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Abstract. In this paper we consider a class of anisotropic (p⃗, q⃗)-Laplacian

problems with nonlinear right-hand sides that are superlinear at ±∞. We
prove the existence of two nontrivial weak solutions to this kind of problem by

applying an abstract critical point theorem under very general assumptions on
the data without supposing the Ambrosetti-Rabinowitz condition.

1. Introduction

Let Ω ⊆ RN , N ≥ 2 be a bounded domain with boundary ∂Ω of class C1. In
this paper we consider the following anisotropic differential equation involving the
(p⃗, q⃗)-Laplacian given by

−∆p⃗u−∆q⃗u = λf(x, u) in Ω,

u = 0 on ∂Ω,
(Dp⃗,q⃗

λ )

where λ is a positive parameter, p⃗ = (p1, p2, . . . , pN ), q⃗ = (q1, q2, . . . , qN ), p⃗, q⃗ ∈ RN

are real vectors such that

max {q1, q2, . . . , qN} < min {p1, p2, . . . , pN} < N,

and f : Ω × R → R is a nonlinearity with subcritical growth that is superlinear at
±∞, see (Hf) for the precise assumptions. Moreover, for any s⃗ = (s1, s2, . . . , sN ) ∈
RN , we denote by

∆s⃗u =

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi

∣∣∣∣si−2
∂u

∂xi

)
the anisotropic s⃗-Laplace differential operator. If si = 2 for all i = 1, . . . , N , we get

N∑
i=1

∂2u

∂x2
i

= ∆u,

that is the usual Laplacian and if s⃗ is constant (i.e. si = s for each i = 1, . . . , N) we
obtain

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi

∣∣∣∣s−2
∂u

∂xi

)
= ∆̃su,

which is called the pseudo-s-Laplace operator, see Belloni-Kawohl [3] or Brasco-
Franzina [10]. More information about anisotropic operators and in particular

2020 Mathematics Subject Classification. 35A01, 35D30, 35J62, 35J66.
Key words and phrases. Anisotropic problems, critical point theory, existence, multiplicity

results, location of the solutions, parametric problem, (p⃗, q⃗)-Laplacian, superlinear nonlinearity.

1



2 E. AMOROSO, A. SCIAMMETTA, AND P. WINKERT

about the theory of anisotropic Sobolev spaces can be found in Kufner-Rákosńık
[20], Nikol’skĭı [24] and Rákosńık [29, 30].

Anisotropic differential problems have a large background in several applications,
for example, the study of an epidemic disease in heterogeneous habitat can be
expressed by an anisotropic nonlinear system. In general, anisotropic operators are
used for modeling in which partial differential derivatives vary with the direction.
Also, the anisotropic Laplacian, given by

N∑
i=1

∂

∂xi

(
∂

∂ξi

(
1

2
F 2

)
(∇u)

)
where F (ξ) = (

∑N
i=1 |ξi|2)

1
2 for ξ ∈ RN , plays a key role in physical models of crystal

growth in the context of the so-called Wulff shape of F (also known as equilibrium
crystal shape), see the work of Wulff [39]. For more information on applications in
different disciplines we refer to Antontsev-Dı́az-Shmarev [1], Bendahmane-Chrif-El
Manouni [4], Bendahmane-Langlais-Saad [5], Vétois [37] and the references therein.

Although there are some works for p⃗-Laplacian problems, only a few exist for the
anisotropic (p⃗, q⃗)-Laplacian. Recently, Razani-Figueiredo [32] studied the anisotrop-
ic Dirichlet problem

−
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi

∣∣∣∣pi−2
∂u

∂xi

)
−

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi

∣∣∣∣qi−2
∂u

∂xi

)
= λuγ−1 (1.1)

in a bounded and regular domain Ω of RN with γ > 1 and λ > 0. Based on a
sub-supersolution approach the authors show the existence of at least one positive
solution of (1.1). In Razani [31] nonstandard competing anisotropic (p⃗, q⃗)-Laplacian
problems with convolution of the form

−
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi

∣∣∣∣pi−2

− µ

∣∣∣∣ ∂u∂xi

∣∣∣∣qi−2
)

∂u

∂xi
= f(x, ϕ ∗ u,∇(ϕ ∗ u)) (1.2)

have been considered, where ϕ ∈ L1(RN ). If µ > 0, then the existence of a general-
ized solution of (1.2) is shown by using a Galerkin base for the function space and
if µ ≤ 0, then any generalized solution turns out to be a weak solution. We also
mention the recent work of Tavares [36] who considered existence and multiplicity
of nonnegative solutions for the problem given by

−∆p⃗u−∆q⃗u = k(x)uα−1 + f(x, u) in Ω,

u = 0 on ∂Ω,

where α > 1, k ∈ L∞(Ω) with k(x) > 0 for a.a.x ∈ Ω and a Carathéodory
nonlinearity f : Ω × R → R with subcritical growth. Existence and regularity re-
sults for anisotropic problems driven by the p⃗-Laplacian have been obtained by
several authors. Without guarantee of completeness, we mention just some of
them and refer to the papers of Bonanno-D’Agùı-Sciammetta [9], Ciani-Figueiredo-
Suárez [11], Ciraolo-Figalli-Roncoroni [12], Ciraolo-Sciammetta [13], DiBenedetto-
Gianazza-Vespri [14], dos Santos-Figueiredo-Tavares [15], Fragalà-Gazzola-Kawohl
[17], Perera-Agarwal-O’Regan [27], Ragusa-Razani-Safari [28], see also the refer-
ences therein. Related results for the (p, q)-Laplacian, double phase equations,
anisotropic problems or the discrete p-Laplacian can be found in the works of
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Bai-Papageorgiou-Zeng [2], Bohner-Caristi-Ghobadi-Heidarkhani [6], El Manouni-
Marino-Winkert [16], Leggat-Miri [21], He-Ousbika-El Allali-Zuo [18], Ju-Molica
Bisci-Zhang [19], Liu-Motreanu-Zeng [23], Papageorgiou [25], Son-Sim [34], Vetro-
Vetro [38], Zeng-Bai-Gasiński-Winkert [40], Zeng-Papageorgiou [41] and Zeng-Rădu-
lescu-Winkert [42].

