
EXISTENCE RESULTS FOR DOUBLE PHASE IMPLICIT

OBSTACLE PROBLEMS INVOLVING MULTIVALUED

OPERATORS

SHENGDA ZENG, YUNRU BAI, LESZEK GASIŃSKI, AND PATRICK WINKERT

Abstract. In this paper we study implicit obstacle problems driven by a non-
homogenous differential operator, called double phase operator, and a multi-

valued term which is described by Clarke’s generalized gradient. Based on a

surjectivity theorem for multivalued mappings, Kluge’s fixed point principle
and tools from nonsmooth analysis, we prove the existence of at least one

solution.

1. Introduction

Given a bounded domain Ω in RN , N ≥ 2, with Lipschitz boundary ∂Ω, we
study a double phase implicit obstacle problem with a multivalued operator given
in the form

−div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
+ ∂j(x, u) 3 f(x) in Ω,

u = 0 on ∂Ω,

T (u) ≤ U(u),

(1.1)

where 1 < p < q < N , µ : Ω→ [0,∞) and T,U : W 1,H
0 (Ω)→ R are given functions

satisfying appropriate conditions (see Section 2). Here W 1,H
0 (Ω) is a subspace of

the Sobolev-Musielak-Orlicz space W 1,H(Ω) and j : Ω × R → R is supposed to be
locally Lipschitz with respect to the second variable.

In this paper we prove the existence of at least one weak solution (see Definition
(3.4)) of problem (1.1) by applying a surjectivity theorem for multivalued mappings,
Kluge’s fixed point principle and tools from nonsmooth analysis. In general, prob-
lem (1.1) combines several interesting phenomena like a double phase operator along
with a multivalued mapping in form of Clarke’s generalized gradient and an implicit

obstacle given by the functions T : W 1,H
0 (Ω) → R and U : W 1,H

0 (Ω) → (0,+∞),
see H(T ) and H(U) in Section 3 for the precise conditions. Indeed, a solution

u ∈W 1,H
0 (Ω) of (1.1) has to belong to K(u) which is the image of the multivalued

map K : W 1,H
0 (Ω)→ 2W

1,H
0 (Ω) defined by

K(u) :=
{
v ∈W 1,H

0 (Ω) | T (v)− U(u) ≤ 0
}
.

To the best of our knowledge, this is the first work which combines a double phase
phenomena along with Clarke’s generalized gradient and an implicit obstacle. A
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main tool in our treatment will be a surjectivity result of Le [24] for multivalued
mappings generated by the sum of a maximal monotone multivalued operator and
a bounded multivalued pseudomonotone mapping.

One difficulty in the study of (1.1) is the occurrence of the so-called double phase
operator defined by

−div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
, u ∈W 1,H

0 (Ω),

where 1 < p < q < N . Although this operator looks like the (p, q)-differential
operator the difference is the weight function µ : Ω → [0,∞) which can have val-
ues in zero. That means we cannot search for weak solutions in the usual Sobolev
space W 1,p

0 (Ω), we need a certain type of a Sobolev-Musielak-Orlicz space equipped
with the Luxemburg norm, see Section 2 for its definition. The idea to treat prob-
lems driven by the double phase operators goes back to the 80s and the work of
Zhikov [36] who introduced such classes of operators to describe models of strongly
anisotropic materials by treating the functional

ω 7→
∫

(|∇ω|p + µ(x)|∇ω|q) dx, (1.2)

see also Zhikov [37, 38] and the monograph of Zhikov-Kozlov-Oleinik [39]. Integral
functionals of the form (1.2) have been considered by several authors concern-
ing regularity results and non-standard growth, see for example, Baroni-Colombo-
Mingione [4, 5, 7], Baroni-Kussi-Mingione [6], Cupini-Marcellini-Mascolo [16], Co-
lombo-Mingione [14, 15], Marcellini [27], [28] and the references therein.

In the case of single-valued equations in the whole space we refer to the works of
Colasuonno-Squassina [13], Gasiński-Papageorgiou [17, Proposition 3.4], Gasiński-
Winkert [20, 21], Liu-Dai [26], Perera-Squassina [33] concerning existence and mul-
tiplicity results.

Works which are closely related to our paper dealing with certain types of dou-
ble phase problems or multivalued problems can be found in Bahrouni-Rădulescu-
Repovš [1], Bahrouni-Rădulescu-Winkert [2, 3], Carl-Le-Motreanu [9], Cencelj-
Rădulescu-Repovš [10], Clarke [12], Gasiński-Papageorgiou [18, 19], Papageorgiou-
Rădulescu-Repovš [30, 31], Rădulescu [34], Zhang-Rădulescu [35] and the references
therein.

The paper is organized as follows. In Section 2 we recall the definition of the used
function spaces, some embedding results and we state the surjectivity results of Le
[24] for multivalued mappings as well as Kluge’s fixed point theorem. In Section
3 we present the full assumptions on the data of problem (1.1), give the definition
of the weak solution and consider an auxiliary problem defined in (3.7). Next, we
prove some properties of the solution set of (3.7) stated as Theorem 3.6 whose
proof is mainly based on tools from nonsmooth analysis in terms of multivalued
mappings. Taking these results into account we are able to prove our main result
which says that the solution set of (1.1) is nonempty, bounded and weakly closed

in W 1,H
0 (Ω), see Theorem 3.5.

2. Preliminaries

In the whole paper we suppose that Ω is a bounded domain in RN . Given
1 ≤ r ≤ ∞, Lr(Ω) and Lr(Ω;RN ) stand for the usual Lebesgue spaces equipped

with the norm ‖·‖p while W 1,r(Ω) and W 1,r
0 (Ω) denote the Sobolev spaces endowed
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with the norms ‖ · ‖1,r and ‖ · ‖1,r,0, respectively. By r′, we denote the conjugate of
r ∈ (1,∞), that is, 1

r + 1
r′ = 1.

For the weight function in (1.1) we suppose the following condition:

H(µ): µ : Ω→ [0,∞) is Lipschitz continuous and 1 < p < q < N are chosen such
that

q

p
< 1 +

1

N
.

