ANISOTROPIC (p,7)-LAPLACIAN PROBLEMS WITH
SUPERLINEAR NONLINEARITIES

ELEONORA AMOROSO, ANGELA SCIAMMETTA, AND PATRICK WINKERT

ABSTRACT. In this paper we consider a class of anisotropic (p, q)-Laplacian
problems with nonlinear right-hand sides that are superlinear at +oco. We
prove the existence of two nontrivial weak solutions to this kind of problem by
applying an abstract critical point theorem under very general assumptions on
the data without supposing the Ambrosetti-Rabinowitz condition.

1. INTRODUCTION

Let © C RN, N > 2 be a bounded domain with boundary 99 of class C'. In
this paper we consider the following anisotropic differential equation involving the
(P, @)-Laplacian given by

—Apu — Agu = Af(z,u) in Q, (Dﬁ@)
u=20 on 0f, A
where )\ is a positive parameter, o= (p1,p2,..., o8 ), 7= (q1,42,---,qn), D, 7 € RY
are real vectors such that
maX{%a‘]Qv cee 7qN} < min{p17p27' <. 7pN} < N7

and f: 2 x R — R is a nonlinearity with subcritical growth that is superlinear at
+oo, see (Hy) for the precise assumptions. Moreover, for any §= (s1,82,...,SN8) €
RN we denote by

N si—2
0 Oou|™ = Ou
Azu = — | |= el
the anisotropic s-Laplace differential operator. If s; =2 foralli =1,..., N, we get
N
0%u
, @ = Au,
i=1 g
that is the usual Laplacian and if §'is constant (i.e.s; = s foreach i =1,...,N) we
obtain
SO (oo 5,
P 6$l ami 8.131 T
which is called the pseudo-s-Laplace operator, see Belloni-Kawohl [3] or Brasco-

Franzina [10]. More information about anisotropic operators and in particular
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about the theory of anisotropic Sobolev spaces can be found in Kufner-Rakosnik
[20], Nikol’skif [24] and Rakosnik [29, 30].

Anisotropic differential problems have a large background in several applications,
for example, the study of an epidemic disease in heterogeneous habitat can be
expressed by an anisotropic nonlinear system. In general, anisotropic operators are
used for modeling in which partial differential derivatives vary with the direction.
Also, the anisotropic Laplacian, given by

o (56 (57 =)

where F(§) = (Zfil & \2)% for £ € RN, plays a key role in physical models of crystal
growth in the context of the so-called Wulff shape of F' (also known as equilibrium
crystal shape), see the work of Wulff [39]. For more information on applications in
different disciplines we refer to Antontsev-Diaz-Shmarev [1], Bendahmane-Chrif-El
Manouni [1], Bendahmane-Langlais-Saad [5], Vétois [37] and the references therein.

Although there are some works for p~Laplacian problems, only a few exist for the
anisotropic (P, ¢)-Laplacian. Recently, Razani-Figueiredo [32] studied the anisotrop-

ic Dirichlet problem
N pi—2 N qi—2
_Z 0 Ou ou _Z 0 Ou Ou _ -1 (11)
=1 8:102 8:@ 83:1 i—1 8:[;1 8:51 (9:[;1

in a bounded and regular domain © of RY with v > 1 and A > 0. Based on a
sub-supersolution approach the authors show the existence of at least one positive
solution of (1.1). In Razani [31] nonstandard competing anisotropic (p, §)-Laplacian
problems with convolution of the form

Lo (| o

i—1 Gxi 63:1 H 83:1
have been considered, where ¢ € L'(R™). If ;1 > 0, then the existence of a general-
ized solution of (1.2) is shown by using a Galerkin base for the function space and
if 4 < 0, then any generalized solution turns out to be a weak solution. We also

mention the recent work of Tavares [36] who considered existence and multiplicity
of nonnegative solutions for the problem given by

—Apu — Aqu = k(z)u*" + f(z,u) in Q,
u=0 on 012,

where o > 1, k € L*°(Q) with k(z) > 0 for a.a.x € Q and a Carathéodory
nonlinearity f: 2 x R — R with subcritical growth. Existence and regularity re-
sults for anisotropic problems driven by the p-Laplacian have been obtained by
several authors. Without guarantee of completeness, we mention just some of
them and refer to the papers of Bonanno-D’Aguil-Sciammetta [9], Ciani-Figueiredo-
Sudrez [11], Ciraolo-Figalli-Roncoroni [12], Ciraolo-Sciammetta [13], DiBenedetto-
Gianazza-Vespri [14], dos Santos-Figueiredo-Tavares [15], Fragala-Gazzola-Kawohl
[17], Perera-Agarwal-O’Regan [27], Ragusa-Razani-Safari [28], see also the refer-
ences therein. Related results for the (p,q)-Laplacian, double phase equations,
anisotropic problems or the discrete p-Laplacian can be found in the works of

0
6SCZ‘

Pi—2

572N\ fy
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Bai-Papageorgiou-Zeng [2], Bohner-Caristi-Ghobadi-Heidarkhani [6], E1 Manouni-
Marino-Winkert [16], Leggat-Miri [21], He-Ousbika-El Allali-Zuo [18], Ju-Molica
Bisci-Zhang [19], Liu-Motreanu-Zeng [23], Papageorgiou [25], Son-Sim [34], Vetro-
Vetro [38], Zeng-Bai-Gasiriski-Winkert [10], Zeng-Papageorgiou [11] and Zeng-Radu-
lescu-Winkert [412].