Motivated by the above mentioned works for p⃗-Laplacian problems, we consider
in our paper so-called (p⃗, q⃗)-Laplacian problems with general right-hand sides. Our
main goal is to apply a two critical point result due to Bonanno-D’Agùı [7, Theorem

2.1] in order to get the existence of two positive solutions for problem (Dp⃗,q⃗
λ ) with

different energy sign. Note that the results in [7] are given in a very general setting
which can be applied to a large number of problems. Our paper can be seen as
an extension of the work of Bonanno-D’Agùı-Sciammetta [8] for (p⃗, q⃗)-Laplacian
problems. But not only the differential operator is more general than in [8], also
the condition required on f are weaker. Indeed, instead of assuming the Ambrosetti-
Rabinowitz condition, we only assume that the nonlinear term on the right-hand

side of (Dp⃗,q⃗
λ ) is (p+ − 1)-superlinear at ±∞ (with p+ defined in (2.2) replacing h

by p) and fulfills in addition a suitable behavior at ±∞, see (Hf). These hypotheses
are weaker than the Ambrosetti-Rabinowitz condition. Under these conditions,
together with the subcritical growth, we prove the existence of two weak solutions

for problem (Dp⃗,q⃗
λ ) that have opposite energy sign related to the energy functional

of (Dp⃗,q⃗
λ ).

The paper is organized as follows. In Section 2 we present the main properties of
anisotropic Sobolev spaces and consider the main features of the anisotropic (p⃗, q⃗)-
Laplacian, see Propositions 2.3 and 2.4. Moreover, we recall the main abstract
critical point theorem which will play a key role in our treatment, see Theorem 2.7.

In Section 3 we first state the precise assumptions on the data of problem (Dp⃗,q⃗
λ ) and

prove that the corresponding energy functional fulfills the C-condition. Then we

give our main result about the existence of two nontrivial weak solutions of (Dp⃗,q⃗
λ )

(see Theorem 3.3) and some consequences in which the solutions are nonnegative,

see Theorems 3.4 and 3.5. Finally, we consider the autonomous problem (ADp⃗,q⃗
λ ),

providing an existence result (see Corollary 3.6) and an example.

2. Preliminaries and basic properties

Let Ω ⊂ RN , N ≥ 2, be a bounded domain with boundary ∂Ω of class C1. For

any real vector h⃗ = (h0, h1, h2, . . . , hN ) with hi ≥ 1 for every i = 0, 1, . . . , N , we

indicate with W 1,⃗h(Ω) the anisotropic Sobolev space defined by

W 1,⃗h(Ω) =

{
u ∈ Lh0(Ω) :

∂u

∂xi
∈ Lhi(Ω) for i = 1, . . . , N

}
,

equipped with the norm

∥u∥W 1,h⃗(Ω) = ∥u∥Lh0 (Ω) +

N∑
i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lhi (Ω)

. (2.1)

Moreover, set

h− = min {h1, h2, . . . , hN} and h+ = max {h1, h2, . . . , hN} , (2.2)
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and suppose that h− < N and h0 < (h−)∗ = Nh−

N−h− . Denote by W 1,⃗h
0 (Ω) the

closure of C∞
0 (Ω) endowed with the following norm

∥u∥
W 1,h⃗

0 (Ω)
:=

N∑
i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lhi (Ω)

, (2.3)

which is equivalent to the usual one given in (2.1). Indeed, taking into account

that W 1,h−
(Ω) is compactly embedded in Lh0(Ω) and using Hölder’s inequality

(see (2.4) in Proposition 2.1), we have that

∥u∥Lh0 (Ω) ≤ c∥u∥W 1,h− (Ω) ≤ k̃

N∑
i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lhi (Ω)

.

It is well known that W 1,⃗h
0 (Ω), endowed with the norm defined in (2.3), is a separa-

ble Banach space and it is also reflexive if hi > 1 for all i = 1, . . . , N , see Rákosńık
[29, Theorem 1].

Given p⃗ = (p0, p1, p2, . . . , pN ) and q⃗ = (q0, q1, q2, . . . , qN ), with pi, qi ≥ 2 for
every i = 1, . . . , N , we suppose that

(H) q+ < p− < N , p0 < (p−)∗ and q0 < (q−)∗, where (·)∗ = N(·)
N−(·) denotes the

critical Sobolev exponent.

In the following proposition, we give a relation between the spaces W 1,p⃗
0 (Ω) and

W 1,q⃗
0 (Ω) and their norms. In particular, we underline that p0 and q0 are necessary

only for the definition of the anisotropic Sobolev spaces, but since we endow the
spaces with the equivalent norm given in (2.3), from now on we will only deal with
the components (p1, . . . , pN ) and (q1, . . . , qN ).

Proposition 2.1. If q+ < p−, then W 1,p⃗
0 (Ω) ⊆ W 1,q⃗

0 (Ω) and

∥u∥
W 1,q⃗

0 (Ω)
≤ max

1≤i≤N

{
|Ω|

pi−qi
piqi

}
∥u∥

W 1,p⃗
0 (Ω)

,

where |Ω| is the Lebesgue measure of Ω.

Proof. Fix u ∈ W 1,p⃗
0 (Ω) and i ∈ {1, . . . , N}. In particular, ∂u

∂xi
∈ Lpi(Ω) and∣∣∣ ∂u∂xi

∣∣∣p−

∈ L
pi
p− (Ω). If pi > p−, by Hölder’s inequality, we get(∫

Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣p−

dx

) 1

p−

≤ |Ω|
pi−p−

pip
−

(∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣pi

dx

) 1
pi

, (2.4)

while if pi = p−, then (2.4) is an equality. Moreover,
∣∣∣ ∂u∂xi

∣∣∣q+ ∈ L
p−

q+ (Ω), then again

from Hölder’s inequality, we obtain(∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣q+ dx

) 1

q+

≤ |Ω|
p−−q+

p−q+

(∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣p−

dx

) 1

p−

. (2.5)

Thus, combining (2.4) and (2.5) we derive(∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣q+ dx

) 1

q+

≤ |Ω|
pi−q+

piq
+

(∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣pi

dx

) 1
pi

, (2.6)
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for all i = 1, . . . , N . Furthermore, if q+ > qi and using Hölder’s inequality we have(∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣qi dx

) 1
qi

≤ |Ω|
q+−qi
q+qi

(∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣q+ dx

) 1

q+

, (2.7)

and if q+ = qi the previous inequality becomes an equality. Then, from (2.6) and
(2.7) it follows that(∫

Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣qi dx

) 1
qi

≤ |Ω|
pi−qi
piqi

(∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣pi

dx

) 1
pi

for all i = 1, . . . , N.