Set R+ := [0,∞) and consider the modular function H : Ω×R+ → R+ given by

H(x, t) = tp + µ(x)tq for all (x, t) ∈ Ω× R+.

The Musielak-Orlicz space LH(Ω) is defined by

LH(Ω) =

{
u
∣∣∣ u : Ω→ R is measurable and ρH(u) :=

∫
Ω

H(x, |u|) dx < +∞
}

equipped with the Luxemburg norm

‖u‖H = inf
{
τ > 0

∣∣ ρH (u
τ

)
≤ 1
}
.

The space LH(Ω) is uniformly convex and so a reflexive Banach space. Furthermore,
we introduce the seminormed function space Lqµ(Ω)

Lqµ(Ω) =

{
u
∣∣∣ u : Ω→ R is measurable and

∫
Ω

µ(x)|u|q dx < +∞
}

endowed with the seminorm

‖u‖q,µ =

(∫
Ω

µ(x)|u|q dx
) 1

q

.

From Colasuonno-Squassina [13, Proposition 2.15 (i), (iv) and (v)] we know that
the embeddings

Lq(Ω) ↪→ LH(Ω) ↪→ Lp(Ω) ∩ Lqµ(Ω)

are continuous and so, by a simple calculation, we have

min {‖u‖pH, ‖u‖
q
H} ≤ ‖u‖

p
p + ‖u‖qq,µ ≤ max {‖u‖pH, ‖u‖

q
H} (2.1)

for all u ∈ LH(Ω).
The corresponding Sobolev-Musielak-Orlicz space W 1,H(Ω) is defined by

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
and is equipped with the norm

‖u‖1,H = ‖∇u‖H + ‖u‖H,

where ‖∇u‖H = ‖|∇u|‖H.

The Sobolev-Musielak-Orlicz space with zero traces, denoted by W 1,H
0 (Ω), is the

completion of C∞0 (Ω) in W 1,H(Ω), that is,

W 1,H
0 (Ω) = C∞0 (Ω)

W 1,H(Ω)
.

From the assumption on µ : Ω→ R+ in H(µ) combined with Colasuonno-Squassina
[13, Proposition 2.18], it is known that

‖u‖1,H,0 = ‖∇u‖H for all u ∈W 1,H
0 (Ω),
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defines an equivalent norm on W 1,H
0 (Ω). Based on this we obtain directly from

(2.1) that

min
{
‖u‖p1,H,0, ‖u‖

q
1,H,0

}
≤ ‖∇u‖pp + ‖∇u‖qq,µ ≤ max

{
‖u‖p1,H,0, ‖u‖

q
1,H,0

}
(2.2)

is true for all u ∈ W 1,H
0 (Ω). Moreover, both spaces W 1,H(Ω) and W 1,H

0 (Ω) are
uniformly convex and so reflexive Banach spaces as well.

From Colasuonno-Squassina [13, Proposition 2.15] we know that the embedding

W 1,H
0 (Ω) ↪→ Lr(Ω) (2.3)

is compact for each 1 < r < p∗, where p∗ stands for the critical exponent to p given
by

p∗ :=
Np

N − p
.

Let us recall some properties of the eigenvalue problem for the r-Laplacian (1 <
r <∞) with homogeneous Dirichlet boundary condition given by

−∆ru = λ|u|r−2u in Ω,

u = 0 on ∂Ω.
(2.4)

It is known that the set σr has a smallest element λ1,r which is positive, isolated,
simple and it can be variationally characterized through

λ1,r = inf

{
‖∇u‖rr
‖u‖rr

: u ∈W 1,r
0 (Ω), u 6= 0

}
,

see Lê [25].

Let A : W 1,H
0 (Ω)→W 1,H

0 (Ω)∗ be the operator defined by

〈A(u), v〉H :=

∫
Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇v dx, (2.5)

for u, v ∈ W 1,H
0 (Ω), where 〈·, ·〉H stands for the duality pairing between W 1,H

0 (Ω)

and its dual space W 1,H
0 (Ω)∗. The properties of the operator A : W 1,H

0 (Ω) →
W 1,H

0 (Ω)∗ can be summarized as follows, see Liu-Dai [26].

Proposition 2.1. The operator A defined by (2.5) is bounded, continuous, mono-
tone (hence maximal monotone) and of type (S+).

The notion of pseudomonotonicity for multivalued operators is recalled in the
next definition.

Definition 2.2. Let X be a real reflexive Banach space. The operator A : X → 2X
∗

is called pseudomonotone if the following conditions hold:

(i) the set A(u) is nonempty, bounded, closed and convex for all u ∈ X;
(ii) A is upper semicontinuous from each finite-dimensional subspace of X to

the weak topology on X∗;
(iii) if {un} ⊂ X with un ⇀ u in X and if u∗n ∈ A(un) is such that

lim sup
n→∞

〈u∗n, un − u〉X∗×X ≤ 0,

then to each element v ∈ X, exists u∗(v) ∈ A(u) with

〈u∗(v), u− v〉X∗×X ≤ lim inf
n→∞

〈u∗n, un − v〉X∗×X .
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Let X be a real Banach space with its dual space X∗. A function J : X → R is
said to be locally Lipschitz at u ∈ X if there exist a neighborhood N(u) of u and
a constant Lu > 0 such that

|J(w)− J(v)| ≤ Lu‖w − v‖X for all w, v ∈ N(u).

Definition 2.3. Let J : X → R be a locally Lipschitz function and let u, v ∈ X.
The generalized directional derivative J◦(u; v) of J at the point u in the direction
v is defined by

J◦(u; v) := lim sup
w→u, t↓0

J(w + tv)− J(w)

t
.

The generalized gradient ∂J : X → 2X
∗

of J : X → R is defined by

∂J(u) := { ξ ∈ X∗ | J◦(u; v) ≥ 〈ξ, v〉X∗×X for all v ∈ X} for all u ∈ X.
The next proposition collects some basic results, see for example, Migórski-Ochal-

Sofonea [29, Proposition 3.23].

