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ABSTRACT. In this paper we first introduce an innovative equivalent norm
in the Musielak-Orlicz Sobolev spaces in a very general setting and we then
present a new result on the boundedness of the solutions of a wide class of non-
linear Neumann problems, both of independent interest. Moreover, we study a
variable exponent double phase problem with a nonlinear boundary condition
and prove the existence of multiple solutions under very general assumptions
on the nonlinearities. To be more precise, we get constant sign solutions (non-
positive and nonnegative) via a mountain-pass approach and a sign-changing
solution by using an appropriate subset of the corresponding Nehari manifold
along with the Brouwer degree and the Quantitative Deformation Lemma.

1. INTRODUCTION

A differential operator that has found a place in many research fields in recent
years is the so-called “double phase operator”, which is defined by

u— —div (|Vu\p(“”)_2Vu + ﬂ($)|VU‘q(w)_2VU) ,

for every function u belonging to a suitable Musielak-Orlicz Sobolev space W1 (Q),
where Q C RY is supposed to be a bounded domain with Lipschitz boundary 6.
The integral functional related to this operator, given by

/ (V@ + (@) V@) de,  we W (),
Q

changes ellipticity in two different phases and has been first introduced in 1986 by
Zhikov [53] with constant exponents. Since then, many authors studied problems
involving this operator, which has been used to model different phenomena. Among
the topics, we mention first the elasticity theory in which it describes the behav-
ior of strongly anisotropic materials, whose hardening properties are related to the
exponents p(-) and ¢(-) and significantly change with the point and the coefficient
1(-) determines the geometry of a composite made of two different materials, see
Zhikov [54]. Moreover, other applications can be found in the works of Bahrouni-
Rédulescu-Repovs [2] on transonic flows, Benci-D’Avenia-Fortunato-Pisani [8] on
quantum physics and Zhikov [54] on the Lavrentiev gap phenomenon, the ther-
mistor problem and the duality theory. For a mathematical study of such integral
functionals with (p, ¢)-growth we refer to the works of Baroni-Colombo-Mingione
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[4, 5, 6], Colombo-Mingione [11, 12], Cupini-Marcellini-Mascolo [16], De Filippis-
Mingione [18], Marcellini [38, 39, 40], Ragusa-Tachikawa [4(], see also the papers of
Beck-Mingione [7] and De Filippis-Mingione [17] for nonautonomous integrals. Fur-

thermore it should be mentioned that the double phase operator generalizes several
other differential operators, for example, the (p(-), ¢(-))- Laplacian when infg 4 > 0
and the p(-)-Laplacian if p = 0, respectively, both of which have been extensively
studied in the literature.

Concerning applications in partial differential equations, the double phase oper-
ator arises from the study of general reaction—diffusion equations with nonhomoge-
neous diffusion and transport aspects. These nonhomogeneous operators have ap-
plications in biophysics, plasma physics and chemical reactions, with double phase
features, where the function u corresponds to the concentration term, and the dif-
ferential operator represents the diffusion coefficient.

The weak solutions of related problems are functions belonging to an appropri-
ate Musielak-Orlicz Sobolev space W17 (Q), where H: Q x [0,00) — [0,00) is a
nonlinear function defined by

(z,t) = 2@ ()0,
with
Np(z)
N —p(x)
and 0 < u(-) € L*°(Q). The novelties of our paper can be summarized as follows

and affect different results of independent interest. First, we prove the existence of
a new general equivalent norm on W1 (Q) given by

V| \P@ vl 2®)
||u||1iHmf{T>o; /Q ((“') e (“) @

+ [ 91(x) (')W) dz (1.1)

1<plx) <N, p(x)<q()<p(zx)= for all z € Q,

where 0 < 91(-) € L>®(2),0 < 9(-) € L>®(9Q) and 61,52 are of class C(Q),
satisfying 1 < 6;(z) < p*(x) and 1 < §3(x) < p.(z) for all 2 € Q. For more details
we refer to (H1). Let us emphasize that in this setting the exponents §;(:) and
02(+) can be also critical, namely they can coincide (at some points or at all ones)
with the Sobolev critical exponents p*(-) and p.(-), respectively, see (2.1) for the
definition of them. There is a trade-off for allowing the exponents J; and do to
be equal to the Sobolev critical exponents at some points: it does not suffice that
01 and J9 are continuous functions, we require that they are log-Ho6lder continuous
and in W17(Q) for v > N, respectively. The reason is the Sobolev embedding
theorem in variable exponent spaces, which requires this extra regularity if you
achieve equality with the critical Sobolev exponent. Note that in the constant
exponent case there would be no difference. All in all, the norm in (1.1) generalizes
different known norms in WP(Q2), W2()(Q) or in the Musielak-Orlicz Sobolev
space with constant exponents, see Crespo-Blanco-Papageorgiou-Winkert [14].