Hence,

∥u∥
W 1,q⃗

0 (Ω)
≤ max

1≤i≤N

{
|Ω|

pi−qi
piqi

}
∥u∥

W 1,p⃗
0 (Ω)

,

and the proof is complete. □

In the sequel, we estimate the embedding constant of W 1,p⃗
0 (Ω) into Lr(Ω) for

each r ∈ [1, (p−)∗] with p− < N , where (p−)∗ is the critical Sobolev exponent to
p−, that is

(p−)∗ =
Np−

N − p−
. (2.8)

Proposition 2.2. If 1 ≤ p− < N , then for any r ∈ [1, (p−)∗], W 1,p⃗
0 (Ω) ↪→ Lr(Ω)

is continuous and one has

∥u∥Lr(Ω) ≤ Tr∥u∥W 1,p⃗
0 (Ω)

(2.9)

for all u ∈ W 1,p⃗
0 (Ω), where

Tr = cr2
(N−1)(p−−1)

p− max
1≤i≤N

{
|Ω|

pi−p−

pip
−

}
,

cr = T |Ω|
(p−)∗−r

(p−)∗r ,

T ≤ N
− 1

p−

√
π

(
p− − 1

N − p−

)1− 1

p−

 Γ(N)Γ
(
1 + N

2

)
Γ
(

N
p−

)
Γ
(
1 +N − N

p−

)
 1

N

,

(2.10)

see Talenti [35, formula (2)] and Γ is the Euler function. Moreover, for any r ∈
[1, (p−)∗[ the embedding W 1,p⃗

0 (Ω) ↪→ Lr(Ω) is compact.

Proof. From the Sobolev embedding theorem there exists a positive constant T ∈ R
such that for all u ∈ W 1,p−

0 (Ω) the following holds

∥u∥L(p−)∗ (Ω) ≤ T∥u∥
W 1,p−

0 (Ω)
, (2.11)

where (p−)∗ and T are defined in (2.8) and (2.10), respectively.

Fix r ∈ [1, (p−)∗]. Since 1
r = 1

(p−)∗ + (p−)∗−r
(p−)∗r , by Hölder’s inequality and (2.11),

we have

∥u∥Lr(Ω) ≤ ∥u∥L(p−)∗ (Ω)|Ω|
(p−)∗−r

(p−)∗r ≤ T |Ω|
(p−)∗−r

(p−)∗r ∥u∥
W 1,p−

0 (Ω)
,

that is

∥u∥Lr(Ω) ≤ cr∥u∥W 1,p−
0 (Ω)

. (2.12)
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Arguing as in the proof of Proposition 2.1 in Bonanno-D’Agùı-Sciammetta [8], we
derive

∥u∥
W 1,p−

0 (Ω)
≤ 2

(N−1)(p−−1)

p− max
1≤i≤N

{
|Ω

pi−p−

pip
−

}
∥u∥

W 1,p⃗
0 (Ω)

,

and, taking (2.12) into account, we get that (2.9) holds for every r ∈ [1, (p−)∗].

Finally, combining the continuous embedding W 1,p⃗
0 (Ω) ↪→ W 1,p−

0 (Ω) with the

compact embedding W 1,p−

0 (Ω) ↪→ Lr(Ω), it follows that W 1,p⃗
0 (Ω) ↪→ Lr(Ω) is com-

pact for any r ∈ [1, (p−)∗[. □

Now, we define

F (x, t) =

∫ t

0

f(x, ξ) dξ for all (x, t) ∈ Ω× R,

and we introduce the functionals Φ,Ψ: W 1,p⃗
0 (Ω) → R given by

Φ(u) =

N∑
i=1

(
1

pi

∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣pi

dx+
1

qi

∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣qi dx

)
,

Ψ(u) =

∫
Ω

F (x, u) dx,

(2.13)

for every u ∈ W 1,p⃗
0 (Ω). Clearly, Φ and Ψ are Gâteaux differentiable and one has

Φ′(u)(v) =

N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣pi−2
∂u

∂xi

∂v

∂xi
dx+

N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣qi−2
∂u

∂xi

∂v

∂xi
dx,

Ψ′(u)(v) =

∫
Ω

f(x, u)v dx,

(2.14)

for every u, v ∈ W 1,p⃗
0 (Ω). Also, we consider the energy functional Iλ : W

1,p⃗
0 (Ω) → R

associated to our problem (Dp⃗,q⃗
λ ), that is given by Iλ = Φ− λΨ for all λ > 0.

We recall that u : Ω → R is a weak solution of problem (Dp⃗,q⃗
λ ) if the following

condition holds for all v ∈ W 1,p⃗
0 (Ω)

N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣pi−2
∂u

∂xi

∂v

∂xi
dx+

N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣qi−2
∂u

∂xi

∂v

∂xi
dx = λ

∫
Ω

f(x, u)v dx.

Then, from (2.14) it follows that u ∈ W 1,p⃗
0 (Ω) is a weak solution of problem (Dp⃗,q⃗

λ )
if and only if u is a critical point for Iλ. Consequently, our study is based on critical
point theory and in particular on a critical point theorem due to Bonanno-D’Agùı [7]
that we state later in Theorem 2.7.

In the following, we deal with some properties of the Gâteaux derivative of the
functional Φ that are needed in our investigation.

Proposition 2.3. The functional Φ′ : W 1,p⃗
0 (Ω) →

(
W 1,p⃗

0 (Ω)
)∗

defined in (2.14) is

monotone and coercive.

Proof. First we prove that Φ′ is monotone, i.e.