Motivated by the above mentioned works for p-Laplacian problems, we consider
in our paper so-called (7, ¢)-Laplacian problems with general right-hand sides. Our
main goal is to apply a two critical point result due to Bonanno-D’Agui [7, Theorem
2.1] in order to get the existence of two positive solutions for problem (Df’ff) with
different energy sign. Note that the results in [7] are given in a very general setting
which can be applied to a large number of problems. Our paper can be seen as
an extension of the work of Bonanno-D’Agui-Sciammetta [8] for (p, §)-Laplacian
problems. But not only the differential operator is more general than in [3], also
the condition required on f are weaker. Indeed, instead of assuming the Ambrosetti-
Rabinowitz condition, we only assume that the nonlinear term on the right-hand
side of (D’/\W) is (p™ — 1)-superlinear at +oo (with p* defined in (2.2) replacing h
by p) and fulfills in addition a suitable behavior at +co, see (H¢). These hypotheses
are weaker than the Ambrosetti-Rabinowitz condition. Under these conditions,
together with the subcritical growth, we prove the existence of two weak solutions
for problem (Df’(i) that have opposite energy sign related to the energy functional
of (DT).

The paper is organized as follows. In Section 2 we present the main properties of
anisotropic Sobolev spaces and consider the main features of the anisotropic (7, ¢)-
Laplacian, see Propositions 2.3 and 2.4. Moreover, we recall the main abstract
critical point theorem which will play a key role in our treatment, see Theorem 2.7.
In Section 3 we first state the precise assumptions on the data of problem (D’;‘(T) and
prove that the corresponding energy functional fulfills the C-condition. Then we
give our main result about the existence of two nontrivial weak solutions of (D’/\T’{T)
(see Theorem 3.3) and some consequences in which the solutions are nonnegative,
see Theorems 3.4 and 3.5. Finally, we consider the autonomous problem (AD&T’(Y),
providing an existence result (see Corollary 3.6) and an example.

2. PRELIMINARIES AND BASIC PROPERTIES
Let Q ¢ RN, N > 2, be a bounded domain with boundary 99 of class C*. For
any real vector h = (hg, h1,ha,...,hn) with h; > 1 for every i = 0,1,..., N, we
indicate with W"(2) the anisotropic Sobolev space defined by

Wi (Q) = {u eLM(Q) : g—u e LM (Q) for i = 1,‘..,N},
T
equipped with the norm
N1 ou
oy = Ill oy + | 2.1)
wHe N ; 9z || pri (o

Moreover, set
h~ =min{hy,ha,...,hxy} and h" =max{hy,ha,...,hx}, (2.2)



4 E. AMOROSO, A. SCTAMMETTA, AND P. WINKERT

and suppose that h~ < N and hg < (h™)* = & —. Denote by Wol’E(Q) the

N-h~
closure of C5°(£2) endowed with the following norm
N
Ju
lull 1.5 ) = ; (2.3)
Wol h(Q) ; 6371‘ Lhi(Q)

which is equivalent to the usual one given in (2.1). Indeed, taking into account
that W' (Q) is compactly embedded in L' () and using Holder’s inequality
(see (2.4) in Proposition 2.1), we have that

ou
6@

L™ (Q)

N
el 2oy < ellullypin- gy SEY
=1

It is well known that W, " (Q), endowed with the norm defined in (2.3), is a separa-
ble Banach space and it is also reflexive if h; > 1 for alli =1,..., N, see Rakosnik
[29, Theorem 1].

Given p' = (po,p1,p2;---,pn) and ¢ = (qo;q1, 42, ---,qn), With p;,¢; > 2 for
every i = 1,..., N, we suppose that

(H) ¢t <p~ <N, po < (p7)* and g0 < (¢7)*, where (:)* = A],Vf(()) denotes the

critical Sobolev exponent.

In the following proposition, we give a relation between the spaces Wol 7 (Q) and
WO1 ’(Y(Q) and their norms. In particular, we underline that pg and g¢ are necessary
only for the definition of the anisotropic Sobolev spaces, but since we endow the
spaces with the equivalent norm given in (2.3), from now on we will only deal with
the components (p1,...,pn) and (q1,...,9N)-

Proposition 2.1. If ¢© < p~, then Wol’ﬁ(ﬂ) - Wol’q(Q) and

Pi—44
”uHWol(Y(Q) S 1r<nza<>§v {‘Q Pidi Hu||W01>5(Q)7

where || is the Lebesque measure of Q.

Proof. Fix u € Wol’ﬁ(Q) and i € {1,...,N}. In particular, 2~ € LPi(Q) and
P p;

g;i_ € L»= (Q). If p; > p~, by Holder’s inequality, we get
oul N7 — ([ oul” N\
Pi—P N Pi
/ YIode] <0 / “1 de) (2.4)
‘1+ P
while if p; = p~, then (2.4) is an equality. Moreover, % € LaF (), then again

from Holder’s inequality, we obtain

qt o R
(/ da:) < Q] pmaF (/
Q Q

Thus, combining (2.4) and (2.5) we derive

qt o pi—gt
/ dz < |Qf piat </
Q Q

I p%
Ou d:z:) . (2.5)

8:5,»

ou
8l‘i

ou
8£EZ'

ou
&ri

Pi p%.
dx) , (2.6)
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for all i = 1,..., N. Furthermore, if ¢* > ¢; and using Holder’s inequality we have

i q%. et —aq; qt q%r
(/ dx) < |9 aFa (/ dx) ) (2.7)
Q Q

and if ¢T = ¢; the previous inequality becomes an equality. Then, from (2.6) and
(2.7) it follows that

ou
Bxi

ou
8%1'

1 1
0 qi a; Pi—a; o pi '
(/ Y dx) < |9 Pias (/ Y dx) foralli=1,...,N.
Hence,
||u||W01§'(Q) S 122}5\] {|Q Pid; } ||u||W01‘ﬁ(Q) )
and the proof is complete. ([

In the sequel, we estimate the embedding constant of W, 7(Q) into L" () for
each r € [1,(p~)*] with p~ < N, where (p~)* is the critical Sobolev exponent to
p~, that is
e _Np~
(p7)" = N

Proposition 2.2. If1 < p~ < N, then for any r € [1,(p~)*], Wo?(Q) — L"(Q)
is continuous and one has

(2.8)

[ullr@) < Trllullym g (2.9)

for all u € WyP(Q), where

(N=1)(p~ —1) Pi—P_
T, =c.2 p= max 4 |Q] perT 5,
1<i<N

()" =r
¢ =TI ¢ (2.10)
1 1
T<Np(p_—1>1 - I(NT (1+ %)
VLS N —p~ F(%)F(1+N7%)
see Talenti [35, formula (2)] and T’ is the Euler function. Moreover, for any r €
[1, (p7)*[ the embedding Wy'P(Q) < L"(Q) is compact.

