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Abstract. In this paper, we study parametric quasilinear elliptic equations

driven by the double phase operator, where the right-hand side consists of a
singular term and a sublinear term. By combining a new Hopf’s Lemma with

truncation techniques and an abstract critical point theorem, we establish the

existence of three bounded positive solutions and provide an explicit upper
bound for the parameter.

1. Introduction

The following functional prototype was first introduced and investigated by
Zhikov [50] in the context of strongly anisotropic materials:

u 7→
∫
Ω

(
|∇u|p

p
+ µ(x)

|∇u|q

q

)
dx, (1.1)

where 1 < p < q and µ ∈ L∞(Ω) is a nonnegative weight function. The associated
Euler-Lagrange operator is the so-called double phase operator, given by

div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
. (1.2)

According to Marcellini’s terminology [32, 33], the functional (1.1) belongs to the
class of integral functionals with non-standard growth conditions. Its energy density
exhibits ellipticity of order q at points x ∈ Ω where µ(x) > 0, and ellipticity of order
p at points where µ(x) = 0. Furthermore, the energy density associated with (1.1)
can also serve to model the viscosity coefficients of certain non-Newtonian fluids,
see Liu–Dai [28] for further details. For a mathematical study of such integral
functionals with (p, q)-growth we refer to the works of Baroni–Colombo–Mingione
[8, 9, 10], Baroni–Kuusi–Mingione [11], Colombo–Mingione [16, 17], Byun–Oh [15],
De Filippis–Palatucci [20], Marcellini [32, 33], Ok [34], Ragusa–Tachikawa [42] and
the references therein.

Given a bounded domain Ω ⊆ RN , N ≥ 1 with boundary ∂Ω of class C1,1, in
this paper we study quasilinear elliptic equations involving singular terms of the
form

− div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
= λ

(
ξ(x)u−α + f(x, u)

)
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.3)
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where λ is positive parameter and the following conditions are supposed:

(H) (i) N < p < q and 0 ≤ µ(·) ∈ C0,1(Ω);

(ii) 0 < α < 1, ξ ∈ C0,β(Ω) for some 0 < β ≤ 1 and ξ(x) > 0 for all x ∈ Ω;

(iii) there exist 0 ≤ g0(·) ∈ C1
0 (Ω) and ϑ > N such that ξ(·)g0(·)−α ∈

Lϑ(Ω).

(iv) f : Ω×[0,∞) → R is a Carathéodory function and there exist constants
s0 > 0, c0 > 0 such that f(x, s) ≥ c0ξ(x) for some s ∈ [0, s0] and for
a.a.x ∈ Ω;

(v) lim
s→+∞

f(x,s)
|s|p−1 = 0 uniformly for a.a.x ∈ Ω;

(vi) there exists an open ball of radius R0 centered at y0, denoted by
B(y0, R0) (⊂ Ω), such that the inequality∫

B(y0,R0)

∫ u1

C(qρ)
1
p

(
ξ(x)s−α + f(x, s)

)
ds dx

>

∫
Ω

∫ C(qρ)
1
p

u

(
ξ(x)s−α + f(x, s)

)
ds dx

holds, where u is a subsolution of (1.3) given in Lemma 3.2 and u1 is
defined by

u1(x) =


C (qρ)

1
p , x ∈ Ω \B(y0, R0),

C (qρ)
1
p − 1

1−θ (|x| −R0) , x ∈ B(y0, R0) \B(y0, θR0),

C (qρ)
1
p +R0, x ∈ B(y0, θR0),

where 0 ≤ θ < 1, ρ > 0 is defined in (4.4), and C denotes the embed-

ding constant of W 1,p
0 (Ω) ↪→ C(Ω).

The occurrence of the singular term in (1.3) is motivated by various physical
models, including the motion of a body through a viscous fluid, the flow field above a
moving conveyor belt, shock waves propagating over smooth surfaces, heterogeneous
chemical catalysis, and glacial advance. For further discussion and related results,
we refer to Ackroyd [1], Aris [2], Crandall–Rabinowitz–Tatar [18], Shi–Yao [45],
Sun–Wu–Long [48], Sun–Wu [47], and the references therein.

In the literature, considerable attention has been devoted to singular double
phase problems of the form

− div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
= λξ(x)u−α + τf(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(1.4)

From a mathematical perspective, the presence of the singular term introduces
substantial and intriguing challenges. Liu–Dai–Papageorgiou–Winkert [29] studied
problem (1.4) in the case λ = 1 and f(x, u) = ur−1 with r > q, and established
the existence of two positive solutions whenever 0 < τ < τ∗ for a suitable τ∗ > 0.
Their result was generalized by Bai–Gasiński–Papageorgiou [6] to the case of a
general (q − 1)-superlinear nonlinearity f while Liu–Papageorgiou [30] considered
the setting ξ(·) = τ = 1 and f(x, u) = η(x)ur−1 with r > q, obtaining the same
multiplicity result as in [29]. Papageorgiou–Repovš–Vetro [39] investigated the case
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p > q, λ = 1, and f(x, u) = ur−1 with r > p, again deriving analogous conclusions.
In a related direction, Liu–Winkert [31] extended the analysis of [29] to the whole
space RN . Further refinements include the work of Bai–Papageorgiou–Zeng [7],
who considered ξ(·) = 1 and a (q − 1)-superlinear nonlinearity f . They showed
the existence of a bifurcation-type threshold τ∗ > 0 depending on λ, where λ has
to be sufficiently large, such that problem (1.4) admits at least two bounded pos-
itive solutions if 0 < τ < τ∗, at least one positive solution if τ = τ∗, and no
positive solution if τ > τ∗. Papageorgiou–Rădulescu–Zhang [37] studied (1.4) un-
der variable exponents p, q, α being Lipschitz continuous with 0 < α(x) < 1, and
proved a similar bifurcation phenomenon as in [7]. On the other hand, Failla–
Gasiński–Papageorgiou–Skupień [21] considered the case λ = τ = 1 with a (p− 1)-
sublinear nonlinearity f , proving the existence of a bounded positive solution and,
under an additional monotonicity assumption on f , its uniqueness. Papageorgiou–
Rădulescu–Yuan [36] analyzed (1.4) for α > 1, λ = τ = 1, and f(x, u) = η(x)ur−1

