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Abstract. The present survey aims to report on recent advances in the study

of nonlinear elliptic problems whose differential part is expressed by a general
operator in divergence form. The pattern of such differential operator is the

p-Laplacian ∆p with 1 < p < +∞. More general operators can be considered,

possibly having completely different properties, for instance not satisfying any
homogeneity requirement. A major objective of our work is to provide ex-

istence theorems of multiple solutions for boundary value problems governed

by such general operators. In this direction, a three nontrivial solutions the-
orem is presented. In the case of problems determined by the p-Laplacian,

we give a theorem ensuring the existence of at least four nontrivial solutions.

Moreover, a complete sign information is available: two positive solutions, a
negative solution and a nodal (sign changing) solution. Finally, we provide a

theorem guaranteeing the existence of a positive solution for a problem involv-
ing the (p, q)-Laplacian operator ∆p + ∆q , with 1 < q < p, and a nonlinearity

depending on the solution and its gradient.

1. Introduction

In this survey we focus on nonlinear elliptic boundary value problems with Dirich-
let and Neumann boundary conditions presenting recent existence results of mul-
tiple solutions with precise sign information such as positive, negative and nodal
(i.e., sign changing) solutions. Specifically, we address some advances related to
the nonlinear Dirichlet boundary value problem{

−div A(x,∇u) = f(x, u) in Ω,
u = 0 on ∂Ω,

(1.1)

and the nonlinear Neumann boundary value problem{
−div A(x,∇u) = f(x, u) in Ω,
∂u
∂n = 0 on ∂Ω,

(1.2)

where n denotes the outward unit normal vector on ∂Ω, 1 < p < +∞ is a given
number, and Ω ⊂ RN is a bounded domain with C2 boundary ∂Ω. For a later use
we denote by Ω the closure of Ω in RN .

The nonlinearity in the right-hand side of the elliptic equation in (1.1) and (1.2)
is required to satisfy the following assumption:
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(F ) f : Ω × R → R is a Carathéodory function, which means that f(x, t) is
measurable in x and continuous in t, with f(x, 0) = 0 for a.e. x ∈ Ω, such
that the subcritical growth condition for f(x, ·) holds

|f(x, t)| ≤ C(1 + |t|r−1) for every t ∈ R, a.e. x ∈ Ω,

where C > 0 and 1 ≤ r < p∗ are constants. Here p∗ denotes the critical
Sobolev exponent, that is

p∗ =

{
Np
N−p if p < N,

+∞ if p ≥ N.

The left-hand side of (1.1) and (1.2) is expressed in the form of divergence
divA(x,∇(·)) and is also nonlinear. Therein we have a continuous map A : Ω ×
RN → RN satisfying the growth condition

|A(x, y)| ≤ C(1 + |y|p−1) for all (x, y) ∈ Ω× RN ,

with a constant C > 0. In the above statement the number 1 < p < +∞ is the
same as the one in assumption (F ).

We say that u ∈W 1,p
0 (Ω) is a (weak) solution of problem (1.1) if∫

Ω

A(x,∇u) · ∇v dx =

∫
Ω

f(x, u)v dx for all v ∈W 1,p
0 (Ω). (1.3)

Similarly, we say that u ∈W 1,p(Ω) is a (weak) solution of problem (1.2) if∫
Ω

A(x,∇u) · ∇v dx =

∫
Ω

f(x, u)v dx for all v ∈W 1,p(Ω). (1.4)

We note that owing to the above growth conditions, the integrals involved in (1.3)
and (1.4) exist.

In the following we describe the topics studied in this chapter. Section 2 dis-
cusses the hypotheses on the differential operator in (1.1) and (1.2) and important
properties of it. We stress that we are dealing with a general notion, for instance no
homogeneity assumptions are supposed. We point out that under suitable assump-
tions, the problems (1.1) and (1.2) have a variational structure. Looking for the
critical points of the Euler functionals associated to problems (1.1) and (1.2), which
coincide with the weak solutions of these problems, the obvious candidates are the
local minimizers. In this respect, Section 3 sets forth the celebrated relation of
C1-minimizers versus W 1,p-minimizers for problem (1.2) in the case of our general
differential operator determined by the possibly nonhomogeneous map A(x, y).

As noticed above, a major difficulty in handling problems (1.1) and (1.2) is
the lack of homogeneity for operator A(x, y). This is seen for example in the
study of the spectrum of the corresponding differential operator −divA(x,∇u)
driving the principal part in the problems (1.1) and (1.2). In Section 4, in order
to overcome the lack of homogeneity, asymptotic (p − 1)-homogeneity at zero and
infinity conditions for the nonhomogeneous operator A(x, ·) are introduced, under
which a basic result on the spectrum of the operator −divA(x,∇u) is stated. Next,
in Section 5 it is presented a multiplicity theorem ensuring the existence of at least
three nontrivial solutions for problem (1.2). Two of the solutions are of opposite
constant signs and are obtained by minimization, whereas the existence of the
third nontrivial solution is deduced through the application of the mountain pass
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theorem. The proof strongly relies on the relation involving C1-minimizers versus
W 1,p-minimizers.

More insight on multiple solutions with complete sign information for problem
(1.1) is obtained in the case where divA(x,∇u) is the p-Laplacian operator. Here a
striking particularity of the studied problem is that the right-hand side nonlinearity
contains a (p−1)-sublinear term (usually, called “concave term”) β(x)|u(x)|q−2u(x)
with β ∈ L∞(Ω)\{0}, β ≥ 0, and 1 < q < p. In Section 6 we state a result guaran-
teeing the existence of at least two positive solutions provided ‖β‖∞ is sufficiently
small. Section 7 is devoted to the existence of opposite constant sign extremal solu-
tions, which means the smallest positive solution and the biggest negative solution.
This is done by applying the method of sub-supersolutions. Section 8 contains our
main result on multiple solutions with precise sign information which ensures the
existence of four nontrivial solutions: two positive, one negative and one nodal (sign
changing). The proof is based on the existence of extremal solutions of opposite
constant sign exploiting the observation that every nontrivial solution situated be-
tween opposite constant sign extremal solutions is necessarily nodal. This technique
originates in [5] (see also [4]).

Finally, a new problem is formulated in Section 9 which is conducted by the
(p, q)-Laplacian operator ∆p + ∆q, with 1 < q < p, and whose right-hand side
depends on the solution and its gradient. The dependence of the nonlinearity of
the gradient of the solution prevents the problem to have a variational structure.
Our result ensures the existence of a positive solution. The approach combines
approximation, fixed point argument and an adequate comparison principle.