2~

Proof. From the Sobolev embedding theorem there exists a positive constant T' € R
such that for all u € W,? (Q) the following holds

el o @) < Tl s g (2.11)
where (p7)* and T are defined in (2.8) and (2.10), respectively.

Fix r € [1, (p7)*]. Since % = (p})* + (’&;)*;T, by Holder’s inequality and (2.11),

we have

()" —r (P )*—r
Julzr@y < ull e @yl 57 <TI0 B g

that is

[[ul

1r@) < erllull - o) (2.12)
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Arguing as in the proof of Proposition 2.1 in Bonanno-D’Agui-Sciammetta [3], we
derive

Hu”WOl’p_(Q) <2 P 12{;}% | pir ||u||W0175(Q),

and, taking (2.12) into account, we get that (2.9) holds for every r € [1, (p~)*].
Finally, combining the continuous embedding W, P(Q) — Wy (Q) with the

compact embedding W, (Q) < L"(Q), it follows that Wol’ﬁ(Q) — L"(Q) is com-
pact for any r € [1, (p~)*]. O

Now, we define
t
F(z,t) :/ f(z,£)dg  for all (z,t) € Q x R,
0

and we introduce the functionals @, ¥: Wol’ﬁ(Q) — R given by

N Pi qi
o= (2 [0 ars L[ 120" 0r),
i= \PiJa i Jo (2.13)

U(u) = / F(z,u)dz,
Q

for every u € VVO1 P (Q). Clearly, ® and ¥ are Gateaux differentiable and one has

N pi—2 N a—2
ou v ou ou Ov
o’ =5
) i=1 /Q Ox; Ox; o ;/Q O Ow; Ow;
U (u)(v) = / f(z,u)vde,
Q

for every u,v € Wol’ﬁ(ﬂ). Also, we consider the energy functional Iy : Wol’ﬁ(Q) —+R
associated to our problem (Dfﬁ), that is given by Iy = ® — AV for all A > 0.

We recall that u: @ — R is a weak solution of problem (D‘/\T'T) if the following
condition holds for all v € W}"P(Q)

N pi—2 N
ou Ov

Then, from (2.14) it follows that u € Wol’ﬁ(Q) is a weak solution of problem (Df‘ﬁ)
if and only if w is a critical point for I. Consequently, our study is based on critical
point theory and in particular on a critical point theorem due to Bonanno-D’Agui [7]
that we state later in Theorem 2.7.

In the following, we deal with some properties of the Gateaux derivative of the
functional ® that are needed in our investigation.

ou
£

0

(2.14)

%2 9y o

ou
al‘i

ou
£

3 dx = )\/Qf(x,u)vdx.

- N *
Proposition 2.3. The functional ®: W, 7(Q) — (Wol’p(Q)) defined in (2.14) is
monotone and coercive.
Proof. First we prove that ® is monotone, i.e.

(& (u) — ®'(v),u—v) >0 for all u,v € WyP(Q). (2.15)
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To this end, we use the following inequality
-

ou|""? du | Ov "2 v\ Ou— ) s O(u —v)
for each r > 2 and for some constant C > 0, see Simon [33] or Lindqvist [22].

Indeed, using the previous inequality we have
(@' (u) = @' (v),u—v)

_i/ du |2 du | Ov P2 oy B(U—U)d
ou |"? du o "% dv ) du— )
N : A
O(u —v) | O(u—v)|*
> _— 7 -~ 7
> ; /Q (co 5o | O "o da

>0,

and (2.15) is achieved.
Now, we prove that ®' is coercive. We observe that

0= [ (o] o) ar

5‘;@-
Moreover, let j € {1,..., N} be such that

1

Pj I
( u d:c) "= max </
Q 1<i<N \ Jq

()x]
N
LPi (SZ) Q

PIE— Z
=1
P1
N( dx—l—...-i—/
Q Q
1

N pi Pj
N .
Z LPi(Q2)
Pi

i=1
= WAy
LPi () NP; 0 ()

Lri(Q)

. 1
pi 7
dx .

1
pj ?;
dx

c'?xl

ou
ox i

Then,
ou

8.’17j

8302

ou

81]\7

ou
81’1

IN

ou
Ox i

Thus, we get

NN ou

ox;
im1

From (2.16) and (2.17), we derive

1
i
(@), ) = Sl

namely

1

(@ () 1
Wy 7(Q)’

> Ity

||uHW01*ﬁ(Q)

1
pi E
dx)

(2.16)

(2.17)
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and this implies that ® is coercive. O

Proposition 2.4. The map P’: Wol’ﬁ(Q) — (Wol’ﬁ(Q)> has the (S4)-property,
that is
if up—u in WyP(Q) and limsup (@ (uy,), u, — u) <0,

n—oo
then u, — u in Wol’ﬁ(Q).
Proof. Let {uy,}neny C Wol’ﬁ(ﬂ) be such that u, — u in Wol’ﬁ(Q) and

lim sup (®’ (uy,), uy, — u) < 0. (2.18)
n——+o0o
First, we observe that
. / _
7Lll>r—|1-1<>o<(b (w), up, —u) =0, (2.19)

since @' (u) is a linear operator in Wy?(€) and u,, — u in Wy?(€). Hence, from
(2.18) and (2.19) it follows that

lim sup (®’ (uy,,) — ®'(u), up, — u) < 0. (2.20)

n—-+oo

Now, for all ¢ =1,..., N and for all w,v € Wol’ﬁ(Q) we set

. ow P72 dw v
Pi —
Ai (w)(v) n ‘/Q 8%‘1 81‘1' 8.131'
: ow |92 dw v
q; —
i 1 i
By (w)(v) = Hawm_QAf (w)(v),
8:&- LPi (Q)
) 1 )
Bl (w)(v) = ——————Af (w)(v),
H Ow
0 || Las (@)

and
Bj(w)(v) = By (w)(v) + Bf* (w)(v).

