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Abstract. We study a semilinear Robin problem driven by the Laplacian

plus an indefinite and unbounded potential term. The nonlinearity f(x, s)
is a Carathéodory function which is asymptotically linear as s → ±∞ and

resonant. In fact we assume double resonance with respect to any nonprincipal,

nonnegative spectral interval
[
λ̂k, λ̂k+1

]
. Applying variational tools along

with suitable truncation and perturbation techniques as well as Morse theory,

we show that the problem has at least three nontrivial smooth solutions, two

of constant sign.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper, we
study the following semilinear Robin problem

−∆u+ ξ(x)u = f(x, u) in Ω,

∂u

∂n
+ β(x)u = 0 on ∂Ω,

(1.1)

where ξ : Ω → R is a potential function being in general indefinite (that is, sign
changing) and unbounded (more precisely, ξ ∈ Lq(Ω) for q > N). The nonlinearity
f : Ω × R → R is a Carathéodory function, that is, x 7→ f(x, s) is measurable for
all s ∈ R and s 7→ f(x, s) is continuous for a.a.x ∈ Ω. In addition, in the boundary
condition of (1.1), ∂u

∂n denotes the normal derivative defined by extension of the
linear map

u→ ∂u

∂n
= (∇u, n)RN for all u ∈ C1(Ω),

with n : Ω→ R being the outward unit normal on ∂Ω. The boundary coefficient β
belongs to W 1,∞(∂Ω) satisfying β(x) ≥ 0 for all x ∈ ∂Ω. When β = 0, we recover
the Neumann problem.

In this paper we assume that f(x, ·) is asymptotically linear as s → ±∞ and

resonant, that is, the quotient f(x,s)
s interacts with the spectrum of the operator

u → −∆u + ξ(x)u with Robin boundary condition as s → ±∞. However, the
resonance assumed here is more general since we do not assume that the limits

lim
s→±∞

f(x, s)

s
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exist, as is the case in most papers dealing with resonant equations, see, for example,
Li-Liu [11] and Gasiński-Papageorgiou [8]. Instead, we assume here that we can
have a so-called double resonance situation, namely

λ̂k ≤ lim inf
s→±∞

f(x, s)

s
≤ lim sup

s→±∞

f(x, s)

s
≤ λ̂k+1,

with λ̂k, λ̂k+1 being two successive eigenvalues of the Robin differential opera-
tor. Such resonant problems were investigated almost exclusively in the context
of Dirichlet boundary value problems with no potential term, that is, ξ ≡ 0. In this
setting, the differential operator (left-hand side of the operator) is coercive and this
simplifies significantly the analysis of the problem. The first work on doubly reso-
nant equations is the one of Berestycki-de Figueiredo [3] who also coined the term
double resonance. Subsequently appeared the related works of Các [4], Liang-Su
[10], Robinson [16], Su [17] and Zou [19] who proved multiplicity results but under
more restrictive conditions on the data of the Dirichlet problem. More precisely,
Các [4] and Zou [19] do not allow complete resonance to occur at the two endpoints

of the spectral interval
[
λ̂k, λ̂k+1

]
while Liang-Su [10] and Robinson [16] assume

that f ∈ C
(
Ω× R

)
. We also mention the recent works of Papageorgiou-Rădulescu

[13], [15] who deal with resonant Neumann problems but do not address the case
of double resonance.

Our approach is variational based on critical point theory together with suitable
truncation and perturbation techniques and the usage of Morse theory in terms
of critical groups. In the next section we develop the necessary mathematical
background material which will help to follow the arguments in this paper.

2. Preliminaries

Let X be a Banach space and X∗ its topological dual while 〈·, ·〉 denotes the
duality brackets to the pair (X∗, X). We have the following definition.

Definition 2.1. The functional ϕ ∈ C1(X,R) fulfills the Cerami condition (the
C-condition for short) if the following holds: every sequence (un)n≥1 ⊆ X such
that (ϕ(un))n≥1 is bounded in R and (1 + ‖un‖X)ϕ′(un) → 0 in X∗ as n → ∞,
admits a strongly convergent subsequence.

This is a compactness-type condition on the functional ϕ to offset the fact that
X is in general infinite dimensional, hence not locally compact. It leads to a
deformation theorem from which one can derive the minimax theory of the critical
values of ϕ. A central result of this theory is the so-called mountain pass theorem
due to Ambrosetti-Rabinowitz [2] which we recall here in a slightly more general
form (see, for example, Gasiński-Papageorgiou [7, p. 648]).

Theorem 2.2. Let ϕ ∈ C1(X) be a functional satisfying the C-condition and let
u1, u2 ∈ X, ‖u2 − u1‖X > ρ > 0,

max{ϕ(u1), ϕ(u2)} < inf{ϕ(u) : ‖u− u1‖X = ρ} =: mρ

and c = infγ∈Γ max0≤t≤1 ϕ(γ(t)) with Γ = {γ ∈ C ([0, 1], X) : γ(0) = u1, γ(1) =
u2}. Then c ≥ mρ with c being a critical value of ϕ.
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By H1(Ω) we denote the usual Hilbert space with inner product

(u, h) =

∫
Ω

uhdx+

∫
Ω

(∇u,∇h)RNdx for all u, h ∈ H1(Ω)

and corresponding norm

‖u‖ =
[
‖u‖22 + ‖∇u‖22

] 1
2 for all u ∈ H1(Ω),

where ‖ · ‖2 stands for the norm in the Lebesgue space L2(Ω). The norm of RN is
denoted by ‖ · ‖RN and (·, ·)RN stands for the inner product in RN . For s ∈ R, we
set s± = max{±s, 0} and for u ∈ H1(Ω) we define u±(·) = u(·)±. It is well known
that

u± ∈ H1(Ω), |u| = u+ + u−, u = u+ − u−.

The Lebesgue measure on RN is denoted by | · |N and for a measurable function
h : Ω × R → R (for example, a Carathéodory function), we define the Nemytskij
operator corresponding to the function h by

Nh(u)(·) = h(·, u(·)) for all u ∈ H1(Ω).

Evidently, x 7→ Nh(u)(x) is measurable.
In addition to the Sobolev space H1(Ω) we will also use the ordered Banach

space C1(Ω) and its positive cone

C1(Ω)+ =
{
u ∈ C1(Ω) : u(x) ≥ 0 for all x ∈ Ω

}
.

This cone has a nonempty interior in C(Ω) given by

int
(
C1(Ω)+

)
=
{
u ∈ C1(Ω)+ : u(x) > 0 for all x ∈ Ω

}
.

On the boundary ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface)
measure σ(·). Having this measure, we can define in the usual way the boundary
Lebesgue spaces Ls(∂Ω) for 1 ≤ s ≤ ∞. From the theory of Sobolev spaces we
know that there exists a unique linear map γ0 : H1(Ω) → L2(∂Ω) known as the
trace map such that

γ0(u) = u
∣∣
∂Ω

for all u ∈ H1(Ω) ∩ C(Ω).

The trace map prescribes boundary values to Sobolev functions. Furthermore we
know that the trace map is compact into Ls(∂Ω) for every s ∈ [1, 2∗), where 2∗ is
the critical exponent of 2 given by

2∗ =

{
2(N−1)
N−2 if N ≥ 3,

∞ if N = 1, 2.

Moreover it holds

im γ0 = H
1
2 ,2(∂Ω) and ker γ0 = H1

0 (Ω).