2. Properties of the differential operator in (1.1) and (1.2)

The map A entering the left-hand side of problems (1.1) and (1.2) is assumed to
satisfy the following conditions:

(H) A(x, y) = a(x, |y|)y, where a(x, t) > 0 for all (x, t) ∈ Ω× (0,+∞), and
(i) A ∈ C0(Ω× RN ,RN ) ∩ C1(Ω× (RN \ {0}),RN );
(ii) there exists a constant C1 > 0 such that

|DyA(x, y)| ≤ C1|y|p−2 for every x ∈ Ω, and y ∈ RN \ {0};

(iii) there exists a constant C0 > 0 such that

DyA(x, y)ξ · ξ ≥ C0|y|p−2|ξ|2 for every x ∈ Ω, y ∈ RN \ {0}, and ξ ∈ RN ;

(iv) there exists a constant C2 > 0 such that

|DxA(x, y)| ≤ C2(1 + |y|p−1) for every x ∈ Ω, and y ∈ RN \ {0};

(v) there exist constants C3 > 0 and 1 ≥ t0 > 0 such that

|DxA(x, y)| ≤ C3|y|p−1(− log |y|) for every x ∈ Ω,

y ∈ RN \ {0} with 0 < |y| < t0.

The notation DyA means the differential of the mapping A(x, y) with respect to
the variable y ∈ RN , and here 1 < p < +∞ is given in assumption (F ). Notice
that if A does not depend on x ∈ Ω, then conditions (H) (iv), (v) are automatically
satisfied.

We provide some examples of maps A complying with hypothesis (H).
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Example 2.1. Let θ ∈ C1(Ω) with θ > 0. Then the following mappings fulfill the
conditions stated in (H).

(i) For 1 < p < +∞: A(x, y) = θ(x)|y|p−2y;
(ii) For p ≥ 2: A(x, y) = θ(x)(|y|p−2y + ln(1 + |y|p−2)y);

(iii) For 1 < τ ≤ p ≤ q and τ 6= 2:

A(x, y) =

 θ(x)
(
|y|p−2y + |y|q−2y

)
if |y| ≤ 1

θ(x)
(
|y|p−2y + q−2

τ−2 |y|
τ−2y − q−τ

τ−2y
)

if |y| > 1;

(iv) The weighted sum of p-Laplacian and a generalized mean curvature opera-
tor:

A(x, y) = θ(x)(|y|p−2y + c
|y|p−2y

1 + |y|p
),

with 0 < c < 4p(p− 1) if 1 < p < 2 and 0 < c < 4p
(p−1)2 if p ≥ 2.

The form of the operator A allows us to build a variational setting for problems
(1.1) and (1.2). To this end, we note that the continuity of A guaranteed by
hypothesis (H) (i) implies that the function (x, t) 7→ a(x, t)t is continuous for all
x ∈ Ω and t ≥ 0. This can be seen from the equality

A(x, (t, 0, . . . , 0)) = (a(x, t)t, 0, . . . , 0) for all x ∈ Ω, t > 0.

Therefore for every x ∈ Ω̄ and y ∈ RN it is well defined

G(x, y) :=

∫ |y|
0

a(x, t)t dt.

A straightforward computation shows that the gradient ∇yG(x, y) with respect to
the variable y ∈ RN is given by

∇yG(x, y) = A(x, y) for all x ∈ Ω̄ and y ∈ RN .
Moreover, due to hypothesis (H) (iii), G(x, y) is convex in y for all x and satisfies

A(x, y) · y ≥ G(x, y) for all (x, y) ∈ Ω× RN . (2.1)

As a consequence of hypothesis (H) and by means of (2.1) we have the following
proposition that summarizes some significant facts regarding the operator A and
the corresponding potential G.

Proposition 2.2. Let hypothesis (H) be satisfied. Then there hold:

(i) The map y 7→ A(x, y) is maximal monotone and strictly monotone for all
x ∈ Ω.

(ii)

|A(x, y)| ≤ C1

p− 1
|y|p−1 for all (x, y) ∈ Ω× RN .

(ii)

A(x, y) · y ≥ C0

p− 1
|y|p for all (x, y) ∈ Ω× RN .

(iv)

C0

p(p− 1)
|y|p ≤ G(x, y) ≤ C1

p(p− 1)
|y|p for all (x, y) ∈ Ω× RN .
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The following result mentioning an essential property of the differential operator
divA(x,∇(·)) corresponding to the map A was proven in [22, Proposition 10]. This
result is a key tool in checking the Palais-Smale condition for the Euler functional
associated to problems (1.1) and (1.2).

Proposition 2.3. Assume hypothesis (H). Then the map V : W 1,p(Ω)→
(
W 1,p(Ω)

)∗
defined by

〈V (u), v〉 = −〈divA(x,∇u), v〉 =

∫
Ω

A(x,∇u) · ∇vdx

for all u, v ∈ W 1,p(Ω), is maximal monotone and has the (S)+ property, that is,
any sequence (un) ⊂W 1,p(Ω) such that un ⇀ u in W 1,p(Ω) and

lim sup
n→∞

〈V (un), un − u〉 ≤ 0,

for some u ∈W 1,p(Ω), fulfills un → u in W 1,p(Ω).

Another useful related result is the following one whose proof is given in [26].

Proposition 2.4. Assume hypothesis (H). For any number λ > 0, let the mapping
Tλ : W 1,p(Ω)→ (W 1,p(Ω))∗ be defined by

〈Tλ(u), v〉 =

∫
Ω

A(x,∇u) · ∇v dx+ λ

∫
Ω

|u|p−2uv dx.

Then the inverse T−1
λ : (W 1,p(Ω))∗ →W 1,p(Ω) of Tλ exists and is continuous.

3. C1-minimizers versus W 1,p-minimizers for problem (1.2)

This section is devoted to the famous result dealing with the comparison of local
C1-minimizers and local W 1,p-minimizers for Euler functionals associated to some
elliptic boundary value problems. Precisely, we set forth such a result in the case
of our problem (1.2). A similar result holds for the Dirichlet problem (1.1) with

W 1,p
0 (Ω) in place of W 1,p(Ω).
Recall that the function f : Ω × R → R entering problem (1.2) is subject to

hypothesis (F ) asserting the subcritical growth condition for f . Setting F (x, t) =∫ t
0
f(x, s)ds, we define the functional ϕ : W 1,p(Ω)→ R by

ϕ(u) =

∫
Ω

G(x,∇u)dx−
∫

Ω

F (x, u)dx, (3.1)

with the function G introduced in Section 2. Under assumptions (H) and (F ), the
functional ϕ is well defined on W 1,p(Ω) and is of class C1. Moreover, its critical
points coincide with the (weak) solutions of problem (1.2), that is, we have ϕ′(u) = 0
if and only if (1.4) holds true.

The main result of this section is the following.

Theorem 3.1. Assume that the conditions (H) and (F ) are fulfilled. If u0 ∈
W 1,p(Ω) is a local C1(Ω)-minimizer of ϕ in (3.1), that is, there exists r0 > 0 such
that

ϕ(u0) ≤ ϕ(u0 + h) for all h ∈ C1(Ω) with ‖h‖C1(Ω) ≤ r0,

then u0 ∈ C1(Ω) with ∂u0

∂n = 0 on ∂Ω, and it is a local W 1,p(Ω)-minimizer of ϕ,
that is, there exists r1 > 0 such that

ϕ(u0) ≤ ϕ(u0 + h) for all h ∈W 1,p(Ω) with ‖h‖W 1,p(Ω) ≤ r1.