with r < p, establishing the existence of positive solutions while Papageorgiou–
Rădulescu–Zhang [38] addressed the case τ = 1, α > 1, and (q − 1)-superlinear
nonlinearities, and proved the existence of a positive solution for every λ > 0. In
addition, we point to other related investigations on the double phase operator
with singular nonlinearities, in particular the works by Arora–Dwivedi [3], Arora–
Fiscella–Mukherjee–Winkert [4], Bahrouni–Rădulescu–Repovš [5], Farkas–Winkert
[22], Garain–Mukherjee [23], Guarnotta–Winkert [24], Han–Liu–Papageorgiou [25],
Papageorgiou–Peng [35], Pimenta–Winkert [41], Sim–Son [46], see also the refer-
ences therein. We emphasize that all the above contributions concern the case
1 < p < N .

Inspired by the aforementioned works, we are led to the following natural ques-
tions:

(i) Is it possible to establish the existence of more than two solutions?
(ii) Can one obtain explicit estimates for the parameters ensuring the existence

of multiple solutions?

In this paper, for the sake of simplicity, we address the two questions stated
above in the context of problem (1.4) under the assumptions λ = τ and p > N ,
that is, for problem (1.3). As our analysis concerns weak solutions, we begin by

providing a precise definition of the concept. A function u ∈ W 1,H
0 (Ω) is said to be

a weak solution of problem (1.3), if ξ(·)u−αv ∈ L1(Ω), u(x) > 0 for a.a.x ∈ Ω and
if ∫

Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇v dx = λ

∫
Ω

(
ξ(x)u−α + f(x, u)

)
v dx

is satisfied for all v ∈ W 1,H
0 (Ω). Here W 1,H

0 (Ω) represents the Musielak-Orlicz
Sobolev space which will be introduced in Section 2.

Our main result reads as follows.

Theorem 1.1. Let hypotheses (H) be satisfied. Then there exist an open interval
Λ and a constant M > 0 such that for every λ ∈ Λ problem (1.3) has at least

three distinct positive solutions in W 1,H
0 (Ω), with their W 1,H

0 (Ω) norms less than
M . Furthermore, we have an estimate for the interval Λ, which is Λ ⊂ [0, b], where

b =
(1 + ρ)ρ

ρK(w1)
I(w1)

− sup
I(w)<ρ

K(w)
< +∞
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with I and K defined in (4.2).

The proof of Theorem 1.1 relies on truncation techniques combined with an
abstract critical point theorem (see Theorem 2.4). We begin by establishing a
Hopf’s Lemma for the double phase problem (3.1), which in turn allows us to con-
struct a subsolution u for problem (1.3). Having constructed the subsolution, we
truncate the right-hand side of (1.3) to handle the singular term, resulting in the
modified problem (4.1), and subsequently apply the abstract critical point theorem
to obtain three distinct solutions. A careful analysis of the proof further enables
us to determine an explicit upper bound for the parameter λ. We also present
an illustrative example in which the computed upper bound of the parameter is
approximately 0.00296, a relatively small value. This demonstrates that the mul-
tiplicity of solutions for singular double phase problems is highly sensitive to the
size of the parameters, particularly when they are sufficiently small. We note that
our paper extends the results of Zhao–He–Zhao [49] from the p-Laplacian to the
double phase setting. We also emphasize that the abstract critical point theorem
employed here has been widely used to study the multiplicity of solutions for a
variety of elliptic problems. For instance, we refer to Bonanno–Molica Bisci [13] for
Laplace equations, Kristály–Lisei–Varga [26] for p-Laplacian type equations, and
Bonanno–Molica Bisci–Rădulescu [14] for Φ-Laplacian type equations.

The rest of the paper is organized as follows. In Section 2 we recall basic defini-
tions and results on Musielak-Orlicz Sobolev spaces and the double phase operator
1.2, and we state the abstract critical point theorem. In Section 3, we prove a
Hopf’s Lemma for double phase problems and construct a subsolution for problem
(1.3). Finally, in Section 4, we provide the proof of Theorem 1.1 and present a
nontrivial example illustrating its applicability.

2. Preliminaries

In this section, we recall the main properties of Musielak-Orlicz spaces and the
double phase operator (1.2). Most of the results presented here are taken from
Crespo-Blanco–Gasiński–Harjulehto–Winkert [19], Liu–Dai [27] and Papageorgiou–
Winkert [40]. First, we denote by Lr(Ω) and Lr(Ω;RN ) the standard Lebesgue
spaces equipped with the norm ∥ ·∥r for every 1 ≤ r < ∞. For 1 < r < ∞, W 1,r(Ω)

and W 1,r
0 (Ω) denote the usual Sobolev spaces endowed with the norms ∥ · ∥1,r and

∥ · ∥1,r,0 = ∥∇ · ∥r, respectively.
Let M(Ω) the space of all measurable functions u : Ω → R and H : Ω× [0,∞) →

[0,∞) be the function defined by

H(x, t) = tp + µ(x)tq.

Then, the Musielak-Orlicz space LH(Ω) is defined by

LH(Ω) = {u ∈ M(Ω): ρH(u) < +∞}
equipped with the Luxemburg norm

∥u∥H = inf
{
τ > 0 : ρH

(u
τ

)
≤ 1
}
,

where the modular function ρH(·) is given by

ρH(u) :=

∫
Ω

H(x, |u|) dx =

∫
Ω

(
|u|p + µ(x)|u|q

)
dx. (2.1)
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The Musielak-Orlicz Sobolev space W 1,H(Ω) is defined by

W 1,H(Ω) =
{
u ∈ LH(Ω): |∇u| ∈ LH(Ω)

}
equipped with the norm

∥u∥1,H = ∥∇u∥H + ∥u∥H,

where ∥∇u∥H = ∥ |∇u| ∥H. Moreover, the completion of C∞
0 (Ω) in W 1,H(Ω) is

denoted by W 1,H
0 (Ω). The spaces LH(Ω), W 1,H(Ω), and W 1,H

0 (Ω) are reflexive and

separable Banach spaces. We equip the space W 1,H
0 (Ω) with the equivalent norm

∥u∥ = ∥∇u∥H.