From now on, for the sake of notational simplicity, we drop the usage of the trace
operator γ0. All restrictions of Sobolev functions on ∂Ω are understood in the sense
of traces.
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As we already described in the Introduction we will use the spectrum of the
differential operator u → −∆u + ξ(x)u with Robin boundary condition. So, we
consider the following linear eigenvalue problem

−∆u+ ξ(x)u = λ̂u in Ω,

∂u

∂n
+ β(x)u = 0 on ∂Ω.

(2.1)

In this eigenvalue problem we impose the following conditions on its data:

• ξ ∈ LN
2 (Ω) if N ≥ 3, ξ ∈ Ls(Ω) with s ∈ (1,+∞) if N = 2 and ξ ∈ L1(Ω)

if N = 1.
• β ∈W 1,∞(∂Ω) and β(x) ≥ 0 for all x ∈ ∂Ω.

Let γ : H1(Ω)→ R be the C1-functional defined by

γ(u) = ‖∇u‖22 +

∫
Ω

ξ(x)u2dx+

∫
∂Ω

β(x)u2dσ.

From D’Agùı-Marano-Papageorgiou [6] we know that there exist µ, c0 > 0 such that

γ(u) + µ‖u‖22 ≥ c0‖u‖2 for all u ∈ H1(Ω). (2.2)

Then using (2.2) and the spectral theorem for compact self-adjoint operators on a
Hilbert space, we can have a complete description of the spectrum of (2.1). This

consists of a strictly increasing sequence
(
λ̂k

)
k∈N

of eigenvalues such that λ̂k → +∞

as k → +∞. By E
(
λ̂k

)
, k ∈ N, we denote the corresponding eigenspace. These

are finite dimensional subspaces of H1(Ω) and we have the following orthogonal
direct sum decomposition

H1(Ω) =
⊕
k≥1

E
(
λ̂k

)
.

The eigenvalues of (2.1) have the following properties:

• λ̂1 is simple, that is dimE(λ̂1) = 1.
•

λ̂1 = inf

[
γ(u)

‖u‖22
: u ∈ H1(Ω), u 6= 0

]
. (2.3)

• For m ≥ 2 we have

λ̂m = inf

 γ(u)

‖u‖22
: u ∈

⊕
k≥m

E
(
λ̂k

)
, u 6= 0


= sup

[
γ(u)

‖u‖22
: u ∈

m⊕
k=1

E
(
λ̂k

)
, u 6= 0

]
.

(2.4)

The infimum in (2.3) is attained on E(λ̂1) while both the infimum and the

supremum in (2.4) are attained on E(λ̂m). Evidently the elements of E(λ̂1) have

fixed sign while the elements of E(λ̂m),m ≥ 2, are nodal, that is, sign changing.
By û1 we denote the L2-normalized (that is, ‖û1‖2 = 1) positive eigenfunction

corresponding to λ̂1. If ξ ∈ Lq(Ω) with q > N , then the regularity theory of Wang
[18] (see Lemmata 5.1 and 5.2) implies that û1 ∈ C1(Ω)+\{0}. Moreover, Harnack’s
inequality (see, for example, Motreanu-Motreanu-Papageorgiou [12, p. 212]) we have



DOUBLE RESONANCE FOR ROBIN PROBLEMS 5

û1(x) > 0 for all x ∈ Ω. If ξ+ ∈ L∞(Ω), then the strong maximum principle (see,
for example, Gasiński-Papageorgiou [7, p. 738]) implies that û1 ∈ int

(
C1(Ω)+

)
.

If ξ ∈ Lq(Ω) with q > N
2 , then the eigenspaces E(λ̂k), k ∈ N have the so-called

“Unique Continuation Property” (ucp for short) which says that if u ∈ E(λ̂k) and
u vanishes on a set of positive Lebesgue measure, then u ≡ 0.

The above properties lead to the following useful inequalities which can be found
in D’Agùı-Marano-Papageorgiou [6].
Lemma 2.3.

(a) If m ∈ N, ϑ ∈ L∞(Ω) and ϑ(x) ≤ λ̂m for a.a.x ∈ Ω, ϑ 6= λ̂m, then there
exists a number c1 > 0 such that

γ(u)−
∫

Ω

ϑ(x)u2dx ≥ c1‖u‖2 for all u ∈
⊕
k≥m

E
(
λ̂k

)
.

(b) If m ∈ N, η ∈ L∞(Ω) and η(x) ≥ λ̂m for a.a.x ∈ Ω, η 6= λ̂m, then there
exists a number c2 > 0 such that

γ(u)−
∫

Ω

η(x)u2dx ≤ −c2‖u‖2 for all u ∈
m⊕
k=1

E
(
λ̂k

)
.

We will also consider the weighted version of the linear eigenvalue problem (2.1).
So, let η ∈ L∞(Ω), η ≥ 0, η 6= 0. We consider the following linear eigenvalue
problem

−∆u+ ξ(x)u = λ̂η(x)u in Ω,

∂u

∂n
+ β(x)u = 0 on ∂Ω.

(2.5)

In the same way as for problem (2.1) we show that the linear eigenvalue problem

(2.5) admits a strictly increasing sequence of eigenvalues
(
λ̃k(η)

)
k∈N

such that

λ̃k(η) → +∞ as k → +∞. In this case, in the variational characterization of the
eigenvalues, the Rayleigh quotient has the form

R(u) =
γ(u)∫

Ω
η(x)u2dx

for all u ∈ H1(Ω) \ {0}.

As a consequence of the ucp of the eigenspaces we infer the following strict
monotonicity property of the map η → λ̃m(η),m ∈ N.

Lemma 2.4. If η1, η2 ∈ L∞(Ω), 0 ≤ η1 ≤ η2, η1 6= 0 and η1 6= η2, then, for all

m ∈ N we have λ̃m(η2) < λ̃m(η1).

Next, let us recall some basic definitions and facts about Morse theory which
will need in the sequel. Let X be a Banach space and let (Y1, Y2) be a topological
pair such that Y2 ⊆ Y1 ⊆ X. For every integer k ≥ 0 the term Hk(Y1, Y2) stands

for the k
th
=-relative singular homology group with integer coefficients. Recall that

Hk(Y1, Y2) = Zk(Y1, Y2)
/
Bk(Y1, Y2) for all k ∈ N0,

where Zk(Y1, Y2) is the group of relative singular k-cycles of Y1 mod Y2 (that is,
Zk(Y1, Y2) = ker ∂k with ∂k being the boundary homomorphism) and Bk(Y1, Y2)
is the group of relative singular k-boundaries of Y1 mod Y2 (that is, Bk(Y1, Y2) =
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im ∂k+1). We know that ∂k−1 ◦ ∂k = 0 for all k ∈ N, hence Bk(Y1, Y2) ⊆ Zk(Y1, Y2)
and so the quotient

Zk(Y1, Y2)
/
Bk(Y1, Y2)

makes sense.
Given ϕ ∈ C1(X) and c ∈ R, we introduce the following sets:

ϕc = {u ∈ X : ϕ(u) ≤ c} (the sublevel set of ϕ at c),

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ),

Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c} (the critical set of ϕ at the level c).

For every isolated critical point u ∈ Kc
ϕ the critical groups of ϕ at u ∈ Kc

ϕ are
defined by

Ck(ϕ, u) = Hk(ϕc ∩ U,ϕc ∩ U \ {u}) for all k ≥ 0,

where U is a neighborhood of u such that Kϕ∩ϕc∩U = {u}. The excision property
of singular homology theory implies that the definition of critical groups above is
independent of the particular choice of the neighborhood U .