6 D. MOTREANU AND P. WINKERT

Proof. (sketch)
Since C1(Ω) is dense in W 1,p(Ω), it follows that ϕ′(u0) = 0, or equivalently

−divA(x,∇u0(x)) = f(x, u0(x)) in Ω,
∂u0

∂n
= 0 on ∂Ω.

Suppose that u0 is not a local W 1,p(Ω)-minimizer of ϕ. Because the functional ϕ is

sequentially weakly lower semicontinuous, for ε > 0 small we can find hε ∈ B
r

ε :=
{u ∈W 1,p(Ω) : ‖u‖Lr(Ω) ≤ ε} such that

ϕ(u0 + hε) = inf{ϕ(u0 + u) : u ∈ Brε} < ϕ0(u0). (3.2)

The Lagrange multiplier rule yields λε ≤ 0 with

ϕ′(u0 + hε) = λε|hε|r−2hε,

which results in

−divA(x,∇(u0 + hε)(x)) = f(x, (u0 + hε)(x)) + λε|hε(x)|r−2hε(x) in Ω.

Setting Ã(x, y) := A(x,∇u0(x) + y)−A(x,∇u0(x)), it is seen that Ã satisfies

−div Ã(x,∇hε) = f(x, u0 + hε)− f(x, u0) + λε|hε|r−2hε in Ω.

Now we can show that there exists a constant d0 > 0 such that |λε||hε(x)|r−1 ≤ d0

for all x ∈ Ω and ε > 0 small.
At this point, in view of Lieberman [17, Theorem 2] there exist θ ∈ (0, 1) and

M > 0 such that

hε ∈ C1,θ(Ω) and ‖hε‖C1,θ(Ω) ≤M for all ε > 0 small. (3.3)

Exploiting that C1,θ(Ω) is embedded compactly in C1(Ω), we infer that u0+hε →
u0 in C1(Ω) as ε→ 0. Consequently, assertion (3.2) yields ϕ(u0) ≤ ϕ0(u0 + hε) for
ε sufficiently small, which contradicts the choice of hε. This completes the proof.

�

Theorem 3.1 was proven in [20, Proposition 24] (see also [25, Theorem 3.1]).
We emphasize that if C0 = C1 = p − 1 in assumption (H), the operator V =

divA(x,∇(·)) : W 1,p(Ω)→
(
W 1,p(Ω)

)∗
, with A in hypothesis (H), becomes the p-

Laplacian operator on W 1,p(Ω). For p-Laplacian operator and Neumann problems,
the result can be found in [21]. The counterpart result for Dirichlet problems in the
case p = 2 is due to Brezis and Nirenberg [3], which was extended to 1 < p < +∞
by Garćıa Azorero, Peral Alonso, and Manfredi [10] (see also [14] for p ≥ 2). For
different extensions and related results we refer to [2], [8], [12], [15], [16], [24],
[31], [32]. Theorem 3.1 is very useful in the study of problem (1.2), especially
for obtaining the existence of multiple solutions through variational methods, for
example by using the mountain pass theorem, combined with the method of sub-
supersolutions.

4. Asymptotically homogeneous case

The eigenvalue problem with Dirichlet boundary condition for the nonlinear
operator divA(x,∇(·)) means the existence of λ ∈ R for which{

−divA(x,∇u) = λ|u|p−2u in Ω,

u = 0 on ∂Ω,
(EV ;λ)
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has a non-trivial solution. The eigenvalue problem (EV ;λ) is hard because the
operator A(x, ·), so divA(x,∇(·)), is not homogeneous. Even in the case of the p-
Laplacian ∆p, which is (p−1)-homogeneous, the spectrum is not completely known
(it is known what is called the beginning of the spectrum of −∆p as can be seen in
[7], see also [27] and [28]).

In order to overcome the lack of homogeneity in (EV ;λ) it was introduced in
[26] an asymptotic (p− 1)-homogeneity at zero condition for the nonhomogeneous
operator A(x, ·):
(AH0) There exist a positive function a0 ∈ C1(Ω,R) and a continuous function

ã0(x, t) on Ω× [0,+∞) such that

A(x, y) = a0(x)|y|p−2y + ã0(x, |y|)y for all x ∈ Ω, y ∈ RN ,

lim
t→0+

ã0(x, t)

tp−2
= 0 uniformly in x ∈ Ω.

Under assumption (AH0), with the weight function a0 we define

λ1(a0) := inf

{∫
Ω

a0(x)|∇u|p dx ; ‖u‖p = 1

}
.

Also in order to overcome the lack of homogeneity in (EV ;λ) it was introduced in
[26] an asymptotic (p−1)-homogeneity at infinity condition for the nonhomogeneous
operator A(x, ·):

(AH) There exist a positive function a∞ ∈ C1(Ω,R) and a continuous function
ã(x, t) on Ω× R such that

A(x, y) = a∞(x)|y|p−2y + ã(x, |y|)y for all x ∈ Ω, y ∈ RN ,

lim
t→+∞

ã(x, t)

tp−2
= 0 uniformly in x ∈ Ω.

Under assumption (AH), with the weight function a∞, we define

λ1(a∞) := inf

{∫
Ω

a∞(x)|∇u|p dx ; ‖u‖p = 1

}
.

We cite from [26] the following result on the spectrum of the nonlinear operator
divA(x,∇(·)).

Theorem 4.1. Assume (H), (AH0), (AH) and that λ1(a0) 6= λ1(a∞). Then,
for every λ between λ1(a0) and λ1(a∞), problem (EV ;λ) has a non-trivial positive
solution, therefore λ is an eigenvalue of the operator −divA(x,∇(·)).

Theorem 4.1 is important because it shows that generally the spectrum of the
operator −div(A(x,∇u)) on W 1,p

0 (Ω) is not discreet. However, Theorem 4.1 can-

not be applied to the negative p-Laplacian −∆p on W 1,p
0 (Ω) because in this case

λ1(a0) = λ1(a∞).

5. A three solutions theorem

In this section we present an existence and multiplicity result for the Neumann
problem (1.2), on a bounded domain Ω ⊂ RN with a C2-boundary ∂Ω, involving
the nonhomogeneous operator A introduced in Section 2. We suppose that the
nonlinearity f(x, u) in the right-hand side of the equation in (1.2) satisfies the
following conditions:
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(Hf )1 f : Ω × R → R is a Carathéodory function such that f(x, 0) = 0 a.e. in Ω
and

(i) |f(x, s)| ≤ a(x) + C|s|r−1 for a.a. x ∈ Ω, all s ∈ R, with a ∈
L∞(Ω)+, C > 0, and 1 ≤ r < p∗;

(ii) if F (x, t) =
∫ t

0
f(x, s)ds, there exists θ ∈ L∞(Ω), θ ≤ 0, θ 6= 0, such

that

lim sup
|s|→∞

pF (x, s)

|s|p
≤ θ(x) uniformly for a.a. x ∈ Ω;

(iii) there exist δ0 > 0 and η > λ1 such that (with C1 as in (H))

C1η

p(p− 1)
|s|p ≤ F (x, s) for a.a. x ∈ Ω, all |s| ≤ δ0;

(iv) there exists λ > 0 such that

(f(x, s) + λ|s|p−2s)s ≥ 0 for a.a. x ∈ Ω, all s ∈ R.