We have the following continuous embedding

W 1,H
0 (Ω) ↪→ W 1,p

0 (Ω). (2.2)

The norm ∥ · ∥H and the modular function ρH are related as follows, see Liu–Dai
[27, Proposition 2.1].

Proposition 2.1. Let (H)(i) be satisfied, y ∈ LH(Ω) and ρH be defined by (2.1).
Then the following hold:

(i) If y ̸= 0, then ∥y∥H = λ if and only if ρH( yλ ) = 1;
(ii) ∥y∥H < 1 (resp.> 1, = 1) if and only if ρH(y) < 1 (resp.> 1, = 1);
(iii) If ∥y∥H < 1, then ∥y∥qH ≤ ρH(y) ≤ ∥y∥pH;
(iv) If ∥y∥H > 1, then ∥y∥pH ≤ ρH(y) ≤ ∥y∥qH;
(v) ∥y∥H → 0 if and only if ρH(y) → 0;
(vi) ∥y∥H → +∞ if and only if ρH(y) → +∞.

Let A : W 1,H
0 (Ω) → W 1,H

0 (Ω)∗ be the nonlinear map defined by

⟨A(u), v⟩ :=
∫
Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇v dx (2.3)

for all u, v ∈ W 1,H
0 (Ω), where ⟨ · , · ⟩H is the duality pairing between W 1,H

0 (Ω) and

its dual space W 1,H
0 (Ω)∗. The operator A : W 1,H

0 (Ω) → W 1,H
0 (Ω)∗ has the following

properties, see Liu–Dai [27].

Proposition 2.2. Let (H)(i) be satisfied. Then the operator A defined in (2.3) is
bounded, continuous, strictly monotone, coercive, a homeomorphism and fulfills the
(S+)-property, that is,

un ⇀ u in W 1,H
0 (Ω) and lim sup

n→∞
⟨A(un), un − u⟩ ≤ 0,

imply un → u in W 1,H
0 (Ω).

Next, we recall the definition of the (PS)-condition

Definition 2.3. Let X be a real and reflexive Banach space and J ∈ C1(X).
The functional J is said to satisfy the (PS)c-condition if, for c ∈ R, any sequence
{un}n∈N in X such that

J(un) → c and J ′(un) → 0, (2.4)

admits a convergent subsequence. Any sequence satisfying (2.4) is called a (PS)c-
sequence. The functional J is said to satisfy the (PS)-condition if and only if it
satisfies the (PS)c-condition for all c ∈ R.
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The main theoretical tool of this paper is the following critical point theorem
due to Bonanno [12, Theorem 2.1], see also the works by Ricceri [43, 44],

Theorem 2.4. Let X be a reflexive and separable real Banach space, and let
I,K : X → R be two Fréchet differentiable functionals satisfying the following con-
ditions:

(i) there exists w0 ∈ X such that I(w0) = K(w0) = 0 and I(w) ≥ 0 for every
w ∈ X;

(ii) there exists w1 ∈ X, ρ > 0 such that

I(w1) > ρ and
K(w1)

I(w1)
>

sup
I(w)<ρ

K(w)

ρ
;

(iii) the functional I −λK is sequentially weakly lower semicontinuous and sat-
isfies the (PS)-condition;

(iv) lim
∥w∥→+∞

(I(w)− λK(w)) = +∞, for each λ ∈ [0, b], where

b =
γρ

ρK(w1)
I(w1)

− sup
I(w)<ρ

K(w)
with γ > 1.

Then, there exist an open interval Λ ⊂ [0, b] and a number M > 0 such that for
each λ ∈ Λ the equation I ′(w) − λK ′(w) = 0 admits at least three solutions in X
having norm less than M .

3. Hopf’s Lemma and construction of a subsolution

In this Section we give first a Hopf’s Lemma related to our problem and based on
this, we construct a subsolution to problem (1.3). To this end, for 0 ≤ h ∈ Lϑ(Ω)
with ϑ > N , we consider the problem

− div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
= h(x) in Ω, u = 0 on ∂Ω. (3.1)

We say that u ∈ W 1,H(Ω) is a weak subsolution of problem (3.1) if u ≤ 0 on ∂Ω,
and if ∫

Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇v dx ≤

∫
Ω

h(x)v dx

is fulfilled for all v ∈ W 1,H
0 (Ω) with v ≥ 0.

First, we prove the following Hopf’s Lemma.

Proposition 3.1. Let hypothesis (H)(i) be satisfied and u be a solution of (3.1)
such that u ≥ 0 a.e. in Ω and u does not vanish identically on Ω. For x0 ∈ ∂Ω,
assume u ∈ C1(Ω ∪ {x0}) and u(x0) = 0. Then

∂u

∂ν
(x0) > 0,

where ν is the interior unit normal of ∂Ω at x0.

Proof. First, we choose R > 0 small enough such that B(x1, 2R) ⊂ Ω and x0 ∈
∂B(x1, 2R), where x1 = x0 + 2Rν. Let Ω1 = {x ∈ Ω: R < |x − x1| < 2R} and
κ = inf{u(x) : |x − x1| = R}. From Theorem 3.3 by Liu–Dai [28] it follows that
κ > 0. Note that if R → 0, then x1 tends to x0. Thus, we have

κ → 0 and
κ

R
→ 0.
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We define

M = sup{|∇µ(x)| : x ∈ Ω1}, ℓ = − ln
( κ
R

)
+

N − 1

R
+M

and

v(s) =
κ
(
e

ℓs
p−1 − 1

)
e

ℓR
p−1 − 1

, for all s ∈ [0, R].