Suppose that ϕ ∈ C1(X) satisfies the C-condition and that inf ϕ(Kϕ) > −∞.
Let c < inf ϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕc) for all k ≥ 0.

This definition is independent of the choice of the level c < inf ϕ(Kϕ). This is
a consequence of the second deformation theorem (see, for example, Gasiński-
Papageorgiou [7, p. 628]).

We now assume that Kϕ is finite and introduce the following series in t ∈ R:

M(t, u) =
∑
k≥0

rankCk(ϕ, u)tk for all u ∈ Kϕ,

P (t,∞) =
∑
k≥0

rankCk(ϕ,∞)tk.

The Morse relation says that∑
u∈Kϕ

M(t, u) = P (t,∞) + (1 + t)Q(t) for all t ∈ R, (2.6)

with Q(t) =
∑
k≥0 βkt

k being a formal series in t ∈ R with nonnegative integer
coefficients.

By A ∈ L(H1(Ω),
(
H1(Ω)

)∗
) we denote the linear operator defined by

〈A(u), h〉 =

∫
Ω

(∇u,∇h)RNdx for all u, h ∈ H1(Ω).

Furthermore, we say that a Banach space X has the Kadec-Klee property, if the
following implication is true:

un ⇀ u in X and ‖un‖ → ‖u‖ =⇒ un → u in X.

Locally uniformly convex Banach spaces, in particular Hilbert spaces, have the
Kadec-Klee property. Finally, let

m0 = min
{
k ∈ N : λ̂k ≥ 0

}
(2.7)
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that is, λ̂m0
is the first nonnegative eigenvalue of (2.1). If ξ ≥ 0 and β ≥ 0, then

λ̂1 ≥ 0 and so m0 = 1. Moreover, if ξ ≥ 0, β ≥ 0 and one of the two is different

from zero, then λ̂1 > 0.

3. Multiplicity Theorem

In this section we prove a multiplicity theorem about the existence of three
nontrivial solutions to problem (1.1) under conditions of double resonance.

Our hypotheses on the data of problem (1.1) are the following.

H(ξ): ξ ∈ Lq(Ω) with q > N when N ≥ 2 and q = 1 when N = 1; in addition
ξ+ ∈ L∞(Ω).

H(β): β ∈W 1,∞(∂Ω) and β(x) ≥ 0 for all x ∈ ∂Ω.

H(f): f : Ω × R → R is a Carathéodory function such that f(x, 0) = 0 for
a.a.x ∈ Ω and

(i) for every ρ > 0 there exists aρ ∈ L∞(Ω) such that

|f(x, s)| ≤ aρ(x) for a.a.x ∈ Ω and for all s ∈ R;

(ii) there exists k ∈ N with k ≥ max {m0, 2} such that

λ̂k ≤ lim inf
s→±∞

f(x, s)

s
≤ lim sup

s→±∞

f(x, s)

s
≤ λ̂k+1

uniformly for a.a.x ∈ Ω where m0 is given in (2.7);

(iii) if F (x, s) =
∫ s

0
f(x, t)dt, then

lim
s→±∞

[f(x, s)− 2F (x, s)] = +∞

uniformly for a.a.x ∈ Ω;

(iv) there exist a function ϑ ∈ L∞(Ω) and c3 > 0 such that

ϑ(x) ≤ λ̂1 for a.a.x ∈ Ω, ϑ 6= λ̂1

and

−c3 ≤ lim inf
s→0

f(x, s)

s
≤ lim sup

s→0

f(x, s)

s
≤ ϑ(x)

uniformly for a.a.x ∈ Ω.

Now let µ > 0 as in (2.2) and consider the following truncation-perturbation of
the nonlinearity f(x, ·)

f̂+(x, s) =

{
0, if s ≤ 0,

f(x, s) + µs, if s > 0,
f̂−(x, s) =

{
f(x, s) + µs, if s < 0,

0, if s ≥ 0.
(3.1)

It is clear that both functions are of Carathéodory type. We set F̂±(x, s) =∫ s
0
f̂±(x, t)dt and introduce the C1-functionals ϕ̂± : H1(Ω)→ R defined by

ϕ̂±(u) =
1

2
γ(u) +

µ

2
‖u‖22 −

∫
Ω

F̂±(x, u)dx.
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Furthermore, let ϕ : H1(Ω)→ R be the energy (Euler) functional of problem (1.1)
which is defined by

ϕ(u) =
1

2
γ(u)−

∫
Ω

F (x, u)dx.

Evidently ϕ ∈ C1(H1(Ω)).
Let us consider first the truncation functionals ϕ̂±.

Proposition 3.1. If hypotheses H(ξ), H(β) and H(f) are satisfied, then the func-
tionals ϕ̂± fulfill the C-condition.

Proof. We will show the assertion only for ϕ̂+, the proof for ϕ̂− is similar. So, let
(un)n≥1 ⊆ H1(Ω) be a sequence such that

|ϕ̂+(un)| ≤M1 for all n ≥ 1

with some M1 > 0 and

(1 + ‖un‖) ϕ̂′+(un)→ 0 in
(
H1(Ω)

)∗
. (3.2)

Due to (3.2) we get∣∣∣∣〈A(un), h〉+

∫
Ω

(ξ(x) + µ)unhdx+

∫
∂Ω

β(x)unhdσ −
∫

Ω

f̂+(x, un)hdx

∣∣∣∣
≤ εn‖h‖

1 + ‖un‖

(3.3)

for all h ∈ H1(Ω) with εn → 0+. We choose h = −u−n ∈ H1(Ω) in (3.3) to obtain

γ(u−n ) + µ‖u−n ‖22 ≤ εn for all n ∈ N

due to the truncation (3.1) which implies c0‖u−n ‖2 ≤ εn for all n ∈ N because of
(2.2). This finally gives

u−n → 0 in H1(Ω). (3.4)

We claim now that (un)n≥1 ⊆ H1(Ω) is bounded. Arguing by contradiction,
suppose that by passing to a subsequence if necessary, we have∥∥u+

n

∥∥→∞. (3.5)

Let yn =
u+
n

‖u+
n‖ for all n ≥ 1. Then ‖yn‖ = 1, yn ≥ 0 for all n ≥ 1 and so, by the

Sobolev embedding theorem and the compactness of the trace map, we may assume
that

yn ⇀ y in H1(Ω) and yn → y in L
2q
q−1 (Ω) and in L2(∂Ω). (3.6)

Combining (3.1), (3.3) and (3.4) results in∣∣∣∣〈A(u+
n ), h

〉
+

∫
Ω

ξ(x)u+
nhdx+

∫
∂Ω

β(x)u+
nhdσ −

∫
Ω

f̂+(x, u+
n )hdx

∣∣∣∣ ≤ ε′n‖h‖
for all h ∈ H1(Ω) with ε′n → 0+. Therefore, we have∣∣∣∣〈A(yn), h〉+

∫
Ω

ξ(x)ynhdx+

∫
∂Ω

β(x)ynhdσ −
∫

Ω

Nf (u+
n )

‖u+
n ‖

hdx

∣∣∣∣
≤ ε′n
‖u+

n ‖
‖h‖ for all n ∈ N.

(3.7)



DOUBLE RESONANCE FOR ROBIN PROBLEMS 9

Hypotheses H(f)(i), (ii) imply that

|f(x, s)| ≤ c4(1 + |s|) for a.a.x ∈ Ω and for all s ∈ R with c4 > 0.

