 7 = 1, @ > 1, and (¢ — 1)-superlinear
nonlinearities, and proved the existence of a positive solution for every A > 0. In
addition, we point to other related investigations on the double phase operator
with singular nonlinearities, in particular the works by Arora-Dwivedi [3], Arora—
Fiscella-Mukherjee-Winkert [1], Bahrouni-R&dulescu—Repovs [5], Farkas—Winkert
[22], Garain—Mukherjee [23], Guarnotta—Winkert [24], Han-Liu-Papageorgiou [25],

Papageorgiou—Peng [35], Pimenta-—Winkert [11], Sim—Son [16], see also the refer-
ences therein. We emphasize that all the above contributions concern the case
1<p<N.

Inspired by the aforementioned works, we are led to the following natural ques-
tions:
(i) Is it possible to establish the existence of more than two solutions?
(ii) Can one obtain explicit estimates for the parameters ensuring the existence
of multiple solutions?

In this paper, for the sake of simplicity, we address the two questions stated
above in the context of problem (1.4) under the assumptions A = 7 and p > N,
that is, for problem (1.3). As our analysis concerns weak solutions, we begin by
providing a precise definition of the concept. A function u € W, () is said to be
a weak solution of problem (1.3), if £(-)u%v € LY(Q2), u(x) > 0 for a.a.x € Q and
if

/ <|Vu|p72Vu + ,u(x)|Vu|q*2Vu) -Vodz = )\/ (E(@)u "+ f(z,u)) vdz

Q Q
is satisfied for all v € Wy *(€). Here W) ™(Q) represents the Musielak-Orlicz
Sobolev space which will be introduced in Section 2.
Our main result reads as follows.

Theorem 1.1. Let hypotheses (H) be satisfied. Then there exist an open interval
A and a constant M > 0 such that for every A € A problem (1.3) has at least
three distinct positive solutions in Wol’H(Q), with their W&’H(Q) norms less than
M. Furthermore, we have an estimate for the interval A, which is A C [0,b], where

b (1+p)p

K(wi) .
P I(wll) - I(ZU)IZPK(W)

< +00
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with I and K defined in (4.2).

The proof of Theorem 1.1 relies on truncation techniques combined with an
abstract critical point theorem (see Theorem 2.4). We begin by establishing a
Hopf’s Lemma for the double phase problem (3.1), which in turn allows us to con-
struct a subsolution u for problem (1.3). Having constructed the subsolution, we
truncate the right-hand side of (1.3) to handle the singular term, resulting in the
modified problem (4.1), and subsequently apply the abstract critical point theorem
to obtain three distinct solutions. A careful analysis of the proof further enables
us to determine an explicit upper bound for the parameter \. We also present
an illustrative example in which the computed upper bound of the parameter is
approximately 0.00296, a relatively small value. This demonstrates that the mul-
tiplicity of solutions for singular double phase problems is highly sensitive to the
size of the parameters, particularly when they are sufficiently small. We note that
our paper extends the results of Zhao—He—Zhao [19] from the p-Laplacian to the
double phase setting. We also emphasize that the abstract critical point theorem
employed here has been widely used to study the multiplicity of solutions for a

variety of elliptic problems. For instance, we refer to Bonanno—Molica Bisci [13] for
Laplace equations, Kristdly—Lisei—Varga [26] for p-Laplacian type equations, and
Bonanno-Molica Bisci-Radulescu [14] for ®-Laplacian type equations.

The rest of the paper is organized as follows. In Section 2 we recall basic defini-
tions and results on Musielak-Orlicz Sobolev spaces and the double phase operator
1.2, and we state the abstract critical point theorem. In Section 3, we prove a
Hopf’s Lemma for double phase problems and construct a subsolution for problem
(1.3). Finally, in Section 4, we provide the proof of Theorem 1.1 and present a
nontrivial example illustrating its applicability.

2. PRELIMINARIES

In this section, we recall the main properties of Musielak-Orlicz spaces and the
double phase operator (1.2). Most of the results presented here are taken from
Crespo-Blanco—Gasiriski-Harjulehto-Winkert [19], Liu-Dai [27] and Papageorgiou—
Winkert [10]. First, we denote by L"(Q2) and L"(Q;R") the standard Lebesgue
spaces equipped with the norm || - ||, for every 1 < r < oco. For 1 < r < oo, W17 ()
and W,"" () denote the usual Sobolev spaces endowed with the norms || - |1, and
I lli,r0 = IV |, respectively.

Let M(Q) the space of all measurable functions u: @ — R and H: Q x [0,00) —
[0,00) be the function defined by

H(x,t) =t + p(x)td.
Then, the Musielak-Orlicz space L* () is defined by
LM(Q) = {u e M(Q): py(u) < +oo}

equipped with the Luxemburg norm
[|ull3 = inf {7' >0:py (B) < 1}’
T

where the modular function py(+) is given by

pulw) = [ HeaJul)do = [ (ul’ + u(o)lul?) . (2.1)
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The Musielak-Orlicz Sobolev space W1 #(Q) is defined by
WhH(Q) = {u e L™(Q): |Vu| € L7 (Q)}
equipped with the norm
lullyae = IVulla + llull3,
where ||[Vully = |||Vu||l3. Moreover, the completion of C§°(2) in WLH(Q) is
denoted by Wy '"(Q). The spaces L*(Q), WhH(Q), and W, 7 (Q) are reflexive and
separable Banach spaces. We equip the space WO1 H(Q) with the equivalent norm
[ull = [[Vull.-
We have the following continuous embedding
W Q) = WP(Q). (2.2)
The norm || - ||% and the modular function py are related as follows, see Liu—Dai
[27, Proposition 2.1].
Proposition 2.1. Let (H)(i) be satisfied, y € L™(Q) and py, be defined by (2.1).
Then the following hold:

() Ify# 0, then [yl = X if and only if pr (%) = 1;
lyllg <1 (resp.> 1, =1) if and only if px(y) <1 (resp.>1, =1);

(i)

(i) If lylls < 1, then ||yll3, < pn(y) < |lyll5;
(iv) If lyllae > 1, then [lyll3, < pu(y) < llyll3;;
() llyllze — 0 if and only if px(y) — 0;

(vi) |lyllx = +oo if and only if py(y) — +oo.

Let A: W)™ (Q) — Wy (Q)* be the nonlinear map defined by
(A(u),v) :== / (|VulP~2Vu + p(z)|Vul|?T*Vu) - Vodz (2.3)
Q

for all u,v € W(}’H(Q), where (-, - )3 is the duality pairing between Wol’H (©) and
its dual space Wy " (Q)*. The operator A: Wy " (Q) — Wy '*(Q)* has the following
properties, see Liu—Dai [27].

Proposition 2.2. Let (H)(i) be satisfied. Then the operator A defined in (2.3) is

bounded, continuous, strictly monotone, coercive, a homeomorphism and fulfills the
(S4)-property, that is,

Up = U in W&’H(Q) and limsup (A(uy), un, —u) <0,

n—oo
imply u, — u in Wy ().
Next, we recall the definition of the (PS)-condition

Definition 2.3. Let X be a real and reflerive Banach space and J € C'(X).
The functional J is said to satisfy the (PS).-condition if, for c € R, any sequence
{un},en 0 X such that

J(up) = ¢ and J'(up) — 0, (2.4)

admits a convergent subsequence. Any sequence satisfying (2.4) is called a (PS).-
sequence. The functional J is said to satisfy the (PS)-condition if and only if it
satisfies the (PS).-condition for all ¢ € R.
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The main theoretical tool of this paper is the following critical point theorem
due to Bonanno [12, Theorem 2.1], see also the works by Ricceri [43, 44],

Theorem 2.4. Let X be a reflexive and separable real Banach space, and let
I, K: X — R be two Fréchet differentiable functionals satisfying the following con-
ditions:
(i) there ezists wo € X such that I(wg) = K(wo) = 0 and I(w) > 0 for every
w e X;
(ii) there exists wn € X, p > 0 such that
sup K(w
K(wl) I(w)zp ( )
I(wn) p ,
(iil) the functional I — AK is sequentially weakly lower semicontinuous and sat-
isfies the (PS)-condition;
(iv)  lim (I(w) — AK(w)) = +o0, for each A € [0,b], where

I(wy) >p and

llw||—+o0
P .
b= with v > 1.
If((ﬁl)) — sup K(w)
! I(w)<p

Then, there exist an open interval A C [0,b] and a number M > 0 such that for
each A € A the equation I'(w) — AK'(w) = 0 admits at least three solutions in X
having norm less than M.

3. HOPF’S LEMMA AND CONSTRUCTION OF A SUBSOLUTION

In this Section we give first a Hopf’s Lemma related to our problem and based on
this, we construct a subsolution to problem (1.3). To this end, for 0 < h € LY ()
with ¢ > N, we consider the problem

—div (|VuP?Vu + p(z)|Vu|! ?Vu) = h(z) inQ, u=0 on . (3.1)

We say that u € WH7(Q) is a weak subsolution of problem (3.1) if u < 0 on 9%,
and if

/ (|Vu\p_2Vu + u(a:)|Vu|q_2Vu> -Vodz < / h(z)vdx
Q Q

is fulfilled for all v € Wy " (Q) with v > 0.
First, we prove the following Hopf’s Lemma.

Proposition 3.1. Let hypothesis (H)(i) be satisfied and u be a solution of (3.1)
such that u > 0 a.e.in Q0 and u does not vanish identically on Q. For xg € 01,
assume u € CH(QU {z0}) and u(xg) = 0. Then

where v is the interior unit normal of 0Q at xq.

Proof. First, we choose R > 0 small enough such that B(z1,2R) C © and z( €
0B(z1,2R), where 1 = 29 + 2Rv. Let Q; = {z € Q: R < |z — 21| < 2R} and
k = inf{u(z): |z — z1] = R}. From Theorem 3.3 by Liu-Dai [28] it follows that
k > 0. Note that if R — 0, then 1 tends to x¢. Thus, we have

K
—0 d — —0.
K an R
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We define
M = sup{|Vu(z)|: = € 01} K——ln<£)+E+M
— p 1% . 15, - R R
and
K (ezﬁl - 1)
v(s) = —E for all s € [0, R].
=1 —1
We see at once that v(0) = ( ) = K,
Tﬁ €’f’l 14
v(s) =, V(s) = v'(s) (3:2)
er-1 —1 p—1
and
£>0, 0<'(s)<1, forallse(0,R) (3.3)

provided R is sufficiently small.
For simplicity, set ;7 = 0. We write » = |z| and s = 2R — r. Obviously if
r € [R,2R], then s € [0, R]. Setting

w(r) =v(2R —r) = v(s),

we can see that

Now we define
w(zr) =w(r) forany xz € Oy and |z| =r.
Then it follows from (3.2) and (3.3) that
div (|Vw|[P2Vw + p(x )|Vw|q_2Vw)
N — _
= (p— 1) [/ (n)["* " (r) + —| ‘()" ()