Proposition 2.4. Let J : X → R be locally Lipschitz with Lipschitz constant Lu >
0 at u ∈ X. Then we have the following:

(i) The function v 7→ J◦(u; v) is positively homogeneous, subadditive, and sat-
isfies

|J◦(u; v)| ≤ Lu‖v‖X for all v ∈ X.
(ii) The function (u, v) 7→ J◦(u; v) is upper semicontinuous.
(iii) For each u ∈ X, ∂J(u) is a nonempty, convex, and weak∗ compact subset

of X∗ with ‖ξ‖X∗ ≤ Lu for all ξ ∈ ∂J(u).
(iv) J◦(u; v) = max {〈ξ, v〉X∗×X | ξ ∈ ∂J(u)} for all v ∈ X.
(v) The multivalued function X 3 u 7→ ∂J(u) ⊂ X∗ is upper semicontinuous

from X into w∗-X∗.

Since our results are based on fixed point results, so we now recall the fixed point
theorem of Kluge [23].

Theorem 2.5. Let Z be a real reflexive Banach space and let C ⊂ Z be nonempty,
closed and convex. Assume that Ψ: C → 2C is a multivalued mapping such that
for every u ∈ C, the set Ψ(u) is nonempty, closed, and convex and the graph of Ψ
is sequentially weakly closed. If either C is bounded or Ψ(C) is bounded, then the
map Ψ has at least one fixed point in C.

Finally, we end this section by recalling the following surjectivity theorem for
multivalued mappings which was proved by Le [24, Theorem 2.2]. We use the
notation BR(0) := {u ∈ X : ‖u‖X < R}.

Theorem 2.6. Let X be a real reflexive Banach space, let F : D(F ) ⊂ X → 2X
∗

be
a maximal monotone operator, let G : D(G) = X → 2X

∗
be a bounded multivalued

pseudomonotone operator and let L ∈ X∗. Assume that there exist u0 ∈ X and
R ≥ ‖u0‖X such that D(F ) ∩BR(0) 6= ∅ and

〈ξ + η − L, u− u0〉X∗×X > 0

for all u ∈ D(F ) with ‖u‖X = R, for all ξ ∈ F (u) and for all η ∈ G(u). Then the
inclusion

F (u) +G(u) 3 L
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has a solution in D(F ).

3. Main results

We impose the following assumptions for the data of problem (1.1).

H(f): f ∈ Lp′(Ω).

H(j): j : Ω× R→ R is such that
(i) x 7→ j(x, s) is measurable for all s ∈ R and there exists a function

l ∈ Lq1(Ω) with q1 ∈ (1, p∗) such that the function x 7→ j(x, l(x))
belongs to L1(Ω);

(ii) s 7→ j(x, s) is locally Lipschitz continuous for a. a.x ∈ Ω.
(iii) there exist θ ≥ 1 with θ ≤ min{q1, p}, αj ≥ 0 with αj < λ−1

1,pδθ and

βj ∈ L1
+(Ω) such that

j◦(x, s;−s) ≤ αj |s|θ + βj(x)

for a. a.x ∈ Ω and for all s ∈ R, where δθ is defined by

δθ =

{
1 if θ = p,

+∞ otherwise,

and λ1,p denotes the first eigenvalue of the Dirichlet eigenvalue problem
for the p-Laplacian, see (2.4);

(iv) there exist cj ≥ 0 and γj ∈ L
q1

q1−1

+ (Ω) satisfying

|ξ| ≤ cj |r|q1−1 + γj(x)

for a. a.x ∈ Ω, for all ξ ∈ ∂j(x, s) and for all s ∈ R, where ∂j(x, s)
stands for the generalized gradient of j with respect to the variable s
and q1 is given in (i);

(v) there exists a constant mj ≥ 0 such that

(ξ1 − ξ2)(s1 − s2) ≥ −mj |s1 − s2|p

for a. a.x ∈ Ω and for all s1, s2 ∈ R whenever ξ1 ∈ ∂j(x, s1) and
ξ2 ∈ ∂j(x, s2).

H(T ): T : W 1,H
0 (Ω)→ R is positively homogeneous and subadditive such that

T (u) ≤ lim sup
n→∞

T (un) (3.1)

whenever {un} ⊂ W 1,H
0 (Ω) is such that un ⇀ u in W 1,H

0 (Ω) for some

u ∈W 1,H
0 (Ω).

H(U): U : W 1,H
0 (Ω) → (0,+∞) is weakly continuous, that is, for any sequence

{un} ⊂W 1,H
0 (Ω) such that un ⇀ u for some u ∈W 1,H

0 (Ω), we have

U(un)→ U(u).

Remark 3.1. (a) Assumption H(j)(v) is usually called the relaxed monotone con-
dition for the locally Lipschitz function s 7→ j(x, s), see for example, Migórski-
Ochal-Sofonea [29]. It is equivalent to the inequality

j◦(x, s1; s2 − s1) + j◦(x, s2; s1 − s2) ≤ mj |s1 − s2|p

for a. a.x ∈ Ω and for all s1, s2 ∈ R.
(b) Positive homogeneity and subadditivity of T imply that T is also a convex
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function. On the other hand, it is not difficult to see that if T : W 1,H
0 (Ω) → R is

lower semicontinuous, then inequality (3.1) holds automatically.

We introduce the following multivalued map K : W 1,H
0 (Ω) → 2W

1,H
0 (Ω) defined

by

K(u) :=
{
v ∈W 1,H

0 (Ω) | T (v)− U(u) ≤ 0
}

(3.2)

for all u ∈W 1,H
0 (Ω).

Lemma 3.2. Let U : W 1,H
0 (Ω) → (0,+∞) and T : W 1,H

0 (Ω) → R be such that

H(T ) holds. Then, for each u ∈ W 1,H
0 (Ω), the set K(u) is nonempty, closed and

convex in W 1,H
0 (Ω).

Proof. For any fixed u ∈ W 1,H
0 (Ω) it is clear that U(u) > 0. Since T is positively

homogeneous, we have T (0) = 0. This implies T (0) = 0 < U(u), that is, 0 ∈ K(u)
and so, K(u) is nonempty.

