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Abstract. Our aim is the study of a class of nonlinear elliptic problems under
Neumann conditions involving the p-Laplacian. We prove the existence of at

least three nontrivial solutions which means that we get two extremal constant-

sign solutions and one sign-changing solution by using truncation techniques
and comparison principles for nonlinear elliptic differential inequalities. We

also apply the properties of the Fuc̆ik Spectrum of the p-Laplacian and in par-

ticular, we make use of variational and topological tools, for example, critical
point theory, Mountain-Pass Theorem and the Second Deformation Lemma.

1. Introduction

Let Ω ⊂ RN be a bounded domain with Lipschitz boundary ∂Ω. We consider
the following nonlinear elliptic boundary value problem. Find u ∈ W 1,p(Ω) \ {0}
and constants a ∈ R, b ∈ R such that

−∆pu = f(x, u)− |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= a(u+)p−1 − b(u−)p−1 + g(x, u) on ∂Ω,

(1.1)

where −∆pu = −div(|∇u|p−2∇u), 1 < p < ∞, is the negative p-Laplacian, ∂u
∂ν

denotes the outer normal derivative of u, and u+ = max{u, 0} as well as u− =
max{−u, 0} are the positive and negative part of u, respectively. The nonlinearities
f : Ω × R → R and g : ∂Ω × R → R are some Carathéodory functions which are
bounded on bounded sets. For reasons of simplification, we drop the notation for
the trace operator γ : W 1,p(Ω) → Lp(∂Ω) which is used on the functions defined
on the boundary ∂Ω.

The motivation of our study is a recent paper of the author [27] in which problem
(1.1) was treated in case a = b. We extend this approach and prove the existence of
multiple solutions for the more general problem (1.1). To be precise, the existence
of a smallest positive solution, a greatest negative solution as well as a sign-changing
solution of problem (1.1) is proved by using variational and topological tools, for ex-
ample, critical point theory, Mountain-Pass Theorem and the Second Deformation
Lemma. Additionally, the Fuc̆ik spectrum for the p-Laplacian takes an important
part in our treatments.

Neumann boundary value problems in the form (1.1) arise in different areas
of pure and applied mathematics, for example in the theory of quasiregular and
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quasiconformal mappings in Riemannian manifolds with boundary (see [11],[25]),
in the study of optimal constants for the Sobolev trace embedding (see [9], [14],
[15], [13]) or at non-Newtonian fluids, flow through porus media, nonlinear elasticity,
reaction diffusion problems, glaciology and so on (see [1], [3], [2], [10]).

The existence of multiple solutions for Neumann problems like the form (1.1) has
been studied by a number of authors, such as, e.g., [12, 16, 22, 31] and homogeneous
Neumann boundary value problems were considered in [19, 30] and [31], respectively.
Analogous results for the Dirichlet problem have been recently obtained in [5, 6, 7,
8]. Further references can also be found in the bibliography of [27].

In our consideration, the nonlinearities f and g only need to be Carathéodory
functions which are bounded on bounded sets whereby their growth does not need
to be necessarily polynomial. The novelty of our paper is the fact that we do
not need differentiability, polynomial growth or some integral conditions on the
mappings f and g.

First, we have to make an analysis of the associated spectrum of (1.1). The
Fuc̆ik spectrum for the p-Laplacian with a nonlinear boundary condition is defined

as the set Σ̃p of (a, b) ∈ R× R such that

−∆pu = −|u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= a(u+)p−1 − b(u−)p−1 on ∂Ω,

(1.2)

has a nontrivial solution. In view of the identity

|u|p−2u = |u|p−2(u+ − u−) = (u+)p−1 − (u−)p−1,

we see at once that for a = b = λ problem (1.2) reduces to the Steklov eigenvalue
problem

−∆pu = −|u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u on ∂Ω.

(1.3)

We say that λ is an eigenvalue if (1.3) has nontrivial solutions. The first eigenvalue
λ1 > 0 is isolated, simple and has a first eigenfunction ϕ1 which is strictly positive
in Ω (see [21]). Furthermore, one can show that ϕ1 belongs to L∞(Ω) (cf. [18,
Lemma 5.6 and Theorem 4.3] or [28, Theorem 4.1]) and along with the results of
Lieberman in [20, Theorem 2] it holds ϕ1 ∈ C1,α(Ω). This fact combined with
ϕ1(x) > 0 in Ω yields ϕ1 ∈ int(C1(Ω)+), where int(C1(Ω)+) denotes the interior of
the positive cone C1(Ω)+ = {u ∈ C1(Ω) : u(x) ≥ 0,∀x ∈ Ω} in the Banach space
C1(Ω), given by

int(C1(Ω)+) =
{
u ∈ C1(Ω) : u(x) > 0,∀x ∈ Ω

}
.

Let us recall some properties of the Fuc̆ik spectrum. If λ is an eigenvalue for

(1.3) then the point (λ, λ) belongs to Σ̃p. Since the first eigenfunction of (1.3) is

positive, Σ̃p clearly contains the two lines R×{λ1} and {λ1}×R. A first nontrivial

curve C in Σ̃p through (λ2, λ2) was constructed and variationally characterized by
a mountain-pass procedure by Mart́ınez and Rossi [23]. This yields the existence of
a continuous path in {u ∈W 1,p(Ω) : I(a,b)(u) < 0, ‖u‖Lp(∂Ω) = 1} joining −ϕ1 and

ϕ1 provided (a, b) is above the curve C. The functional I(a,b) on W 1,p(Ω) is given
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by

I(a,b)(u) =

∫
Ω

(
|∇u|p + |u|p

)
dx−

∫
∂Ω

(
a(u+)p + b(u−)p

)
dσ.

Due to the fact that λ2 belongs to C, there exists a variational characterization of
the second eigenvalue of (1.3) meaning that λ2 can be represented as

λ2 = inf
g∈Π

max
u∈g([−1,1])

∫
Ω

(
|∇u|p + |u|p

)
dx,

where

Π = {g ∈ C([−1, 1], S) | g(−1) = −ϕ1, g(1) = ϕ1},
and

S =

{
u ∈W 1,p(Ω) :

∫
∂Ω

|u|pdσ = 1

}
.