+ () (g — 1) ! (r) 77 — L ()72 (r)

W () + )™

+ [ ()| 7w () Z aau &L

= (0= D) 050 (s) — Tt (W) g — 1) ()2 (s)
M W) )T g

> (- X2 @ u (e ) e - M)

> (0= T - ) @ ) (A= ) e

> (~In %) (14 (@) ()" >0,

Therefore, we obtain

—div (|VwP?Vw + p(z)|[Vw|T*Vw) — h(z) <0,
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which implies that w is a subsolution of (3.1) in Qy satisfying w(xg) = 0 and

9 (79) > 0. Now we can use Lemma 3.2 of Liu-Dai [25] to conclude that u > w in

. Since u(xg) = w(zg) = 0, we have

u(xo + s(x1 — x9)) — u(wo) w(xo + s(x1 — x0)) — w(xp)

lim > lim

s—0t S s—0+ S
= Vw(zo) - (1 — x0)
= Vw(xo) - 2Rv

0
= QR%(mo) > 0.

The left-hand side is equal to ZR%(zo) and so %(xo) > 0. This completes the

proof of the proposition. O

Lemma 3.2. Let hypotheses (H)(i)—(iv) be satisfied. Then there exists a subsolu-
tion u € WHH(Q) of (1.3) such that u(x) > 0 for all A € (0,+00), u™ € L?(Q)
with ¥ > N and ||u|lo < so, where sg > 0 is given by (H)(iv).

Proof. Using (H)(ii), we can get that the problem
—div (|Vo]P2Vo + p(z)|Vo|??Vo) = Aé(z) inQ, v=0 ondN.

has a unique positive solution v € Wy 7 (Q) since A: W™ (Q) — Wy (Q)* is a
homeomorphism, see Proposition 2.2. Furthermore, v € C#(Q) since Wy 7 (Q) <
WyP(Q) < C%P(Q) for p > N and € € C%#(Q), see (2.2). By Proposition 3.1, we
know that % > 0 on 0f2, where v is the interior unit normal on 02.
We claim that there exists a constant C such that
Cv(z) > go(z) for all z € Q,

where go is given in (H)(iii).

Let zp € 99 and choose z € (2 near xg such that x — x¢ is in the direction of v.
Since % > 0 on 9N and % is a continuous function on §2, there exists a constant
g0 > 0 such that %(m) > ¢g¢ for all & near zo. By (H)(iii), it clear that there is a
constant M > 0 such that %(m) < M for all z € Q. Thus we can find a constant
C = (M +1)/ep such that
v dgo
—_— > —_ R
5, @) > 5, (@)
for all x near zy. Combining the fact that v, gy € Wol’H (©) and v(zo) = go(xo) =0
for z¢ € 012, we integrate the above inequality from xg to = along v, that is

/ cavs [0,
wo OV zo OV

Co(z) > go(z), forxz e

c

This implies

and so

Cv(z) > go(z), forz € Q.
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By this inequality and hypothesis (H)(iii), we have o= < C%gy* € L?(Q),
so &v™* € LY(Q). We take ¢ > 0 small enough such that u = e7 Ty satisfies
0 < u(z) < min{1,s0}. Thus u=® € L?(Q). We then get

/ (IVul’ 2V + p(@)|Vul* V) - Vao de
Q

= (/Q (\VUV’_QVU + agu(x)Wv\q_QVv) -Vgo dx) < eXé(z).
Combining (H)(iv) with the fact ||ullc < 1, we have

— div (|VulP7?Vu + p(2) V|2 Vu) = A(x)u™(z) — Af (2, u(z))

S A(@)(e—1—-¢) <0
whenever A € [0,00). Thus u is a subsolution of (1.3). O
Corollary 3.3. Let hypotheses (H)(i)—(iv) be satisfied. If u is a solution of (1.3),

then u(z) > u(zx) for a.a.x € Q and for all A € (0,400), where u is given in Lemma
3.2.
4. THREE DISTINCT SOLUTIONS
In this section we are going to prove Theorem 1.1. First, we define
e PN
and consider the problem
—div (|VuP?Vu + p(z)|Vul!*Vu) = Ag(z,u) inQ, wu=0 indQ (4.1)
We denote by
I(u) = 1/ |Vu|P dz + 1/ w(x)|Vul?de, K(u)= / G(z,u)dx, (4.2)
b Ja qJq Q
where G(z,u) = [ g(z,t)dt, and write
Ja(u) = I(u) — AK (u).
The definition of g(-,-) and condition (H)(v) imply that for any € > 0,
l9(z,5)] < €u™ + 1 +elsP 7,

for a.a.xz € §, for all s € R and for some ¢; > 0. Consequently

Gl < | " lg( )] ds

< /u(fu_o‘ +cp +els|Ph)ds
: (4.3)

B €
=&u (u—u)+cr(u—u)+ 5(|U|p — [ul”)
<&u “u+cu+ §|u|p,
p

since u > 0. Using Lemma 3.2 and the embedding W, ™(Q) < L"(Q) for 1 <
r < 0o, we can see that G is integrable over ). Therefore Jy is well-defined and of
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class C''. Furthermore, by Corollary 3.3, any critical point of Jy is a positive weak
solution of problem (1.3).
We write

, 1
S = B(yo, Ro) \ B(yo,0Ro), uozrxnelgu(fcx p=<p+f>R§wN, (4.4)

where yo €  and Ry are defined in (H)(vi).