Example 5.1. A simple example of function satisfying assumption (Hf )1 is the
following one:

f(s) =

{
η̂|s|p−2s if |s| ≤ 1

C|s|q−2s− (C − η̂)|s|p−2s if |s| > 1,

where η̂ > C1λ1

p−1 , C > η̂, and 1 < q < p.

The subsequent result on multiple solutions to problem (1.2) can be found in
[25, Theorem 4.2]. In the statement of it we use the space

C1
n(Ω) = {u ∈ C1(Ω) :

∂u

∂n
= 0 on ∂Ω}.

The Banach space C1(Ω) is an ordered Banach space with the positive cone

C+ = {u ∈ C1(Ω) : u(x) ≥ 0 for all x ∈ Ω}.

This cone has a nonempty interior which is given by

intC+ = {u ∈ C+ : u(x) > 0 for all x ∈ Ω}.

Theorem 5.2. Let the hypotheses (H) and (Hf )1 be satisfied. Then problem (1.2)
possesses at least three nontrivial smooth solutions u0 ∈ intC+, v0 ∈ − intC+ and
y0 ∈ C1

n(Ω).

Proof. (sketch)
For λ > 0 as in (Hf )1(iv), we introduce the function

fλ+(x, s) =

{
0 if s ≤ 0
f(x, s) + λsp−1 if s > 0.

Let Fλ+(x, t) =
∫ t

0
fλ+(x, s) ds. Consider the C1-functional ϕλ+ : W 1,p(Ω) → R

defined by

ϕλ+(u) =

∫
Ω

G(x,∇u) dx+
λ

p
‖u‖pp −

∫
Ω

Fλ+(x, u) dx for all u ∈W 1,p(Ω).
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By hypotheses (Hf )1(i), (ii) and Proposition 2.2, ϕλ+ is coercive and so we can
find u0 ∈W 1,p(Ω) such that

ϕλ+(u0) = inf
W 1,p(Ω)

ϕλ+.

From (Hf )1(iii) we have that ϕλ+(u0) < 0, hence u0 6= 0. Also we note that

V (u0) + λ|u0|p−2u0 = fλ+(x, u0).

Therefore u0 is a nontrivial solution of problem (1.2) with u ∈ L∞(Ω) (see [33]).
On account of the nonlinear regularity theory (see [17]), we infer that u0 ∈

C+ \ {0}, while hypothesis (Hf )1 (iv) implies

−divA(x,∇u0(x)) + λu0(x)p−1 = f(x, u0(x)) + λu0(x)p−1 ≥ 0 a.e. in Ω.

Invoking the nonlinear maximum principle in [20, Theorem A], we conclude that
u0 ∈ intC+. Similarly, we get v0 ∈ − intC+.

Recall the C1-energy functional ϕ : W 1,p(Ω)→ R associated with problem (1.2)
defined in (3.1) and note that ϕ|C+

= ϕλ+|C+
. So u0 ∈ intC+ is a local C1(Ω)-

minimizer of ϕ. On the basis of Theorem 3.1, we infer that u0 is a local W 1,p(Ω)-
minimizer of ϕ. Similarly, we have that v0 ∈ − intC+ is a local W 1,p(Ω)-minimizer
of ϕ.

Now we will provide a third nontrivial solution of problem (1.2). Without any
loss of generality, we may assume that ϕ has a finite critical set. Then we can find
ρ > 0 such that

ϕ(v0) ≤ ϕ(u0) < inf[ϕ(u) : ‖u− u0‖ = ρ] =: mρ. (5.1)

Moreover, we have that ϕ is coercive, hence it satisfies the Palais-Smale condition.
Consequently, the mountain pass theorem can be applied giving y0 ∈W 1,p(Ω) such
that ϕ(y0) ≥ mρ and ϕ′(y0) = 0. As before, through the nonlinear regularity

theory, it follows that y0 ∈ C1
n(Ω) is a solution of problem (1.2). By (5.1), it turns

out that y0 6∈ {u0, v0}.
It remains to show that y0 6= 0. From the mountain pass theorem we have the

minimax characterization

ϕ(y0) = inf
γ∈Γ

max
t∈[0,1]

ϕ(γ(t)),

where

Γ = {γ ∈ C([0, 1],W 1,p(Ω)) : γ(0) = v0 , γ(1) = u0}.
If we can produce a path γ0 ∈ Γ such that ϕ|γ0 < 0, then ϕ(y0) < 0 = ϕ(0) and so
y0 6= 0 and we are done.

In what follows we generate such a path γ0 ∈ Γ. Consider the sets M =
W 1,p(Ω)∩∂BLp1 endowed with the relative W 1,p(Ω)-topology and Mc = M ∩C1(Ω)
furnished with the relative C1(Ω)-topology. We notice that Mc is dense in M . So,
if we set

Γ̂ = {γ̂ ∈ C([−1, 1],M) : γ̂(−1) = −û0, γ̂(1) = û0},
and

Γ̂c = {γ̂ ∈ C([−1, 1],Mc) : γ̂(−1) = −û0, γ̂(1) = û0},
we have that Γ̂c is dense in Γ̂. Then, from [1], given ε > 0 we can find γ̂0 ∈ Γ̂c with

max[‖∇u‖pp : u ∈ γ̂0([−1, 1])] ≤ λ1 + ε.



10 D. MOTREANU AND P. WINKERT

Here λ1 stands for the second eigenvalue (the first nontrivial eigenvalue) of −∆p

on W 1,p(Ω). The corresponding result for the Dirichlet problem can be found in
[7]. For η > λ1 in (Hf )1(iii), let ε > 0 with λ1 + ε < η. Also let ξ > 0 be such that

ξ|u(x)| ≤ δ0 for all x ∈ Ω, all u ∈ γ̂0([−1, 1]), with δ0 > 0 in (Hf )1(iii). Then by
(Hf )1(iii) we deduce that ϕ(ξu) < 0 for all u ∈ γ̂0([−1, 1]). It follows that γ0 = ξγ̂0

is a path from −ξû0 to ξû0 with ϕ|γ0
< 0.