The proof of this result is given in [23].
An important part in our considerations takes the following Neumann boundary
value problem defined by

−∆pu = −ς|u|p−2u+ 1 in Ω,

|∇u|p−2 ∂u

∂ν
= 1 on ∂Ω,

(1.4)

where ς > 1 is a constant. As pointed out in [27], there exists a unique solution
e ∈ int(C1(Ω)+) of problem (1.4) which is required for the construction of sub- and
supersolutions of problem (1.1).

2. Notations and Hypotheses

Now, we impose the following conditions on the nonlinearities f and g in problem
(1.1). The maps f : Ω × R → R and g : ∂Ω × R → R are Carathéodory functions
which means that they are measurable in the first argument and continuous in the
second one. Furthermore, we suppose the following assumptions.

(H1) (f1) lim
s→0

f(x, s)

|s|p−2s
= 0, uniformly with respect to a.a. x ∈ Ω.

(f2) lim
|s|→∞

f(x, s)

|s|p−2s
= −∞, uniformly with respect to a.a. x ∈ Ω.

(f3) f is bounded on bounded sets.

(f4) There exists δf > 0 such that
f(x, s)

|s|p−2s
≥ 0 for all 0 < |s| ≤ δf and for

a.a. x ∈ Ω.

(H2) (g1) lim
s→0

g(x, s)

|s|p−2s
= 0, uniformly with respect to a.a. x ∈ ∂Ω.

(g2) lim
|s|→∞

g(x, s)

|s|p−2s
= −∞, uniformly with respect to a.a. x ∈ ∂Ω.

(g3) g is bounded on bounded sets.
(g4) g satisfies the condition

|g(x1, s1)− g(x2, s2)| ≤ L
[
|x1 − x2|α + |s1 − s2|α

]
,

for all pairs (x1, s1), (x2, s2) in ∂Ω× [−M0,M0], where M0 is a positive
constant and α ∈ (0, 1].
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(H3) Let (a, b) ∈ R2
+ be above the first nontrivial curve C of the Fuc̆ik spectrum

constructed in [23] (see Figure 1).

Note that (H2)(g4) implies that the function (x, s) 7→ a|s|p−1 − b|s|p−1 + g(x, s)
fulfills a condition as in (H2)(g4), too. Moreover, we see at once that u = 0 is a
trivial solution of problem (1.1) because of the conditions (H1)(f1) and (H2)(g1)
which guarantees that f(x, 0) = g(x, 0) = 0. It should be noted that hypothesis
(H3) includes that a, b > λ1 (see [23] or Figure 1).

Example 2.1. Let the functions f : Ω× R→ R and g : ∂Ω× R→ R be given by

f(x, s) =


|s|p−2s(1 + (s+ 1)e−s) if s ≤ −1

sgn(s)
|s|p

2
(|(s− 1) cos(s+ 1)|+ s+ 1) if − 1 ≤ s ≤ 1

sp−1e1−s − |x|(s− 1)sp−1es if s ≥ 1,

and

g(x, s) =


|s|p−2s(s+ 1 + es+1) if s ≤ −1

|s|p−1se(s2−1)
√
|x| if − 1 ≤ s ≤ 1

sp−1(cos(1− s) + (1− s)es) if s ≥ 1.

Then all conditions in (H1)(f1)–(f4) and (H2)(g1)-(g4) are fulfilled.
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Figure 1. Fuc̆ik Spectrum

Definition 2.2. A function u ∈ W 1,p(Ω) is called a weak solution of (1.1) if the
following holds:∫

Ω

|∇u|p−2∇u∇ϕdx =

∫
Ω

(f(x, u)− |u|p−2u)ϕdx

+

∫
∂Ω

(a(u+)p−1 − b(u−)p−1 + g(x, u))ϕdσ, ∀ϕ ∈W 1,p(Ω).
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Definition 2.3. A function u ∈ W 1,p(Ω) is called a subsolution of (1.1) if the
following holds:∫

Ω

|∇u|p−2∇u∇ϕdx ≤
∫

Ω

(f(x, u)− |u|p−2u)ϕdx

+

∫
∂Ω

(a(u+)p−1 − b(u−)p−1 + g(x, u))ϕdσ, ∀ϕ ∈W 1,p(Ω)+.

Definition 2.4. A function u ∈ W 1,p(Ω) is called a supersolution of (1.1) if the
following holds:∫

Ω

|∇u|p−2∇u∇ϕdx ≥
∫

Ω

(f(x, u)− |u|p−2u)ϕdx

+

∫
∂Ω

(a(u+)p−1 − b(u−)p−1 + g(x, u))ϕdσ, ∀ϕ ∈W 1,p(Ω)+.

We recall that W 1,p(Ω)+ := {ϕ ∈ W 1,p(Ω) : ϕ ≥ 0} denotes all nonnegative
functions of W 1,p(Ω). Furthermore, for functions u, v, w ∈ W 1,p(Ω) satisfying v ≤
u ≤ w, we have the relation γ(v) ≤ γ(u) ≤ γ(w), where γ : W 1,p(Ω) → Lp(∂Ω)
stands for the well-known trace operator.

3. Extremal Constant-Sign Solutions

For the rest of the paper we denote by ϕ1 ∈ int(C1(Ω)+) the first eigenfunction
of the Steklov eigenvalue problem (1.3) corresponding to its first eigenvalue λ1.
Furthermore, the function e ∈ int(C1(Ω)+) stands for the unique solution of the
auxiliary Neumann boundary value problem defined in (1.4). Our first lemma reads
as follows.

Lemma 3.1. Let the conditions (H1)–(H2) be satisfied and let a, b > λ1. Then
there exist constants ϑa, ϑb > 0 such that ϑae and −ϑbe are a positive supersolution
and a negative subsolution, respectively, of problem (1.1).

Proof. Setting u = ϑae with a positive constant ϑa to be specified and considering
the auxiliary problem (1.4), we obtain∫

Ω

|∇(ϑae)|p−2∇(ϑae)∇ϕdx

= −ς
∫

Ω

(ϑae)
p−1ϕdx+

∫
Ω

ϑp−1
a ϕdx+

∫
∂Ω

ϑp−1
a ϕdσ, ∀ϕ ∈W 1,p(Ω).