Lemma 4.1. Let hypothesis (H)(i) be satisfied. Then p/I (uy) is continuous with
respect to 0 in the interval [0,1). Moreover, there exists 6y € [0,1) such that

1 P
5 < I(ul)

Proof. By the definition of w1, we can deduce that

1 1
I(uy) = 5/ |Vuy [P do + 5/ w(x) |Vuq|Tde
Q Q

1 1(y) N\ pN
= 1—
(s + et ) -0 Al
for some y € B(yo, Ro) \ B(yo,0R0). Thus
1 + Ho
P _ p " a

7 = .
(1) (p(lia)lﬂ + q(llLYJB))Q> (1—0N)

This implies that p/I (uy) is continuous with respect to 6 in the interval [0,1).
Moreover, one has

<1. (4.5)

1 Ko
= + £
p —0 asf —1 and p - 2 1_ <1 asf—0
I (ul) 1 (ul) 1 + wy)
P q
Hence there exists 6y € [0,1) such that
1 P
- 1
2 = Tw) ©
This completes the proof. O

Lemma 4.2. Let hypotheses (H) be satisfied. Then the inequality

1
sup K(u) < K (up) <

L K .
I(u)<p 2 I(ul)K( ) (46)

holds true.

Remark 4.3. Let

(1+p)p .
PI;(%UE)) — SUp;(uy<, K ()
Then it follows from (4.6) that

b:

b < (I+p)p

S pII(((Z)ll)) _ %K(ul)

< +o00.
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Proof of Lemma /.2. By the definition of u; in (H)(vi) we know that uq(x) > u(x)
for all z € Q. Thus by the embedding W, ?(Q) < C%*(Q2), we get that

) < suplue)| < Julo < Clullygr = ( [ 190" ao)
€N Q
<o( [ 0var +u@ivur ac)”
Q

SC(q |Vu|pdx—|—q/u(a:)|Vu|qu>p
P Ja qJo

= C(qI(u))? < C(gp)? < ()

for all u € {u € Wy (Q): I(u) < p}. Moreover, by the definition of g and (H)(iv),
we have

1
(ap)®
sup K(u) = sup // (z,s dsdx<// g(x,s)dsdax. (4.7)
I(u)<p I(u)<p

Again (H)(vi) yields

C(ap) %
/ / (z,8)dsdx < = / / (z,s)dsdz. (4.8)
B(yo,Ro) C(fm)P

By the additivity of the integral over the domain, we obtain

Clap)? Clap)?
/ / g(z,s)dsdx = / / g(z,s)dsdx
QJu Q\B(yo,Ro) Ju
1
Clap)®
+/ / g(x,s)dsdx
B(yo,Ro) Ju

(4.9)

and

/ / L 9(z,8)dsdz
B(yo,Ro) Y C(ap)?
w Clap)®
= / / g(z,s)dsdx f/ / g(z,s)dsdzx.
B(yo,Ro) Ju B(yo,Ro) Ju

From (4.8), (4.9), and (4.10), we get that

1 Clan)? Clap)¥
7/ / g(z,s)dsdx + = / / g(z,s)dsdx
2 Jo\B(yo, Ro) B(yo, Ro)

C(qp%
/ / xsdsdx—f/ / g(z,s)dsdz,
B(yo,Ro) B(yo,Ro)

which implies

1 C(qp)% C(qp)%
7/ / g(z,s) dsdJ;—F/ / g(x,s)dsdx
2 Q\B(yo,Ro) Ju B(yo,Ro) Ju

(4.10)
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1 “
< f/ / g(x,s)dsdz.
2 B(yo,Ro) Ju
Hence

Clap)¥ Clan)?
/ / g(z,s)dsdx +/ / g(z,s)dsdx
Q\B(yo,Ro) Ju B(yo,Ro) Ju

1 w 1 Clap)®
< 5/ / g(x,S)dsdx+§/ / g(z,s)dsdx.
B(yo,Ro) Ju Q\B(yo,Ro) Ju

Consequently
C(QP)% 1 u1
// g(:r:,s)dsda?<f// g(x,s)dsdz. (4.11)
QJu 2 Ja u

From (4.5), (4.7) and (4.11) we see that (4.6) holds true. O

Lemma 4.4. Let hypotheses (H) be satisfied. Then, for all A > 0, the functional
Jy 1s sequentially weakly lower semicontinuous and satisfies the (PS)-condition.
Furthermore, it is coercive for all X € (0,b], where b is given in Remark 4.3.

Proof. The proof is divided into four steps.
Step 1: K is weakly continuous, i.e., if u,, — u, then K(u,) — K(u).

Let uw, — u in Wol’H(Q). The embedding WOH{(Q) < W, () is continuous
(see (2.2)) and W, P (Q) < C(Q) is compact since p > N. Thus u, — u in C ().
This implies that u,, converges uniformly to u in 2 as n — oo.