This fact along with (3.5) ensures(
Nf (u+

n )

‖u+
n ‖

)
n≥1

⊆ L2(Ω) is bounded.

So, by passing to a subsequence if necessary and by applying condition H(f)(ii),
we obtain

Nf (u+
n )

‖u+
n ‖

⇀ η(x)y in L2(Ω) as n→∞ (3.8)

with λ̂k ≤ η(x) ≤ λ̂k+1 for a.a.x ∈ Ω, see the proof of Proposition 16 in Aizicovici-
Papageorgiou-Staicu [1]. Now let us pass to the limit in (3.7) as n → ∞ while we
use (3.6) and (3.8). Thus

〈A(y), h〉+

∫
Ω

ξ(x)yhdx+

∫
∂Ω

β(x)yhdσ =

∫
Ω

η(x)yhdx

for all h ∈ H1(Ω). This gives (see Papageorgiou-Rădulescu [14])

−∆y + ξ(x)y = η(x)y in Ω,

∂y

∂n
+ β(x)y = 0 on ∂Ω.

(3.9)

Now we choose h = yn − y ∈ H1(Ω) in (3.7), pass to the limit and use (3.6) as
well as (3.8). Then

lim
n→∞

〈A(yn), yn − y〉 = 0,

hence ‖∇yn‖2 → ‖∇y‖2 which by the Kadec-Klee property in combination with
(3.6) finally gives yn → y in H1(Ω). Thus

‖y‖ = 1 and y ≥ 0. (3.10)

First suppose that

η(x) = λ̂k or η(x) = λ̂k+1 for a.a.x ∈ Ω,

see (3.8). Because of (3.9) and (3.10) and since k ≥ 2 we infer that y is nodal which
contradicts (3.10).

So, assume that η 6= λ̂k and η 6= λ̂k+1. Applying Lemma 2.4 implies that

λ̃k(η) < λ̃k(λ̂k) = 1 and 1 = λ̃k+1(λ̂k+1) < λ̃k+1(η),

which gives y = 0 (see (3.9)) and so a contradiction because of (3.10).
This proves that (

u+
n

)
n≥1
⊆ H1(Ω) is bounded. (3.11)

Due to (3.4) and (3.11), we get then

(un)n≥1 ⊆ H
1(Ω) is bounded.

So, we may assume that

un ⇀ u in H1(Ω) and un → u in L
2q
q−1 (Ω) and in L2(∂Ω). (3.12)
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Taking h = un − u ∈ H1(Ω) in (3.3), passing to the limit as n → ∞ and applying
(3.12) yields

lim
n→∞

〈A(un), un − u〉 = 0.

This shows that ‖∇un‖2 → ‖∇u‖2 and taking the Kadec-Klee property along with
(3.12) into account this finally implies that un → u in H1(Ω). This proves that the
functional ϕ̂+ satisfies the C-condition.

Similarly we show that the functional ϕ̂− satisfies the C-condition. �

Let us now prove a similar result for the energy functional ϕ : H1(Ω)→ R.

Proposition 3.2. If hypotheses H(ξ), H(β) and H(f) are satisfied, then the func-
tional ϕ fulfills the C-condition.

Proof. Consider a sequence (un)n≥1 ⊆ H1(Ω) such that

|ϕ(un)| ≤M2 for some M2 > 0 and for all n ≥ 1, (3.13)

(1 + ‖un‖)ϕ′(un)→ 0 in
(
H1(Ω)

)∗
as n→∞. (3.14)

Assertion (3.14) implies∣∣∣∣〈A(un), h〉+

∫
Ω

ξ(x)unhdx+

∫
∂Ω

β(x)unhdσ −
∫

Ω

f(x, un)hdx

∣∣∣∣
≤ εn‖h‖

1 + ‖un‖
for all h ∈ H1(Ω) with εn → 0+.

(3.15)

Taking h = un ∈ H1(Ω) in (3.15) gives

−γ(un) +

∫
Ω

f(x, un)undx ≤ εn for all n ∈ N. (3.16)

On the other hand, by using (3.13), we have

γ(un)−
∫

Ω

2F (x, un)dx ≤ 2M2 for all n ∈ N. (3.17)

Adding (3.16) and (3.17) we obtain∫
Ω

[f(x, un)un − 2F (x, un)] dx ≤M3 (3.18)

for some M3 > 0 and for all n ∈ N. We are going to show that the sequence
(un)n≥1 ⊆ H1(Ω) is bounded. Arguing indirectly, suppose that at least for a
subsequence, we have

‖un‖ → +∞.

Let yn = un
‖un‖ for all n ∈ N. Then ‖yn‖ = 1 for all n ∈ N and so we may assume

that

yn ⇀ y in H1(Ω) and yn → y in L
2q
q−1 (Ω) and in L2(∂Ω). (3.19)

Inequality (3.15) can be rewritten as follows∣∣∣∣〈A(yn), h〉+

∫
Ω

ξ(x)ynhdx+

∫
∂Ω

β(x)ynhdσ −
∫

Ω

Nf (un)

‖un‖
hdx

∣∣∣∣
≤ εn‖h‖

(1 + ‖un‖)‖un‖
for all n ∈ N.

(3.20)
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Recall that with the aid of hypotheses H(f)(ii) one can show that

Nf (un)

‖un‖
⇀ ηy in L2(Ω) as n→∞ (3.21)

with λ̂k ≤ η(x) ≤ λ̂k+1 for a.a.x ∈ Ω. Taking h = yn − y ∈ H1(Ω) in (3.20),
passing to the limit as n→∞ and using (3.19) as well as (3.21) gives

lim
n→∞

〈A(yn), yn − y〉 = 0,

which directly implies that

yn → y in H1(Ω) and ‖y‖ = 1, (3.22)

as before because of the Kadec-Klee property. Now, passing to the limit in (3.20)
and applying (3.20) and (3.21) leads to

〈A(y), h〉+

∫
Ω

ξ(x)yhdx+

∫
∂Ω

β(x)yhdσ =

∫
Ω

η(x)yhdx

for all h ∈ H1(Ω). As before, see Papageorgiou-Rădulescu [14], this is equivalent to

−∆y + ξ(x)y = η(x)y in Ω,

∂y

∂n
+ β(x)y = 0 on ∂Ω.

(3.23)

First suppose that

η 6= λ̂k and η 6= λ̂k+1.

Then, (3.21) and Lemma 2.4 implies that

λ̃k(η) < λ̃k(λ̂k) = 1 and 1 = λ̃k+1(λ̂k+1) < λ̃k+1(η),

which gives y = 0 (see (3.23)) and so contradicts (3.22).
Next suppose that

η(x) = λ̂k or η(x) = λ̂k+1 for a.a.x ∈ Ω,

Then, (3.23) and the ucp of the eigenspaces (see Section 2) imply y(x) 6= 0 for
a.a.x ∈ Ω. Hence,

|un(x)| → +∞ for a.a.x ∈ Ω as n→∞. (3.24)

From (3.24), hypotheses H(f)(iii) and Fatou’s Lemma we obtain∫
Ω

[f(x, un)un − 2F (x, un)] dx→ +∞,

which contradicts (3.18).
This proves that (un)n≥1 ⊆ H1(Ω) is bounded. So we may assume that

un ⇀ u in H1(Ω) and un → u in L
2q
q−1 (Ω) and in L2(∂Ω). (3.25)

Taking h = un − u ∈ H1(Ω) in (3.15), passing to the limit as n→∞ and applying
(3.25), gives

lim
n→∞

〈A(un), un − u〉 = 0.