In order to satisfy Definition 2.4 for u = ϑae, we have to show that the following
inequality holds true meaning∫

Ω

(ϑp−1
a − c̃(ϑae)p−1 − f(x, ϑae))ϕdx

+

∫
∂Ω

(ϑp−1
a − a(ϑae)

p−1 − g(x, ϑae))ϕdσ ≥ 0,

(3.1)

where c̃ = ς− 1 with c̃ > 0. Condition (H1)(f2) implies the existence of sς > 0 such
that

f(x, s)

sp−1
< −c̃, for a.a. x ∈ Ω and all s > sς ,
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and due to (H1)(f3) we have

| − f(x, s)− c̃sp−1| ≤ |f(x, s)|+ c̃sp−1 ≤ cς , for a.a. x ∈ Ω and all s ∈ [0, sς ].

Hence, we get

f(x, s) ≤ −c̃sp−1 + cς , for a.a. x ∈ Ω and all s ≥ 0. (3.2)

Because of hypothesis (H2)(g2) there exists sa > 0 such that

g(x, s)

sp−1
< −a, for a.a. x ∈ ∂Ω and all s > sa,

and thanks to condition (H2)(g3) we find a constant ca > 0 such that

| − g(x, s)− asp−1| ≤ |g(x, s)|+ asp−1 ≤ ca, for a.a. x ∈ ∂Ω and all s ∈ [0, sa].

Finally, we have

g(x, s) ≤ −asp−1 + ca, for a.a. x ∈ ∂Ω and all s ≥ 0. (3.3)

Using the inequality in (3.2) to the first integral in (3.1) yields∫
Ω

(ϑp−1
a − c̃(ϑae)p−1 − f(x, ϑae))ϕdx

≥
∫

Ω

(ϑp−1
a − c̃(ϑae)p−1 + c̃(ϑae)

p−1 − cς)ϕdx

=

∫
Ω

(ϑp−1
a − cς)ϕdx,

which proves its nonnegativity if ϑa ≥ c
1

p−1
ς . Applying (3.3) to the second integral

in (3.1) ensures ∫
∂Ω

(ϑp−1
a − a(ϑae)

p−1 − g(x, ϑae))ϕdx

≥
∫
∂Ω

(ϑp−1
a − a(ϑae)

p−1 + a(ϑae)
p−1 − ca)ϕdx

≥
∫
∂Ω

(ϑp−1
a − ca)ϕdx.

We take ϑa := max

{
c

1
p−1
ς , c

1
p−1
a

}
to verify that both integrals in (3.1) are nonneg-

ative. Hence, the function u = ϑae is in fact a positive supersolution of problem
(1.1). In similar way one proves that u = −ϑbe is a negative subsolution, where we
apply the following estimates

f(x, s) ≥ −c̃sp−1 − cς , for a.a. x ∈ Ω and all s ≤ 0,

g(x, s) ≥ −bsp−1 − cb, for a.a. x ∈ ∂Ω and all s ≤ 0.

This completes the proof. �

The next two lemmas show that constant multipliers of ϕ1 may be sub- and
supersolution of (1.1). More precisely, we have the following result.

Lemma 3.2. Assume (H1)–(H2) are satisfied. If a > λ1, then for ε > 0 sufficiently
small and any b ∈ R the function εϕ1 is a positive subsolution of problem (1.1).
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Proof. The Steklov eigenvalue problem (1.3) implies∫
Ω

|∇(εϕ1)|p−2∇(εϕ1)∇ϕdx

= −
∫

Ω

(εϕ1)p−1ϕdx+

∫
∂Ω

λ1(εϕ1)p−1ϕdσ, ∀ϕ ∈W 1,p(Ω).

Definition 2.3 is satisfied for u = εϕ1 provided the inequality∫
Ω

−f(x, εϕ1)ϕdx+

∫
∂Ω

((λ1 − a)(εϕ1)p−1 − g(x, εϕ1))ϕdσ ≤ 0,

is valid for all ϕ ∈ W 1,p(Ω)+. With regard to hypothesis (H1)(f4) we obtain, for
ε ∈ (0, δf/‖ϕ1‖∞],∫

Ω

−f(x, εϕ1)ϕdx =

∫
Ω

−f(x, εϕ1)

(εϕ1)p−1
(εϕ1)p−1ϕdx ≤ 0,

where ‖ · ‖∞ denotes the usual supremum norm. Thanks to condition (H2)(g1)
there exists a number δa > 0 such that

|g(x, s)|
|s|p−1

< a− λ1, for a.a. x ∈ ∂Ω and all 0 < |s| ≤ δa.

In case ε ∈
(

0, δa
‖ϕ1‖∞

]
we get∫

∂Ω

((λ1 − a)(εϕ1)p−1 − g(x, εϕ1))ϕdσ ≤
∫
∂Ω

(
λ1 − a+

|g(x, εϕ)|
(εϕ1)p−1

)
(εϕ1)p−1ϕdσ

<

∫
∂Ω

(λ1 − a+ a− λ1)(εϕ1)p−1ϕdσ

= 0.

Selecting 0 < ε ≤ min{δf/‖ϕ1‖∞, δλ/‖ϕ1‖∞} guarantees that u = εϕ1 is a positive
subsolution. �

The following lemma on the existence of a negative supersolution can be proved
in a similar way.

Lemma 3.3. Assume (H1)–(H2) are satisfied. If b > λ1, then for ε > 0 sufficiently
small and any a ∈ R the function −εϕ1 is a negative supersolution of problem (1.1).

Concerning Lemma 3.1-3.3, we obtain a positive pair [εϕ1, ϑae] and a negative
pair [−ϑbe,−εϕ1] of sub- and supersolutions of problem (1.1) provided ε > 0 is
sufficiently small.

In the next step we are going to prove the regularity of solutions of problem
(1.1) belonging to the order interval [0, ϑae] and [−ϑbe, 0], respectively. We also
point out that u = u = 0 is both, a subsolution and a supersolution because of the
hypotheses (H1)(f1) and (H2)(g1).