We see at once that v(0) = 0, v(R) = κ,

v′(s) =

κℓ
p−1 · e

ℓs
p−1

e
ℓR
p−1 − 1

, v′′(s) =
ℓ

p− 1
v′(s) (3.2)

and

ℓ > 0, 0 < v′(s) < 1, for all s ∈ (0, R) (3.3)

provided R is sufficiently small.
For simplicity, set x1 = 0. We write r = |x| and s = 2R − r. Obviously if

r ∈ [R, 2R], then s ∈ [0, R]. Setting

w(r) = v(2R− r) = v(s),

we can see that

w′(r) = −v′(s), w′′(r) = v′′(s).

Now we define

w(x) = w(r) for any x ∈ Ω1 and |x| = r.

Then it follows from (3.2) and (3.3) that

div
(
|∇w|p−2∇w + µ(x)|∇w|q−2∇w

)
= (p− 1) |w′(r)|p−2

w′′(r) +
N − 1

r
|w′(r)|p−2

w′(r)

+ µ(x)(q − 1) |w′(r)|q−2
w′′(r) + µ(x)

N − 1

r
|w′(r)|q−2

w′(r)

+ |w′(r)|q−2
w′(r)

N∑
i=1

∂µ

∂xi

xi

r

= (p− 1) (v′(s))
p−2

v′′(s)− N − 1

r
(v′(s))

p−1
+ µ(x)(q − 1) (v′(s))

q−2
v′′(s)

− µ(x)
N − 1

r
(v′(s))

q−1 − (v′(s))
q−1

N∑
i=1

∂µ

∂x1

xi

r

≥
(
ℓ− N − 1

r

)
(v′(s))p−1 + µ(x)

(
q − 1

p− 1
ℓ− N − 1

r

)
(v′(s))

q−1 −M (v′(s))
q−1

≥
(
ℓ− N − 1

r
−M

)
(v′(s))

q−1
+ µ(x)

(
q − 1

p− 1
ℓ− N − 1

r

)
(v′(s))

q−1

≥
(
− ln

κ

R

)
(1 + µ(x)) (v′(s))

q−1
> 0.

Therefore, we obtain

− div
(
|∇w|p−2∇w + µ(x)|∇w|q−2∇w

)
− h(x) < 0,
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which implies that w is a subsolution of (3.1) in Ω1 satisfying w(x0) = 0 and
∂w
∂ν (x0) > 0. Now we can use Lemma 3.2 of Liu–Dai [28] to conclude that u ≥ w in
Ω1. Since u(x0) = w(x0) = 0, we have

lim
s→0+

u(x0 + s(x1 − x0))− u(x0)

s
≥ lim

s→0+

w(x0 + s(x1 − x0))− w(x0)

s

= ∇w(x0) · (x1 − x0)

= ∇w(x0) · 2Rν

= 2R
∂w

∂ν
(x0) > 0.

The left-hand side is equal to 2R ∂u
∂ν (x0) and so ∂u

∂ν (x0) > 0. This completes the
proof of the proposition. □

Lemma 3.2. Let hypotheses (H)(i)–(iv) be satisfied. Then there exists a subsolu-
tion u ∈ W 1,H(Ω) of (1.3) such that u(x) > 0 for all λ ∈ (0,+∞), ξu−α ∈ Lϑ(Ω)
with ϑ > N and ∥u∥∞ ≤ s0, where s0 > 0 is given by (H)(iv).

Proof. Using (H)(ii), we can get that the problem

− div
(
|∇v|p−2∇v + µ(x)|∇v|q−2∇v

)
= λξ(x) in Ω, v = 0 on ∂Ω.

has a unique positive solution v ∈ W 1,H
0 (Ω) since A : W 1,H

0 (Ω) → W 1,H
0 (Ω)∗ is a

homeomorphism, see Proposition 2.2. Furthermore, v ∈ C1,β(Ω) since W 1,H
0 (Ω) ↪→

W 1,p
0 (Ω) ↪→ C0,β(Ω) for p > N and ξ ∈ C0,β(Ω), see (2.2). By Proposition 3.1, we

know that ∂v
∂ν > 0 on ∂Ω, where ν is the interior unit normal on ∂Ω.

We claim that there exists a constant C such that

Cv(x) ≥ g0(x) for all x ∈ Ω,

where g0 is given in (H)(iii).
Let x0 ∈ ∂Ω and choose x ∈ Ω near x0 such that x− x0 is in the direction of ν.

Since ∂v
∂ν > 0 on ∂Ω and ∂v

∂ν is a continuous function on Ω, there exists a constant

ε0 > 0 such that ∂v
∂ν (x) ≥ ε0 for all x near x0. By (H)(iii), it clear that there is a

constant M > 0 such that ∂g0
∂ν (x) ≤ M for all x ∈ Ω. Thus we can find a constant

C = (M + 1)/ε0 such that

C
∂v

∂ν
(x) >

∂g0
∂ν

(x),

for all x near x0. Combining the fact that v, g0 ∈ W 1,H
0 (Ω) and v(x0) = g0(x0) = 0

for x0 ∈ ∂Ω, we integrate the above inequality from x0 to x along ν, that is∫ x

x0

C
∂v

∂ν
dν >

∫ x

x0

∂g0
∂ν

dν.

This implies

Cv(x) > g0(x), for x ∈ Ω

and so

Cv(x) ≥ g0(x), for x ∈ Ω.
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By this inequality and hypothesis (H)(iii), we have ξv−α ≤ Cαξg−α
0 ∈ Lϑ(Ω),

so ξv−α ∈ Lϑ(Ω). We take ε > 0 small enough such that u = ε
1

p−1 υ satisfies
0 < u(x) ≤ min{1, s0}. Thus ξu−α ∈ Lϑ(Ω). We then get∫

Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇g0 dx

= ε

(∫
Ω

(
|∇v|p−2∇v + ε

q−1
p−1µ(x)|∇v|q−2∇v

)
· ∇g0 dx

)
< ελξ(x).