Let {vn} ⊂ K(u) be a sequence such that vn → v in W 1,H
0 (Ω) for some v ∈

W 1,H
0 (Ω). Hence, for each n ∈ N, one has

T (vn) ≤ U(u).

Passing to the upper limit as n → ∞ and taking inequality (3.1) into account, we
obtain

T (v) ≤ lim sup
n→∞

T (vn) ≤ U(u).

Hence, v ∈ K(u) which shows that K(u) is closed.
Let v1, v2 ∈ K(u) and t ∈ (0, 1) be arbitrary. We set vt = tv1 + (1− t)v2. Then,

we have T (vi) ≤ U(u) for i = 1, 2. By the convexity of T , see Remark 3.1, it follows
that

T (vt) ≤ tT (v1) + (1− t)T (v2) ≤ tU(u) + (1− t)U(u) = U(u).

Thus vt ∈ K(u). Therefore, we conclude that K(u) is a convex set in W 1,H
0 (Ω). �

Let us introduce the functional J : Lq1(Ω)→ R defined by

J(u) :=

∫
Ω

j(x, u(x)) dx for all u ∈ Lq1(Ω). (3.3)

From hypotheses H(j) and the definition of J in (3.3), the next lemma is a direct
consequence of Migórski-Ochal-Sofonea [29, Theorem 3.47].

Lemma 3.3. Under the assumptions H(j)(i)–(iv), the following hold:

(i) J : Lq1(Ω)→ R is locally Lipschitz continuous;
(ii) there hold

J◦(u; v) ≤
∫

Ω

j◦(x, u(x); v(x)) dx,

J◦(u;−u) ≤ αj‖u‖θθ + ‖βj‖1

for all u, v ∈ Lq1(Ω);
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(iii) for each u ∈ Lq1(Ω), one has

∂J(u) ⊂
∫

Ω

∂j(x, u(x)) dx,

‖ξ‖q′1 ≤ cJ(1 + ‖u‖q1−1
q1 ) for all ξ ∈ ∂J(u)

with some cJ > 0.

Moreover, if condition H(j)(v) holds, then the inequality

J◦(u; v − u) + J◦(v;u− v) ≤ mj‖u− v‖pp (3.4)

is satisfied for all u, v ∈W 1,H
0 (Ω).

The weak solutions for problem (1.1) are understood in the following sense.

Definition 3.4. We say that u ∈ W 1,H
0 (Ω) is a weak solution of problem (1.1) if

u ∈ K(u) and∫
Ω

(
|∇u|p−2∇u · ∇(v − u) + µ(x)|∇u|q−2∇u · ∇(v − u)

)
dx

+

∫
Ω

j◦(x, u; v − u) dx ≥
∫

Ω

f(x) (v − u) dx

for all v ∈ K(u), where the multivalued function K is given by (3.2).

Our main results read as follows.

Theorem 3.5. Assume that H(µ), H(f), H(j), H(T ) and H(U) are satisfied. If
p ≥ 2 and the smallness condition

mjλ
−1
1,p < c(p), (3.5)

holds, then the set of solutions for problem (1.1), denoted by S, is nonempty,

bounded and weakly closed in W 1,H
0 (Ω), where c(p) > 0 is the largest constant

such that (
|x|p−2x− |y|p−2y

)
· (x− y) ≥ c(p)|x− y|p for all x, y ∈ RN .

From Lemma 3.3(ii) we see that if u ∈W 1,H
0 (Ω) solves the following problem:

Find u ∈W 1,H
0 (Ω) such that u ∈ K(u) and∫

Ω

(
|∇u|p−2∇u · ∇(v − u) + µ(x)|∇u|q−2∇u · ∇(v − u)

)
dx

+ J◦(u; v − u) ≥
∫

Ω

f(x) (v − u) dx

(3.6)

for all v ∈ K(u), then u is also a weak solution of problem (1.1). Based on this
fact, in the sequel, we are going to explore the existence of solutions for problem
(3.6).

To this end, we now introduce the following auxiliary problem:

For given w ∈W 1,H
0 (Ω), find u ∈ K(w) such that∫

Ω

(
|∇u|p−2∇u · ∇(v − u) + µ(x)|∇u|q−2∇u · ∇(v − u)

)
dx

+ J◦(u; v − u) ≥
∫

Ω

f(x) (v − u) dx

(3.7)
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for all v ∈ K(w). Setting the multivalued Γ: W 1,H
0 (Ω)→ 2W

1,H
0 (Ω) by

Γ(w) :=
{
u ∈W 1,H

0 (Ω) | u solves problem (3.7) corresponding to w
}

for all w ∈ W 1,H
0 (Ω), it is not difficult to verify that u ∈ W 1,H

0 (Ω) is a fixed point
of Γ if and only if u solves problem (3.6). Motivated by this fact, we shall employ
Kluge’s fixed point principle, see Theorem 2.5, in order to show that Γ has at least

one fixed point in W 1,H
0 (Ω).

Theorem 3.6. Let U : W 1,H
0 (Ω) → (0,+∞). Under the assumptions H(µ), H(f),

H(j)(i)–(iv) and H(T ), the following hold:

(i) for each w ∈ W 1,H
0 (Ω), the set of solutions to problem (3.7) is nonempty,

bounded and closed in W 1,H
0 (Ω), that is, Γ has nonempty, bounded and

closed values.
(ii) if, in addition, p ≥ 2, H(j)(v) and the smallness condition (3.5) are fulfilled,

then for each w ∈ W 1,H
0 (Ω), problem (3.7) has a unique solution uw ∈

W 1,H
0 (Ω), namely, Γ(w) = {uw}.

Proof. (i) For any fixed w ∈ W 1,H
0 (Ω), we consider the indicator function IK(w) :

W 1,H
0 (Ω)→ R := R ∪ {+∞} of K(w) defined by

IK(w)(u) :=

{
0 if u ∈ K(w),

+∞ otherwise.