Then, we can write ®' as follows

N
' (w)(v) = Z (.Afi (w)(v) + A¥F (w)(v)) for every w,v € W P(Q).
i=1
By (2.20), we get
limsup (B; (un) — B;(u), up —u) <0 foralli=1,...,N. (2.21)
n—-+4o0o

Moreover, we have

— Bi(u), up — u)
Haun un, || ‘ ou ||? +H o
O0x; Lm(Q Ox; L9 () O0x; LPi(Q) Ox; L9 ()



ANISOTROPIC (p, §)-LAPLACIAN PROBLEMS WITH SUPERLINEAR NONLINEARITIES 9

= (Bi(un), u) — (Bi(w), un)

2 2
_ ‘ Oun _ ‘ Ou (]2 _ ‘ Bu
Ox; LPi (Q) Ox; LPi (Q) Ox; L4 (Q) Ox; L9 ()
+ 2’ un Ou +o ’ un Ou
Ox; LPi(Q) Ox; LPi(Q) Ox; L% (Q) O; L% ()
- <Bi(u7l)vu> - <Bz(u)7un>
2 2
B ‘ Ou, || Ou N ’ Ouy, B ‘ ou
6371‘ LPi () 8@'1 LPi(Q) 8331' L9 () 6% L9 (Q)

+< Ouun Ou <B?<un»u>>

Ox; LPi (Q) Ox; LPi ()

. ( Ay Au e (u%m)

8:102» LPi(Q) (%cz LPi(Q)

Ouy, ou
0 {| Lai (0 1197 [ s (0

+<%" Ou —wwwﬂ

0 {| Lai (0 1197 [ s (o)

+

- <Bgi (un)au>>

Also, applying Holder’s inequality one has

; Ouy, ou
[(BE () )] < || 52 e I
v IILPi(Q) v IILPi (Q2)
. oun, ou
(B (u), un)| < ;
" 6331 LPi (Q) 65(}7; LPi (Q)
. ouy, ou
|<Bgl(un)’u>|§ a i a i 9
TillLai () TillLai()
[(BE () un)] < || 2 oul
&ri L (Q) 0x2 L (Q)

Hence, we derive that

<BZ(un) — Bi(u), un — )

><’ Ouy, _‘ ou >2+<’ Ou,, _‘ ou )2
T \9zillpri ) 1107l (q) 0% || paiey  N10%ill Lai ()
- (‘ Ou, ‘ ou )2

“ 0z iy 1970l pie))

which, taking (2.21) into account, implies that
Oouy, ou

oz, o, foralli=1,...,N.

lim ’
n—-+oo

LPi(Q) ‘ LPi(Q)
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Then, from Papageorgiou-Winkert [26, Proposition 4.1.11], since LPi({2) is uni-
formly convex, one has

ou,, ou

=0 foralli=1,...,N.
LPi(Q)

lim
n—-+4oo

Thus, it follows that

il oy =0

and our claim is proved. a

Finally, we point ouﬁtdthe following result in order to get information on the sign
of the solutions of (D{'?). For this purpose, let

0) ift<O0

Fran =180 B0

flz,t) ift>0,

for all (x,t) € 2 x R and consider the following problem
—Aju— Azu = Mt (z,u in €, o
P q f ( ) (D§7q N )

u=0 on 0f). f

Lemma 2.5. Assume that f(x,0) > 0 for a.a.x € Q. Then, any weak solution of

problem (D’;(JL) is nonnegative and it is also a weak solution of problem (DI;'Y)

Proof. Let ug be a weak solution of problem (D’;? . ), namely

N pi—2 N
8u0 ov

E d E

i=1 /Q O, 9, ! i=1 /Q

=A f+(x,u0)vdx,
Q

%2 8UO ov
63?1‘ (91‘1‘

auo
85(}7;

3’[1,0
8@

(2.22)

for all v € Wol’ﬁ(ﬂ).

In order to prove that wug is nonnegative, put A = {z € Q : ug(xz) < 0} and
ug = min {ug, 0}. Clearly, u, € VVO1 P (Q) (see, for example, Papageorgiou-Winkert
[26, Corollary 4.5.19]). Choosing v = ug in (2.22), one has

N )
8UQ Pi
<
0= /A ol da
N —2 _ N i—2 -
Aug |77 Qug duyg Oug |77 dug Ouyg
< d d
- ;/A 8$i 63:1 8331' T ;/A 81‘1 81;1- 6$i o
_ i/ Oug pi—2 Oug Ouy dz + i/ Oug =2 Oup Oug
im1 Q 8%1 3172 6:751 im1 Q 8%1 8@ 8301

= )\/ fH(z,up)uy dz
Q

:)\/ f(z,0)u, dz <0,
A
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>

i=1

that is,

Ppi

Ouo dx = 0.

(9331‘

Hence, it holds that
pi

6’&0
a.’Ei

dr=0 foralli=1,..., N,

/

which yields

— |Pi Pi — |Pi
/ Do dz :/ Do dz —|—/ Ot dz =0
ol 0z Al 0z; a\a | Ox;
foralli=1,...,N. Therefore, we obtain
N X 1
_ 8u0* pi Pi
g w0y = D (/Q O dx) -0

i=1
so u, = 0 in Q, which means uy > 0 in Q.
Now, we prove that g is a weak solution for problem (D{?). Indeed, from (2.22)

one has
i\’:/ % pi—2 Oug Ov d:v—{—i/ Oug qi—2 Oug Ov "
- Q 8.731' 61‘, 83:1 - Q 8331 8xi 6$i
i=1 i=1
= /\/ Tz, up)vdr = )\/ f(z,up)vde,
Q Q
for all v € W, 7((2), and the conclusion is achieved. O

The proofs of our main results are based on the following two critical point
theorem due to Bonanno-D’Agui[7, see Theorem 2.1 and Remark 2.2]. First we
recall the definition of the Cerami condition.