Lemma 3.4. Assume (H1)–(H2) and let a, b > λ1. If u ∈ [0, ϑae] (respectively,
u ∈ [−ϑbe, 0]) is a solution of problem (1.1) satisfying u 6≡ 0 in Ω, then it holds
u ∈ int(C1(Ω)+) (respectively, u ∈ − int(C1(Ω)+)).
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Proof. We just show the first case, the other case acts in the same way. Let u be a
solution of (1.1) satisfying 0 ≤ u ≤ ϑae. We directly obtain the L∞-boundedness,
and hence, the regularity results of Lieberman in [20, Theorem 2] imply u ∈ C1,α(Ω)
with α ∈ (0, 1). Due to the assumptions (H1)(f1),(H1)(f3),(H2)(g1) and (H2)(g3),
we obtain the existence of constants cf , cg > 0 satisfying

|f(x, s)| ≤ cfsp−1, for a.a. x ∈ Ω and all 0 ≤ s ≤ ϑa‖e‖∞,
|g(x, s)| ≤ cgsp−1, for a.a. x ∈ ∂Ω and all 0 ≤ s ≤ ϑa‖e‖∞.

(3.4)

Applying (3.4) to (1.1) provides

∆pu ≤ c̃up−1, a.e. in Ω,

where c̃ is a positive constant. We set β(s) = c̃sp−1 for all s > 0 and use Vázquez’s
strong maximum principle (cf. [26]) which is possible because

∫
0+

1

(sβ(s))
1
p
ds = +∞.

Hence, it holds u > 0 in Ω. Finally, we suppose the existence of x0 ∈ ∂Ω satisfying
u(x0) = 0. Applying again the maximum principle yields ∂u

∂ν (x0) < 0. However,
because of g(x0, u(x0)) = g(x0, 0) = 0 in combination with the Neumann condition
in (1.1) we get ∂u

∂ν (x0) = 0. This is a contradiction and hence, u > 0 in Ω which

proves u ∈ int(C1(Ω)+). �

The main result in this section about the existence of extremal constant-sign
solutions is given in the following theorem.

Theorem 3.5. Assume (H1)–(H2). For every a > λ1 and b ∈ R there exists a
smallest positive solution u+ = u+(a) ∈ int(C1(Ω)+) of (1.1) in the order interval
[0, ϑae] with the constant ϑa as in Lemma 3.1. For every b > λ1 and a ∈ R
there exists a greatest solution u− = u−(b) ∈ − int(C1(Ω)+) in the order interval
[−ϑbe, 0] with the constant ϑb as in Lemma 3.1.

Proof. Let a > λ1. Lemma 3.1 and Lemma 3.2 guarantee that u = εϕ1 ∈
int(C1(Ω)+) is a subsolution of problem (1.1) and u = ϑae ∈ int(C1(Ω)+) is a
supersolution of problem (1.1). Moreover, we choose ε > 0 sufficiently small such
that εϕ1 ≤ ϑae. Applying the method of sub- and supersolution (see [4]) corre-
sponding to the order interval [εϕ1, ϑae] provides the existence of a smallest positive
solution uε = uε(λ) of problem (1.1) fulfilling εϕ1 ≤ uε ≤ ϑae. In view of Lemma
3.4 we have uε ∈ int(C1(Ω)+). Hence, for every positive integer n sufficiently large
there exists a smallest solution un ∈ int(C1(Ω)+) of problem (1.1) in the order
interval [ 1

nϕ1, ϑae]. We obtain

un ↓ u+ pointwise , (3.5)

with some function u+ : Ω→ R satisfying 0 ≤ u+ ≤ ϑae.
Claim 1: u+ is a solution of problem (1.1).

As un ∈ [ 1
nϕ1, ϑae] and γ(un) ∈ [γ( 1

nϕ1), γ(ϑae)], we obtain the boundedness of un
in Lp(Ω) and Lp(∂Ω), respectively. Definition 2.2 holds, in particular, for u = un
and ϕ = un which results in

‖∇un‖pLp(Ω) ≤
∫

Ω

|f(x, un)|undx+ ‖un‖pLp(Ω) + a‖un‖pLp(∂Ω) +

∫
Ω

|g(x, un)|undσ

≤ a1‖un‖Lp(Ω) + ‖un‖pLp(Ω) + a‖un‖pLp(∂Ω) + a2‖un‖Lp(∂Ω)

≤ a3,
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with some positive constants ai, i = 1, . . . , 3 independent of n. Consequently, un is
bounded in W 1,p(Ω) and due to the reflexivity of W 1,p(Ω), 1 < p < ∞, we obtain
the existence of a weakly convergent subsequence of un . Because of the compact
embedding W 1,p(Ω) ↪→ Lp(Ω), the monotony of un and the compactness of the
trace operator γ, we get for the entire sequence un

un ⇀ u+ in W 1,p(Ω),

un → u+ in Lp(Ω) and for a.a. x ∈ Ω,

un → u+ in Lp(∂Ω) and for a.a. x ∈ ∂Ω.

(3.6)

Since un solves problem (1.1), one obtains, for all ϕ ∈W 1,p(Ω),∫
Ω

|∇un|p−2∇un∇ϕdx

=

∫
Ω

(f(x, un)− up−1
n )ϕdx+

∫
∂Ω

(aup−1
n + g(x, un))ϕdσ.

(3.7)

Setting ϕ = un − u+ ∈W 1,p(Ω) in (3.7) results in∫
Ω

|∇un|p−2∇un∇(un − u+)dx

=

∫
Ω

(f(x, un)− up−1
n )(un − u+)dx+

∫
∂Ω

(aup−1
n + g(x, un))(un − u+)dσ.

Using (3.6) and the hypotheses (H1)(f3) as well as (H2)(g3) yields

lim sup
n→∞

∫
Ω

|∇un|p−2∇un∇(un − u+)dx ≤ 0,

which provides by the (S+)-property of −∆p on W 1,p(Ω) along with (3.6)

un → u+ in W 1,p(Ω). (3.8)

The uniform boundedness of the sequence (un) in conjunction with the strong
convergence in (3.8) and the conditions (H1)(f3) as well as (H2)(g3) admit us to
pass to the limit in (3.7). This shows that u+ is a solution of problem (1.1).

Claim 2: u+ ∈ int(C1(Ω)+).

In order to apply Lemma 3.4, we have to prove that u+ 6≡ 0. Let us assume this
assertion is not valid meaning u+ ≡ 0. From (3.5) it follows

un(x) ↓ 0 for all x ∈ Ω. (3.9)

We set

ũn =
un

‖un‖W 1,p(Ω)
for all n.