Using Lemma 3.2 and the embedding W&’H(Q) — L™(Q) for 1 < r < oo, we
can see that the right-hand side of (4.3) is integrable over © and thus G(x,u,) has
equi-absolutely continuous integrals. From Vitali’s convergence theorem it follows
that

K(un):/QG(x,un)dx—>/QG(:mu)dm:K(u).

Step 2: J, is sequentially weakly lower semicontinuous.

Clearly, I is sequentially weakly lower semicontinuous by Fatou’s lemma. This
together with Step 1 implies that Jy is sequentially weakly lower semicontinuous
as well.

Step 3: J) satisfies the (PS)-condition.

For every ¢ € R, let {un}tnen C We () be a (PS).-sequence, see Definition

2.3. We claim that {u, }ney is bounded in Wy 7 (Q). Indeed, If |u,| < 1, we are
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done. Let ||uy|| > 1. Then, from (4.3) and Proposition 2.1(iv) we have that
c+o(1) > Ja(uy)

1 1
= 7/ |Vun|pdx+f/ u(x)|Vun|qu—/\/ G(z,uy,)dx
P Jo q.Jq Q

v

1
Dl = [ (Clun+§uaun+ 5|un|p> da
q Q p

1 ene . (4.12)
> ( B ) nll” = e Allun 13 = A€t lm [l me

q p

1 CoAE
> (122 e — el - b

q p

1 Co\E _
=||un||((q— g )uunnp 1—03)\—c4>\>.

Taking € < p/ (gca ) gives us the boundedness of {uy, tnen in Wol’H (©). Then, for
a subsequence if necessary, not relabeled, we can assume u,, — u in VVO1 H (). As
in the proof of Step 1, we can show that K’ is completely continuous. This means
that if u, — u, then K'(u,) — K'(u). Since J}(un) = I'(u,) — K'(uy,) — 0, one
has that I'(u,) — K'(u). Therefore, it follows that u,, — u because I’ is a mapping
of type (S4), see Proposition 2.2.
Step 4: J) is coercive for 0 < A < b.

From (4.12) we can easily conclude that Jy is coercive. O

Now we can give the proof of Theorem 1.1.

Proof of Theorem 1.1. We take wy = 0 € Wy " (Q) and the hypothesis (i) in The-
orem 2.4 is satisfied. We come to verify hypothesis (ii) in Theorem 2.4 and choose
a subset Q, = {z € Q: dist(z,00Q) > 1/n} C Q for n > 1. Then, for all € > 0 we
can find ng > 0 such that for n > ng we have m(2\ Q,,) < &, where m denotes the
Lebesgue measure on RY. Let

if (O ), if x| <1,
sy = [ € ) feew () il <

0, ifxeQ\Q, 0, if x| > 1,
where

o 1
Jimj<r exp (Ir\%—l) dx
We define
on(x) =nNp(nz), forz e RY and (p, *ul) (z) = / on(z — y)ul(y) dy.
Q

Then supp(pn * uf) = {z: (pn *ul)(2) # 0} C Q, (@5 *uf) € C§°(Q) and (o, *
ul)(x) = ur(z) as n — oo for a.a.z € Q. By Lebesgue’s dominated convergence
theorem and (4.3), we have

K(gpn*u?):/QG(a:,gon*u?)dx—>/QG(x,u1)dx=K(u1). (4.13)



14 W. LIU, H. FENG, Y. SUN, AND P. WINKERT

By the properties of the mollification and the definition of u}, we can get that

1 1
e @F e [ @)V ) (@) da
Q\Q,, O\Qy,

p q
1 n p 1 n q
—— [ en V) @F de+~ [ ) |+ Vap) (@)] da
P Ja\a, q Jo\qQ,
p 1 q
< — | dz+||p oo/ — | dz
/sz\nn 1-06 o a\e, |[1—0

= (1= 0) 7m0\ ) + e (1= ) m(2\ 2)
< (=07 + e (1-0)")e

whenever n > ng. Therefore, we have
I(pn xul) = I(uy). (4.14)

From (4.13) and (4.14), for every € > 0, we can choose ng sufficiently large such
that

pnxuy)  I(u)

’K(% xuy)  K(u)
I(

€
< =, forn > ny.
p

So if
p
€= K(uy) — sup K(u),
I(u1) I(w)<p
then
K(w)  K(py»up) p
—-p - <e= K(uy) — sup K(u).
M) " Tlpwru) ~ 7 T 07 o, B
This implies
K(pn * uy)
sup K(u) < p————=, for n > ny.
I(u)<p I(SDTL * u?)

In Theorem 2.4 we choose w; = @y *uf € WOM{(Q) for some n > ng. This together
with Lemma 4.1, we can deduce that hypothesis (ii) is satisfied.

According to Lemma 4.4, assumptions (iii) and (iv) of Theorem 2.4 also hold.
Thus there exist an open interval A C [0,b] and a number M > 0 such that for each
A € A, the equation J}(u) = I'(u) — AK'(u) = 0 admits at least three solutions in
Wy (Q) having Wy 7 (€2)-norms less than M. From Corollary 3.3, it follows that
the three solutions are positive. This concludes the proof. (I

Finally, we give an example in order to verify the applicability of Theorem 1.1.

Example 4.5. Let Q = (-2,2), £(z) =52* +1, p=2, ¢ = 4, u(z) = 22 and let
f: QxR — R be defined as

- {9368, if s <6,

I,S .
I V54 93e8 — /6, if s> 6.