Hence, as before, un → u in H1(Ω). Therefore we conclude that ϕ satisfies the
C-condition. �
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Proposition 3.3. If hypotheses H(ξ), H(β) and H(f) are satisfied, then u = 0 is
a local minimizer of the functionals ϕ̂± and ϕ.

Proof. As before we are going to show the assertion only for the functional ϕ̂+, the
proofs for ϕ̂− and for ϕ are very similar.

Hypotheses H(f)(i), (ii) imply that

|F (x, s)| ≤ c5(1 + s2) (3.26)

for a.a.x ∈ Ω, for all s ∈ R and for some c5 > 0. Let r > 2 and ε > 0. Then (3.26)
along with hypotheses H(f)(iv) imply that we can find c6 = c6(ε) > 0 such that

|F (x, s)| ≤ 1

2
(ϑ(x) + ε) s2 + c6|s|r for a.a.x ∈ Ω and for all s ∈ R. (3.27)

Applying now (3.1) and (3.27) we have for every u ∈ H1(Ω)

ϕ̂+(u) =
1

2
γ(u) +

µ

2
‖u‖22 −

∫
Ω

F̂+(x, u)dx

=
1

2
γ(u−) +

µ

2
‖u−‖22 +

1

2
γ(u+)−

∫
Ω

F (x, u+)dx

≥ c0
2
‖u−‖2 +

1

2

[
γ(u+)−

∫
Ω

ϑ(x)(u+)2dx

]
− ε

2
‖u+‖2 − c7‖u‖r

≥ c0
2
‖u−‖2 +

1

2
(c8 − ε)‖u+‖2 − c7‖u‖r

(3.28)

for some c7, c8 > 0. Choosing 0 < ε < c8 we see from (3.28) that

ϕ̂+(u) ≥ c9‖u‖2 − c7‖u‖r for some c9 > 0.

Because r > 2 we find ρ ∈ (0, 1) small enough such that

ϕ̂+(0) = 0 < ϕ̂+(u) for all u ∈ H1(Ω) with 0 < ‖u‖ < ρ.

That means u = 0 is a strict local minimizer of ϕ̂+.
Similarly we show that u = 0 is a strict local minimizer for ϕ̂− and ϕ. �

Proposition 3.4. If hypotheses H(ξ), H(β) and H(f) are satisfied, then

Kϕ̂+ ⊆ int
(
C1(Ω)+

)
∪ {0} and Kϕ̂− ⊆ − int

(
C1(Ω)+

)
∪ {0}

Proof. Let u ∈ Kϕ̂+
with u 6= 0, that is,

〈A(u), h〉+

∫
Ω

(ξ(x) + µ)uhdx+

∫
∂Ω

β(x)uhdσ =

∫
Ω

f̂+(x, u)hdx (3.29)

for all h ∈ H1(Ω). Taking h = −u− ∈ H1(Ω) in (3.29) gives

γ(u−) + µ‖u−‖22 = 0,

due to the truncations in (3.1). Using (2.2) implies c0‖u−‖2 ≤ 0 and so u ≥ 0, u 6= 0.
Hence (3.29) becomes

〈A(u), h〉+

∫
Ω

ξ(x)uhdx+

∫
∂Ω

β(x)uhdσ =

∫
Ω

f(x, u)hdx

for all h ∈ H1(Ω) which means that

−∆u+ ξ(x)u = f(x, u) in Ω,

∂u

∂n
+ β(x)u = 0 on ∂Ω.

(3.30)
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Hypotheses H(f)(i), (ii), (iv) imply that

|f(x, s)| ≤ c10|s| (3.31)

for a.a.x ∈ Ω, for all s ∈ R and for some c10 > 0. Now we introduce the function

k(x) =

{
f(x,u(x))
u(x) if u(x) 6= 0,

0 if u(x) = 0,

which belongs to L∞(Ω) because of (3.31). With the representation of k, we can
rewrite (3.30) as follows

−∆u = (k(x)− ξ(x))u(x) in Ω,

∂u

∂n
+ β(x)u = 0 on ∂Ω.

(3.32)

Then (3.32) and Lemma 5.1. of Wang [18] imply that

u ∈ L∞(Ω).

Since hypotheses H(ξ) and (3.32) it follows that

∆u ∈ Lq(Ω).

Applying the Calderon-Zygmund estimates (see Wang [18, Lemma 5.2]) we obtain
that

u ∈W 2,q(Ω).

So, by the Sobolev embedding theorem we have W 2,q(Ω) ↪→ C1,α(Ω) with α =
1− N

q > 0. Therefore

u ∈ C1(Ω)+ \ {0}.

From (3.31) it is clear that, for every ρ > 0, we can find ξ̂ρ > 0 such that

f(x, s) + ξ̂ρs ≥ 0 for a.a.x ∈ Ω and for all s ∈ [0, ρ]. (3.33)

Using (3.30) and (3.33) with ρ = ‖u‖∞ gives

∆u(x) ≤
(
‖ξ+‖∞ + ξ̂ρ

)
u(x) for a.a.x ∈ Ω,

due to hypothesis H(ξ). Applying the strong maximum principle we obtain u ∈
int
(
C1(Ω)+

)
, see, for instance, Gasiński-Papageorgiou [7, p. 738].

Similarly we can show that

Kϕ̂− ⊆ − int
(
C1(Ω)+

)
∪ {0}.

�

Now we are ready to prove the existence of two nontrivial constant sign solutions
of problem (1.1).

Proposition 3.5. If hypotheses H(ξ), H(β) and H(f) are satisfied, then problem
(1.1) admits two nontrivial constant sign solutions

u0 ∈ int
(
C1(Ω)+

)
and v0 ∈ − int

(
C1(Ω)+

)
.
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Proof. Based on Proposition 3.4 we see that we can assume that the critical sets
Kϕ̂+ and Kϕ̂− are finite or otherwise we already have an infinity of positive and
negative solutions of problem (1.1) and so we are done.

Proposition 3.3 implies the existence of ρ ∈ (0, 1) small enough such that

ϕ̂+(0) = 0 < inf [ϕ̂+(u) : ‖u‖ = ρ] = m̂+, (3.34)

see Aizicovici-Papageorgiou-Staicu[1, Proof of Proposition 29]. Hypothesis H(f)(ii)
implies that

ϕ̂+ (tû1)→ −∞ as t→ +∞ (3.35)

because of k ≥ 2 and û1 ∈ int
(
C1(Ω)+

)
. Finally, Proposition 3.1 states

ϕ̂+ satisfies the C-condition. (3.36)

Hence, (3.34), (3.35) and (3.36) allow the usage of the mountain pass theorem
stated in Theorem 2.2. So we find u0 ∈ H1(Ω) such that

u0 ∈ Kϕ̂+
and m̂+ ≤ ϕ̂+(u0). (3.37)

From (3.34), (3.37) and Proposition 3.4 it follows that u0 ∈ int
(
C1(Ω)+

)
.

Similarly, working with the functional ϕ̂− instead, we prove the existence of a
negative solution v0 ∈ − int

(
C1(Ω)+

)
. �

In order to prove the existence of a third smooth solution of problem (1.1) we
will apply Morse theory in terms of critical groups.

Proposition 3.6. If hypotheses H(ξ), H(β) and H(f) are satisfied, then

Cm(ϕ,∞) = δm,dkZ for all m ∈ N0 with dk = dim

k⊕
i=1

E
(
λ̂i

)
.