Definition 2.6. Let X be a Banach space and X* be its topological dual space.
Given Iy € CY(X), we say that I satisfies the Cerami-condition (C-condition for
short), if every sequence {u, }nen C X such that

(C1) In(un)| < e for some c¢p > 0 and for alln € N,

(Ca) (1 + |unllx) I4(un) = 0 in X* as n — oo,
admits a strongly convergent subsequence in X.
Theorem 2.7. Let X be a real Banach space and let @, ¥: X — R be two func-

tionals of class Ct such that infx ®(u) = ®(0) = ¥(0) = 0. Assume that there are
re€R and u € X, with 0 < ®(a) < r, such that

sup U (u)
ued=1(]—o0,r]) V(a)
2.2
; < B(a)’ (2.23)
and, for each
N o(u r
A =
AS V@' s U@ |’
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the functional I, = ®— AV satisfies the C-condition and it is unbounded from below.
Moreover, ® is supposed to be coercive.

Then, for each X\ € A, the functional I admits at least two nontrivial critical
points ux 1, uxz € X such that I(ux1) <0 < I(uyz2).

3. MAIN RESULTS
In this section we formulate and prove our main results. We suppose the following

assumptions on the nonlinearity.

(Hy) f: QxR — R is a Carathéodory function such that the conditions below
are satisfied:
(f1) there exist a < (p~)* and constants a1, a2 > 0 such that

[f(@,8)] < a1 + agft]*
for a.a.xz €  and for all t € R;
(f2) if F(x,s) = [y f(x,£)dE, then
F(z,t)

t—gtnoo |7§|p+

uniformly for a.a.z €

(f3) there exist 3,v € R, with
. N
mln{ﬁvly} € ((a -p )p_aa>

such that

_ +F
0 < m < liminf fz, )t —pTF(x,t)
t——+o00 ‘t|ﬁ

uniformly for a.a.x € 0, and

_ nt
0 < m < liminf [z, )t —pT F(x,t)
t——o0 |t‘"/

uniformly for a.a.x € Q.

Remark 3.1. We observe that from hypotheses (f1) and (f2) it follows that
pr<a<(pT)
Furthermore, we emphasize that such 8 and v in (f3) exists, since

N N N —-p~ N N —p~
(a=p )—=a——-(p") <o— -«
p p p p p
Finally, we underline that in this context it is possible to choose two different ex-
ponents B and ~y for going to +00 and —oo, respectively.

— — = Q.

In the following we give a preliminary result on the energy functional associated
to our problem.

Proposition 3.2. Let hypotheses (H) and (H¢) be satisfied. Then the functional
I: WyP(Q) = R satisfies the C-condition for each A > 0.
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Proof. Let {un}nen C Wol’ﬁ(Q) be a sequence such that (C;) and (C3) hold, see
Definition 2.6. First, we prove that {u, }nen is bounded in L?(9).
From (C,), we get

enl|v]]

’( /f T, up) vde _71+HunH

for all v € W)"P(Q) and with &, — 0*. Fix n € N and choose v = u,, € Wy*(1).
Substituting in (3.1), we derive

(3.1)

Ouy, |* al Ouy, |
i &;: - Z/Q 83:? da:—l—)\/ﬂf(:c,un)un do < e, (3.2)
for all n e N From (Cy ) we have
8un ZZ:L " dx — )\/QerF(x,un) dr <pFep. (3.3)
Addlng (3.2) and (3.3) and taklng into account that ¢t < p™, we obtain
)\/Q (f (2, ) Uy — pT F (, un)) dz < ¢y (3.4)

for some ¢y > 0 and for all n € N.
Without loss of generality, we may assume 8 < v. Then, assumptions (f;) and
(f3) imply that there exist ¢z € (0,m) and ¢4 > 0 such that
cals|” —ca < f(w,8)s —pTF(z,5)
for a.a.z € Q and for all s € R. Exploiting this in (3.4), we derive

”u"”iﬂ(n) <¢5 for some ¢; > 0 and for all n € N,

namely {uy}, oy is bounded in L# ().
Now, we prove that {uy }nen is bounded in Wg’ﬁ(Q).
From hypotheses (f;) and (f3) it follows that 8 < o < (p™)*. Hence, there exists
€ (0,1) such that
L _1-t 1
a B ()
By the interpolation inequality (see Papageorgiou-Winkert [26, Proposition 2.3.17]),
we get

(3.5)

1—t t
lunllpoq) < llunllps @) lunllp o)) forallneN.
Since {un},cy is bounded in LP(9Q), using also Proposition 2.2, one has

lunlFa() < co lunllypisg, foralln €N, (3.6)

with some ¢g > 0. Choosing v = u,, € Wol’ﬁ(Q) in (3.1), we have

aun N Ou, |?
Z/ dx+;/gz'8m

dz — )\/ flzup)uy, da < e,
Q
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for all n € N. By (2.17), (f;) and (3.6) we obtain that there exists j € {1,...,N}
such that

Ou, ||P
sl < Z\ ..
< )\/ flz,up)uy, doe + €, (3.7)
< )‘07 |:]- + ||un||ta1 P(Q)i| + en,
for some ¢7 > 0 and for all n € N.
From (3.5) and (f3) follows that ta < p;, indeed
to o P ) (@=B)  Np~(a-p)
(p7)*=B  Np~ —NB+pp-
Np~ (a—B) . (3.8)
Np~ = NB+(a—p7)5p~

< pj-
Then, (3.7) and (3.8) imply that {u,}neny C Wol’ﬁ(Q) is bounded.