Without loss of generality we may assume that {0, u0} are the only critical points
of ϕλ+ (if y ∈ W 1,p(Ω) is another critical point of ϕλ+, then y ∈ intC+, thus it is a

third nontrivial smooth solution). Set a := ϕλ+(u0) = ϕ(u0) < 0 = ϕλ+(0). Hence
we can apply the second deformation theorem (see, e.g., [11, p. 628]) and obtain
a homotopy h : [0, 1] × ((ϕλ+)0 \K0

ϕλ+
) → (ϕλ+)0 satisfying the properties stated in

that theorem, where (ϕλ+)0 = (ϕλ+)−1(−∞, 0] and K0
ϕλ+

denotes the set of critical

points at the level 0. Let γ+(t) = (h(t, ξû0))+ for all t ∈ [0, 1]. Then γ+(0) =
ξû0 (û0 is the Lp-normalized eigenfunction of the negative Neumann p-Laplacian

corresponding to the eigenvalue 0, that is û0(x) = 1/|Ω|1/pN ) and γ+(1) = u0 because
(ϕλ+)a = (ϕλ+)−1(−∞, a] = {u0}. Consequently, we get

ϕ|γ+ < 0.

In a similar fashion we produce a path γ− joining v0 and −ξû0 such that

ϕ|γ− < 0.

Finally, we concatenate γ−, γ0 and γ+ to construct a path γ0 ∈ Γ satisfying ϕ|γ0 <
0, which completes the proof. �

6. Positive solutions

In this section we seek multiple positive solutions for the special case of problem
(1.1) where in place of the general operator divA(x,∇u) we take the p-Laplacian
∆p with 1 < p < +∞.

Let Ω ⊂ RN be a bounded domain with a C2-boundary ∂Ω. Given β ∈ L∞(Ω) \
{0}, β ≥ 0, we consider for 1 < q < p the nonlinear Dirichlet problem:{

−∆pu(x) = β(x)|u(x)|q−2u(x) + f(x, u(x)) in Ω,
u = 0 on ∂Ω,

(6.1)

where ∆p denotes the p-Laplace differential operator defined on W 1,p
0 (Ω) by

∆pu = div(|∇u|p−2∇u).

Notice that in (6.1) the right-hand side nonlinearity contains a (p − 1)-sublinear
term (usually, called “concave term”) β(x)|u(x)|q−2u(x), with 1 < q < p, and an
additional Carathéodory term f(x, u).

Denote by λ1 the first eigenvalue of the negative Dirichlet p-Laplacian operator
(−∆p,W

1,p
0 (Ω)) and by û1 the Lp-normalized positive eigenfunction corresponding

to λ1. Through the nonlinear regularity theory (see [17]) and the nonlinear strong
maximum principle of Vazquez [30], we have that û1 ∈ intC+, where this time we
denote

C+ = {u ∈ C1(Ω) : u(x) ≥ 0 for all x ∈ Ω and u(x) = 0 on ∂Ω}. (6.2)

This cone has a nonempty interior equal to

intC+ = {u ∈ C+ : u(x) > 0 for all x ∈ Ω and ∂u
∂n (x) < 0 for all x ∈ ∂Ω}.
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As before, n stands for the outward unit normal on ∂Ω.
The hypotheses for the nonlinearity f(x, u) in (6.1) are as follows:

(Hf )2 f : Ω× R→ R is a function such that
(i) for all s ∈ R, x 7→ f(x, s) is measurable;
(ii) for a.a. x ∈ Ω, x 7→ f(x, s) is continuous and f(x, 0) = 0;

(iii) for a.a. x ∈ Ω and all s ∈ R, we have |f(x, s)| ≤ a(x) + c|s|r−1, with
a ∈ L∞(Ω)+, c > 0 and p < r < p∗;

(iv) if F (x, s) =
∫ s

0
f(x, t) dt, then

(iv.a) lim
s→+∞

F (x, s)

sp
= +∞ uniformly for a.a. x ∈ Ω,

(iv.b) there exist τ ∈ (max{ r−pp N, r−p}, p∗) and γ0 > 0 such that τ > q and

lim inf
s→+∞

f(x, s)s− pF (x, s)

sτ
> γ0 uniformly for a.a. x ∈ Ω;

(v) there exist ξ, θ ∈ L∞(Ω)+ such that θ(x) ≤ λ1 a.e. on Ω, with strict
inequality on a set of positive measure, and

−ξ(x) ≤ lim inf
s→0+

f(x, s)

sp−1
≤ lim sup

s→0+

f(x, s)

sp−1
≤ θ(x) uniformly for a.a. x ∈ Ω.

The following theorem can be found in [23].

Theorem 6.1. If hypotheses (Hf )2 hold, then there exists ξ∗ > 0 such that if
‖β‖∞ < ξ∗, then problem (6.1) has at least two distinct (nontrivial) positive solu-
tions u0, û ∈ intC+.

Proof. (sketch)
We introduce the following truncation of the right-hand side of the equation in

(6.1):

f̂+(x, s) =

{
0 if s ≤ 0
β(x)sq−1 + f(x, s) if s > 0,

which is a Carathéodory function.

Next we set F̂+(x, s) =
∫ s

0
f̂+(x, t) dt and then consider the functional ϕ̂+ ∈

C1(W 1,p
0 (Ω)) defined by

ϕ̂+(u) =
1

p
‖∇u‖pp −

∫
Ω

F̂+(x, u(x)) dx for all u ∈W 1,p
0 (Ω).

From hypotheses (Hf )2 (i)-(iv) we derive that ϕ̂+ satisfies the Cerami condition.
Then the first positive solution u0 is obtained through the mountain pass theorem,
which leads to

ϕ̂+(u0) ≥ inf
∂Bρ

ϕ̂+ =: η̂+ > 0, (6.3)

where ∂Bρ denotes the sphere in W 1,p
0 (Ω) centered at 0 and of a small radius ρ > 0.

Now we generate a second positive solution for problem (6.1). By (Hf )2(v), we
find constants ĉ0 > 0 and δ > 0 such that

F (x, s) ≥ − ĉ0
p
sp for a.a. x ∈ Ω, all s ∈ [0, δ].
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Let v ∈ C+ with v > 0 in Ω and ‖v‖ = ‖∇v‖p = 1. For t > 0 small such that

tv(x) ∈ [0, δ] for all x ∈ Ω, we have the estimate

ϕ̂+(tv) ≤ tq
[
tp−q

p

(
1 +

ĉ0
λ1

)
− 1

q

∫
Ω

β(x) v(x)q dx

]
since 1 = ‖∇v‖pp ≥ λ1‖v‖pp. Choosing t > 0 possibly smaller and recalling that
p > q, we have

ϕ̂+(tv) < 0 and t‖v‖ = t ≤ ρ. (6.4)

By (6.4) we have that

η := η̂+ − inf
Bρ

ϕ̂+ > 0,

where Bρ = {u ∈W 1,p
0 (Ω) : ‖u‖ ≤ ρ}.