⟨Φ′(u)− Φ′(v), u− v⟩ ≥ 0 for all u, v ∈ W 1,p⃗
0 (Ω). (2.15)
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To this end, we use the following inequality(∣∣∣∣ ∂u∂xi

∣∣∣∣r−2
∂u

∂xi
−
∣∣∣∣ ∂v∂xi

∣∣∣∣r−2
∂v

∂xi

)
∂(u− v)

∂xi
≥ C

∣∣∣∣∂(u− v)

∂xi

∣∣∣∣r
for each r ≥ 2 and for some constant C > 0, see Simon [33] or Lindqvist [22].
Indeed, using the previous inequality we have

⟨Φ′(u)− Φ′(v), u− v⟩

=

N∑
i=1

∫
Ω

(∣∣∣∣ ∂u∂xi

∣∣∣∣pi−2
∂u

∂xi
−
∣∣∣∣ ∂v∂xi

∣∣∣∣pi−2
∂v

∂xi

)
∂(u− v)

∂xi
dx

+

N∑
i=1

∫
Ω

(∣∣∣∣ ∂u∂xi

∣∣∣∣qi−2
∂u

∂xi
−
∣∣∣∣ ∂v∂xi

∣∣∣∣qi−2
∂v

∂xi

)
∂(u− v)

∂xi
dx

≥
N∑
i=1

∫
Ω

(
C0

∣∣∣∣∂(u− v)

∂xi

∣∣∣∣pi

+ C1

∣∣∣∣∂(u− v)

∂xi

∣∣∣∣qi) dx

≥ 0,

and (2.15) is achieved.
Now, we prove that Φ′ is coercive. We observe that

⟨Φ′(u), u⟩ =
N∑
i=1

∫
Ω

(∣∣∣∣ ∂u∂xi

∣∣∣∣pi

+

∣∣∣∣ ∂u∂xi

∣∣∣∣qi) dx ≥
N∑
i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥pi

Lpi (Ω)

. (2.16)

Moreover, let j ∈ {1, . . . , N} be such that(∫
Ω

∣∣∣∣ ∂u∂xj

∣∣∣∣pj

dx

) 1
pj

:= max
1≤i≤N

(∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣pi

dx

) 1
pi

.

Then,

∥u∥
W 1,p⃗

0 (Ω)
=

N∑
i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lpi (Ω)

≤ N

(∫
Ω

∣∣∣∣ ∂u∂xj

∣∣∣∣pj

dx

) 1
pj

≤ N

(∫
Ω

∣∣∣∣ ∂u∂x1

∣∣∣∣p1

dx+ . . .+

∫
Ω

∣∣∣∣ ∂u

∂xN

∣∣∣∣pi

dx

) 1
pj

= N

(
N∑
i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥pi

Lpi (Ω)

) 1
pj

.

Thus, we get

N∑
i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥pi

Lpi (Ω)

≥ 1

Npj
∥u∥pj

W 1,p⃗
0 (Ω)

. (2.17)

From (2.16) and (2.17), we derive

⟨Φ′(u), u⟩ ≥ 1

Npj
∥u∥pj

W 1,p⃗
0 (Ω)

,

namely

⟨Φ′(u), u⟩
∥u∥

W 1,p⃗
0 (Ω)

≥ 1

Npj
∥u∥pj−1

W 1,p⃗
0 (Ω)

,
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and this implies that Φ′ is coercive. □

Proposition 2.4. The map Φ′ : W 1,p⃗
0 (Ω) →

(
W 1,p⃗

0 (Ω)
)∗

has the (S+)-property,

that is

if un ⇀ u in W 1,p⃗
0 (Ω) and lim sup

n→∞
⟨Φ′(un), un − u⟩ ≤ 0,

then un → u in W 1,p⃗
0 (Ω).

Proof. Let {un}n∈N ⊂ W 1,p⃗
0 (Ω) be such that un ⇀ u in W 1,p⃗

0 (Ω) and

lim sup
n→+∞

⟨Φ′(un), un − u⟩ ≤ 0. (2.18)

First, we observe that

lim
n→+∞

⟨Φ′(u), un − u⟩ = 0, (2.19)

since Φ′(u) is a linear operator in W 1,p⃗
0 (Ω) and un ⇀ u in W 1,p⃗

0 (Ω). Hence, from
(2.18) and (2.19) it follows that

lim sup
n→+∞

⟨Φ′(un)− Φ′(u), un − u⟩ ≤ 0. (2.20)

Now, for all i = 1, . . . , N and for all w, v ∈ W 1,p⃗
0 (Ω) we set

Api

i (w)(v) =

∫
Ω

∣∣∣∣ ∂w∂xi

∣∣∣∣pi−2
∂w

∂xi

∂v

∂xi
dx,

Aqi
i (w)(v) =

∫
Ω

∣∣∣∣ ∂w∂xi

∣∣∣∣qi−2
∂w

∂xi

∂v

∂xi
dx,

Bpi

i (w)(v) =
1∥∥∥∥ ∂w∂xi

∥∥∥∥pi−2

Lpi (Ω)

Api

i (w)(v),

Bqi
i (w)(v) =

1∥∥∥∥ ∂w∂xi

∥∥∥∥qi−2

Lqi (Ω)

Aqi
i (w)(v),

and

Bi(w)(v) = Bpi

i (w)(v) + Bqi
i (w)(v).

Then, we can write Φ′ as follows

Φ′(w)(v) =

N∑
i=1

(
Api

i (w)(v) +Aqi
i (w)(v)

)
for every w, v ∈ W 1,p⃗

0 (Ω).

By (2.20), we get

lim sup
n→+∞

⟨Bi(un)− Bi(u), un − u⟩ ≤ 0 for all i = 1, . . . , N. (2.21)

Moreover, we have

⟨Bi(un)− Bi(u), un − u⟩

=

∥∥∥∥∂un

∂xi

∥∥∥∥2
Lpi (Ω)

+

∥∥∥∥∂un

∂xi

∥∥∥∥2
Lqi (Ω)

+

∥∥∥∥ ∂u

∂xi

∥∥∥∥2
Lpi (Ω)

+

∥∥∥∥ ∂u

∂xi

∥∥∥∥2
Lqi (Ω)
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− ⟨Bi(un), u⟩ − ⟨Bi(u), un⟩

=

(∥∥∥∥∂un

∂xi

∥∥∥∥
Lpi (Ω)

−
∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lpi (Ω)

)2

+

(∥∥∥∥∂un

∂xi

∥∥∥∥
Lqi (Ω)

−
∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lqi (Ω)

)2

+ 2

∥∥∥∥∂un

∂xi

∥∥∥∥
Lpi (Ω)

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lpi (Ω)

+ 2

∥∥∥∥∂un

∂xi

∥∥∥∥
Lqi (Ω)

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lqi (Ω)

− ⟨Bi(un), u⟩ − ⟨Bi(u), un⟩

=

(∥∥∥∥∂un

∂xi

∥∥∥∥
Lpi (Ω)

−
∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lpi (Ω)

)2

+

(∥∥∥∥∂un

∂xi

∥∥∥∥
Lqi (Ω)

−
∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lqi (Ω)

)2

+

(∥∥∥∥∂un

∂xi

∥∥∥∥
Lpi (Ω)

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lpi (Ω)

− ⟨Bpi

i (un), u⟩

)

+

(∥∥∥∥∂un

∂xi

∥∥∥∥
Lpi (Ω)

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lpi (Ω)

− ⟨Bpi

i (u), un⟩

)

+

(∥∥∥∥∂un

∂xi

∥∥∥∥
Lqi (Ω)

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lqi (Ω)

− ⟨Bqi
i (un), u⟩

)

+

(∥∥∥∥∂un

∂xi

∥∥∥∥
Lqi (Ω)

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lqi (Ω)

− ⟨Bqi
i (u), un⟩

)
.