From the fact that f ∈ Lp′(Ω) ⊂W 1,H
0 (Ω)∗, problem (3.7) can be expressed as the

variational-hemivariational inequality: Find u ∈W 1,H
0 (Ω) such that

〈Au, v − u〉H + J◦(u; v − u) + IK(w)(v)− IK(w)(u) ≥ 〈f, v − u〉H (3.8)

for all v ∈ W 1,H
0 (Ω), where A : W 1,H

0 (Ω) → W 1,H
0 (Ω)∗ is the double phase op-

erator defined in (2.5). Employing the first separation theorem, see for example,
Papageorgiou-Winkert [32, Theorem 3.1.57], it is not difficult to see that inequality

problem (3.8) is equivalent to the following inclusion problem: Find u ∈ W 1,H
0 (Ω)

such that

Au+ ∂J(u) + ∂CIK(w)(u) 3 f, (3.9)

where the notation ∂CIK(w) stands for the subdifferential of IK(w) in the sense of
convex analysis.

First, we are going to apply the surjectivity theorem for multivalued mappings,
see Theorem 2.6, in order to prove that problem (3.9) has at least one solution in

W 1,H
0 (Ω). In fact, we have the following claims.

Claim 1. A+∂J : W 1,H
0 (Ω)→ 2W

1,H
0 (Ω)∗ is a bounded pseudomonotone multivalued

operator such that for each u ∈W 1,H
0 (Ω), the set A(u)+∂J(u) is closed and convex

in W 1,H
0 (Ω)∗.

Indeed, Proposition 2.4 and Lemma 3.3 imply that for each u ∈W 1,H
0 (Ω), the set

A(u) + ∂J(u) is closed and convex in W 1,H
0 (Ω)∗. Besides, Proposition 2.1, Lemma

3.3(iii), (2.3) and the fact that p1 < p∗ guarantee that

W 1,H
0 (Ω) 3 u 7→ A(u) + ∂J(u) ⊂W 1,H

0 (Ω)∗ is a bounded map.
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Next are going to apply Proposition 3.8 in Migórski-Ochal-Sofonea [29] in order

to conclude that W 1,H
0 (Ω) 3 u 7→ A(u) + ∂J(u) ⊂ W 1,H

0 (Ω)∗ is upper semicontin-

uous from W 1,H
0 (Ω) to W 1,H

0 (Ω)∗ equipped with the weak topology. It is sufficient

to show that for any weakly closed subset D in W 1,H
0 (Ω)∗, the set (A + ∂J)−(D)

is closed in W 1,H
0 (Ω).

Let {un} ⊂ (A+ ∂J)−(D) be a sequence such that

un → u in W 1,H
0 (Ω) for some u ∈W 1,H

0 (Ω). (3.10)

Hence, for each n ∈ N, we are able to find ξn ∈ ∂J(un) such that

u∗n := Aun + ξn ∈
(
A(un) + ∂J(un)

)
∩D.

The continuity of A, see Proposition 2.1, implies that A(un)→ A(u) in W 1,H
0 (Ω)∗.

Lemma 3.3(iii) and convergence (3.10) imply that the sequence {ξn} is bounded in

W 1,H
0 (Ω)∗. So, without any loss of generality, we may assume that

ξn ⇀ ξ in W 1,H
0 (Ω)∗.

Recall that ∂J is upper semicontinuous from W 1,H
0 (Ω) to W 1,H

0 (Ω)∗ equipped with
the weak topology and has bounded, convex, closed values, see Proposition 2.4(iv).

Hence, it has a closed graph in W 1,H
0 (Ω)×W 1,H

0 (Ω)∗, see Kamenskii-Obukhovskii-
Zecca [22, Theorem 1.1.4]. But, thanks to the weak closedness of D, we derive that

A(u)+ξ ∈ D and ξ ∈ ∂J(u), which provides that u ∈
(
A+∂J

)−
(D). Consequently,

A+∂J is upper semicontinuous from W 1,H
0 (Ω) to W 1,H

0 (Ω)∗ equipped with the weak
topology.

We now prove that A+∂J is pseudomonotone. Let {un} and {u∗n} be sequences
such that

un ⇀ u in W 1,H
0 (Ω), (3.11)

u∗n ∈ A(un) + ∂J(un) with lim sup
n→∞

〈u∗n, un − u〉H ≤ 0. (3.12)

Our goal is to produce for each v ∈ W 1,H
0 (Ω) an element u∗(v) ∈ A(u) + ∂J(u)

such that

lim inf
n→∞

〈u∗n, un − v〉H ≥ 〈u∗(v), u− v〉H. (3.13)

From (3.12), there is a sequence {ξn} ⊂ W 1,H
0 (Ω)∗ such that for each n ∈ N,

ξn ∈ ∂J(un) and

u∗n = A(un) + ξn.

From (3.12), and the above equality it follows that

lim sup
n→∞

〈Aun, un − u〉H + lim inf
n→∞

〈ξn, un − u〉H ≤ 0. (3.14)

Applying (3.11) and the compact embedding of W 1,H
0 (Ω) into Lq1(Ω), see (2.3), we

have

un → u in Lq1(Ω).

By virtue of Theorem 2.2 of Chang [11], we know that

∂
(
J |W 1,H

0 (Ω)

)
(u) ⊂ ∂

(
J |Lq1 (Ω)

)
(u) for all u ∈W 1,H

0 (Ω),
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which shows that

〈ξn, un − u〉H = 〈ξn, un − u〉Lq1 (Ω). (3.15)

Additionally, Lemma 3.3(iii) and the boundedness of {un} in W 1,H
0 (Ω) entail that

the sequence {ξn} is bounded both in Lq1(Ω) and W 1,H
0 (Ω)∗. Then, we pass to the

limit in (3.15) as n→∞, to get

lim
n→∞

〈ξn, un − u〉H = lim
n→∞

〈ξn, un − u〉Lq1 (Ω) = 0.

Combining this with (3.14) leads to

lim sup
n→∞

〈Aun, un − u〉H = lim sup
n→∞

〈Aun, un − u〉H + lim inf
n→∞

〈ξn, un − u〉H ≤ 0.