QUASILINEAR ELLIPTIC EQUATIONS WITH SINGULAR PERTURBATION 15

We consider the problem
- (v + x2|u’|2u’), =A[(5z" + D)u™ + f(z,w)], z€(-2,2),
u>0 x € (-2,2), (4.15)
u =0, x € {-2,2}.
Let co =1 and so = 1 be as in condition (H)(iv). From the definition of f, we have
f(z,s) =93e® > co€(x) >0, forsel0,1].
Obviously, [ satisfies the condition (H)(v). Next, we will show that f satisfies the
condition (H)(vi).
Consider
— (u’+x2|u’|2u’)/:5x4+1, z € (-2,2),
u >0, z € (-2,2), (4.16)
u=0, z e {-2,2}.

We can show that v = 472;102 is the solution of (4.16) with ||v||e = 2. If we choose

e <1/4 and u = ev, we obtain

1
ulloo = ellvlloc = 2¢ < 5 < 1.

So let ¢ = 1/4. From the result of Lemma 3.2, i.e. &(x)u™® € LY((—2,2)) with
9> 1, and &(z) = bzt + 1, if we let ¥ = 2, we have u= € L*((—2,2)). Considering

this fact and u = 4_89”2 , we can choose a < 3 such that f_22 5t —l—l)y “2dz < oco.

Indeed, this is possible since
2 2 2 5
_ 8 _ 2 dn
5zt + w2 d <81/ ——dr=81x4! 2a82°”/ —_—
/_2 |( T+ )Q | T > Ly (4 _ 3;‘2)20‘ L x 0 (COS n)4o¢—1

and we can choose 4o — 1 < 1 such that

/ Py <+
—_— Q.
o (cosn)te—l

Now we choose a = 1/8, and denote

(2.5) (52* 4+ 1)s~5 + 93¢, ifu<s<6,
T,8) = ,

g (5% + 1)s™5 4+ /s + 93¢ — /6, if s> 6,
Gz, fgmsdsK f G(x,u)dx and

_ 1 /12 1 2 21,114
I(u) = |u| dz + z|u|* de.
2 —2 4 —2
Note that

2u(x)/Zu'(s)ds/:u’(s)dsg/z |u’(s)|d3+/: (o (s)] ds
:/22 I (s)] ds < (/22 dt)é (/Zu’(t)ﬁdt); :2(/2 |u’(t)|2dt>é.

Thus we have

lulle—2,2) < llullys -
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This implies that C' =1 in (H)(vi). Taking Ry = 3/2 and 0 = 1/4 in (H)(vi), we

obtain that
2
(1w (1 () 3, 1233
p(zoJrq)Rowl<2+ 1) X233 s

Consequently

|eo

274, ifze(-2,-3)u(3,2),
z+3)+ 3214, ifxe (-3, -
(
(

Wik =
—~

ui(z) =

-3+ EV214 ifze (23,
3./ 3 :

and

1
I(uy) = = |u’1|2dx—|—f/x2|u’1|4da:
¢ 4 Jo

1 —342(1 1 —3442(1
—2/_3 (3) “1/_; (3) va
3 3

2

Hence

1
1>-—F _=——s
I(uy) 640 ~ 2

Additionally, we can calculate that

3w
/ / [(5m4 + 1)3_% + 9365} dsdz
—sJs o7

3 T
2 |8 z 8 3 B
= / [7(5334 +1)ud + 93" — e (16\/274) (52" +1) — 936136V274] dz
3
T2

_3 %
:/ ) lS (;1 (a:+g) +136\/274> (5% + 1) + 93¢3 (#73) 45 274] dz

3 ;
+/8 [i (‘;’+136\/274> (5x4+1)+9363+fev274] dz
4 3. 3 L (e 3)+ 2V
—g(x—§)+ﬁv274 (5z* +1) +93e73\72)71s dz

%
274> (5zt +1) + 9365’6”74] dw

(4.17)



QUASILINEAR ELLIPTIC EQUATIONS WITH SINGULAR PERTURBATION

2 3./274
/ / (5" +1)s7# + 98¢°] dsda

16
~ 7958.02.
From (4.17) and (4.18), we have

3w
. /3 - ((5x4 +1)s7F 4 f(x,s)) dsdz
3 /16V

2 V274 L
> / / ((52* +1)s78 + f(=,s))dsda,
—2Ju

2 z )
8 (3 vam1) (pat +1) + 935V _ (504 11 u® — 93et| dz
7 7

-2

17

(4.18)

which implies that the condition (H)(vi) holds. Therefore, according to Theorem
1.1, problem (4.15) has at least three bounded positive solutions for A < b. Further-

more, we can calculate
K(ul)

= /2 G(z,uy) dz

-2
2 U1 1
- / / {(59# F1)sE 4 9368} dsdz
—2Ju
2 “

dz

oo

= / {(5374 + 1)s§ + 93€S:|
-2

-~

4—z2

2 2\ §
z 8 4 — 8
:/ [ (5x4+1)u§+936“17(5x4+1)( 8:':) — 93¢

dx

_

~ 19534.48.
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Consequently

b (L+p)p (L+p)p
K(uy) K (u1)

B 1 ~ 0.00296.
P I(uy) Sup](u)<p K(u) 14 T(u1) §K(’U,1)

This means that our results are valid only when X is sufficiently small.