Combining (H)(iv) with the fact ∥u∥∞ ≤ 1, we have

− div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
− λξ(x)u−α(x)− λf(x, u(x))

≤ λξ(x)(ε− 1− c0) ≤ 0

whenever λ ∈ [0,∞). Thus u is a subsolution of (1.3). □

Corollary 3.3. Let hypotheses (H)(i)–(iv) be satisfied. If u is a solution of (1.3),
then u(x) ≥ u(x) for a.a.x ∈ Ω and for all λ ∈ (0,+∞), where u is given in Lemma
3.2.

4. Three distinct solutions

In this section we are going to prove Theorem 1.1. First, we define

g(x, s) =

{
ξ(x)s−α + f(x, s), if s ≥ u(x),

0, if s < u(x)

and consider the problem

− div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
= λg(x, u) in Ω, u = 0 in ∂Ω. (4.1)

We denote by

I(u) =
1

p

∫
Ω

|∇u|p dx+
1

q

∫
Ω

µ(x)|∇u|q dx, K(u) =

∫
Ω

G(x, u) dx, (4.2)

where G(x, u) =
∫ u

u
g(x, t) dt, and write

Jλ(u) = I(u)− λK(u).

The definition of g(·, ·) and condition (H)(v) imply that for any ε > 0,

|g(x, s)| ≤ ξu−α + c1 + ε|s|p−1,

for a.a.x ∈ Ω, for all s ∈ R and for some c1 > 0. Consequently

|G(x, u)| ≤
∫ u

u

|g(x, s)| ds

≤
∫ u

u

(ξu−α + c1 + ε|s|p−1) ds

= ξu−α(u− u) + c1(u− u) +
ε

p
(|u|p − |u|p)

≤ ξu−αu+ c1u+
ε

p
|u|p,

(4.3)

since u > 0. Using Lemma 3.2 and the embedding W 1,H
0 (Ω) ↪→ Lr(Ω) for 1 ≤

r ≤ ∞, we can see that G is integrable over Ω. Therefore Jλ is well-defined and of
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class C1. Furthermore, by Corollary 3.3, any critical point of Jλ is a positive weak
solution of problem (1.3).

We write

S = B(y0, R0) \B(y0, θR0), µ0 = min
x∈S

µ(x), ρ =

(
1

p
+

µ0

q

)
RN

0 ωN , (4.4)

where y0 ∈ Ω and R0 are defined in (H)(vi).

Lemma 4.1. Let hypothesis (H)(i) be satisfied. Then ρ
/
I (u1) is continuous with

respect to θ in the interval [0, 1). Moreover, there exists θ0 ∈ [0, 1) such that

1

2
<

ρ

I(u1)
< 1. (4.5)

Proof. By the definition of u1, we can deduce that

I(u1) =
1

p

∫
Ω

|∇u1|p dx+
1

q

∫
Ω

µ (x) |∇u1|q dx

=

(
1

p(1− θ)p
+

µ(y)

q(1− θ)q

)(
1− θN

)
RN

0 ωN

for some y ∈ B(y0, R0) \B(y0, θR0). Thus

ρ

I (u1)
=

1
p + µ0

q(
1

p(1−θ)p + µ(y)
q(1−θ)q

)
(1− θN )

.

This implies that ρ
/
I (u1) is continuous with respect to θ in the interval [0, 1).

Moreover, one has

ρ

I (u1)
→ 0 as θ → 1 and

ρ

I (u1)
→

1
p + µ0

q

1
p + µ(y)

q

≤ 1 as θ → 0.

Hence there exists θ0 ∈ [0, 1) such that

1

2
<

ρ

I(u1)
< 1.

This completes the proof. □

Lemma 4.2. Let hypotheses (H) be satisfied. Then the inequality

sup
I(u)<ρ

K(u) <
1

2
K(u1) <

ρ

I(u1)
K(u1) (4.6)

holds true.

Remark 4.3. Let

b =
(1 + ρ)ρ

ρK(w1)
I(w1)

− supI(u)<ρ K(u)
.

Then it follows from (4.6) that

b ≤ (1 + ρ)ρ

ρK(w1)
I(w1)

− 1
2K(u1)

< +∞.
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Proof of Lemma 4.2. By the definition of u1 in (H)(vi) we know that u1(x) > u(x)

for all x ∈ Ω. Thus by the embedding W 1,p
0 (Ω) ↪→ C0,α(Ω), we get that

u(x) ≤ sup
x∈Ω

|u(x)| ≤ ∥u∥C0,α ≤ C ∥u∥W 1,p
0

= C

(∫
Ω

|∇u|p dx

) 1
p

≤ C

(∫
Ω

(|∇u|p + µ(x)|∇u|q) dx
) 1

p

≤ C

(
q

p

∫
Ω

|∇u|p dx+
q

q

∫
Ω

µ(x)|∇u|q dx
) 1

p

= C (qI(u))
1
p < C (qρ)

1
p ≤ u1(x)

for all u ∈ {u ∈ W 1,H
0 (Ω): I(u) < ρ}. Moreover, by the definition of g and (H)(iv),

we have

sup
I(u)<ρ

K(u) = sup
I(u)<ρ

∫
Ω

∫ u

u

g(x, s) ds dx ≤
∫
Ω

∫ C(qρ)
1
p

u

g(x, s) ds dx. (4.7)

Again (H)(vi) yields

1

2

∫
Ω

∫ C(qρ)
1
p

u

g(x, s) ds dx <
1

2

∫
B(y0,R0)

∫ u1

C(qρ)
1
p

g(x, s) ds dx. (4.8)

By the additivity of the integral over the domain, we obtain∫
Ω

∫ C(qρ)
1
p

u

g(x, s) ds dx =

∫
Ω\B(y0,R0)

∫ C(qρ)
1
p

u

g(x, s) ds dx

+

∫
B(y0,R0)

∫ C(qρ)
1
p

u

g(x, s) ds dx

(4.9)

and ∫
B(y0,R0)

∫ u1

C(qρ)
1
p

g(x, s) ds dx

=

∫
B(y0,R0)

∫ u1

u

g(x, s) ds dx−
∫
B(y0,R0)

∫ C(qρ)
1
p

u

g(x, s) ds dx.