Hence, since A is of type (S+), see Proposition 2.1, and (3.11) yields un → u in

W 1,H
0 (Ω). On the other hand, by the reflexivity of W 1,H

0 (Ω)∗ and the boundedness

of {ξn} ⊂W 1,H
0 (Ω)∗, we can suppose that

ξn ⇀ ξ in W 1,H
0 (Ω)∗ for some ξ ∈W 1,H

0 (Ω)∗.

Then, from Kamenskii-Obukhovskii-Zecca [22, Theorem 1.1.4], we can conclude
that ξ ∈ ∂J(u). Because of

lim inf
n→∞

〈u∗n, un − v〉H = lim inf
n→∞

〈A(un) + ξn, un − v〉H = 〈A(u) + ξ, u− v〉H,

it is clear that (3.13) holds with u∗ = A(u) + ξ ∈ A(u) + ∂J(u). We conclude that
A+ ∂J is pseudomonotone. This proves Claim 1.

Claim 2. There exists R > 0 such that

〈Au+ ξ + η − f, u〉H > 0 (3.16)

for all u ∈ K(w) with ‖u‖1,H,0 = R, for all ξ ∈ ∂J(u) and for all η ∈ ∂C(IK(w))(u).

Let u ∈ W 1,H
0 (Ω) be fixed. Since 0 ∈ K(w) and f ∈ Lp′(Ω) ⊂ W 1,H

0 (Ω)∗, for
any ξ ∈ ∂J(u) and η ∈ ∂C(IK(w))(u), we can find

〈Au+ ξ + η − f, u〉H

≥
∫

Ω

|∇u|p−2∇u · ∇u dx+

∫
Ω

µ(x)|∇u|q−2∇u · ∇u dx

+

∫
Ω

ξu dx+ IK(w)(u)− IK(w)(0)− ‖f‖W 1,H
0 (Ω)∗‖u‖1,H,0

≥ ‖∇u‖pp + ‖∇u‖qq,µ −
∫

Ω

ξ[−u] dx+ IK(w)(u)− ‖f‖W 1,H
0 (Ω)∗‖u‖1,H,0

≥ ‖∇u‖pp + ‖∇u‖qq,µ − J◦(u;−u) + IK(w)(u)− ‖f‖W 1,H
0 (Ω)∗‖u‖1,H,0.

(3.17)

Note that IK(w) : W 1,H
0 (Ω) → R is a proper, convex and lower semicontinuous

function. Hence, we can apply Proposition 1.10 of Brezis [8] to find aK(w), bK(w) > 0
such that

IK(w)(v) ≥ −aK(w)‖v‖1,H,0 − bK(w) for all v ∈W 1,H
0 (Ω). (3.18)

In addition, by Lemma 3.3(ii), we have

J◦(u;−u) ≤ αj‖u‖θθ + ‖βj‖1. (3.19)
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We consider now the two cases θ < p and θ = p. Suppose first θ < p and let
c(θ) > 0 be such that

‖u‖θ ≤ c(θ)‖u‖1,H,0 for all u ∈W 1,H
0 (Ω) (3.20)

due to the continuity of the embedding from W 1,H
0 (Ω) to Lr(Ω) for all r ∈ (1, p∗).

Applying (3.18) and (3.19) in (3.17) and using (3.20) we get

〈Au+ ξ + η − f, u〉H
≥ ‖∇u‖pp + ‖∇u‖qq,µ − αj‖u‖θθ − ‖βj‖1 − aK(w)‖u‖1,H,0 − bK(w)

− ‖f‖W 1,H
0 (Ω)∗‖u‖1,H,0

≥ ‖∇u‖pp + ‖∇u‖qq,µ − αjc(θ)θ‖u‖θ1,H,0 − ‖βj‖1 − aK(w)‖u‖1,H,0
− bK(w) − ‖f‖W 1,H

0 (Ω)∗‖u‖1,H,0
≥ min

{
‖u‖p1,H,0, ‖u‖

q
1,H,0

}
− αjc(θ)θ‖u‖θ1,H,0 − ‖βj‖1

− aK(w)‖u‖1,H,0 − bK(w) − ‖f‖W 1,H
0 (Ω)∗‖u‖1,H,0,

(3.21)

where the last inequality is obtained via inequality (2.2). Since θ < p < q, it is
clear that we can find a constant R0 > 0 large enough such that Rp0 < Rq0 and

Rp0 − αjc(θ)θRθ0 − ‖βj‖1 − aK(w)R0 − bK(w) − ‖f‖W 1,H
0 (Ω)∗R0 > 0.

Therefore, for each R ≥ R0 fixed, the desired inequality (3.16) holds.

Suppose now θ = p. Then, taking W 1,H
0 (Ω) ⊂ W 1,p

0 (Ω) into account and the
fact that

‖u‖pp ≤ λ−1
1,p‖∇u‖pp for all u ∈W 1,p

0 (Ω), (3.22)

we obtain

〈Au+ ξ + η − f, u〉H
≥ ‖∇u‖pp + ‖∇u‖qq,µ − αj‖u‖pp − ‖βj‖1 − aK(w)‖u‖1,H,0 − bK(w)

− ‖f‖W 1,H
0 (Ω)∗‖u‖1,H,0

≥
(
1− αjλ−1

1,p

)
‖∇u‖pp + ‖∇u‖qq,µ − ‖βj‖1 − aK(w)‖u‖1,H,0 − bK(w)

− ‖f‖W 1,H
0 (Ω)∗‖u‖1,H,0

≥
(
1− αjλ−1

1,p

)(
‖∇u‖pp + ‖∇u‖qq,µ

)
− ‖βj‖1 − aK(w)‖u‖1,H,0 − bK(w)

− ‖f‖W 1,H
0 (Ω)∗‖u‖1,H,0

≥
(
1− αjλ−1

1,p

)
min

{
‖u‖p1,H,0, ‖u‖

q
1,H,0

}
− ‖βj‖1 − aK(w)‖u‖1,H,0 − bK(w)

− ‖f‖W 1,H
0 (Ω)∗‖u‖1,H,0.