Proof. Let λ ∈
(
λ̂k, λ̂k+1

)
and consider the C2-functional ψ : H1(Ω)→ R defined

by

ψ(u) =
1

2
γ(u)− λ

2
‖u‖22.

The choice of λ > 0 implies that Kψ = {0} and u = 0 is nondegenerate. Hence we
have

Cm(ψ,∞) = Cm(ψ, 0) = δm,dkZ for all m ∈ N0 (3.38)

with dk = dim
⊕k

i=1E
(
λ̂i

)
, see Motreanu-Motreanu-Papageorgiou [12, pp. 160

and 155].
Consider the homotopy h : [0, 1]×H1(Ω)→ R defined by

h(t, u) = (1− t)ϕ(u) + tψ(u)

for all t ∈ [0, 1] and for all u ∈ H1(Ω).
Claim: We can find τ ∈ R and ς > 0 such that

h(t, u) ≤ τ =⇒ (1 + ‖u‖) ‖h′u(t, u)‖∗ ≥ ς

for all t ∈ [0, 1] and for all u ∈ H1(Ω).
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Suppose that the Claim is not true. Since h is bounded on bounded sets we can
find (tn)n≥1 ⊆ [0, 1] and (un)n≥1 ⊆ H1(Ω) such that

tn → t, ‖un‖ → +∞, h(tn, un)→ −∞ and

(1 + ‖un‖)h′u(tn, un)→ 0 in (H1(Ω))∗.
(3.39)

From the last convergence in (3.39) we have

|〈A(un), h〉|+
∫

Ω

ξ(x)unhdx

∫
∂Ω

β(x)unhdσ

− (1− tn)

∫
Ω

f(x, un)hdx− tn
∫

Ω

λunhdx ≤
εn‖h‖

1 + ‖un‖

(3.40)

for all h ∈ H1(Ω) with εn → 0+. Let yn = un
‖un‖ for all n ≥ 1. Then ‖yn‖ = 1 for

all n ≥ 1 and so we may assume that

yn ⇀ y in H1(Ω) and yn → y in L
2q
q−1 (Ω) and in L2(∂Ω). (3.41)

Rewriting (3.40) gives

|〈A(yn), h〉|+
∫

Ω

ξ(x)ynhdx

∫
∂Ω

β(x)ynhdσ

− (1− tn)

∫
Ω

Nf (un)

‖un‖
hdx− tn

∫
Ω

λynhdx ≤
εn‖h‖

(1 + ‖un‖)‖un‖

(3.42)

for all n ∈ N. Recall that

Nf (un)

‖un‖
⇀ ηy in L2(Ω) with λ̂k ≤ η(x) ≤ λ̂k+1 for a.a.x ∈ Ω, (3.43)

see hypothesis H(f)(ii) and the proof of Proposition 3.2. Now, choosing h = yn−y ∈
H1(Ω) in (3.42), passing to the limit as n → ∞ and using (3.41) as well as (3.43)
yields

lim
n→∞

〈A(yn), yn − y〉 = 0,

which implies because of the Kadec-Klee property that yn → y. This gives

‖y‖ = 1. (3.44)

Passing to the limit in (3.42) as n→∞ and applying (3.43), we obtain

〈A(y), h〉+

∫
Ω

ξ(x)yhdx

∫
∂Ω

β(x)yhdσ =

∫
Ω

ηt(x)ydx (3.45)

for all h ∈ H1(Ω) with ηt(x) = (1 − t)η(x) + tλ ∈
[
λ̂k, λ̂k+1

]
for a.a.x ∈ Ω. This

means
−∆y + ξ(x)y = ηt(x)y in Ω,

∂y

∂n
+ β(x)y = 0 on ∂Ω.

(3.46)

Reasoning as in the proof of Proposition 3.2 by applying (3.44), (3.45), (3.46) and
hypothesis H(f)(iii), we reach a contradiction. So, (3.39) cannot be true, hence the
Claim holds.

As in the proof of Proposition 3.1 we can easily show that h(t, ·) satisfies the
C-condition for every t ∈ [0, 1]. Therefore, Proposition 3.2 of Liang-Su [10] (see
also Chang [5]) gives

Cm(h(0, ·),∞) = Cm(h(1, ·),∞) for all m ∈ N0
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and so

Cm(ϕ,∞) = Cm(ψ,∞) for all m ∈ N0.

Becuase of (3.38) we derive

Cm(ϕ,∞) = δm,dkZ for all m ∈ N0.

�

We also compute the critical groups at infinity of the functionals ϕ̂±. Recall that
without any loss of generality, we can assume that the critical sets Kϕ̂± are finite.

Proposition 3.7. If hypotheses H(ξ), H(β) and H(f) are satisfied, then

Cm (ϕ̂±,∞) = 0 for all m ∈ N0.

Proof. We will do the proof only for ϕ̂+, the proof for ϕ̂− is very similar.

Let λ ∈
(
λ̂k, λ̂k+1

)
and consider the C1-functional ψ̂+ : H1(Ω)→ R defined by

ψ̂+(u) =
1

2
γ(u) +

µ

2
‖u−‖22 −

λ

2
‖u+‖22.

We introduce the homotopy h+ : [0, 1]×H1(Ω)→ R defined by

h+(t, u) = (1− t)ϕ̂+(u) + tψ̂+(u).

Claim 1: We can find τ̂ ∈ R and ς̂ > 0 such that

ĥ+(t, u) ≤ τ̂ =⇒ (1 + ‖u‖)
∥∥∥∥(ĥ+

)′
u

∥∥∥∥
∗
≥ ς̂ for all t ∈ [0, 1].

Again we argue by contradiction. So suppose that we can find (tn)n≥1 ⊆ [0, 1] and
(un)n≥1 ⊆ H1(Ω) such that

tn → t, ‖un‖ → +∞, ĥ+(tn, un)→ −∞ and

(1 + ‖un‖)
(
ĥ+

)′
u

(tn, un)→ 0 in (H1(Ω))∗,
(3.47)

see the proof of Proposition 3.6. The last convergence in (3.47) gives∣∣∣∣〈A(un), h〉+

∫
Ω

ξ(x)unhdx

∫
∂Ω

β(x)unhdσ −
∫

Ω

µu−n hdx

−(1− tn)

∫
Ω

f(x, u+
n )hdx− tn

∫
Ω

λu+
nhdx

∣∣∣∣ ≤ εn‖h‖
1 + ‖un‖

(3.48)

for all h ∈ H1(Ω) with εn → 0+. Choosing h = −u−n ∈ H1(Ω) in (3.48) yields

γ(u−n ) + µ‖u−n ‖22 ≤ εn for all n ∈ N

due to the truncations defined in (3.1). Then, thanks to (2.2) we derive c0‖u−n ‖2 ≤
εn for all n ∈ N and so

u−n → 0 in H1(Ω). (3.49)

From (3.47) and (3.49) it follows that

‖u+
n ‖ → ∞ as n→∞.
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We set yn =
u+
n

‖u+
n‖ for all n ≥ 1. Then ‖yn‖ = 1, yn ≥ 0 for all n ≥ 1 and so we

may assume that

yn ⇀ y in H1(Ω) and yn → y in L
2q
q−1 (Ω) and in L2(∂Ω). (3.50)

From (3.48) and (3.49) we have∣∣∣∣〈A(yn), h〉+

∫
Ω

ξ(x)ynhdx+

∫
∂Ω

β(x)ynhdσ

−(1− tn)