It is clear that the sequence (ũn) is bounded in W 1,p(Ω) which ensures the existence
of a weakly convergent subsequence of ũn, denoted again by ũn, such that

ũn ⇀ ũ in W 1,p(Ω),

ũn → ũ in Lp(Ω) and for a.a. x ∈ Ω,

ũn → ũ in Lp(∂Ω) and for a.a. x ∈ ∂Ω,

(3.10)
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with some function ũ : Ω→ R belonging to W 1,p(Ω). In addition, we may suppose
there are functions z1 ∈ Lp(Ω)+, z2 ∈ Lp(∂Ω)+ such that

|ũn(x)| ≤ z1(x) for a.a. all x ∈ Ω,

|ũn(x)| ≤ z2(x) for a.a. all x ∈ ∂Ω.
(3.11)

With the aid of (3.7), we obtain for ũn the following variational equation∫
Ω

|∇ũn|p−2∇ũn∇ϕdx =

∫
Ω

(
f(x, un)

up−1
n

ũp−1
n − ũp−1

n

)
ϕdx+

∫
∂Ω

aũp−1
n ϕdσ

+

∫
∂Ω

g(x, un)

up−1
n

ũp−1
n ϕdσ, ∀ϕ ∈W 1,p(Ω).

(3.12)

We select ϕ = ũn − ũ ∈W 1,p(Ω) in the last equality to get∫
Ω

|∇ũn|p−2∇ũn∇(ũn − ũ)dx

=

∫
Ω

(
f(x, un)

up−1
n

ũp−1
n − ũp−1

n

)
(ũn − ũ)dx+

∫
∂Ω

aũp−1
n (ũn − ũ)dσ

+

∫
∂Ω

g(x, un)

up−1
n

ũp−1
n (ũn − ũ)dσ.

(3.13)

Making use of (3.4) in combination with (3.11) results in

|f(x, un(x))|
up−1
n (x)

ũp−1
n (x)|ũn(x)− ũ(x)| ≤ cfz1(x)p−1(z1(x) + |ũ(x)|), (3.14)

respectively,

|g(x, un(x))|
up−1
n (x)

ũp−1
n (x)|ũn(x)− ũ(x)| ≤ cgz2(x)p−1(z2(x) + |ũ(x)|). (3.15)

We see at once that the right-hand sides of (3.14) and (3.15) belong to L1(Ω) and
L1(∂Ω), respectively, which allows us to apply Lebesgue’s dominated convergence
theorem. This fact and the convergence properties in (3.10) show

lim
n→∞

∫
Ω

f(x, un)

up−1
n

ũp−1
n (ũn − ũ)dx = 0,

lim
n→∞

∫
∂Ω

g(x, un)

up−1
n

ũp−1
n (ũn − ũ)dσ = 0.

(3.16)

From (3.10), (3.13), (3.16) we infer

lim sup
n→∞

∫
Ω

|∇ũn|p−2∇ũn∇(ũn − ũ)dx = 0,

and the (S+)-property of −∆p corresponding to W 1,p(Ω) implies

ũn → ũ in W 1,p(Ω). (3.17)

Remark that ‖ũ‖W 1,p(Ω) = 1 which means ũ 6≡ 0. Applying (3.9) and (3.17) along
with the conditions (H1)(f1),(H2)(g1) to (3.12) provides∫

Ω

|∇ũ|p−2∇ũ∇ϕdx = −
∫

Ω

ũp−1ϕdx+

∫
∂Ω

aũp−1ϕdσ, ∀ϕ ∈W 1,p(Ω).

The equation above is the weak formulation of the Steklov eigenvalue problem in
(1.3) where ũ ≥ 0 is the eigenfunction with respect to the eigenvalue a > λ1. As
ũ ≥ 0 is nonnegative in Ω, we get a contradiction to the results of Mart́ınez et al.
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in [21, Lemma 2.4] because ũ must change sign on ∂Ω. Hence, u+ 6≡ 0. Applying
Lemma 3.4 yields u+ ∈ int(C1(Ω)+).

Claim 3: u+ ∈ int(C1(Ω)+) is the smallest positive solution of (1.1) in [0, ϑae].

Let u ∈W 1,p(Ω) be a positive solution of (1.1) satisfying 0 ≤ u ≤ ϑae. Lemma 3.4
immediately implies u ∈ int(C1(Ω)+). Then there exists an integer n sufficiently
large such that u ∈ [ 1

nϕ1, ϑae]. However, we already know that un is the smallest

solution of (1.1) in [ 1
nϕ1, ϑae] which yields un ≤ u. Passing to the limit proves

u+ ≤ u. Hence, u+ must be the smallest positive solution of (1.1). The existence
of the greatest negative solution of (1.1) within [−ϑbe, 0] can be proved similarly.
This completes the proof of the theorem. �

4. Variational Characterization of Extremal Solutions

Theorem 3.5 ensures the existence of extremal positive and negative solutions
of (1.1) for all a > λ1 and b > λ1 denoted by u+ = u+(a) ∈ int(C1(Ω)+) and
u− = u−(b) ∈ − int(C1(Ω)+), respectively. Now, we introduce truncation functions
T+, T−, T0 : Ω× R→ R and T ∂Ω

+ , T ∂Ω
− , T ∂Ω

0 : ∂Ω× R→ R as follows.