ACKNOWLEDGMENT

W. Liu was supported by Shandong Provincial Natural Science Foundation Gen-
eral Project (Grant No. ZR2024MA021).

(1]
(2]
(3]

(4]

(10]
(11]
(12]
(13]

14]

(15]
(16]
(17]
(18]

(19]

20]

21]

REFERENCES

J.A.D. Ackroyd On the laminar compressible boundary layer with stationary origin on a
moving flat wall, Math. Proc. Cambridge Philos. Soc. 63 (1967), no. 3, 871-888.

R. Aris, “The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts”,
Clarendon Press, Oxford University Press, 1975.

A. Arora, G. Dwivedi, Existence results for singular double phase problem with variable
exponents, Mediterr. J. Math. 20 (2023), no. 3, Paper No. 155, 21 pp.

R. Arora, A. Fiscella, T. Mukherjee, P. Winkert, On double phase Kirchhoff problems with
stngular nonlinearity, Adv. Nonlinear Anal. 12 (2023), no. 1, Paper No. 20220312, 24 pp.
A. Bahrouni, V.D. Radulescu, D.D. Repovs, Nonvariational and singular double phase prob-
lems for the Baouendi-Grushin operator, J. Differential Equations 303 (2021), 645-666.

Y. Bai, L. Gasiniski, N.S. Papageorgiou, Singular double phase equations with a sign changing
reaction, Commun. Nonlinear Sci. Numer. Simul. 142 (2025), Paper No. 108566, 12 pp.

Y. Bai, N.S. Papageorgiou, S. Zeng, Parametric singular double phase Dirichlet problems,
Adv. Nonlinear Anal. 12 (2023), no. 1, Paper No. 20230122, 20 pp.

P. Baroni, M. Colombo, G. Mingione, Harnack inequalities for double phase functionals,
Nonlinear Anal. 121 (2015), 206-222.

P. Baroni, M. Colombo, G. Mingione, Non-autonomous functionals, borderline cases and
related function classes, St. Petersburg Math. J. 27 (2016), 347-379.

P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase,
Calc. Var. Partial Differential Equations 57 (2018), no. 2, Art. 62, 48 pp.

P. Baroni, T. Kuusi, G. Mingione, Borderline gradient continuity of minima, J. Fixed Point
Theory Appl. 15 (2014), no. 2, 537-575.

G. Bonanno, Some remarks on a three critical points theorem, Nonlinear Anal. 54 (2003),
no. 4, 651-665.

G. Bonanno, G. Molica Bisci, Three weak solutions for elliptic Dirichlet problems, J. Math.
Anal. Appl. 382 (2011), no. 1, 1-8.

G. Bonanno, G. Molica Bisci, V.D. Radulescu, Ezistence of three solutions for a non-
homogeneous Neumann problem through Orlicz-Sobolev spaces, Nonlinear Anal. 74 (2011),
no. 14, 4785-4795.

S.-S. Byun, J. Oh, Regularity results for generalized double phase functionals, Anal. PDE 13
(2020), no. 5, 1269-1300.

M. Colombo, G. Mingione, Bounded minimisers of double phase variational integrals, Arch.
Ration. Mech. Anal. 218 (2015), no. 1, 219-273.

M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Ration.
Mech. Anal. 215 (2015), no. 2, 443-496.

M.G. Crandall, P.H. Rabinowitz, L. Tartar, On a Dirichlet problem with a singular nonlin-
earity, Comm. Partial Differential Equations 2 (1977), no. 2, 193-222.

A. Crespo-Blanco, L. Gasinski, P. Harjulehto, P. Winkert, A new class of double phase
variable exponent problems: Existence and uniqueness, J. Differential Equations 323 (2022),
182-228.

C. De Filippis, G. Palatucci, Hélder regularity for nonlocal double phase equations, J. Differ-
ential Equations 267 (2019), no. 1, 547-586.

G. Failla, L. Gasinski, N.S. Papageorgiou, M. Skupien, Ezistence and uniqueness of solutions
for singular double phase equations, Appl. Anal., 2025.



(22]

23]

24]
[25]
[26]
27)
(28]

29]

30]

(31]

[32]
[33]
[34]
[35]

(36]

37]
(38]
(39]
[40]
[41]
[42]
[43]

[44]
[45]

[46]
[47]

(48]

QUASILINEAR ELLIPTIC EQUATIONS WITH SINGULAR PERTURBATION 19

C. Farkas, P. Winkert, An ezistence result for singular Finsler double phase problems, J.
Differential Equations 286 (2021), 455-473.

P. Garain, T. Mukherjee, On an anisotropic double phase problem with singular and sign
changing nonlinearity, Nonlinear Anal. Real World Appl. 70 (2023), Paper No. 103790, 28
pp-

U. Guarnotta, P. Winkert, Degenerate singular Kirchhoff problems in Musielak-Orlicz spaces,
Nonlinear Anal. 264 (2026), Paper No. 113986, 17 pp.

J. Han, Z. Liu, N.S. Papageorgiou, A singular double phase eigenvalue problem with a super-
linear indefinite perturbation, Nonlinear Anal. 262 (2026), Paper No. 113941, 21 pp.

A. Kristély, H. Lisei, C. Varga, Multiple solutions for p-Laplacian type equations, Nonlinear
Anal. 68 (2008), no. 5, 1375-1381.