∫
Ω

Nf (u+
n )

‖u+
n ‖

hdx− tn
∫

Ω

λy+
n hdx

∣∣∣∣ ≤ ε′n‖h‖ (3.51)

for all n ∈ N with ε′n → 0+. Recall that

Nf (u+
n )

‖u+
n ‖

⇀ ηy in L2(Ω) with λ̂k ≤ η(x) ≤ λ̂k+1 for a.a.x ∈ Ω, (3.52)

see (3.8). If we choose h = yn − y ∈ H1(Ω) in (3.51), pass to the limit as n → ∞
and use (3.50) as well as (3.52), then

lim
n→∞

〈A(yn), yn − y〉 = 0,

which means ‖∇yn‖2 → ‖∇y‖2. Because of the Kadec-Klee property and (3.50) we
get yn → y in H1(Ω) and so

‖y‖ = 1, y ≥ 0. (3.53)

Passing to the limit in (3.51) as n→∞ and applying (3.52) we obtain

〈A(y), h〉+

∫
Ω

ξ(x)yhdx+

∫
∂Ω

β(x)yhdσ =

∫
Ω

ηt(x)yhdx

for all h ∈ H1(Ω) with ηt(x) = (1− t)η(x) + tλ. This means

−∆y + ξ(x)y = ηt(x)y in Ω,

∂y

∂n
+ β(x)y = 0 on ∂Ω.

(3.54)

Now, by applying (3.53) and (3.54) and following the ideas in the proof of Propo-
sition 3.1, we reach a contradiction and this proves Claim 1.

A similar argument also shows that ĥ+(t, ·) satisfies the C-condition for all t ∈
[0, 1]. So, Proposition 3.2 of Liang-Su [10] (see also Chang [5, Theorem 5.1.2 on
page 334]) implies that

Cm

(
ĥ+(0, ·),∞

)
= Cm

(
ĥ+(1, ·),∞

)
for all m ∈ N0,

which gives

Cm (ϕ̂+,∞) = Cm

(
ψ̂+,∞

)
for all m ∈ N0. (3.55)

Now, let us consider the homotopy ĥ∗+ : [0, 1]×H1(Ω)→ R defined by

ĥ∗+(t, u) = ψ̂+(u)− t
∫

Ω

udx.

Claim 2:
(
ĥ∗+

)′
u

(t, u) 6= 0 for all t ∈ [0, 1] and for all u ∈ H1(Ω) with u 6= 0.
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Arguing by contradiction suppose we can find t ∈ [0, 1] and u ∈ H1(Ω), u 6= 0
such that (

ĥ∗+

)′
u

(t, u) = 0.

This would give

〈A(u), h〉+

∫
Ω

ξ(x)uhdx+

∫
∂Ω

β(x)uhdσ − µ
∫

Ω

u−hdx

= λ

∫
Ω

u+hdx+ t

∫
Ω

hdx for all h ∈ H1(Ω).

(3.56)

If we choose h = −u− ∈ H1(Ω) in (3.56) we derive

γ(u−) + µ‖u−‖22 ≤ 0,

which, due to (2.2), yields

c0‖u−‖2 ≤ 0.

That means u 6= 0, u ≥ 0. So, (3.56) becomes

〈A(u), h〉+

∫
Ω

ξ(x)uhdx+

∫
∂Ω

β(x)uhdσ =

∫
Ω

(λu+ t)hdx for all h ∈ H1(Ω).

Finally, this implies that u solves the problem

−∆u+ ξ(x)u = λu+ t in Ω,

∂u

∂n
+ β(x)u = 0 on ∂Ω.

(3.57)

From (3.57) and the regularity theory of Wang [18], similar to the proof of Propo-
sition 3.4, we have

u ∈ C1(Ω)+ \ {0}.

Moreover, hypothesis H(ξ) and the strong maximum principle imply

u ∈ int
(
C1(Ω)+

)
.

Let w ∈ int
(
C1(Ω)+

)
and consider the function

R(w, u)(x) = |∇w(x)|2 −
(
∇u(x),∇

(
w2

u

)
(x)

)
RN

.

Applying Picone’s identity (see, for instance, Motreanu-Motreanu-Papageorgiou
[12]), Green’s identity and (3.57) we conclude

0 ≤
∫

Ω

R(w, u)dx

= ‖∇w‖22 −
∫

Ω

(−∆u)
w2

u
dx+

∫
∂Ω

β(x)w2dσ

= ‖∇w‖22 −
∫

Ω

(λ− ξ(x))w2dx+

∫
∂Ω

β(x)w2dσ − t
∫

Ω

w2

u
dx

≤ γ(w)− λ‖w‖22
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since t ∈ [0, 1], w, u ∈ int
(
C1(Ω)+

)
. Now we choose w = û1 ∈ int

(
C1(Ω)+

)
. This

yields

0 ≤ γ (û1)− λ ‖û1‖22 =
(
λ̂1 − λ

)
< 0,

because of ‖û1‖2 = 1 and λ ≥ λ̂2 > λ̂1, a contradiction. This proves Claim 2.
The homotopy invariance of the singular homology groups implies that for r > 0

small enough, we obtain

Hm

(
ĥ∗+(0, ·)0 ∩Br, ĥ∗+(1, ·)0 ∩Br

)
= Hm

(
ĥ∗+(1, ·)0 ∩Br, ĥ∗+(1, ·)0 ∩Br \ {0}

)
for all m ∈ N0,

(3.58)

where Br = {u ∈ H1(Ω) : ‖u‖ < r}. Claim 2 gives us

Hm

(
ĥ∗+(1, ·)0 ∩Br, ĥ∗+(1, ·)0 ∩Br \ {0}

)
= 0 for all m ∈ N0,

see, for example, Motreanu-Motreanu-Papageorgiou [12, p. 160]. This in combina-
tion with (3.58) yields

Cm (ϕ̂+, 0) = Cm

(
ψ̂+, 0

)
= 0 for all m ∈ N0. (3.59)

Since λ ∈
(
λ̂k, λ̂k+1

)
, we have Kψ̂+

= {0} and so

Cm

(
ψ̂+, 0

)
= Cm

(
ψ̂+,∞

)
for all m ∈ N0,

see Motreanu-Motreanu-Papageorgiou [12]. Then (3.59) gives

Cm

(
ψ̂+,∞

)
= 0 for all m ∈ N0

and (3.55) then implies

Cm (ϕ̂+,∞) = 0 for all m ∈ N0.

In a similar way we show that

Cm (ϕ̂−,∞) = 0 for all m ∈ N0.

�

Now we can have an exact computation of the critical groups of the energy
functional ϕ at the two constant sign solutions u0 ∈ int

(
C1(Ω)+

)
and v0 ∈

− int
(
C1(Ω)+

)
produced in Proposition 3.5. Note the fact that ϕ is not C2 (recall

that f is only a Carathédory function) does not permit the usage of classical results
from Morse theory (see, for example, Motreanu-Motreanu-Papageorgiou [12]) and
makes the computation of the critical groups of ϕ at u0 ∈ int

(
C1(Ω)+

)
and at

v0 ∈ − int
(
C1(Ω)+

)
a nontrivial, interesting task.