T+(x, s) =


0 if s ≤ 0

s if 0 < s < u+(x)

u+(x) if s ≥ u+(x)

, T ∂Ω
+ (x, s)


0 if s ≤ 0

s if 0 < s < u+(x)

u+(x) if s ≥ u+(x)

T−(x, s) =


u−(x) if s ≤ u−(x)

s if u−(x) < s < 0

0 if s ≥ 0

, T ∂Ω
− (x, s) =


u−(x) if s ≤ u−(x)

s if u−(x) < s < 0

0 if s ≥ 0

T0(x, s) =


u−(x) if s ≤ u−(x)

s if u−(x) < s < u+(x)

u+(x) if s ≥ u+(x)

,

T ∂Ω
0 (x, s) =


u−(x) if s ≤ u−(x)

s if u−(x) < s < u+(x)

u+(x) if s ≥ u+(x)

For u ∈W 1,p(Ω) the truncation operators on ∂Ω apply to the corresponding traces
γ(u). We just write for simplification T ∂Ω

+ (x, u), T ∂Ω
+ (x, u), T ∂Ω

+ (x, u) without γ.
Furthermore, the truncation operators are continuous, uniformly bounded, and
Lipschitz continuous with respect to the second argument. By means of these
truncations, we define the following associated functionals given by

E+(u) =
1

p
[‖∇u‖pLp(Ω) + ‖u‖pLp(Ω)]−

∫
Ω

∫ u(x)

0

f(x, T+(x, s))dsdx

−
∫
∂Ω

∫ u(x)

0

[
aT ∂Ω

+ (x, s)p−1 + g(x, T ∂Ω
+ (x, s))

]
dsdσ,
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E−(u) =
1

p
[‖∇u‖pLp(Ω) + ‖u‖pLp(Ω)]−

∫
Ω

∫ u(x)

0

f(x, T−(x, s))dsdx

+

∫
∂Ω

∫ u(x)

0

[
b|T ∂Ω
− (x, s)|p−1 − g(x, T ∂Ω

− (x, s))
]
dsdσ,

E0(u) =
1

p
[‖∇u‖pLp(Ω) + ‖u‖pLp(Ω)]−

∫
Ω

∫ u(x)

0

f(x, T0(x, s))dsdx

−
∫
∂Ω

∫ u(x)

0

[
aT ∂Ω

+ (x, s)p−1 − b|T ∂Ω
− (x, s)|p−1 + g(x, T ∂Ω

0 (x, s))
]
dsdσ,

which are well-defined and belong to C1(W 1,p(Ω)). Due to the truncations, one can
easily show that these functionals are coercive and weakly lower semicontinuous
which implies that their global minimizers exist. Moreover, they also satisfy the
Palais-Smale condition.

Lemma 4.1. Let u+ and u− be the extremal constant-sign solutions of (1.1). Then
the following holds:

(i) A critical point v ∈ W 1,p(Ω) of E+ is a nonnegative solution of (1.1) sat-
isfying 0 ≤ v ≤ u+.

(ii) A critical point v ∈W 1,p(Ω) of E− is a nonpositive solution of (1.1) satis-
fying u− ≤ v ≤ 0.

(iii) A critical point v ∈ W 1,p(Ω) of E0 is a solution of (1.1) satisfying u− ≤
v ≤ u+.

Proof. Let v be a critical point of E0 meaning E′0(v) = 0. We have∫
Ω

|∇v|p−2∇v∇ϕdx

=

∫
Ω

[f(x, T0(x, v))− |v|p−2v]ϕdx+

∫
∂Ω

aT ∂Ω
+ (x, v)p−1ϕdσ

+

∫
∂Ω

[−b|T ∂Ω
− (x, v)|p−1 + g(x, T ∂Ω

0 (x, v))]ϕdσ, ∀ϕ ∈W 1,p(Ω).

(4.1)

As u+ is a positive solution of (1.1) it satisfies∫
Ω

|∇u+|p−2∇u+∇ϕdx =

∫
Ω

[f(x, u+)− up−1
+ ]ϕdx

+

∫
∂Ω

[aup−1
+ + g(x, u+)]ϕdσ, ∀ϕ ∈W 1,p(Ω).

(4.2)

Subtracting (4.2) from (4.1) and setting ϕ = (v − u+)+ ∈W 1,p(Ω) provides∫
Ω

[|∇v|p−2∇v − |∇u+|p−2∇u+]∇(v − u+)+dx+

∫
Ω

[|v|p−2v − up−1
+ ](v − u+)+dx

=

∫
Ω

[f(x, T0(x, v))− f(x, u+)](v − u+)+dx

+

∫
∂Ω

[aT ∂Ω
+ (x, v)p−1 − b|T ∂Ω

− (x, v)|p−1 − aup−1
+ ](v − u+)+dσ

+

∫
∂Ω

[g(x, T ∂Ω
0 (x, v))− g(x, u+)](v − u+)+dσ.
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Based on the definition of the truncation operators, we see that the right-hand
side of the equality above is equal to zero. On the other hand the integrals on the
left-hand side are strictly positive in case v > z+ which is a contradiction. Thus,
we get (v − u+)+ = 0 and hence, v ≤ u+. The proof for v ≥ u− acts in a similar
way which shows that T0(x, v) = v, T ∂Ω

+ (x, v) = v+, T ∂Ω
− (x, v) = v− and therefore,

v is a solution of (1.1) satisfying u− ≤ v ≤ u+. The statements in (i) and (ii) can
be shown in the same way. �

An important tool in our considerations is the relation between local C1(Ω)-
minimizers and local W 1,p(Ω)-minimizers for C1-functionals. Fact is that every
local C1-minimizer of E0 is a local W 1,p(Ω)-minimizer of E0 which was proved in
similar form in [27, Proposition 5.3]. This result reads as follows.

Proposition 4.2. If z0 ∈W 1,p(Ω) is a local C1(Ω)−minimizer of E0 meaning that
there exists r1 > 0 such that

E0(z0) ≤ E0(z0 + h) for all h ∈ C1(Ω) with ‖h‖C1(Ω) ≤ r1,

then z0 is a local minimizer of E0 in W 1,p(Ω) meaning that there exists r2 > 0 such
that

E0(z0) ≤ E0(z0 + h) for all h ∈W 1,p(Ω) with ‖h‖W 1,p(Ω) ≤ r2.

We also refer to a recent paper (see [29]) in which the proposition above was
extended to the more general case of nonsmooth functionals. With the aid of
Proposition 4.2, we can formulate the next lemma about the existence of local and
global minimizers with respect to the functionals E+, E− and E0.

Lemma 4.3. Let a > λ1 and b > λ1. Then the extremal positive solution u+ of
(1.1) is the unique global minimizer of the functional E+ and the extremal nega-
tive solution u− of (1.1) is the unique global minimizer of the functional E−. In
addition, both u+ and u− are local minimizers of the functional E0.