(4.10)

From (4.8), (4.9), and (4.10), we get that

1

2

∫
Ω\B(y0,R0)

∫ C(qρ)
1
p

u

g(x, s) ds dx+
1

2

∫
B(y0,R0)

∫ C(qρ)
1
p

u

g(x, s) ds dx

<
1

2

∫
B(y0,R0)

∫ u1

u

g(x, s) ds dx− 1

2

∫
B(y0,R0)

∫ C(qρ)
1
p

u

g(x, s) ds dx,

which implies

1

2

∫
Ω\B(y0,R0)

∫ C(qρ)
1
p

u

g(x, s) ds dx+

∫
B(y0,R0)

∫ C(qρ)
1
p

u

g(x, s) ds dx
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<
1

2

∫
B(y0,R0)

∫ u1

u

g(x, s) ds dx.

Hence ∫
Ω\B(y0,R0)

∫ C(qρ)
1
p

u

g(x, s) ds dx+

∫
B(y0,R0)

∫ C(qρ)
1
p

u

g(x, s) ds dx

<
1

2

∫
B(y0,R0)

∫ u1

u

g(x, s) ds dx+
1

2

∫
Ω\B(y0,R0)

∫ C(qρ)
1
p

u

g(x, s) ds dx.

Consequently ∫
Ω

∫ C(qρ)
1
p

u

g(x, s) ds dx <
1

2

∫
Ω

∫ u1

u

g(x, s) ds dx. (4.11)

From (4.5), (4.7) and (4.11) we see that (4.6) holds true. □

Lemma 4.4. Let hypotheses (H) be satisfied. Then, for all λ > 0, the functional
Jλ is sequentially weakly lower semicontinuous and satisfies the (PS)-condition.
Furthermore, it is coercive for all λ ∈ (0, b], where b is given in Remark 4.3.

Proof. The proof is divided into four steps.
Step 1: K is weakly continuous, i.e., if un ⇀ u, then K(un) → K(u).

Let un ⇀ u in W 1,H
0 (Ω). The embedding W 1,H

0 (Ω) ↪→ W 1,p
0 (Ω) is continuous

(see (2.2)) and W 1,p
0 (Ω) ↪→ C(Ω) is compact since p > N . Thus un → u in C (Ω).

This implies that un converges uniformly to u in Ω as n → ∞.

Using Lemma 3.2 and the embedding W 1,H
0 (Ω) ↪→ Lr(Ω) for 1 ≤ r ≤ ∞, we

can see that the right-hand side of (4.3) is integrable over Ω and thus G(x, un) has
equi-absolutely continuous integrals. From Vitali’s convergence theorem it follows
that

K(un) =

∫
Ω

G(x, un) dx →
∫
Ω

G(x, u) dx = K(u).

Step 2: Jλ is sequentially weakly lower semicontinuous.
Clearly, I is sequentially weakly lower semicontinuous by Fatou’s lemma. This

together with Step 1 implies that Jλ is sequentially weakly lower semicontinuous
as well.
Step 3: Jλ satisfies the (PS)-condition.

For every c ∈ R, let {un}n∈N ⊂ W 1,H
0 (Ω) be a (PS)c-sequence, see Definition

2.3. We claim that {un}n∈N is bounded in W 1,H
0 (Ω). Indeed, If ∥un∥ ≤ 1, we are
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done. Let ∥un∥ > 1. Then, from (4.3) and Proposition 2.1(iv) we have that

c+ o(1) ≥ Jλ(un)

=
1

p

∫
Ω

|∇un|p dx+
1

q

∫
Ω

µ(x)|∇un|q dx− λ

∫
Ω

G(x, un) dx

≥ 1

q
∥un∥p − λ

∫
Ω

(
c1un + ξu−αun +

ε

p
|un|p

)
dx

≥
(
1

q
− c2λε

p

)
∥un∥p − c1λ∥un∥1 − λ∥ξu−α∥m∥un∥m′

≥
(
1

q
− c2λε

p

)
∥un∥p − c3λ∥un∥ − c4λ∥un∥

= ∥un∥
((

1

q
− c2λε

p

)
∥un∥p−1 − c3λ− c4λ

)
.

(4.12)

Taking ε < p
/
(qc2λ) gives us the boundedness of {un}n∈N in W 1,H

0 (Ω). Then, for

a subsequence if necessary, not relabeled, we can assume un ⇀ u in W 1,H
0 (Ω). As

in the proof of Step 1, we can show that K ′ is completely continuous. This means
that if un ⇀ u, then K ′(un) → K ′(u). Since J ′

λ(un) = I ′(un) −K ′(un) → 0, one
has that I ′(un) → K ′(u). Therefore, it follows that un → u because I ′ is a mapping
of type (S+), see Proposition 2.2.
Step 4: Jλ is coercive for 0 < λ ≤ b.

From (4.12) we can easily conclude that Jλ is coercive. □

Now we can give the proof of Theorem 1.1.

Proof of Theorem 1.1. We take w0 = 0 ∈ W 1,H
0 (Ω) and the hypothesis (i) in The-

orem 2.4 is satisfied. We come to verify hypothesis (ii) in Theorem 2.4 and choose
a subset Ωn = {x ∈ Ω: dist(x, ∂Ω) ≥ 1/n} ⊂ Ω for n ≥ 1. Then, for all ε > 0 we
can find n0 > 0 such that for n > n0 we have m(Ω \Ωn) < ε, where m denotes the
Lebesgue measure on RN . Let

un
1 (x) =

{
u1(x), if x ∈ Ωn,

0, if x ∈ Ω \ Ωn

, φ(x) =

{
c exp

(
1

|x|2−1

)
, if |x| ≤ 1,

0, if |x| > 1,

where

c =
1∫

|x|≤1
exp

(
1

|x|2−1

)
dx

.

We define

φn(x) = nNφ(nx), for x ∈ RN and (φn ∗ un
1 ) (x) =

∫
Ω

φn(x− y)un
1 (y) dy.