Finally, we prove that {u,},.y admits a strongly convergent subsequence in
W) P(Q). Because of the boundedness of {uy bnen € Wi ?(Q), there exists a sub-
sequence, not relabeled, such that

Up — u in Wol’ﬁ(Q) and wu, —u in LY(Q). (3.9)
We choose v = u,, —u € Wol’ﬁ(Q) in (3.1). Passing to the limit as n — oo and using
(3.9), we derive

lim (®'(uy),u, —u) = 0.

n—r oo

Since @’ has the (Sy)-property (see Proposition 2.4), it follows that u, — wu in

W}P(Q) and this completes the proof. O
Now, we present our main result. To this aim, put
R := sup dist(z, 09). (3.10)
zEQ

Standard computations show that there exists g € £ such that B(zo, R) C Q and
we denote by

w2

™
WR ‘= |B(.’IIQ,R)| = mRN7
2

the measure of the N-dimensional ball of radius R. Finally, we set
1 1 2% —1
o= s { e | e (341

N1
5:max{rp%,rﬁ}2pfi. (3.12)
i=1

Theorem 3.3. Let hypotheses (H) and (H¢) be satisfied. Assume that there exist
two constants r,d > 0 such that
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(hy) K00, (dPe+de) <,
(he) F(z,s) >0 for a.a.x € Q and for all s € [0,d],
a1T15+%T350‘ 1 fB(wmg) F(:c,d)dx

r < K Zi]il(dpi + dai)

where ay,as,a are given in (f1), Ty and T, are defined by formula (2.10), R is

given in (3.10), and K as well as ¢ are defined by (3.11) and (3.12), respectively.
Then, for each

(hs)

Dot (' +d) r

AeA:= (K ,
fB(mo,%) F(QZ‘, d) dz a1T15 + %Tgéa

problem (Df”j) has at least two nontrivial weak solutions uyx, vy € WF(Q) such that
I)\(u,\) <0< I)\(UA).

Proof. Our aim is to apply Theorem 2.7 for X = Wol’ﬁ(Q) and ¢, U defined as
in (2.13). The functionals ® and ¥ satisfy all the required regularity properties,
since ® is coercive by construction (see Proposition 2.3), the energy functional Iy
satisfies the C-condition due to Proposition 3.2 and it is unbounded from below by
(f2) and finally
inf  W(u) = T(0) = P(0).
ueW, ?(Q)

Moreover, the interval A is nonempty because of assumption (hsz). Thus, it remains
to verify hypothesis (2.23). First, we observe that

&~ (]—o0,7]) C {u €W () + Jlullyr7q < 5}. (3.13)
Then, from (f;), (2.9) and (3.13) we estimate that
sup U (u)
wed—1(]—00,r])
r
swp (aaflull o) + Zlulfe o) )
ueP—1(]—o0,r])
= r (3.14)
sup arThl|ullyyrm0) + 2Tl 15
... |1 Tl 50 lellgys. )
- T
< a1T1(5 + %Tgéa
— /" -
On the other hand, we introduce the following function
0 if x € Q\ B (x0, R),
2d

(z) = T (R—|e—zal)  if B(xo,R)\B (0, §),

d ifxEB(xo,g),
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where R is given in (3.10). Clearly, @ € W, (). From assumption (hs), we get

\If(ﬁ):/ F<:L',2d(R|:r:c0|)> dz
B(z0,R)\B(z0, %) R

+ /B(mg) F(z,d)dz (3.15)

> /B(xo,’;) F(z,d)dx.

Furthermore, it holds

2 pi
sz / (zo,R <R d

(3.16)

Z (dPi 4 d9).

=1

Hypothesis (h;) 1mphes that 0 < ®(#) < r and combining (3.14), (3.15) as well as
(3.16) we have

sup U (u
w€d—1(]—o0,r]) () a 110 + %Tgé“
T - T
- 71‘ (J/’o %) F(I’,d)dl‘
KOS, (@ + o)
< Y@

=)
This proves (2.23). Hence, since A C A, Theorem 2.7 ensures that problem (DI;’“T)

admits at least two nontrivial weak solutions uy, vy € WO1 P (©) with opposite energy
sign. [

The following result is a consequence of Lemma 2.5 and of Theorem 3.3.
Theorem 3.4. Let hypotheses (H) and (H¢) be satisfied. Assume (hy)—(hs) and
that f(x,0) > 0 for a.a.x € 2. Then, for every

N Pi qi
AeA:=|K 2 1(d +d) -
fB ‘r d) dz’ a6 —|— Taéa

problem (Df’(i) has at least two nonnegative weak solutions uy,vy € Woﬁ(ﬂ) such
that I)\(UA) <0< I)\(’U)\).

Now, we consider the particular case in which the nonlinearity is nonnegative.
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Theorem 3.5. Let hypotheses (H) and (Hy) be satisfied. Assume that f is non-
negative and

inf F(x,t)
(hg) limsup L = 400
t—0t &
Then, for each A €]0, \*[, with
N=sup (3.17)

>0 01T15 + LTgs’

problem (Df’i) admits at least two nonnegative weak solutions uy, vy € Wol’ﬁ(Q)
such that Ix(uy) < 0 < Ix(vy).

Proof. Fix A €]0, A*[, then there exists r > 0 such that
T

S aTio + 2Tgse
From (hy) follows that
1 fB 550, R x t) dz w

7

inf F(z,t)
lim sup — lim sup L = 400,

>
o+ K vazl(tpq,_;_tqi) - K o+ Z L(tPi  tai)

vl

since
1 1

N ” . Z INta
D im (P 17

Then, in correspondence of l, there exists ¢ > 0 small enough such that

ag
t)d Ti6 + —=T%6%
1fB F(z,t)dz 1 a11+a o

— > s
K Z¢:1(tp’ + ta) A r
namely assumption (hs) is satisfied. Since (hs) follows from the sign assumption
on the nonlinearity, we can apply Theorem 3.3 and Lemma 2.5 to complete the
proof. O

Finally, we deal with the autonomous case and we present an existence result
which is a consequence of Theorem 3.5. Consider the autonomous problem

—Aju — Agu = Ag(u) in Q, 5.7
u=0 on 01}, (ADY")

where g: R — R is a nonnegative continuous function. From Lemma 2.5 it follows
that we can consider the nonlinearity only in [0, +00). We assume the following:

(Hg) (g1) there exist o < (p~)* and constants a1, as > 0 such that
9(t) < a1 + agft|*™"
for all t > 0;
(82) if G(s) = [; g(&) d¢, then
G@)

lim = 400;
totoo tPT ’
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(g3) there exists § € R, with
N
s (i),
p

_ ot
0 < m < limint IO =P GH)
i—+00 t8

such that

The following result holds.