Proof. As E+ : W 1,p(Ω)→ R is coercive and weakly sequentially lower semicontin-
uous, its global minimizer v+ ∈ W 1,p(Ω) exists meaning that v+ is a critical point
of E+. Concerning Lemma 4.1 we know that v+ is a nonnegative solution of (1.1)
satisfying 0 ≤ v+ ≤ u+. Due to condition (H2)(g1) there exists a number δa > 0
such that

|g(x, s)| ≤ (a− λ1)sp−1, ∀s : 0 < s ≤ δa. (4.3)

Choosing ε < min
{

δf
‖ϕ1‖∞ ,

δa
‖ϕ1‖∞

}
and applying assumption (H1)(f4), inequality

(4.3) along with the Steklov eigenvalue problem in (1.3) implies

E+(εϕ1) = −
∫

Ω

∫ εϕ1(x)

0

f(x, s)dsdx+
λ1 − a
p

εp‖ϕ1‖pLp(∂Ω)

−
∫
∂Ω

∫ εϕ1(x)

0

g(x, s)dsdσ

<
λ1 − a
p

εp‖ϕ1‖Lp(∂Ω) +

∫
∂Ω

∫ εϕ1(x)

0

(a− λ1)sp−1dsdσ

= 0.
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From the calculations above, we see at once that E+(v+) < 0 which means that
v+ 6= 0. This allows us to apply Lemma 3.4 getting v+ ∈ int(C1(Ω)+). Since
u+ is the smallest positive solution of (1.1) in [0, ϑae] fulfilling 0 ≤ v+ ≤ u+,
it must hold v+ = u+ which proves that u+ is the unique global minimizer of
E+. The same considerations show that u− is the unique global minimizer of E−.
In order to complete the proof, we are going to show that u+ and u− are local
minimizers of the functional E0 as well. The extremal positive solution u+ belongs
to int(C1(Ω)+) which means that there is a neighborhood Vu+ of u+ in the space

C1(Ω) satisfying Vu+
⊂ C1(Ω)+. Therefore E+ = E0 on Vu+

proves that u+ is a

local minimizer of E0 on C1(Ω). Applying Proposition 4.2 yields that u+ is also a
local W 1,p(Ω)-minimizer of E0. Similarly we see that u− is a local minimizer of E0

which completes the proof. �

Lemma 4.4. The functional E0 : W 1,p(Ω) → R has a global minimizer v0 which
is a nontrivial solution of (1.1) satisfying u− ≤ v0 ≤ u+.

Proof. As we know, the functional E0 : W 1,p(Ω) → R is coercive and weakly
sequentially lower semicontinuous. Hence, it has a global minimizer v0. More
precisely, v0 is a critical point of E0 which is a solution of (1.1) satisfying u− ≤
v0 ≤ u+ (see Lemma 4.1). The fact that E0(u+) = E+(u+) < 0 (see the proof of
Lemma 4.3) proves that v0 is nontrivial meaning v0 6= 0. �

5. Existence of Sign-Changing Solutions

The main result in this section about the existence of a nontrivial solution of
problem (1.1) reads as follows.

Theorem 5.1. Under hypotheses (H1)–(H3) problem (1.1) has a nontrivial sign-
changing solution u0 ∈ C1(Ω).

Proof. In view of Lemma 4.4 the existence of a global minimizer v0 ∈ W 1,p(Ω) of
E0 satisfying v0 6= 0 has been proved. This means that v0 is a nontrivial solution of
(1.1) belonging to [u−, u+]. If v0 6= u− and v0 6= u+, then u0 := v0 must be a sign-
changing solution because u− is the greatest negative solution and u+ is the smallest
positive solution of (1.1) which proves the theorem in this case. We still have to
show the theorem in case that either v0 = u− or v0 = u+. Let us only consider the
case v0 = u+ because the case v0 = u− can be proved similarly. The function u− is
a local minimizer of E0. Without loss of generality we suppose that u− is a strict
local minimizer, otherwise we would obtain infinitely many critical points v of E0

which are sign-changing solutions due to u− ≤ v ≤ u+ and the extremality of the
solutions u−, u+. Under these assumptions, there exists a ρ ∈ (0, ‖u+−u−‖W 1,p(Ω))
such that

E0(u+) ≤ E0(u−) < inf{E0(u) : u ∈ ∂Bρ(u−)}, (5.1)

where ∂Bρ = {u ∈ W 1,p(Ω) : ‖u − u−‖W 1,p(Ω) = ρ}. Now, we may apply the
Mountain-Pass Theorem to E0 (cf. [24]) thanks to (5.1) along with the fact that
E0 satisfies the Palais-Smale condition. This yields the existence of u0 ∈ W 1,p(Ω)
satisfying E′0(u0) = 0 and

inf{E0(u) : u ∈ ∂Bρ(u−)} ≤ E0(u0) = inf
π∈Π

max
t∈[−1,1]

E0(π(t)), (5.2)
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where

Π = {π ∈ C([−1, 1],W 1,p(Ω)) : π(−1) = u−, π(1) = u+}.

It is clear that (5.1) and (5.2) imply u0 6= u− and u0 6= u+. Hence, u0 is a sign-
changing solution provided u0 6= 0. We have to show that E0(u0) 6= 0 which is
fulfilled if there exists a path π̃ ∈ Π such that

E0(π̃(t)) 6= 0, ∀t ∈ [−1, 1].

Let S = W 1,p(Ω) ∩ ∂BL
p(∂Ω)

1 , where ∂B
Lp(∂Ω)
1 = {u ∈ Lp(∂Ω) : ‖u‖Lp(∂Ω) = 1},

and SC = S ∩ C1(Ω) be equipped with the topologies induced by W 1,p(Ω) and
C1(Ω), respectively. Furthermore, we set

Π0 = {π ∈ C([−1, 1], S) : π(−1) = −ϕ1, π(1) = ϕ1},
Π0,C = {π ∈ C([−1, 1], SC) : π(−1) = −ϕ1, π(1) = ϕ1}.

Because of the results of Mart́ınez and Rossi in [23] there exists a continuous path
π ∈ Π0 satisfying t 7→ π(t) ∈ {u ∈W 1,p(Ω) : I(a,b)(u) < 0, ‖u‖Lp(∂Ω) = 1} provided

(a, b) is above the curve C of hypothesis (H3). Recall that the functional I(a,b) is
given by

I(a,b)(u) =

∫
Ω

(|∇u|p + |u|p)dx−
∫
∂Ω

(a(u+)p + b(u−)p)dσ.