Then supp(φn ∗ un
1 ) = {x : (φn ∗ un

1 )(x) ̸= 0} ⊂ Ω, (φn ∗ un
1 ) ∈ C∞

0 (Ω) and (φn ∗
un
1 )(x) → u1(x) as n → ∞ for a.a.x ∈ Ω. By Lebesgue’s dominated convergence

theorem and (4.3), we have

K(φn ∗ un
1 ) =

∫
Ω

G(x, φn ∗ un
1 ) dx →

∫
Ω

G(x, u1) dx = K(u1). (4.13)
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By the properties of the mollification and the definition of un
1 , we can get that

1

p

∫
Ω\Ωn

|∇ (φn ∗ un
1 ) (x)|

p
dx+

1

q

∫
Ω\Ωn

µ(x) |∇ (φn ∗ un
1 ) (x)|

q
dx

=
1

p

∫
Ω\Ωn

|(φn ∗ ∇un
1 ) (x)|

p
dx+

1

q

∫
Ω\Ωn

µ(x) |(φn ∗ ∇un
1 ) (x)|

q
dx

≤
∫
Ω\Ωn

∣∣∣∣ 1

1− θ

∣∣∣∣p dx+ ∥µ∥∞
∫
Ω\Ωn

∣∣∣∣ 1

1− θ

∣∣∣∣q dx

= (1− θ)
−p

m(Ω \ Ωn) + ∥µ∥∞ (1− θ)
−q

m(Ω \ Ωn)

≤
(
(1− θ)

−p
+ ∥µ∥∞ (1− θ)

−q
)
ε

whenever n > n0. Therefore, we have

I(φn ∗ un
1 ) → I(u1). (4.14)

From (4.13) and (4.14), for every ε > 0, we can choose n0 sufficiently large such
that ∣∣∣∣K(φn ∗ un

1 )

I(φn ∗ un
1 )

− K(u1)

I(u1)

∣∣∣∣ < ε

ρ
, for n > n0.

So if

ε =
ρ

I(u1)
K(u1)− sup

I(u)<ρ

K(u),

then

ρ
K(u1)

I(u1)
− ρ

K(φn ∗ un
1 )

I(φn ∗ un
1 )

< ε =
ρ

I(u1)
K(u1)− sup

I(u)<ρ

K(u).

This implies

sup
I(u)<ρ

K(u) < ρ
K(φn ∗ un

1 )

I(φn ∗ un
1 )

, for n > n0.

In Theorem 2.4 we choose w1 = φn ∗un
1 ∈ W 1,H

0 (Ω) for some n > n0. This together
with Lemma 4.1, we can deduce that hypothesis (ii) is satisfied.

According to Lemma 4.4, assumptions (iii) and (iv) of Theorem 2.4 also hold.
Thus there exist an open interval Λ ⊂ [0, b] and a number M > 0 such that for each
λ ∈ Λ, the equation J ′

λ(u) = I ′(u)− λK ′(u) = 0 admits at least three solutions in

W 1,H
0 (Ω) having W 1,H

0 (Ω)-norms less than M . From Corollary 3.3, it follows that
the three solutions are positive. This concludes the proof. □

Finally, we give an example in order to verify the applicability of Theorem 1.1.

Example 4.5. Let Ω = (−2, 2), ξ(x) = 5x4 + 1, p = 2, q = 4, µ(x) = x2 and let
f : Ω× R → R be defined as

f(x, s) =

{
93es, if s ≤ 6,
√
s+ 93e6 −

√
6, if s > 6.
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We consider the problem

−
(
u′ + x2|u′|2u′)′ = λ

[
(5x4 + 1)u−α + f(x, u)

]
, x ∈ (−2, 2),

u > 0 x ∈ (−2, 2),

u = 0, x ∈ {−2, 2}.
(4.15)

Let c0 = 1 and s0 = 1 be as in condition (H)(iv). From the definition of f , we have

f(x, s) = 93es ≥ c0ξ(x) > 0, for s ∈ [0, 1] .

Obviously, f satisfies the condition (H)(v). Next, we will show that f satisfies the
condition (H)(vi).

Consider

−
(
u′ + x2|u′|2u′)′ = 5x4 + 1, x ∈ (−2, 2),

u > 0, x ∈ (−2, 2),

u = 0, x ∈ {−2, 2}.
(4.16)

We can show that v = 4−x2

2 is the solution of (4.16) with ∥v∥∞ = 2. If we choose
ε ≤ 1/4 and u = εv, we obtain

∥u∥∞ = ε∥v∥∞ = 2ε ≤ 1

2
< 1.

So let ε = 1/4. From the result of Lemma 3.2, i.e. ξ(x)u−α ∈ Lϑ((−2, 2)) with
ϑ > 1, and ξ(x) = 5x4+1, if we let ϑ = 2, we have u−α ∈ L2((−2, 2)). Considering

this fact and u = 4−x2

8 , we can choose α < 1
2 such that

∫ 2

−2
|(5x4+1)u−α|2 dx < ∞.

Indeed, this is possible since∫ 2

−2

|(5x4 + 1)u−α|2 dx ≤ 81

∫ 2

−2

82α

(4− x2)2α
dx = 81× 41−2α82α

∫ π
2

0

dη

(cos η)4α−1

and we can choose 4α− 1 < 1 such that∫ π
2

0

dη

(cos η)4α−1
< +∞.

Now we choose α = 1/8, and denote

g(x, s) =

{
(5x4 + 1)s−

1
8 + 93es, if u ≤ s ≤ 6,

(5x4 + 1)s−
1
8 +

√
s+ 93e6 −

√
6, if s > 6,

G(x, u) =
∫ u

u
g(x, s) ds, K(u) =

∫ 2

−2
G(x, u) dx and

I(u) =
1

2

∫ 2

−2

|u′|2 dx+
1

4

∫ 2

−2

x2|u′|4 dx.