Also, applying Hölder’s inequality one has

|⟨Bpi

i (un), u⟩| ≤
∥∥∥∥∂un

∂xi

∥∥∥∥
Lpi (Ω)

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lpi (Ω)

,

|⟨Bpi

i (u), un⟩| ≤
∥∥∥∥∂un

∂xi

∥∥∥∥
Lpi (Ω)

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lpi (Ω)

,

|⟨Bqi
i (un), u⟩| ≤

∥∥∥∥∂un

∂xi

∥∥∥∥
Lqi (Ω)

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lqi (Ω)

,

|⟨Bqi
i (u), un⟩| ≤

∥∥∥∥∂un

∂xi

∥∥∥∥
Lqi (Ω)

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lqi (Ω)

.

Hence, we derive that

⟨Bi(un)− Bi(u), un − u⟩

≥

(∥∥∥∥∂un

∂xi

∥∥∥∥
Lpi (Ω)

−
∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lpi (Ω)

)2

+

(∥∥∥∥∂un

∂xi

∥∥∥∥
Lqi (Ω)

−
∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lqi (Ω)

)2

≥

(∥∥∥∥∂un

∂xi

∥∥∥∥
Lpi (Ω)

−
∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lpi (Ω)

)2

,

which, taking (2.21) into account, implies that

lim
n→+∞

∥∥∥∥∂un

∂xi

∥∥∥∥
Lpi (Ω)

=

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lpi (Ω)

for all i = 1, . . . , N.
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Then, from Papageorgiou-Winkert [26, Proposition 4.1.11], since Lpi(Ω) is uni-
formly convex, one has

lim
n→+∞

∥∥∥∥∂un

∂xi
− ∂u

∂xi

∥∥∥∥
Lpi (Ω)

= 0 for all i = 1, . . . , N.

Thus, it follows that

lim
n→+∞

∥un − u∥
W 1,p⃗

0 (Ω)
= 0,

and our claim is proved. □

Finally, we point out the following result in order to get information on the sign

of the solutions of (Dp⃗,q⃗
λ ). For this purpose, let

f+(x, t) =

{
f(x, 0) if t < 0,

f(x, t) if t ≥ 0,

for all (x, t) ∈ Ω× R and consider the following problem

−∆p⃗u−∆q⃗u = λf+(x, u) in Ω,

u = 0 on ∂Ω.
(Dp⃗,q⃗

λ,f+)

Lemma 2.5. Assume that f(x, 0) ≥ 0 for a.a.x ∈ Ω. Then, any weak solution of

problem (Dp⃗,q⃗
λ,f+) is nonnegative and it is also a weak solution of problem (Dp⃗,q⃗

λ ).

Proof. Let u0 be a weak solution of problem (Dp⃗,q⃗
λ,f+), namely

N∑
i=1

∫
Ω

∣∣∣∣∂u0

∂xi

∣∣∣∣pi−2
∂u0

∂xi

∂v

∂xi
dx+

N∑
i=1

∫
Ω

∣∣∣∣∂u0

∂xi

∣∣∣∣qi−2
∂u0

∂xi

∂v

∂xi
dx

= λ

∫
Ω

f+(x, u0)v dx,

(2.22)

for all v ∈ W 1,p⃗
0 (Ω).

In order to prove that u0 is nonnegative, put A = {x ∈ Ω : u0(x) < 0} and

u−
0 = min {u0, 0}. Clearly, u−

0 ∈ W 1,p⃗
0 (Ω) (see, for example, Papageorgiou-Winkert

[26, Corollary 4.5.19]). Choosing v = u−
0 in (2.22), one has

0 ≤
N∑
i=1

∫
A

∣∣∣∣∂u0

∂xi

∣∣∣∣pi

dx

≤
N∑
i=1

∫
A

∣∣∣∣∂u0

∂xi

∣∣∣∣pi−2
∂u0

∂xi

∂u−
0

∂xi
dx+

N∑
i=1

∫
A

∣∣∣∣∂u0

∂xi

∣∣∣∣qi−2
∂u0

∂xi

∂u−
0

∂xi
dx

=

N∑
i=1

∫
Ω

∣∣∣∣∂u0

∂xi

∣∣∣∣pi−2
∂u0

∂xi

∂u−
0

∂xi
dx+

N∑
i=1

∫
Ω

∣∣∣∣∂u0

∂xi

∣∣∣∣qi−2
∂u0

∂xi

∂u−
0

∂xi
dx

= λ

∫
Ω

f+(x, u0)u
−
0 dx

= λ

∫
A

f(x, 0)u−
0 dx ≤ 0 ,
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that is,

N∑
i=1

∫
A

∣∣∣∣∂u0

∂xi

∣∣∣∣pi

dx = 0.

Hence, it holds that ∫
A

∣∣∣∣∂u0

∂xi

∣∣∣∣pi

dx = 0 for all i = 1, . . . , N,

which yields∫
Ω

∣∣∣∣∂u0
−

∂xi

∣∣∣∣pi

dx =

∫
A

∣∣∣∣∂u0

∂xi

∣∣∣∣pi

dx+

∫
Ω\A

∣∣∣∣∂u0
−

∂xi

∣∣∣∣pi

dx = 0

for all i = 1, . . . , N . Therefore, we obtain

∥u−
0 ∥W 1,p⃗

0 (Ω)
=

N∑
i=1

(∫
Ω

∣∣∣∣∂u0
−

∂xi

∣∣∣∣pi

dx

) 1
pi

= 0,

so u−
0 = 0 in Ω, which means u0 ≥ 0 in Ω.