SUPERLINEAR ELLIPTIC EQUATIONS WITH UNBALANCED GROWTH 3

In the second part of the paper, we are interested in the boundedness of weak
solutions of the following nonlinear Neumann problem

—div A(x, u, Vu) = B(z, u, Vu) in Q,
A(z,u, Vu) - v = C(x, u) on 09,

where the right-hand side in 2 can also depend on the gradient of the solution
and A, B and C are Carathéodory functions satisfying suitable and general growth
conditions presented in (H.,). In particular, any weak solution of (1.2) turns out
to be in L*>(Q) and we give in Theorem 4.1 a priori estimates on its L™ (Q)-
norm. Such a result can be applied in several other problems involving the variable
exponent double phase operator as well as general right-hand sides.

In the last part of this paper our purpose is to prove existence and multiplicity
results for a variable exponent double phase problem with nonlinear boundary con-
dition and superlinear nonlinearities. Inspired by the recent work of Crespo-Blanco-
Winkert [15] on a Dirichlet problem, the new equivalent norm that we present in
Section 3 plays an important role. In particular, given a bounded domain Q C RY,
N > 2, with Lipschitz boundary 02 and denoting with v(z) the outer unit normal
of Q at z € 09, we study the following problem

—div F(u) + [ulP@ 2y = f(z,u) in ,
F(u)-v=glx,u) — [uP 24 on dQ,
where div F(u) is the variable exponent double phase operator given by
F(u) = [VulP®=2Vu + p(z)|Vu| 1 2V,

and f: Q@ xR — R as well as g: Q0 x R — R are Carathéodory functions which
are superlinear with respect to the second argument, see the precise conditions in
(Hy,4) and some examples in Example 5.2.

In recent years, many authors have dealt with double phase problems in the

(1.2)

(P)

constant exponents case, see for instance Biagi-Esposito-Vecchi [9], Colasuonno-
Squassina [10], Farkas-Winkert [25], Fiscella [20], Gasiniski-Papageorgiou [27], Gas-
inski-Winkert [28, 29], Ge-Pucci [30], Liu-Dai [35], Liu-Papageorgiou [36], Papageor-
giou-Réadulescu-Repovs [11], Perera-Squassina [44], Pucci [45], Steglinski [417], Zeng-
Bai-Gasiriski-Winkert [51] and the references therein.

On the other hand, there are much fewer results for the variable exponents
case, see Amoroso-Bonanno-D’Agui-Winkert [1], Bahrouni-Radulescu-Winkert [3],

Crespo-Blanco-Gasiriski-Harjulehto-Winkert [13], Crespo-Blanco-Winkert [15], Leo-
nardi-Papageorgiou [34], Liu-Pucci [37], Kim-Kim-Oh-Zeng [33], Ragusa-Tachikawa
[46], Vetro-Winkert [50] and Zeng-Rédulescu-Winkert [52].

As mentioned before, we present existence and multiplicity results for problem
(P) by using critical point theory and the Nehari manifold approach, that is, we
are able to provide the existence of three bounded weak solutions of problem (P)
with precise information on the sign. Indeed, through a mountain-pass approach we
obtain the existence of two solutions with constant sign. In addition, through the
Nehari manifold method along with the Quantitative Deformation Lemma and the
Brouwer degree we establish the existence of a sign-changing solution, that turns
out to have exactly two nodal domains. We emphasize that we do not require a
monotonicity condition on the exponent p(-) as it was needed in the work of Crespo-
Blanco-Winkert [15, hypothesis (H1)], since we do not need Poincarg’s inequality
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for the modular function related to the norm. Moreover, as far as we know, the
growth assumption on the boundary 99 stated in (h4) is new and optimal for this
treatment.

The paper is organized as follows. In Section 2 we recall the definitions and
some properties of the Lebesgue and Sobolev spaces with variable exponents and
of the Musielak-Orlicz Sobolev spaces as well as the main tools needed in our
treatment, such as the Mountain-Pass Theorem (Theorem 2.8) and the Quantitative
Deformation Lemma (Lemma 2.9). In Section 3 we present the proof of a new
equivalent norm in the Musielak-Orlicz Sobolev space and we give some properties
related to the corresponding modular and the operator. In Section 4 we provide a
result on the boundedness of the weak solutions of a more general problem than
(P), giving also in Theorem 4.1 a priori estimates on the L>(€2)-norm of the weak
solutions. Then, in Section 5 we state the assumptions on the nonlinearities f
and ¢ and in Theorem 5.7 we prove the existence of two constant sign solutions,
in particular one is nonnegative and the other one is nonpositive. After this, in
Section 6 we state Theorem 6.6 concerning the existence of a third solution, which
is sign-changing, obtained minimizing the energy functional related to our problem
in a suitable Nehari manifold subset. Finally, Theorem 6.9 gives information on
the nodal domains of this sign-changing solution.