(3.23)

Since 1 < p < q and αjλ
−1
1,p < 1, we can take R0 > 0 large enough with Rp0 < Rq0

such that for all R ≥ R0 it holds(
1− αjλ−1

1,p

)
Rp − ‖βj‖1 − aK(w)R− bK(w) − ‖f‖W 1,H

0 (Ω)∗R > 0.

Therefore, inequality (3.16) holds and Claim 2 is proved.

Recall that IK(w) : W 1,H
0 (Ω)→ R is a proper, convex and lower semicontinuous

function. Hence ∂CIK(w) : W 1,H
0 (Ω) → 2W

1,H
0 (Ω)∗ is maximal monotone. This fact

combined with Claims 1 and 2 allows us to apply Theorem 2.6 which provides

uw ∈W 1,H
0 (Ω) satisfying inclusion (3.9). Thus Γ(w) 6= ∅ for each w ∈W 1,H

0 (Ω).
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Now we want to verify that Γ(w) is closed in W 1,H
0 (Ω). Let {un} ⊂ Γ(w) be a

sequence such that

un → u in W 1,H
0 (Ω)

for some u ∈W 1,H
0 (Ω). So, for each n ∈ N, we have

〈Aun, v − un〉H + J◦(un; v − un) + IK(w)(v)− IK(w)(un) ≥ 〈f, v − un〉H

for all v ∈W 1,H
0 (Ω). Passing to the upper limit as n→∞, we get

〈Au, v − u〉H + J◦(u; v − u) + IK(w)(v)− IK(w)(u)

≥ lim sup
n→∞

[
〈Aun, v − un〉H + J◦(un; v − un) + IK(w)(v)− IK(w)(un)

]
≥ lim sup

n→∞
〈f, v − un〉H

= 〈f, v − u〉H

for all v ∈ W 1,H
0 (Ω), where we have used the continuity of A, see Proposition 2.1,

the upper semicontinuity of (u, v) 7→ J◦(u; v), see Proposition 2.4(iv), and the lower
semicontinuity of IK(w). This shows that u ∈ Γ(w). Hence, Γ(w) is closed.

Finally, we need to show that Γ(w) is bounded. Arguing by contradiction, we
suppose that Γ(w) is unbounded. Then, there exists a sequence {un} in Γ(w) such
that

‖un‖1,H,0 → +∞. (3.24)

By a simple computing, see (3.21) and (3.23) for example, we are able to find
N0 ∈ N such the for all n ≥ N0, one has

0 ≥ 〈Aun, un〉H − J◦(un;−un) + IK(w)(un) > 0,

where we have used the fact that 0 ∈ K and (3.24) which leads to a contradiction.
Therefore, Γ(w) is bounded.

(ii) Now assume that H(f)(v) holds. Let u1, u2 ∈ W 1,H
0 (Ω) be two solutions of

problem (3.7), that is,

〈Aui, v − ui〉H + J◦(ui; v − ui) + IK(w)(v)− IK(w)(ui) ≥ 〈f, v − ui〉H

for all v ∈W 1,H
0 (Ω) and for i = 1, 2. Taking v = u2 and v = u1 into the inequalities

above for i = 1 and i = 2, respectively, and applying (3.4) we obtain

0 ≥ 〈Au1 −Au2, u1 − u2〉H −
(
J◦(u1;u2 − u1) + J◦(u2;u1 − u2)

)
=

∫
Ω

(
|∇u1|p−2∇u1 − |∇u2|p−2∇u2

)
· ∇(u1 − u2) dx

+

∫
Ω

µ(x)
(
|∇u1|q−2∇u1 − |∇u2|q−2∇u2

)
· ∇(u1 − u2) dx

−mj‖u1 − u2‖pp

≥
∫

Ω

(
|∇u1|p−2∇u1 − |∇u2|p−2∇u2

)
· ∇(u1 − u2) dx−mj‖u1 − u2‖pp,

where we have used the fact µ(x) ≥ 0 for a. a.x ∈ Ω. Taking∫
Ω

(
|∇u1|p−2∇u1 − |∇u2|p−2∇u2

)
· ∇(u1 − u2) dx ≥ c(p)‖∇(u1 − u2)‖pp,



14 S. ZENG, Y. BAI, L. GASIŃSKI, AND P. WINKERT

into account gives

0 ≥ 〈Au1 −Au2, u1 − u2〉H −
(
J◦(u1;u2 − u1) + J◦(u2;u1 − u2)

)
≥ c(p)‖∇(u1 − u2)‖pp −mj‖u1 − u2‖pp
≥
(
c(p)−mjλ

−1
1,p

)
‖∇(u1 − u2)‖pp,

where the last inequality is obtained by using inequality (3.22). Since W 1,H
0 (Ω) ⊂

W 1,p
0 (Ω) we deduce that u1 = u2. Consequently, problem (3.7) has a unique solution

in W 1,H
0 (Ω). �

Now we are in the position to prove Theorem 3.5 by applying Theorem 3.6 and
Kluge’s fixed point theorem.

Proof of Theorem 3.5. We have already mentioned that the fixed point set of Γ is
the corresponding set of solutions to problem (3.6). Besides, Lemma 3.2 points out
that the set of solutions for problem (3.6) is a subset of the set of solutions for
problem (1.1). Consequently, it suffices to show that the set of fixed points of Γ is
nonempty.

Claim 3. The graph of Γ is sequentially weakly closed.

Let {wn} ⊂ W 1,H
0 (Ω) be a sequence such that wn ⇀ w and un := Γ(wn) ⇀ u

in W 1,H
0 (Ω) for some w, u ∈W 1,H

0 (Ω). Then, for each n ∈ N we have un ∈ K(wn),
namely T (un) ≤ U(wn), and

〈Aun, v − un〉H + J◦(un; v − un) ≥ 〈f, v − un〉H (3.25)

for all v ∈ K(wn). The inequality

〈Au1 −Au2, u1 − u2〉H −
(
J◦(u1;u2 − u1) + J◦(u2;u1 − u2)

)
≥
(
c(p)−mjλ

−1
1,p

)
‖∇(u1 − u2)‖pp ≥ 0

for all u1, u2 ∈ W 1,H
0 (Ω) and smallness condition (3.5) indicate that un solves the

following problem

〈Av, v − un〉H + J◦(v; v − un) ≥ 〈f, v − un〉H (3.26)

for all v ∈ K(wn).
From hypotheses H(T ) and H(U) we know that

T (u) ≤ lim sup
n→∞

T (un) ≤ lim sup
n→∞

U(wn) ≤ U(w).