Corollary 3.6. Let hypotheses (H) and (H,) be satisfied. Assume that
G(®)

(hy) lim sup —~ = +o0.
t—0+ d
Then, for each X €]0, \*[, with \* defined in (3.17), the problem (ADY?) admits
at least two nonnegative weak solutions uy, vy € WyP() such that Iy(uy) < 0 <
I)\ (U)\).

In conclusion, we provide an example.

Example 3.7. Consider two constants c, k such that
K K
>1, pr<r<(p)* d —— =<1
c - ) p K (p ) an p_ N

Let g: [0,400) = R be a function defined by
g(t) = (t+c)*t(klog(t +c)+1) forall t > 0.

Then, g satisfies assumptions (Hy) with 8 = k and o = k + o, with o > 0 small
enough such that
@ K
< ()" d —— =<1

a<(p)" an N
Moreover, the function g satisfies assumption (hy’), hence we can apply Corollary
3.6 to get the existence of two nonnegative weak solutions of problem (ADY?) with
opposite energy Sign.

ACKNOWLEDGMENT

The first two authors are members of the Gruppo Nazionale per I’Analisi Mate-
matica, la Probabilita e le loro Applicazioni (GNAMPA) of the Istituto Nazionale
di Alta Matematica (INAAM). The authors have been partially supported by the
Gruppo Nazionale per 1’Analisi Matematica, la Probabilita e le loro Applicazioni
(GNAMPA) of the Istituto Nazionale di Alta Matematica (INAAM). The paper
is partially supported by PRIN 2017 — Progetti di Ricerca di rilevante Interesse
Nazionale, “Nonlinear Differential Problems via Variational, Topological and Set-
valued Methods” (2017AYM8XW) and by FFR-2023-Sciammetta.

REFERENCES

[1] S.N. Antontsev, J.I. Diaz, S. Shmarev, “Energy methods for free boundary problems”,
Birkhauser Boston, Inc., Boston, MA, 2002.

[2] Y. Bai, N.S. Papageorgiou, S. Zeng, A singular eigenvalue problem for the Dirichlet (p,q)-
Laplacian, Math. Z. 300 (2022), no. 1, 325-345.

[3] M. Belloni, B. Kawohl, The pseudo-p-Laplace eigenvalue problem and viscosity solutions as
p — 0o, ESAIM Control Optim. Calc. Var. 10 (2004), no. 1, 28-52.



ANISOTROPIC (p, §)-LAPLACIAN PROBLEMS WITH SUPERLINEAR NONLINEARITIES 19

[4] M. Bendahmane, M. Chrif, S. El Manouni, An approzimation result in generalized anisotropic
Sobolev spaces and applications, Z. Anal. Anwend. 30 (2011), no. 3, 341-353.

[5] M. Bendahmane, M. Langlais, M. Saad, On some anisotropic reaction-diffusion systems with
L'-data modeling the propagation of an epidemic disease, Nonlinear Anal. 54 (2003), no. 4,
617-636.

[6] M. Bohner, G. Caristi, A. Ghobadi, S. Heidarkhani, Three solutions for discrete anisotropic
Kirchhoff-type problems, Demonstr. Math. 56 (2023), no. 1, Paper No. 20220209, 13 pp.

[7] G. Bonanno, G. D’Agui, Two non-zero solutions for elliptic Dirichlet problems, Z. Anal.
Anwend. 35 (2016), no. 4, 449-464.

[8] G. Bonanno, G. D’Agui, A. Sciammetta, Ezistence of two positive solutions for anisotropic
nonlinear elliptic equations, Adv. Differential Equations 26 (2021), no. 5-6, 229-258.

[9] G. Bonanno, G. D’Agui, A. Sciammetta, Multiple solutions for a class of anisotropic p-
Laplacian problems, Bound. Value Probl., accepted 2023.

[10] L. Brasco, G. Franzina, An anisotropic eigenvalue problem of Stekloff type and weighted Wulff
inequalities, NoDEA Nonlinear Differential Equations Appl. 20 (2013), no. 6, 1795-1830.

[11] S. Ciani, G.M. Figueiredo, A. Suérez, Ezistence of positive eigenfunctions to an anisotropic
elliptic operator via the sub-supersolution method, Arch. Math. (Basel) 116 (2021), no. 1,
85-95.

[12] G. Ciraolo, A. Figalli, A. Roncoroni, Symmetry results for critical anisotropic p-Laplacian
equations in convexr cones, Geom. Funct. Anal. 30 (2020), no. 3, 770-803.

[13] G. Ciraolo, A. Sciammetta, Gradient estimates for the perfect conductivity problem in
anisotropic media, J. Math. Pures Appl. (9) 127 (2019), 268-298.

[14] E. DiBenedetto, U. Gianazza, V. Vespri, Remarks on local boundedness and local Holder con-
tinuity of local weak solutions to anisotropic p-Laplacian type equations, J. Elliptic Parabol.
Equ. 2 (2016), no. 1-2, 157-169.

[15] G.C.G. dos Santos, G.M. Figueiredo, L.S. Tavares, Ezistence results for some anisotropic
singular problems via sub-supersolutions, Milan J. Math. 87 (2019), no. 2, 249-272.