Now, we prove that u0 is a weak solution for problem (Dp⃗,q⃗
λ ). Indeed, from (2.22)

one has
N∑
i=1

∫
Ω

∣∣∣∣∂u0

∂xi

∣∣∣∣pi−2
∂u0

∂xi

∂v

∂xi
dx+

N∑
i=1

∫
Ω

∣∣∣∣∂u0

∂xi

∣∣∣∣qi−2
∂u0

∂xi

∂v

∂xi
dx

= λ

∫
Ω

f+(x, u0)v dx = λ

∫
Ω

f(x, u0)v dx,

for all v ∈ W 1,p⃗
0 (Ω), and the conclusion is achieved. □

The proofs of our main results are based on the following two critical point
theorem due to Bonanno-D’Agùı [7, see Theorem 2.1 and Remark 2.2]. First we
recall the definition of the Cerami condition.

Definition 2.6. Let X be a Banach space and X∗ be its topological dual space.
Given Iλ ∈ C1(X), we say that Iλ satisfies the Cerami-condition (C-condition for
short), if every sequence {un}n∈N ⊆ X such that

(C1) |Iλ(un)| ≤ c1 for some c1 > 0 and for all n ∈ N,
(C2) (1 + ∥un∥X) I ′λ(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence in X.

Theorem 2.7. Let X be a real Banach space and let Φ, Ψ: X → R be two func-
tionals of class C1 such that infX Φ(u) = Φ(0) = Ψ(0) = 0. Assume that there are
r ∈ R and ũ ∈ X, with 0 < Φ(ũ) < r, such that

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
<

Ψ(ũ)

Φ(ũ)
, (2.23)

and, for each

λ ∈ Λ̃ =

Φ(ũ)
Ψ(ũ)

,
r

sup
u∈Φ−1(]−∞,r])

Ψ(u)

 ,
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the functional Iλ = Φ−λΨ satisfies the C-condition and it is unbounded from below.
Moreover, Φ is supposed to be coercive.

Then, for each λ ∈ Λ̃, the functional Iλ admits at least two nontrivial critical
points uλ,1, uλ,2 ∈ X such that I(uλ,1) < 0 < I(uλ,2).

3. Main results

In this section we formulate and prove our main results. We suppose the following
assumptions on the nonlinearity.

(Hf) f : Ω × R → R is a Carathéodory function such that the conditions below
are satisfied:
(f1) there exist α < (p−)∗ and constants a1, a2 > 0 such that

|f(x, t)| ≤ a1 + a2|t|α−1

for a.a.x ∈ Ω and for all t ∈ R;

(f2) if F (x, s) =
∫ s

0
f(x, ξ) dξ, then

lim
t→±∞

F (x, t)

|t|p+ = +∞

uniformly for a. a.x ∈ Ω;

(f3) there exist β, γ ∈ R, with

min{β, γ} ∈
(
(α− p−)

N

p−
, α

)
such that

0 < m ≤ lim inf
t→+∞

f(x, t)t− p+F (x, t)

|t|β

uniformly for a.a.x ∈ Ω, and

0 < m ≤ lim inf
t→−∞

f(x, t)t− p+F (x, t)

|t|γ

uniformly for a.a.x ∈ Ω.

Remark 3.1. We observe that from hypotheses (f1) and (f2) it follows that

p+ < α < (p−)∗.

Furthermore, we emphasize that such β and γ in (f3) exists, since

(α− p−)
N

p−
= α

N

p−
− (p−)∗

N − p−

p−
< α

N

p−
− α

N − p−

p−
= α.

Finally, we underline that in this context it is possible to choose two different ex-
ponents β and γ for going to +∞ and −∞, respectively.

In the following we give a preliminary result on the energy functional associated
to our problem.

Proposition 3.2. Let hypotheses (H) and (Hf) be satisfied. Then the functional

Iλ : W
1,p⃗
0 (Ω) → R satisfies the C-condition for each λ > 0.
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Proof. Let {un}n∈N ⊆ W 1,p⃗
0 (Ω) be a sequence such that (C1) and (C2) hold, see

Definition 2.6. First, we prove that {un}n∈N is bounded in Lβ(Ω).
From (C2), we get∣∣∣∣⟨Φ′(un), v⟩ − λ

∫
Ω

f (x, un) v dx

∣∣∣∣ ≤ εn∥v∥
1 + ∥un∥

, (3.1)

for all v ∈ W 1,p⃗
0 (Ω) and with εn → 0+. Fix n ∈ N and choose v = un ∈ W 1,p⃗

0 (Ω).
Substituting in (3.1), we derive

−
N∑
i=1

∫
Ω

∣∣∣∣∂un

∂xi

∣∣∣∣pi

dx−
N∑
i=1

∫
Ω

∣∣∣∣∂un

∂xi

∣∣∣∣qi dx+ λ

∫
Ω

f(x, un)un dx ≤ εn, (3.2)

for all n ∈ N. From (C1) we have

N∑
i=1

∫
Ω

∣∣∣∣∂un

∂xi

∣∣∣∣pi

dx+
p+

q+

N∑
i=1

∫
Ω

∣∣∣∣∂un

∂xi

∣∣∣∣qi dx− λ

∫
Ω

p+F (x, un) dx ≤ p+c1. (3.3)

Adding (3.2) and (3.3) and taking into account that q+ < p+, we obtain

λ

∫
Ω

(
f (x, un)un − p+F (x, un)

)
dx ≤ c2 (3.4)

for some c2 > 0 and for all n ∈ N.
Without loss of generality, we may assume β ≤ γ. Then, assumptions (f1) and

(f3) imply that there exist c3 ∈ (0,m) and c4 > 0 such that

c3|s|β − c4 ≤ f(x, s)s− p+F (x, s)

for a.a.x ∈ Ω and for all s ∈ R. Exploiting this in (3.4), we derive

∥un∥βLβ(Ω) ≤ c5 for some c5 > 0 and for all n ∈ N,

namely {un}n∈N is bounded in Lβ(Ω).

Now, we prove that {un}n∈N is bounded in W 1,p⃗
0 (Ω).

From hypotheses (f1) and (f3) it follows that β < α < (p−)∗. Hence, there exists
t ∈ (0, 1) such that

1

α
=

1− t

β
+

t

(p−)∗
. (3.5)

By the interpolation inequality (see Papageorgiou-Winkert [26, Proposition 2.3.17]),
we get

∥un∥Lα(Ω) ≤ ∥un∥1−t
Lβ(Ω) ∥un∥tL(p−)∗ (Ω) for all n ∈ N.