This implies the existence of µ > 0 such that

I(a,b)(π(t)) ≤ −µ < 0, ∀t ∈ [−1, 1].

It is well known that SC is dense in S which implies the density of Π0,C in Π0.
Thus, a continuous path π0 ∈ Π0,C exists such that

|I(a,b)(π(t))− I(a,b)(π0(t))| < µ

2
, ∀t ∈ [−1, 1].

The boundedness of the set π0([−1, 1])(Ω) in R ensures the existence of M > 0 such
that

|π0(t)(x)| ≤M for all x ∈ Ω and for all t ∈ [−1, 1].

Lemma 3.5 yields that u+,−u− ∈ int(C1(Ω)+). Thus, for every u ∈ π0([−1, 1]) and
any bounded neighborhood Vu of u in C1(Ω) there exist positive numbers hu and
ju satisfying

u+ − hv ∈ int(C1(Ω)+) and − u− + jv ∈ int(C1(Ω)+), (5.3)

for all h : 0 ≤ h ≤ hu, for all j : 0 ≤ j ≤ ju, and for all v ∈ Vu. Using (5.3) along
with a compactness argument implies the existence of ε0 > 0 such that

u−(x) ≤ επ0(t)(x) ≤ u+(x), (5.4)
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for all x ∈ Ω, for all t ∈ [−1, 1], and for all ε ≤ ε0. Representing E0 in terms of
I(a,b), we obtain

E0(u) =
1

p
I(a,b)(u) +

∫
∂Ω

(a(u+)p + b(u−)p)dσ −
∫

Ω

∫ u(x)

0

f(x, T0(x, s))dsdx

−
∫
∂Ω

∫ u(x)

0

(aT ∂Ω
+ (x, s)p−1 − b|T ∂Ω

− (x, s)|p−1)dsdσ

−
∫
∂Ω

∫ u(x)

0

g(x, T ∂Ω
0 (x, s))dsdσ.

In view of (5.4) we get for all ε ≤ ε0 and all t ∈ [−1, 1]

E0(επ0(t))

=
1

p
I(a,b)(επ0(t))−

∫
Ω

∫ επ0(t)(x)

0

f(x, s)dsdx−
∫
∂Ω

∫ επ0(t)(x)

0

g(x, s)dsdσ.

= εp

[
1

p
I(a,b)(π0(t))− 1

εp

∫
Ω

∫ επ0(t)(x)

0

f(x, s)dsdx

− 1

εp

∫
∂Ω

∫ επ0(t)(x)

0

g(x, s)dsdσ

]

< εp

[
− µ

2p
+

1

εp

∫
Ω

∣∣∣∣∣
∫ επ0(t)(x)

0

f(x, s)ds

∣∣∣∣∣ dx
+

1

εp

∫
∂Ω

∣∣∣∣∣
∫ επ0(t)(x)

0

g(x, s)ds

∣∣∣∣∣ dσ
]

(5.5)

Due to hypotheses (H1)(f1) and (H2)(g1) there exist positive constants δ1, δ2 such
that

|f(x, s)| ≤ µ

5Mp
|s|p−1, for a.a. x ∈ Ω and all s : |s| ≤ δ1,

|g(x, s)| ≤ µ

5Mp
|s|p−1, for a.a. x ∈ ∂Ω and all s : |s| ≤ δ2.

(5.6)

Choosing ε > 0 such that ε < min{ε0,
δ1
M , δ2M } and using (5.6) provides

1

εp

∫
Ω

∣∣∣∣∣
∫ επ0(t)(x)

0

f(x, s)ds

∣∣∣∣∣ dx ≤ µ

5p
,

1

εp

∫
∂Ω

∣∣∣∣∣
∫ επ0(t)(x)

0

g(x, s)ds

∣∣∣∣∣ dσ ≤ µ

5p
.

(5.7)

Applying (5.7) to (5.5) yields

E0(επ0(t)) ≤ εp(− µ

2p
+

µ

5p
+

µ

5p
) < 0, for all t ∈ [−1, 1]. (5.8)

We have constructed a continuous path επ0 joining −εϕ1 and εϕ1. In order to
construct continuous paths π+, π− connecting εϕ1 and u+, respectively, u− and
−εϕ1, we first denote

c+ = E+(εϕ1), m+ = E+(u+), E
c+
+ = {u ∈W 1,p(Ω) : E+(u) ≤ c+}.
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It holds m+ < c+ because u+ is a global minimizer of E+. By Lemma 4.1 the
functional E+ has no critical values in the interval (m+, c+]. The coercivity of E+

along with its property to satisfy the Palais-Smale condition allows us to apply
the Second Deformation Lemma (see, e.g. [17, p. 366]) to E+. This ensures the
existence of a continuous mapping η ∈ C([0, 1]×Ec++ , E

c+
+ ) satisfying the following

properties.

(i) η(0, u) = u, for all u ∈ Ec++ ,

(ii) η(1, u) = u+, for all u ∈ Ec++ ,

(iii) E+(η(t, u)) ≤ E+(u), for all t ∈ [0, 1] and for all u ∈ Ec++ .

Next, we introduce the path π+ : [0, 1] → W 1,p(Ω) given by π+(t) = η(t, εϕ1)+ =
max{η(t, εϕ1), 0} for all t ∈ [0, 1] which is obviously continuous in W 1,p(Ω) joining
εϕ1 and u+. Additionally, one has

E0(π+(t)) = E+(π+(t)) ≤ E+(η(t, εϕ1)) ≤ E+(εϕ1) < 0, for all t ∈ [0, 1]. (5.9)

Similarly, the Second Deformation Lemma can be applied to the functional E−.
We get a continuous path π− : [0, 1]→W 1,p(Ω) connecting −εϕ1 and u− such that

E0(π−(t)) < 0, for all t ∈ [0, 1]. (5.10)

In the end, we combine the curves π−, επ0 and π+ to obtain a continuous path π̃ ∈ Π
joining u− and u+. Taking into account (5.8), (5.9), and (5.10), we get u0 6= 0.
This yields the existence of a nontrivial sign-changing solution u0 of problem (1.1)
satisfying u− ≤ u0 ≤ u+ which completes the proof. �
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