[16] S. El Manouni, G. Marino, P. Winkert, Ezistence results for double phase problems depending
on Robin and Steklov eigenvalues for the p-Laplacian, Adv. Nonlinear Anal. 11 (2022), no.
1, 304-320.

[17] 1. Fragala, F. Gazzola, B. Kawohl, Ezistence and nonexistence results for anisotropic quasi-
linear elliptic equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 21 (2004), no. 5,
715-734.

[18] H. He, M. Ousbika, Z. El Allali, J. Zuo, Non-trivial solutions for a partial discrete Dirichlet
nonlinear problem with p-Laplacian, Commun. Anal. Mech. 15 (2023), no. 4, 598-610.

[19] C. Ju, G. Molica Bisci, B. Zhang, On sequences of homoclinic solutions for fractional discrete
p-Laplacian equations, Commun. Anal. Mech. 15 (2023), no. 4, 586-597.

[20] A. Kufner, J. Rékosnik, Boundary value problems for nonlinear partial differential equations
in anisotropic Sobolev spaces, Casopis Pést. Mat. 106 (1981), no. 2, 170-185, 210.

[21] A.R. Leggat, S.E. Miri, An ezistence result for a singular-regular anisotropic system, Rend.
Circ. Mat. Palermo (2) 72 (2023), no. 2, 977-996.

[22] P. Lindqvist, “Notes on the stationary p-Laplace equation”, Springer, Cham, 2019.

[23] Z. Liu, D. Motreanu, S. Zeng, Positive solutions for nonlinear singular elliptic equations of
p-Laplacian type with dependence on the gradient, Calc. Var. Partial Differential Equations
58 (2019), no. 1, Paper No. 28, 22 pp.

[24] S.M. Nikol’skil, An imbedding theorem for functions with partial derivatives considered in
different metrics, Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 321-336.

[25] N.S. Papageorgiou, Double phase problems: a survey of some recent results, Opuscula Math.
42 (2022), no. 2, 257-278.

[26] N.S. Papageorgiou, P. Winkert, “Applied Nonlinear Functional Analysis”, De Gruyter, Berlin,
2018.

[27] K. Perera, R.P. Agarwal, D. O’Regan, Nontrivial solutions of p-superlinear anisotropic p-
Laplacian systems via Morse theory, Topol. Methods Nonlinear Anal. 35 (2010), no. 2, 367—
378.

[28] M.A. Ragusa, A. Razani, F. Safari, Existence of radial solutions for a p(z)-Laplacian Dirich-
let problem, Adv. Difference Equ. 2021 (2021), Paper No. 215, 14 pp.

[29] J. Rékosnik, Some remarks to anisotropic Sobolev spaces I, Beitrage Anal. 13 (1979), 55-68.



20

30]
31)
32)
33
[34]
35)
[36]
[37)
[38]
[39)

[40]

[41]

42]

E. AMOROSO, A. SCTAMMETTA, AND P. WINKERT

J. Rékosnik, Some remarks to anisotropic Sobolev spaces II, Beitrage Anal. 15 (1980), 127—
140.

A. Razani, Nonstandard competing anisotropic (p,q)-Laplacians with convolution, Bound.
Value Probl. 2022, Paper No. 87, 10 pp.

A. Razani, G.M. Figueiredo, A positive solution for an anisotropic (p,q)-Laplacian, Discrete
Contin. Dyn. Syst. Ser. S 16 (2023), no. 6, 1629-1643.

J. Simon, Régularité de la solution d’une équation non linéaire dans RN, Journées d’Analyse
Non Linéaire (Proc. Conf. Besangon, 1977), Springer, Berlin 665 (1978), 205-227.

B. Son, 1. Sim, Analysis of positive solutions to one-dimensional generalized double phase
problems, Adv. Nonlinear Anal. 11 (2022), no. 1, 1365-1382.

G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353~
372.

L. Tavares, Solutions for a class of problems driven by an anisotropic (p, q)-Laplacian type
operator, Commun. Anal. Mech. 15 (2023), no. 3, 533-550.

J. Vétois, The blow-up of critical anisotropic equations with critical directions, NoDEA Non-
linear Differential Equations Appl. 18 (2011), no. 2, 173-197.

C. Vetro, F. Vetro, Three solutions to mized boundary value problem driven by p(z)-Laplace
operator, Math. Nachr. 294 (2021), no. 6, 1175-1185.

G. Wulft, Zur Frage der Geschwindigkeit des Wachsthums und der Auflosung der Krys-
tallflachen, Zeitschrift fiir Kristallographie — Crystalline Materials 34 (1901), 449-530.

S. Zeng, Y. Bai, L. Gasinski, P. Winkert, Ezistence results for double phase implicit obstacle
problems involving multivalued operators, Calc. Var. Partial Differential Equations 59 (2020),
no. 5, Paper No. 176, 18 pp.

S. Zeng, N.S. Papageorgiou, Positive solutions for (p,q)-equations with convection and a
sign-changing reaction, Adv. Nonlinear Anal. 11 (2022), no. 1, 40-57.

S. Zeng, V.D. Radulescu, P. Winkert, Double phase implicit obstacle problems with convection
and multivalued mized boundary value conditions, STAM J. Math. Anal. 54 (2022), no. 2,
1898-1926.

(E. Amoroso) DEPARTMENT OF ENGINEERING, UNIVERSITY OF MESSINA, 98166 MESSINA, ITALY
Email address: eleonora.amoroso@unime.it

(A. Sciammetta) DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF

PALERMO, 90123 PALERMO, ITALY

17.

Email address: angela.sciammetta@unipa.it

(P. Winkert) TECHNISCHE UNIVERSITAT BERLIN, INSTITUT FUR MATHEMATIK, STRASSE DES
JuNI 136, 10623 BERLIN, GERMANY
Email address: winkert@math.tu-berlin.de



	1. Introduction
	2. Preliminaries and basic properties
	3. Main results
	Acknowledgment
	References