Since {un}n∈N is bounded in Lβ(Ω), using also Proposition 2.2, one has

∥un∥αLα(Ω) ≤ c6 ∥un∥tαW 1,p⃗
0 (Ω)

for all n ∈ N, (3.6)

with some c6 > 0. Choosing v = un ∈ W 1,p⃗
0 (Ω) in (3.1), we have

N∑
i=1

∫
Ω

∣∣∣∣∂un

∂xi

∣∣∣∣pi

dx+

N∑
i=1

∫
Ω

∣∣∣∣∂un

∂xi

∣∣∣∣qi dx− λ

∫
Ω

f(x, un)un dx ≤ εn
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for all n ∈ N. By (2.17), (f1) and (3.6) we obtain that there exists j ∈ {1, . . . , N}
such that

1

Npj
∥un∥

pj

W 1,p⃗
0 (Ω)

≤
N∑
i=1

∥∥∥∥∂un

∂xi

∥∥∥∥pi

Lpi (Ω)

≤ λ

∫
Ω

f(x, un)un dx+ εn

≤ λc7

[
1 + ∥un∥tαW 1,p⃗

0 (Ω)

]
+ εn,

(3.7)

for some c7 > 0 and for all n ∈ N.
From (3.5) and (f3) follows that tα < pj , indeed

tα =
(p−)∗(α− β)

(p−)∗ − β
=

Np−(α− β)

Np− −Nβ + βp−

<
Np−(α− β)

Np− −Nβ + (α− p−) N
p− p−

= p−

≤ pj .

(3.8)

Then, (3.7) and (3.8) imply that {un}n∈N ⊆ W 1,p⃗
0 (Ω) is bounded.

Finally, we prove that {un}n∈N admits a strongly convergent subsequence in

W 1,p⃗
0 (Ω). Because of the boundedness of {un}n∈N ⊆ W 1,p⃗

0 (Ω), there exists a sub-
sequence, not relabeled, such that

un ⇀ u in W 1,p⃗
0 (Ω) and un → u in Lα(Ω). (3.9)

We choose v = un−u ∈ W 1,p⃗
0 (Ω) in (3.1). Passing to the limit as n → ∞ and using

(3.9), we derive

lim
n→∞

⟨Φ′(un), un − u⟩ = 0.

Since Φ′ has the (S+)-property (see Proposition 2.4), it follows that un → u in

W 1,p⃗
0 (Ω) and this completes the proof. □

Now, we present our main result. To this aim, put

R := sup
x∈Ω

dist(x, ∂Ω). (3.10)

Standard computations show that there exists x0 ∈ Ω such that B(x0, R) ⊆ Ω and
we denote by

ωR := |B(x0, R)| = π
N
2

Γ(1 + N
2 )

RN ,

the measure of the N -dimensional ball of radius R. Finally, we set

K = max
1≤i≤N

{
1

Rpi
,

1

Rqi

}
2N − 1

q−
(
2N−p+

)ωR, (3.11)

δ = max
{
r

1

p− , r
1

p+

} N∑
i=1

p
1
pi
i . (3.12)

Theorem 3.3. Let hypotheses (H) and (Hf) be satisfied. Assume that there exist
two constants r, d > 0 such that
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(h1) K
∑N

i=1(d
pi + dqi) < r,

(h2) F (x, s) ≥ 0 for a.a.x ∈ Ω and for all s ∈ [0, d],

(h3)
a1T1δ +

a2
α
Tα
α δ

α

r
<

1

K

∫
B(x0,

R
2 )

F (x, d) dx∑N
i=1(d

pi + dqi)
,

where a1, a2, α are given in (f1), T1 and Tα are defined by formula (2.10), R is
given in (3.10), and K as well as δ are defined by (3.11) and (3.12), respectively.

Then, for each

λ ∈ Λ :=

K ∑N
i=1(d

pi + dqi)∫
B(x0,

R
2 )

F (x, d) dx
,

r

a1T1δ +
a2
α
Tα
α δ

α

 ,

problem (Dp⃗,q⃗
λ ) has at least two nontrivial weak solutions uλ, vλ ∈ W p⃗

0 (Ω) such that
Iλ(uλ) < 0 < Iλ(vλ).

Proof. Our aim is to apply Theorem 2.7 for X = W 1,p⃗
0 (Ω) and Φ, Ψ defined as

in (2.13). The functionals Φ and Ψ satisfy all the required regularity properties,
since Φ is coercive by construction (see Proposition 2.3), the energy functional Iλ
satisfies the C-condition due to Proposition 3.2 and it is unbounded from below by
(f2) and finally

inf
u∈W 1,p⃗

0 (Ω)
Ψ(u) = Ψ(0) = Φ(0).

Moreover, the interval Λ is nonempty because of assumption (h3). Thus, it remains
to verify hypothesis (2.23). First, we observe that

Φ−1 (]−∞, r[) ⊆
{
u ∈ W 1,p⃗

0 (Ω) : ∥u∥
W 1,p⃗

0 (Ω)
≤ δ
}
. (3.13)

Then, from (f1), (2.9) and (3.13) we estimate that

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r

≤
sup

u∈Φ−1(]−∞,r])

(
a1∥u∥L1(Ω) +

a2

α ∥u∥αLα(Ω)

)
r

≤
sup

u∈Φ−1(]−∞,r])

[
a1T1∥u∥W 1,p⃗

0 (Ω)
+ a2

α Tα
α ∥u∥αW 1,p⃗

0 (Ω)

]
r

≤
a1T1δ +

a2

α Tα
α δ

α

r
.

(3.14)

On the other hand, we introduce the following function

ũ(x) =


0 if x ∈ Ω \B (x0, R) ,
2d

R
(R− |x− x0|) if B (x0, R) \B

(
x0,

R
2

)
,

d if x ∈ B
(
x0,

R
2

)
,
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where R is given in (3.10). Clearly, ũ ∈ W 1,p⃗
0 (Ω). From assumption (h2), we get

Ψ (ũ) =

∫
B(x0,R)\B(x0,

R
2 )

F

(
x,

2d

R
(R− |x− x0|)

)
dx

+

∫
B(x0,

R
2 )

F (x, d) dx

≥
∫
B(x0,

R
2 )

F (x, d) dx.

(3.15)

Furthermore, it holds

Φ (ũ) =

N∑
i=1

1

pi

∫
B(x0,R)\B(x0,

R
2 )

(
2d

R

)pi

dx

+

N∑
i=1

1

qi

∫
B(x0,R)\B(x0,

R
2 )

(
2d

R

)qi

dx

≤ 2p
+

q−

N∑
i=1

(dpi + dqi) max
1≤i≤N

{
1

Rpi
,

1

Rqi

}[
2N − 1

2N
ωR

]

= K
N∑
i=1

(dpi + dqi).