Let ε ∈ (0, η). By the Ekeland’s variational principle, there exists uε ∈ Bρ such
that

ϕ̂+(uε) ≤ inf
Bρ

ϕ̂+ + ε (6.5)

and

ϕ̂+(uε) ≤ ϕ̂+(y) + ε‖y − uε‖ for all y ∈ Bρ. (6.6)

From inequality (6.5) and since ε < η, we obtain that ϕ̂+(uε) < inf∂Bρ ϕ̂+. It

follows that uε ∈ Bρ = {u ∈W 1,p
0 (Ω) : ‖u‖ < ρ}, so for every h ∈W 1,p

0 (Ω) one has
uε + th ∈ Bρ whenever t > 0 is sufficiently small. Inserting y = uε + th in (6.6),
dividing by t and then letting t→ 0 lead to ‖ϕ̂′+(uε)‖ ≤ ε.

Fix now a sequence εn ↓ 0 and denote for simplicity un = uεn . Then one
has ϕ̂′+(un) → 0 and also (1 + ‖un‖)ϕ̂′+(un) → 0 as n → ∞. Through the Cerami

condition, this guarantees the existence of û ∈W 1,p
0 (Ω) such that, along a relabeled

subsequence, un → û in W 1,p
0 (Ω), which enables us to pass to limit in (6.5) to obtain

ϕ̂+(û) = inf
Bρ

ϕ̂+ < 0 = ϕ̂+(0),

thereby û 6= 0. Moreover, from (6.3) we see that û 6= u0. Since ϕ̂′+(un) → 0 and
un → û, we infer that ϕ̂′+(û) = 0. Then, as for u0, we obtain that û solves problem
(6.1) and û ∈ intC+. �

Remark 6.2. If the right-hand side of the equation in problem (6.1) has the special
form

λ|u|q−2u+ (u+)τ−1 with λ > 0 and q < p < τ < p∗,

Theorem 6.1 recovers the existence result in the case of p-Laplacian with 1 < p <
+∞ due to Garcia Azorero–Peral Alonso–Manfredi [10] and the analogous result of
Guo–Zhang [14] for p ≥ 2.

7. Extremal solutions

Consider the particular form of problem (6.1) restricting β to constants λ > 0,
that is {

−∆pu(x) = λ|u(x)|q−2u(x) + f(x, u(x)) in Ω,
u = 0 on ∂Ω.

(7.1)

We recall that here we have, as in Section 6, 1 < q < p. We slightly modify our
assumptions:

(Hf )3 f : Ω× R→ R satisfies hypotheses (Hf )2 (i)–(iii), (iv), and in addition
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(vi) lim
s→0+

f(x, s)

sp−1
= 0 uniformly for a.a. x ∈ Ω;

(vii) (local sign condition) there is a number b > 0 such that

f(x, s) ≥ 0 for a.a. x ∈ Ω and all s ∈ (0, b).

The aim of this section is to study the extremal solutions for problem (7.1),
which means the biggest negative solution and the smallest positive solution of
(7.1). To this end we recall that λ1 denotes the first eigenvalue of the negative

Dirichlet p-Laplacian (−∆p,W
1,p
0 (Ω)) and û1 stands for the Lp-normalized positive

eigenfunction corresponding to λ1. There holds û1 ∈ intC+, with C+ given in (6.2).
The result below can be found in [23].

Proposition 7.1. If hypotheses (Hf )3 hold, then there is λ∗ > 0 such that for all
λ ∈ (0, λ∗), problem (7.1) has a smallest positive solution u0 ∈ intC+ satisfying
‖u0‖∞ < b.

Proof. First, we look for suitable positive sub-supersolutions of problem (7.1). Hy-
pothesis (Hf )3 (vi) implies that for any ε > 0, we can find ĉε > 0 such that

f(x, s) ≤ εsp−1 + ĉεs
r−1 for a.a. x ∈ Ω and all s > 0.

Let e ∈ intC+ solve {
−∆p e(x) = 1 in Ω,
e = 0 on ∂Ω.

Notice that there exists λ∗ > 0 such that for all λ ∈ (0, λ∗) there is η1 = η1(λ) ∈
(0, b/‖e‖∞) with

λ(η1‖e‖∞)q−1 + ε(η1‖e‖∞)p−1 + ĉε(η1‖e‖∞)r−1 < ηp−1
1 .

Fix λ ∈ (0, λ∗) and set u = η1e. Then we see that

−∆pu = ηp−1
1 > λ(η1‖e‖∞)q−1 +ε(η1‖e‖∞)p−1 + ĉε(η1‖e‖∞)r−1 ≥ λuq−1 +f(z, u).

This expresses that u ∈ intC+ is a (strict) supersolution for problem (7.1). More-
over, we have ‖u‖∞ < b.

Choose ε̃ > 0 so small that ε̃û1(x) < u(x) for all x ∈ Ω and λ1ε̃
p−qûp−q1 < λ.

Set u = ε̃û1. By hypothesis (Hf )3 (vii) we infer that

−∆pu = λ1ε̃
p−1ûp−1

1 < λε̃q−1ûq−1
1 ≤ λuq−1 + f(x, u).

It follows that u ∈ intC+ is a (strict) subsolution for problem (7.1), and in addition
we have u ≤ u.

Consider now the sequence un = ε̃nû1 with ε̃n ↓ 0. Since the problem (7.1) has
a smallest solution un∗ in the ordered interval [un, u] and it satisfies un∗ ∈ intC+, it

follows that the sequence {un∗}n≥1 ⊂ W 1,p
0 (Ω) is bounded. Acting with un∗ − u+ ∈

W 1,p
0 (Ω) on

−∆pu
n
∗ = λ(un∗ )

q−1 + f(·, un∗ (·))
results in

lim
n→∞

〈−∆pu
n
∗ , u

n
∗ − u+〉 = 0.

The (S)+ property for the p-Laplacian (see also Proposition 2.3) enables us to get

un∗ → u+ in W 1,p
0 (Ω) as n → ∞. It follows that u+ is a solution of the problem

(7.1). The nonlinear regularity theory and strong maximum principle imply that
u+ ∈ intC+ provided u+ 6= 0.
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Let us prove that u+ 6= 0. To this end we introduce the function ψ : W 1,p
0 (Ω)→

R by

ψ(u) =
1

p
‖∇u‖pp −

λ

q
‖u+‖qq for all u ∈W 1,p

0 (Ω).

Here u+ denotes the positive part of the function u. Since ψ coercive and sequen-
tially weakly lower semicontinuous, and taking into account that q < p, there is
u ∈W 1,p

0 (Ω) such that

ψ(u) = inf
W 1,p

0 (Ω)
ψ < 0,

so u 6= 0 and

−∆pu− λ(u+)q−1 = 0.

Acting with −u− ∈ W 1,p
0 (Ω), where u− denotes the negative part of the function

u, ensures that u ≥ 0, thus u solves the problem{
−∆pu(x) = λu(x)q−1 in Ω,
u = 0 on ∂Ω.

This renders ∆pu(x) ≤ 0 a.e. in Ω, which entails u ∈ intC+ due to the strong
maximum principle [30].

Since un∗ ∈ intC+, there is the biggest ξn > 0 such that ξnu ≤ un∗ for all n ≥ 1.
If ξn < 1, then we have

−∆pu
n
∗ (x) ≥ λun∗ (x)q−1 ≥ λξq−1

n u(x)q−1 > λξp−1
n u(x)q−1 = −∆p(ξnu)(x).