This means that u ∈ K(w).
For any fixed v ∈ K(w), since U(w) > 0, we can consider the sequence {vn}

defined by

vn :=
U(wn)

U(w)
v for all n ∈ N.

The nonnegativity of U , the positive homogeneity of T and v ∈ K(w), that is,
T (v) ≤ U(w), imply

T (vn) = T

(
U(wn)

U(w)
v

)
=
U(wn)

U(w)
T (v) ≤ U(wn)U(w)

U(w)
= U(wn).
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Hence vn ∈ K(wn). A simple calculating gives

lim
n→∞

‖vn − v‖1,H,0 = lim
n→∞

|U(wn)− U(w)| ‖v‖1,H,0
U(w)

= 0.

This shows that vn → v. Taking v = vn in (3.26) and passing to the upper limit as
n→∞ one has

〈Av, v − u〉H + J◦(v; v − u)

≥ lim sup
n→∞

〈Avn, vn − un〉H + lim sup
n→∞

J◦(vn; vn − un)

≥ lim sup
n→∞

[
〈Avn, vn − un〉H + J◦(vn; vn − un)

]
≥ lim sup

n→∞
〈f, vn − un〉H = 〈f, v − u〉H,

where we have used the compact embedding of W 1,H
0 (Ω) in Lq1(Ω) and the fact

that Lq1(Ω) × Lq1(Ω) 3 (v, u) → J◦(u; v) ∈ R is upper semicontinuous, see (2.3)
and Proposition 2.4. Hence,

〈Av, v − u〉H + J◦(v; v − u) ≥ 〈f, v − u〉H (3.27)

for all v ∈ K(w). Note that u ∈ K(w) and K(w) is closed and convex. Let
t ∈ (0, 1) be arbitrary and set vt := tv + (1 − t)u. Taking v = vt in (3.27) and
applying Proposition 2.4(i), we get that

〈Avt, v − u〉H + J◦(vt; v − u) ≥ 〈f, v − u〉H.

Passing to the upper limit in the inequality above as t→ 0+ yields

〈Au, v − u〉H + J◦(u; v − u) ≥ 〈f, v − u〉H
for all v ∈ K(w) which means u = Γ(w). Therefore, we conclude that the graph of
Γ is sequentially weakly closed and so Claim 3 is proved.

Claim 4. The set Γ(W 1,H
0 (Ω)) is bounded in W 1,H

0 (Ω).
Arguing by contradiction and suppose the claim is not true. Then there exists

a sequence {wn} such that

‖un‖1,H,0 →∞,
where un = Γ(wn). For every n ∈ N, one has (3.25) for all v ∈ K(wn). Having

in mind that 0 ∈ K(w) for each w ∈ W 1,H
0 (Ω), we take v = 0 as test function in

(3.25) to obtain

〈Aun, un〉H − J◦(un;−un) ≤ ‖f‖W 1,H
0 (Ω)∗‖un‖1,H,0.

By using the same arguments as in the proof of Theorem 3.6, see (3.21) and (3.23),
we can find N0 ∈ N large enough with ‖un‖p1,H,0 < ‖un‖

q
1,H,0 for all n ≥ N0 such

that

0 < 〈Aun, un〉H − J◦(un;−un)− ‖f‖W 1,H
0 (Ω)∗‖un‖1,H,0 ≤ 0

for all n ≥ N0. This is a contradiction. Therefore, we conclude that the set

Γ(W 1,H
0 (Ω)) is bounded in W 1,H

0 (Ω), which proves Claim 4.

Now we can apply Theorem 2.5 for the mapping Ψ = Γ. This shows that Γ

admits a fixed point in W 1,H
0 (Ω) which implies that problem (1.1) has at least one

weak solution in W 1,H
0 (Ω). We still need to show that the set S is bounded and

weakly closed.
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The boundedness of S can be obtained directly via using analogous arguments
as in the proof of Claim 4.

It remains to show the weak closedness of S. Let {un} ⊂ S be a sequence such

that un ⇀ u in W 1,H
0 (Ω) for some u ∈ W 1,H

0 (Ω). Hence, for each n ∈ N, we see
that un ∈ K(un) and

〈Av, v − un〉H +

∫
Ω

j◦(v(x); v(x)− un(x)) dx ≥ 〈f, v − un〉H (3.28)

for all v ∈ K(un). Because the graph of K is sequentially weakly closed, see Claim

3, this implies u ∈ K(u). For any v ∈ K(u), we set vn := U(un)
U(u) v. We have

vn ∈ K(un) and vn → v in W 1,H
0 (Ω). Taking v = vn in (3.28) and passing to the

upper limit as n→∞ we obtain

〈Av, v − u〉H +

∫
Ω

j◦(v(x); v(x)− u(x)) dx ≥ 〈f, v − u〉H

for all v ∈ K(u), where we have applied Fatou’s Lemma. Invoking the Minty

approach gives u ∈ S. Therefore, S is weakly closed in W 1,H
0 (Ω). �
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[25] A. Lê, Eigenvalue problems for the p-Laplacian, Nonlinear Anal.64 (2006), no. 5, 1057–1099.

[26] W. Liu, G. Dai, Existence and multiplicity results for double phase problem, J. Differential
Equations 265 (2018), no. 9, 4311–4334.

[27] P. Marcellini, The stored-energy for some discontinuous deformations in nonlinear elasticity,

in “Partial differential equations and the calculus of variations, Vol. II”, vol. 2, 767–786,
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ity property of the spectrum, Proc. Amer. Math. Soc.147 (2019), no. 7, 2899–2910.
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