(3.16)

Hypothesis (h1) implies that 0 < Φ(ũ) < r and combining (3.14), (3.15) as well as
(3.16) we have

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
≤

a1T1δ +
a2

α Tα
α δ

α

r

<
1

K

∫
B(x0,

R
2 )

F (x, d) dx∑N
i=1(d

pi + dqi)

≤ Ψ(ũ)

Φ (ũ)
.

This proves (2.23). Hence, since Λ ⊆ Λ̃, Theorem 2.7 ensures that problem (Dp⃗,q⃗
λ )

admits at least two nontrivial weak solutions uλ, vλ ∈ W 1,p⃗
0 (Ω) with opposite energy

sign. □

The following result is a consequence of Lemma 2.5 and of Theorem 3.3.

Theorem 3.4. Let hypotheses (H) and (Hf) be satisfied. Assume (h1)–(h3) and
that f(x, 0) ≥ 0 for a.a.x ∈ Ω. Then, for every

λ ∈ Λ :=

K ∑N
i=1(d

pi + dqi)∫
B(x0,

R
2 )

F (x, d) dx
,

r

a1T1δ +
a2
α
Tα
α δ

α

 ,

problem (Dp⃗,q⃗
λ ) has at least two nonnegative weak solutions uλ, vλ ∈ W p⃗

0 (Ω) such
that Iλ(uλ) < 0 < Iλ(vλ).

Now, we consider the particular case in which the nonlinearity is nonnegative.
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Theorem 3.5. Let hypotheses (H) and (Hf) be satisfied. Assume that f is non-
negative and

(h4) lim sup
t→0+

inf
x∈Ω

F (x, t)

tq−
= +∞

Then, for each λ ∈]0, λ∗[, with

λ∗ = sup
r>0

r

a1T1δ +
a2

α Tα
α δ

α
, (3.17)

problem (Dp⃗,q⃗
λ ) admits at least two nonnegative weak solutions uλ, vλ ∈ W 1,p⃗

0 (Ω)
such that Iλ(uλ) < 0 < Iλ(vλ).

Proof. Fix λ ∈]0, λ∗[, then there exists r > 0 such that

λ <
r

a1T1δ +
a2

α Tα
α δ

α
.

From (h4) follows that

lim sup
t→0+

1

K

∫
B(x0,

R
2 )

F (x, t) dx∑N
i=1(t

pi + tqi)
≥

ωR
2

K
lim sup
t→0+

inf
x∈Ω

F (x, t)∑N
i=1(t

pi + tqi)
= +∞,

since
1∑N

i=1(t
pi + tqi)

≥ 1

2Ntq−
.

Then, in correspondence of 1
λ , there exists t > 0 small enough such that

1

K

∫
B(x0,

R
2 )

F (x, t) dx∑N
i=1(t

pi + tqi)
>

1

λ
>

a1T1δ +
a2
α
Tα
α δ

α

r
,

namely assumption (h3) is satisfied. Since (h2) follows from the sign assumption
on the nonlinearity, we can apply Theorem 3.3 and Lemma 2.5 to complete the
proof. □

Finally, we deal with the autonomous case and we present an existence result
which is a consequence of Theorem 3.5. Consider the autonomous problem

−∆p⃗u−∆q⃗u = λg(u) in Ω,

u = 0 on ∂Ω,
(ADp⃗,q⃗

λ )

where g : R → R is a nonnegative continuous function. From Lemma 2.5 it follows
that we can consider the nonlinearity only in [0,+∞). We assume the following:

(Hg) (g1) there exist α < (p−)∗ and constants a1, a2 > 0 such that

g(t) ≤ a1 + a2|t|α−1

for all t ≥ 0;

(g2) if G(s) =
∫ s

0
g(ξ) dξ, then

lim
t→+∞

G(t)

tp+ = +∞;
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(g3) there exists β ∈ R, with

β ∈
(
(α− p−)

N

p−
, α

)
,

such that

0 < m ≤ lim inf
t→+∞

g(t)t− p+G(t)

tβ
.

The following result holds.

Corollary 3.6. Let hypotheses (H) and (Hg) be satisfied. Assume that

(h4’) lim sup
t→0+

G(t)

tq−
= +∞.

Then, for each λ ∈]0, λ∗[, with λ∗ defined in (3.17), the problem (ADp⃗,q⃗
λ ) admits

at least two nonnegative weak solutions uλ, vλ ∈ W 1,p⃗
0 (Ω) such that Iλ(uλ) < 0 <

Iλ(vλ).

In conclusion, we provide an example.

Example 3.7. Consider two constants c, κ such that

c ≥ 1, p+ < κ < (p−)∗ and
κ

p−
− κ

N
< 1.

Let g : [0,+∞) → R be a function defined by

g(t) = (t+ c)κ−1 (κ log(t+ c) + 1) for all t ≥ 0.

Then, g satisfies assumptions (Hg) with β = κ and α = κ + σ, with σ > 0 small
enough such that

α < (p−)∗ and
α

p−
− κ

N
< 1.

Moreover, the function g satisfies assumption (h4’), hence we can apply Corollary

3.6 to get the existence of two nonnegative weak solutions of problem (ADp⃗,q⃗
λ ) with

opposite energy sign.
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tinuity of local weak solutions to anisotropic p-Laplacian type equations, J. Elliptic Parabol.

Equ. 2 (2016), no. 1-2, 157–169.

[15] G.C.G. dos Santos, G.M. Figueiredo, L.S. Tavares, Existence results for some anisotropic
singular problems via sub-supersolutions, Milan J. Math. 87 (2019), no. 2, 249–272.

[16] S. El Manouni, G. Marino, P. Winkert, Existence results for double phase problems depending
on Robin and Steklov eigenvalues for the p-Laplacian, Adv. Nonlinear Anal. 11 (2022), no.

1, 304–320.
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20 E. AMOROSO, A. SCIAMMETTA, AND P. WINKERT
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140.

[31] A. Razani, Nonstandard competing anisotropic (p, q)-Laplacians with convolution, Bound.
Value Probl. 2022, Paper No. 87, 10 pp.

[32] A. Razani, G.M. Figueiredo, A positive solution for an anisotropic (p, q)-Laplacian, Discrete

Contin. Dyn. Syst. Ser. S 16 (2023), no. 6, 1629–1643.
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