By means of the comparison principle in [13], we arrive at un∗ −ξnu ∈ intC+, which
contradicts the maximality of ξn.

Therefore ξn ≥ 1, which implies that u ≤ un∗ . We conclude that u ≤ u+, so
u+ 6= 0. Now it is straightforward to check that u+ is indeed the smallest positive
solution of (7.1). The proof is thus complete. �

Next we deal with the biggest negative solution. We work under asymmetrical
situations on R+ and R−. We impose the hypotheses:

(Hf )4 f : Ω× R→ R satisfies hypotheses (Hf )2 (i)–(iii) and in addition
(viii) there exists θ ∈ L∞(Ω)+ such that θ(x) ≤ λ1 a.e. on Ω, with strict

inequality on a set of positive measure, and

lim sup
s→−∞

f(x, s)

|s|p−2s
≤ θ(x) uniformly for a.a. x ∈ Ω;

(ix)

lim
s→0−

f(x, s)

|s|p−2s
= 0 uniformly for a.a. x ∈ Ω;

(x) (local sign condition) there is a number b > 0 such that f(x, s) ≤ 0 for
a.a. x ∈ Ω and all s ∈ (−b, 0).

Remark 7.2. Assumption (Hf )4 (viii) guarantees that for a.a. x ∈ Ω, f(x, ·) has
a (p− 1)-(sub)linear growth near −∞.

We have the following result from [23].

Proposition 7.3. If hypotheses (Hf )4 hold, then for every λ > 0, problem (7.1)
has a biggest negative solution v− ∈ − intC+.
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Proof. (sketch)
First we search for negative sub-supersolutions of problem (7.1). By (Hf )2(iii),

(Hf )4(viii) we have that given ε > 0 we can find ξε ∈ L∞(Ω)+ \ {0} such that

f(x, s) ≥ (θ(x) + ε)|s|p−2s− ξε(x) for a.a. x ∈ Ω and all s ≤ 0.

Define the Carathéodory function

gλ(x, s) =

{
λ|s|q−2s+ (θ(x) + ε)|s|p−2s− ξε(x) if s ≤ 0
−ξε(x) if s > 0,

and consider the C1-functional σ : W 1,p
0 (Ω)→ R defined by

σ(v) =
1

p
‖∇v‖pp −

∫
Ω

Gλ(x, v(x)) dx for all v ∈W 1,p
0 (Ω),

where Gλ(x, s) =
∫ s

0
gλ(x, t) dt. The function σ is coercive and sequentially weakly

lower semicontinuous, so there is v ∈W 1,p
0 (Ω) such that

σ(v) = inf
W 1,p

0 (Ω)
σ.

We act with v+ ∈W 1,p
0 (Ω) on the problem{

−∆pv + λ(v−)q−1 + (θ + ε)(v−)p−1 + ξε = 0 in Ω
v = 0 on ∂Ω,

which implies that v ≤ 0, v 6= 0, ∆p(−v) ≤ 0, so v ∈ − intC+ according to the
strong maximum principle in [30]. Furthermore, v is a lower solution of problem
(7.1). Given ε̃ > 0 small, set v = −ε̃û1 ∈ − intC+. Hypothesis (Hf )4 (ix) ensures
that v is an upper solution of (7.1) and v ≤ v.

Consider the sequence of functions vn = −ε̃nû1 corresponding to a sequence
ε̃n ↓ 0. Then, for every integer n ≥ 1, we get the biggest solution vn∗ ∈ − intC+ of
problem (7.1) in the ordered interval [v, vn]. Taking into account this maximality
property and using once again the strong maximum principle (which is possible

thanks to hypothesis (Hf )4 (x)), we establish that vn∗ → v− in W 1,p
0 (Ω) for some

v− ∈ − intC+. Finally, we can show that v− is the biggest negative solution of
(7.1), which completes the proof.

�

8. Nodal solution

Our main result on problem (7.1) asserts the existence of an additional solution
which is nodal (sign changing). The complete proof of the theorem below as well
as other related results can be found in [23].

Theorem 8.1. If hypotheses (Hf )2 (i)-(iv), (Hf )3 (vi)-(vii) and (Hf )4 (viii)-(x)
hold, then there exists λ∗ > 0 such that for all λ ∈ (0, λ∗), problem (7.1) has at least
four distinct nontrivial smooth solutions: u0, û ∈ intC+ with u0 6= û, v0 ∈ − intC+

and y0 ∈ C1
0 (Ω) \ {0} nodal.

Proof. (sketch)
Theorem 6.1 and Proposition 7.3 provide a number λ∗ > 0 such that for every

λ ∈ (0, λ∗) there exist three constant sign solutions u0, û ∈ intC+ and v0 ∈ − intC+

of problem (7.1). Fix any λ ∈ (0, λ∗). In view of Propositions 7.1 and 7.3 there
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exist the smallest positive solution u+ ∈ intC+ and the biggest negative solution
v− ∈ − intC+ of problem (7.1). Consider the truncation:

f̂λ(x, s) =


λ|v−(x)|q−2v−(x) + f(x, v−(x)) if s < v−(x)

λ|s|q−2s+ f(x, s) if v−(x) ≤ s ≤ u+(x)

λu+(x)q−1 + f(x, u+(x)) if u+(x) < s.

Associated with this truncation we introduce the C1 functional ϕ̂λ : W 1,p
0 (Ω)→ R

defined by

ϕ̂λ(u) =
1

p
‖∇u‖pp −

∫
Ω

F̂λ(x, u(x)) dx for all u ∈W 1,p
0 (Ω) ,

where

F̂λ(x, t) =

∫ t

0

f̂λ(x, s)ds for all (x, t) ∈ Ω× R.

Using the definition of the truncation function given above, it is straightforward to
prove that every critical point of ϕ̂λ is located in the ordered interval [v−, u+]. This
can be checked by testing the equation ϕ̂′λ(u) = 0 with (u− u+)+ and (u− v−)−.
Then we can show that v− and u+ are local minimizers of the functional ϕ̂λ.
Moreover, we may assume that they are isolated critical points because otherwise
we obtain infinitely many nodal solutions of problem (7.1).

Notice that the imposed assumptions permit to apply the mountain pass theorem
to the functional ϕ̂λ. It follows that there exists a critical point y0 ∈ [v−, u+] of ϕ̂λ
with y0 6= v− and y0 6= u+. A major step in the proof is to establish that y0 6= 0.
In this respect we make use of the critical groups associated to the function ϕ̂λ at
y0 and 0. For the theory of critical groups we refer to [6] and [19].