Note that

2u(x) =

∫ x

−2

u′(s) ds−
∫ 2

x

u′(s) ds ≤
∫ x

−2

|u′(s)| ds+
∫ 2

x

|u′(s)| ds

=

∫ 2

−2

|u′(s)| ds ≤
(∫ 2

−2

dt

) 1
2
(∫ 2

−2

|u′(t)|2 dt
) 1

2

= 2

(∫ 2

−2

|u′(t)|2 dt
) 1

2

.

Thus we have

∥u∥C(−2,2) ≤ ∥u∥1,2 .
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This implies that C = 1 in (H)(vi). Taking R0 = 3/2 and θ = 1/4 in (H)(vi), we
obtain that

ρ =

(
1

p
+

µ0

q

)
R1

0ω1 =

(
1

2
+

(
3
8

)2
4

)
× 3

2
× 3 =

1233

512
.

Consequently

u1(x) =



3
16

√
274, if x ∈

(
−2,− 3

2

)
∪
(
3
2 , 2
)
,

4
3 (x+ 3

2 ) +
3
16

√
274, if x ∈

(
− 3

2 ,−
3
8

)
,

− 4
3 (x− 3

2 ) +
3
16

√
274 if x ∈

(
3
8 ,

3
2

)
,

3
16

√
274 + 3

2 , if x ∈
(
− 3

8 ,
3
8

)
and

I(u1) =
1

2

∫
Ω

|u′
1|2 dx+

1

4

∫
Ω

x2|u′
1|4 dx

=
1

2

∫ − 3
8

− 3
2

(
4

3

)2

dx+
1

4

∫ − 3
8

− 3
2

(
4

3

)4

x2 dx

+
1

2

∫ 3
2

3
8

(
−4

3

)2

dx+
1

4

∫ 3
2

3
8

(
−4

3

)4

x2 dx

=
15

4
.

Hence

1 >
ρ

I (u1)
=

411

640
>

1

2
.

Additionally, we can calculate that∫ 3
2

− 3
2

∫ u1

3
16

√
274

[
(5x4 + 1)s−

1
8 + 93es

]
ds dx

=

∫ 3
2

− 3
2

[
8

7
(5x4 + 1)u

7
8
1 + 93eu1 − 8

7

(
3

16

√
274

) 7
8

(5x4 + 1)− 93e
3
16

√
274

]
dx

=

∫ − 3
8

− 3
2

[
8

7

(
4

3

(
x+

3

2

)
+

3

16

√
274

) 7
8

(5x4 + 1) + 93e
4
3 (x+

3
2 )+

3
16

√
274

]
dx

+

∫ 3
8

− 3
8

[
8

7

(
3

2
+

3

16

√
274

) 7
8

(5x4 + 1) + 93e
3
2+

3
16

√
274

]
dx

+

∫ 3
2

3
8

[
8

7

(
−4

3
(x− 3

2
) +

3

16

√
274

) 7
8

(5x4 + 1) + 93e−
4
3 (x−

3
2 )+

3
16

√
274

]
dx

−
∫ 3

2

− 3
2

[
8

7

(
3

16

√
274

) 7
8

(5x4 + 1) + 93e
3
16

√
274

]
dx

≈ 11576.45

(4.17)
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and∫ 2

−2

∫ 3
16

√
274

u

[
(5x4 + 1)s−

1
8 + 93es

]
ds dx

=

∫ 2

−2

[
8

7

(
3

16

√
274

) 7
8

(5x4 + 1) + 93e
3
16

√
274 − 8

7
(5x4 + 1)u

7
8 − 93eu

]
dx

≈ 7958.02.

(4.18)

From (4.17) and (4.18), we have∫ 3
2

− 3
2

∫ u1

3
16

√
274

(
(5x4 + 1)s−

1
8 + f(x, s)

)
ds dx

>

∫ 2

−2

∫ 3
16

√
274

u

((5x4 + 1)s−
1
8 + f(x, s)) ds dx,

which implies that the condition (H)(vi) holds. Therefore, according to Theorem
1.1, problem (4.15) has at least three bounded positive solutions for λ < b. Further-
more, we can calculate

K(u1)

=

∫ 2

−2

G(x, u1) dx

=

∫ 2

−2

∫ u1

u

[
(5x4 + 1)s−

1
8 + 93es

]
ds dx

=

∫ 2

−2

[
8

7
(5x4 + 1)s

7
8 + 93es

] ∣∣∣∣∣
u1

u

dx

=

∫ 2

−2

[
8

7
(5x4 + 1)u

7
8
1 + 93eu1 − 8

7
(5x4 + 1)

(
4− x2

8

) 7
8

− 93e
4−x2

8

]
dx

=

∫ − 3
2

−2

[
8

7
(5x4 + 1)

(
3

16

√
274

) 7
8

+ 93e
3
16

√
274

]
dx

+

∫ − 3
8

− 3
2

[
8

7
(5x4 + 1)

(
4

3

(
x+

3

2

)
+

3

16

√
274

) 7
8

+ 93e
4
3 (x+

3
2 )+

3
16

√
274

]
dx

+

∫ 3
8

− 3
8

[
8

7
(5x4 + 1)

(
3

2
+

3

16

√
274

) 7
8

+ 93e
3
2+

3
16

√
274

]
dx

+

∫ 3
2

3
8

[
8

7
(5x4 + 1)

(
−4

3

(
x− 3

2

)
+

3

16

√
274

) 7
8

+ 93e−
4
3 (x−

3
2 )+

3
16

√
274

]
dx

+

∫ 2

3
2

[
8

7
(5x4 + 1)

(
3

16

√
274

) 7
8

+ 93e
3
16

√
274

]
dx

−
∫ 2

−2

[
8

7
(5x4 + 1)

(
4− x2

8

) 7
8

− 93e
4−x2

8

]
dx

≈ 19534.48.
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Consequently

b =
(1 + ρ)ρ

ρK(u1)
I(u1)

− supI(u)<ρ K(u)
<

(1 + ρ)ρ

ρK(u1)
I(u1)

− 1
2K(u1)

≈ 0.00296.

This means that our results are valid only when λ is sufficiently small.
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