W. Liu, G. Dai, Ezistence and multiplicity results for double phase problem, J. Differential
Equations 265 (2018), no. 9, 4311-4334.

W. Liu, G. Dai, Three ground state solutions for double phase problem, J. Math. Phys. 59
(2018), no. 12, 121503, 7 pp.

W. Liu, G. Dai, N.S. Papageorgiou, P. Winkert, Ezistence of solutions for singular double
phase problems via the Nehari manifold method, Anal. Math. Phys. 12 (2022), no. 3, Paper
No. 75, 25 pp.

Z. Liu, N.S. Papageorgiou, Singular double phase equations, Acta Math. Sci. Ser. B (Engl.
Ed.) 43 (2023), no. 3, 1031-1044.

W. Liu, P. Winkert, Combined effects of singular and superlinear nonlinearities in singular
double phase problems in RN, J. Math. Anal. Appl. 507 (2022), no. 2, Paper No. 125762, 19
pp-

P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth con-
ditions, J. Differential Equations 90 (1991), no. 1, 1-30.

P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non-
standard growth conditions, Arch. Rational Mech. Anal. 105 (1989), no. 3, 267-284.

J. Ok, Regularity for double phase problems under additional integrability assumptions, Non-
linear Anal. 194 (2020), 111408, 13 pp.

N.S. Papageorgiou, Z. Peng, Singular double phase problems with convection, Nonlinear Anal.
Real World Appl. 81 (2025), Paper No. 104213, 10 pp.

N.S. Papageorgiou, V.D. Radulescu, S. Yuan, Nonautonomous double-phase equations with
strong singularity and concave perturbation, Bull. Lond. Math. Soc. 56 (2024), no. 4, 1245—
1262.

N.S. Papageorgiou, V.D. Radulescu, Y. Zhang, Anisotropic singular double phase Dirichlet
problems, Discrete Contin. Dyn. Syst. Ser. S 14 (2021), no. 12, 4465-4502.

N.S. Papageorgiou, V.D. Radulescu, Y. Zhang, Strongly singular double phase problems,
Mediterr. J. Math. 19 (2022), no. 2, Paper No. 82, 21 pp.

N.S. Papageorgiou, D.D. Repovs, C. Vetro, Positive solutions for singular double phase prob-
lems, J. Math. Anal. Appl. 501 (2021), no. 1, Paper No. 123896, 13 pp.

N.S. Papageorgiou, P. Winkert, “Applied Nonlinear Functional Analysis”, Second Revised
Edition, De Gruyter, Berlin, 2024.

M.T.O. Pimenta, P. Winkert, Strongly singular problems with unbalanced growth, Ann. Mat.
Pura Appl. (4) 204 (2025), no. 5, 2129-2145.

M.A. Ragusa, A. Tachikawa, Regularity for minimizers for functionals of double phase with
variable exponents, Adv. Nonlinear Anal. 9 (2020), no. 1, 710-728.

B. Ricceri, A further refinement of a three critical points theorem, Nonlinear Anal. 74 (2011),
no. 18, 7446-7454.

B. Ricceri, On a three critical points theorem, Arch. Math. (Basel) 75 (2000), no. 3, 220-226.
J. Shi, M. Yao, On a singular nonlinear semilinear elliptic problem, Proc. Roy. Soc. Edin-
burgh Sect. A 128 (1998), no. 6, 1389-1401.

I. Sim, B. Son, On a class of singular double phase problems with nonnegative weights whose
sum can be zero, Nonlinear Anal. 237 (2023), Paper No. 113384, 22 pp.

Y. Sun, S. Wu, An ezxact estimate result for a class of singular equations with critical expo-
nents, J. Funct. Anal. 260 (2011), no. 5, 1257-1284.

Y. Sun, S. Wu, Y. Long, Combined effects of singular and superlinear nonlinearities in some
stngular boundary value problems, J. Differential Equations 176 (2001), no. 2, 511-531.



20 W. LIU, H. FENG, Y. SUN, AND P. WINKERT

[49] L. Zhao, Y. He, P. Zhao, The ezistence of three positive solutions of a singular p-Laplacian
problem, Nonlinear Anal. 74 (2011), no. 16, 5745-5753.

[60] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, lzv.
Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675-710.

(W. Liu) SCHOOL OF MATHEMATICS AND INFORMATION SCIENCES, YANTAI UNIVERSITY, YANTAI
264005, SHANDONG, P.R. CHINA
Email address: 1iuwulmath@ytu.edu.cn

(H. Feng) SCHOOL OF MATHEMATICS AND INFORMATION SCIENCES, YANTAI UNIVERSITY, YANTAI
264005, SHANDONG, P.R. CHINA
Email address: 3081155106@qq . com

(Y. Sun) SCHOOL OF MATHEMATICS AND INFORMATION SCIENCES, YANTAI UNIVERSITY, YANTAI
264005, SHANDONG, P.R. CHINA
Email address: sunyingjie08@163.com

(P. Winkert) TECHNISCHE UNIVERSITAT BERLIN, INSTITUT FUR MATHEMATIK, STRASSE DES
17. JuN1 136, 10623 BERLIN, GERMANY
Email address: winkert@math.tu-berlin.de



	1. Introduction
	2. Preliminaries
	3. Hopf's Lemma and construction of a subsolution
	4. Three distinct solutions
	Acknowledgment
	References