Proposition 3.8. Let the hypotheses H(ξ), H(β) and H(f) be satisfied and let the
solutions

u0 ∈ int
(
C1(Ω)+

)
, v0 ∈ − int

(
C1(Ω)+

)
produced in Proposition 3.5 be the only nontrivial constant sign solutions of problem
(1.1). Then

Cm(ϕ, u0) = Cm(ϕ, v0) = δm,1Z for all m ∈ N0.
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Proof. We do the proof only for the positive solution u0 ∈ int
(
C1(Ω)+

)
, the proof

for the negative solution v0 ∈ − int
(
C1(Ω)+

)
is very similar.

Proposition 3.4 states that

Kϕ̂+
⊆ int

(
C1(Ω)+

)
∪ {0}

and by the definition of the truncation in (3.1) we know that the elements of Kϕ̂+

are nonnegative solutions of (1.1). So, the hypothesis of the proposition implies
that

Kϕ̂+
= {0, u0}.

From the proof of Proposition 3.5 (see (3.34), (3.37)) we know that

ϕ̂+(0) = 0 < m̂+ ≤ ϕ̂+(u0). (3.60)

Let µ̂ < 0 < ν̂ < m̂+ and consider the following triple of sets

ϕ̂µ̂+ ⊆ ϕ̂ν̂+ ⊆ H1(Ω).

For this triple of sets we consider the corresponding long exact sequence of singular
homology groups (see Motreanu-Motreanu-Papageorgiou [12, pp. 143, 144])

· · · −→ Hm

(
H1(Ω), ϕ̂µ̂+

)
i∗−→ Hm

(
H1(Ω), ϕ̂ν̂+

) ∂̂∗−→

∂̂∗−→ Hm−1

(
ϕ̂ν̂+, ϕ̂

µ̂
+

)
−→ . . . ,

(3.61)

where i∗ is the group homomorphism induced by the inclusion(
H1(Ω), ϕ̂µ̂+

)
i
↪→
(
H1(Ω), ϕ̂ν̂+

)
and ∂̂∗ is the composed boundary homomorphism.

The rank theorem implies

rankHm

(
H1(Ω), ϕ̂ν̂+

)
= rank ker ∂̂∗ + rank im ∂̂∗

= rank im i∗ + rank im ∂̂∗
(3.62)

because of the exactness in (3.61). Recall that ν̂ ∈ (0, m̂+) and Kϕ̂+
= {0, u0}.

Therefore, from (3.60) and Proposition 6.61 in Motreanu-Motreanu-Papageorgiou
[12] we obtain

Hm

(
H1(Ω), ϕ̂ν̂+

)
= Cm (ϕ̂+, u0) for all m ∈ N0. (3.63)

Since µ̂ < 0 and Kϕ̂+
= {0, u0}, from (3.50) it follows that

Hm

(
H1(Ω), ϕ̂ν̂+

)
= Cm (ϕ̂+,∞) = 0 for all m ∈ N0, (3.64)

cf. Proposition 3.7. Finally, Lemma 6.55 of Motreanu-Motreanu-Papageorgiou [12]
gives

Hm−1

(
ϕ̂ν̂+, ϕ̂

µ̂
+

)
= Cm−1(ϕ̂+, 0) = δm−1,0Z = δm,1Z for all m ∈ N0, (3.65)

see also Proposition 3.3.
We return back to (3.62) and use (3.63), (3.64) as well as (3.65). This leads to

rankC1 (ϕ̂+, u0) ≤ 1. (3.66)
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From the proof of Proposition 3.5 we know that u0 ∈ int
(
C1(Ω)+

)
is a critical

point of mountain pass type of the functional ϕ̂+. Hence

C1 (ϕ̂+, u0) 6= 0,

(see Motreanu-Motreanu-Papageorgiou [12, p. 168]) which means

rankC1 (ϕ̂+, u0) ≥ 1. (3.67)

Note that in (3.61) only the tail (that is, m = 1) is nontrivial (see (3.64), (3.65)).
Finally, from (3.66) and (3.67) we infer that

Cm (ϕ̂+, u0) = δm,1Z for all m ∈ N0. (3.68)

Now, let us consider the homotopy h̃+ : [0, 1]×H1(Ω)→ R defined by

h̃+(t, u) = (1− t)ϕ(u) + tϕ̂+(u).

Suppose that we can find (tn)n≥1 ⊆ [0, 1] and (un)n≥1 ⊆ H1(Ω) such that

tn → t, un → u0,
(
h̃+

)′
u

(tn, un) = 0 for all n ∈ N. (3.69)

The last assertion in (3.69) implies

−∆un + ξ(x)un = f(x, u+
n ) + (1− tn)f(x,−u−n ) + tnµu

−
n in Ω,

∂un
∂n

+ β(x)un = 0 on ∂Ω.
(3.70)

From (3.70) in combination with the growth condition on f stated in (3.31) and
the regularity theory of Wang [18] we know that we can find α ∈ (0, 1) and c11 > 0
such that

un ∈ C1,α(Ω), ‖un‖C1,α(Ω) ≤ c11 for all n ∈ N. (3.71)

From (3.71) and the compact embedding of C1,α(Ω) into C1(Ω), we infer that

un → u0 in C1(Ω),

see (3.69). Recall that u0 ∈ int
(
C1(Ω)+

)
and int

(
C1(Ω)+

)
⊆ C1(Ω) is open, we

obtain

un ∈ int
(
C1(Ω)+

)
for all n ≥ n0.

Therefore, (un)n≥1 is a sequence of distinct positive solutions of (1.1), a contradic-
tion. Hence, (3.69) cannot occur and so from the homotopy invariance of critical
groups (see, for example, Gasiński-Papageorgiou [9, p. 836]) we have

Cm

(
h̃+(0, ·), u0

)
= Cm

(
h̃+(1, ·), u0

)
for all m ∈ N0.

This gives because of (3.68)

Cm (ϕ, u0) = Cm (ϕ̂+, u0) = δm,1Z for all m ∈ N0.

Similarly we can show that

Cm (ϕ, v0) = δm,1Z for all m ∈ N0.

�

Now we are ready to produce a third nontrivial smooth solution.
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Proposition 3.9. If hypotheses H(ξ), H(β) and H(f) are satisfied, then problem
(1.1) has a third nontrivial smooth solution

y0 ∈ C1(Ω), y0 6∈ {0, u0, v0}.

Proof. From Proposition 3.6 we have

Cm(ϕ,∞) = δm,dkZ for all m ∈ N0 with dk = dim

k⊕
i=1

E
(
λ̂i

)
.

Then from Motreanu-Motreanu-Papageorgiou [12, Theorem 6.62, p. 160] (an easy
consequence of the Morse relation given in (2.6)) we know that there exists y0 ∈ Kϕ

such that

Cdk(ϕ, y0) 6= 0. (3.72)

From Propositions 3.3 and 3.8 we have

Cm(ϕ, 0) = δm,0Z and Cm(ϕ, u0) = Cm(ϕ, v0) = δm,1Z (3.73)

for all m ∈ N0. Since dk ≥ 2 (recall that k ≥ 2), from (3.72) and (3.73) it follows
that

y0 6∈ {0, u0, v0}.

Because of y0 ∈ Kϕ, we know that y0 is a third nontrivial solution of (1.1) and the

regularity theory of Wang [18] implies that y0 ∈ C1(Ω). �

Theorem 3.10. If hypotheses H(ξ), H(β) and H(f) are satisfied, then problem
(1.1) admits at least three nontrivial smooth solutions

u0 ∈ int
(
C1(Ω)+

)
, v0 ∈ − int

(
C1(Ω)+

)
and y0 ∈ C1(Ω).
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