The fact that y0 is a critical point of ϕ̂λ of mountain pass type implies that the
critical group C1(ϕ̂λ, y0) is nontrivial, that is C1(ϕ̂λ, y0) 6= 0. On the other hand, we

can prove that for all u ∈W 1,p
0 (Ω) with ‖u‖ ≤ ρ and ϕ̂λ(u) ≤ 0, we have ϕ̂λ(tu) ≤ 0

whenever t ∈ [0, 1]. In turn, this allows to develop a homotopy argument revealing
that the critical groups Ck(ϕ̂λ, 0) are all of them trivial, that is Ck(ϕ̂λ, 0) = 0 for
all k. Consequently, comparing the critical groups C1(ϕ̂λ, y0) and C1(ϕ̂λ, 0), we
derive that y0 6= 0. Now we can conclude that the nontrivial solution y0 of problem
(7.1) is nodal. Indeed, relying on the location property y0 ∈ [v−, u+], the solution
y0 must be sign changing because otherwise it is contradicted the maximality of v−
among the negative solutions or the minimality of u+ among the positive solutions.
The proof is thus complete. �

9. New problem

In this section we consider the nonlinear Dirichlet problem
−∆pu− µ∆qu = f(x, u,∇u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(NP )

on a bounded domain Ω in RN with a C1,α-boundary ∂Ω, for some 0 < α ≤ 1.
In the left-hand side of the equation in (NP ) we have the p-Laplacian ∆p and the
q-Laplacian ∆q with 1 < q < p < +∞, and a constant µ ≥ 0. So, basically, the
principal part of the elliptic equation is determined by the (p, q)-Laplacian operator
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−∆p −∆q. The right-hand side of the elliptic equation in problem (NP ) depends
on the gradient ∇u of the solution u. This is a novelty with respect to problem
(1.1). Problems where the right-hand side depends on the gradient of the solution
are sometimes called with convection term.

We emphasize that the (p, q)-Laplacian operator is not homogeneous. However,
it does not belong to the class of possibly nonhomogeneous operators described in
statement (H) (in the sense to be in the divergence form divA(x,∇(·)) with some
A(x, ·) satisfying (H)). Actually, all the conditions in (H) are satisfied excepting
(H) (ii) that to fulfill our purpose should be replaced with

(ii’) There exists a constant C1 > 0 such that

|DyA(x, y)| ≤ C1(|y|p−2 + 1) for every x ∈ Ω and y ∈ RN \ {0}.

If this is the case, then we can set A(x, y) = |y|p + µ|y|q for all (x, y) ∈ Ω× RN to
comply with (H).

We suppose that the nonlinearity f(x, u,∇u) satisfies the hypothesis:

(FG) f : Ω × R × RN → R is a Carathéodory function such that f(x, 0, ξ) = 0
a.e. in Ω, for all ξ ∈ RN , and

b0|t|r0 ≤ f(x, t, ξ) ≤ b1(1 + |t|r1 + |ξ|r2)

for all (x, t, ξ) ∈ Ω × R × RN , with constants b0, b1 > 0, r1, r2 ∈ [0, p − 1),
r0 ∈ [0, p− 1) if µ = 0, and r0 ∈ [0, q − 1) if µ > 0.

The following result can be found in [9].

Theorem 9.1. Under assumption (FG), problem (NP ) admits a (positive) solu-
tion u ∈ C1

0 (Ω).

Proof. (sketch)
First, it is shown that for every ε ∈ (0, 1), the approximate problem

−∆pu− µ∆qu = f(x, u+ ε,∇u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(Pε)

has at least a (positive) solution uε ∈ C1
0 (Ω). This conclusion is achieved through

a Schauder basis of W 1,p
0 (Ω) by using Brouwer’s fixed point theorem on the corre-

sponding finite dimensional spaces and then passing to the limit. For the solution
uε ∈ C1

0 (Ω) of problem (Pε), from hypothesis (FG) and∫
Ω

(|∇uε|p + µ|∇uε|q)dx =

∫
Ω

f(x, uε + ε,∇uε)uεdx,

we get the estimate

‖uε‖p ≤ C(‖uε‖+ ‖uε‖r1+1 + ‖uε‖r2+1),

with a constant C > 0 which is independent of ε. Since 1, r1 + 1, r2 + 1 < p, we
infer that

‖uε‖ ≤ C0, (9.1)

for a constant C0 > 0 independent of ε. In view of (9.1), we can find εn → 0+ such
that the corresponding sequence {un = uεn} is strongly convergent

un → u in W 1,p
0 (Ω) as n→∞, (9.2)
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with some u ∈W 1,p
0 (Ω). On the basis of (9.2) and because un solves (Pεn), it turns

out that u is a solution of the equation{
−∆pu− µ∆qu = f(x, u,∇u) in Ω
u = 0 on ∂Ω.

The regularity up to the boundary in [17, Theorem 1] and [18, p. 320] ensures that
u ∈ C1,β(Ω) with some β ∈ (0, 1). At this point we cannot guarantee that u is
nontrivial. In order to prove that u > 0, we develop a comparison argument.

We note that there exists a (positive) solution u ∈ C1
0 (Ω) to the problem −∆pu− µ∆qu = b0u

r0 in Ω
u > 0 in Ω
u = 0 on ∂Ω,

(9.3)

where b0 and r0 are the positive constants in hypothesis (FG). In the sequel, u
will be regarded as a subsolution of (9.3). We also observe that hypothesis (FG)
implies that uε is a supersolution of problem (9.3) for each ε ∈ (0, 1).

Now we apply the comparison principle in [9] to problem (9.3), by taking the
subsolution u and the supersolution uε. We emphasize that for applying this com-
parison principle it is essential to know that uε > 0 in Ω as well as that r0 < q − 1
if µ > 0, and r0 < p − 1 if µ = 0. In order to apply the comparison principle we
also need to check that

uε
u
,
u

uε
∈ L∞(Ω).

To this end it suffices to show that whenever x→ x0 ∈ ∂Ω with x ∈ Ω, one has

max

{
lim sup
x→x0

u(x)

uε(x)
, lim sup
x→x0

uε(x)

u(x)

}
< +∞. (9.4)

The property stated in (9.4) is established on the basis of the Hopf boundary point
lemma in the strong maximum principle applied to both Dirichlet problems (9.3)
and (Pε) with corresponding solutions u and uε, which amounts to saying that

∂u

∂n
(x0) < 0,

∂uε
∂n

(x0) < 0 for all x0 ∈ ∂Ω, (9.5)

where n denotes the exterior normal unit vector on ∂Ω. The Hopf boundary point
lemma holds true for problems (9.3) and (Pε) by virtue of [29, Theorem 5.5.1].
Recalling that uε, u ∈ C1(Ω), it is clear from the L’Hôpital theorem and (9.5) that
the property required in (9.4) is fulfilled. Therefore we can do the comparison of
the solution u (regarded as a subsolution) of (9.3) with the supersolution uε of (9.3)
implying that

uε(x) ≥ u(x) > 0 for all x ∈ Ω and ε ∈ (0, 1). (9.6)

Using (9.2), we can pass to the limit in (9.6) along a sequence εn → 0. This leads
to u(x) ≥ u(x) > 0 for all x ∈ Ω, so u is a (positive) solution of problem (NP ),
which completes the proof. �
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