2. PRELIMINARIES

For any 1 < r < oo, L"(Q) indicates the usual Lebesgue spaces equipped with
the norm | - ||, and for 1 < 7 < oo, W17 (Q) denotes the Sobolev space endowed
with the usual norm || - || . First, we introduce the Lebesgue and Sobolev spaces
with variable exponents and some properties that will be useful in our treatment.
For a detailed overview we refer to the book of Diening-Harjulehto-Hasto-Ruzicka
[19]. For any r € C(Q), we set

ry :=maxr(z) and r_ :=minr(z),
er £EQ

and define
CL(Q)={reCc@) :r_>1}
Denoting by M () the space of all measurable functions u: Q@ — R, we define for

any r € C1(€Q) the Lebesgue space with variable exponent by
L"O(Q) = {u € M(Q) : py(y(u) < oo},

where the modular is given by

pr()(u) = / "LL|T(‘T) dl’,
Q
endowed with the Luxemburg norm

||u||,«(.) = inf{T >0 prey (g) < 1}.
Here, we recall the relation between the norm and the modular, see Fan-Zhao
[24, Theorems 1.2 and 1.3].

Proposition 2.1. Let r € C(Q), u € L")(Q) and A € R. Then the following
hold:

(i) If u#0, then [lull,()y =X <= pr)(3)=1;
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(ii) fJullpy <1 (resp.> 1, =1) <= ppy(u) <1 (resp.>1, =1);
i) Flluley <1 = [}, < ooy () < ullZs);
() Ifllull-(y>1 = lullg) < prey(u) < lullfy;
V) Hu||r(.) — 0 = pr(.)(u) — 0,’
Vi) flullr(y =1 = pry(u) = 1;
(vii) flullry = o0 = ppy(u) = +oo;
(viil) up — u in L'O(Q) = pr(y(Un) = pu).

For v € C1 () being the conjugate variable exponent to r, that is,
1 n 1
r(z)  r'(z)
it is clear that L") (Q)* = L™ ()(Q2) and the following Holder’s inequality hold
hvlls < 2lullcy ol
for all uw € L™O)(Q) and for all v € L™ )(Q), see Diening-Harjulehto-Hasto-Rizicka
[19, Lemma 3.2.20].

Furthermore, for ry,7y € C(Q) with r1(z) < ro(z) for all z € Q, we have the
continuous embedding

=1 forallz €,

L2O(Q) — L O(Q).

Moreover, we can define variable exponent Lebesgue spaces with weights: for
any w € LY(Q), w > 0, we can define the modular

e () = /Qw<x>|uv<m> da.

Then, we define the space

LrO(Q) = {u eM(Q) : / Pr()w(u) dr < oo} ,
Q
endowed with the corresponding Luxemburg norm
. u
”uHr(),w = inf {)\ >0: priyw (X) < 1} .

Next we can define the corresponding variable exponent Sobolev space W) Q)
which is given by, for r € C (),

W) = {u e L'O(Q) : |Vu| e LT(')(Q)} :
equipped with the norm

[[ul

() = lulleey + 1Vull),
where | Vull..) = |||Vl [l.(). It is well known that L")(Q) and W)(Q) are
separable and reflexive Banach spaces and possess an equivalent, uniformly convex
norm, see for example Diening-Harjulehto-Hésto-Ruzicka [19].

For any r € C4(Q) with ry < N, we denote by r* and r, the critical Sobolev
exponents, defined for all z € Q as follows
_ Nr(z) (N = 1)r(x)
N —r(x) N —r(x) -~
Furthermore, let o be the (IV — 1)-dimensional Hausdorff measure on the boundary
0Q and indicate with L"()(99Q) the boundary Lebesgue space endowed with the

r*(z) and 7. (x) = (2.1)
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usual norm | - ||00. We can consider a trace operator, i.e., a continuous linear
operator 7: W) (Q) — L™O)(99) for all m € C(Q) with 1 < m(z) < r.(z) for
every x € (), such that

y(u) = ulgg for all u € WO (Q) N C(Q).

If it also holds that r € W7 () with v > N, then we can take any m € C(Q) with
1 < m(z) < ro(x) for every z € Q. By the trace embedding theorem, it is known
that v is compact for any r € C(Q) with 1 < r(z) < r.(z) for all z € Q, see Fan
[21, Corollary 2.4]. In this paper we avoid the notation of the trace operator and we
consider all the restrictions of Sobolev functions to the boundary 0f2 in the sense
of traces. Moreover, we indicate with p,(.) so(-) and |- ||,(.),sq the modular and the
norm, respectlvely, of the space L"()(9Q) with exponent 7(-) on the boundary 9.

By C° Thogl (©2) we denote the set of all functions h: Q — R that are log-Holder
continuous, that is, there exists a constant C' > 0 such that

for all z,y € Q with |z — y| < 1

C
W) = h(y)| < :

| log & — y]|
Next, we present some embedding results, see Diening-Harjulehto-Hésto-Ruzicka
[19, Corollary 8.3.2], Fan [21, Corollary 2.4], Fan [22, Propositions 2.1 and 2.2],
Fan-Shen-Zhao [23] and Ho-Kim-Winkert-Zhang [31, Proposition 2.5].
Proposition 2.2.

(i) Letr e C” Thogdl (Q)NCL(Q) and let s € C(Q) be such that 1 < s(z) < r*(x)
for all x € Q. Then, the embedding W) (Q) — L*C)(Q) is continuous.
Ifr € Ci(Q), s € C(Q) and 1 < s(x) < r*(z) for all z € Q, then the
embedding above is compact.

(ii) Suppose thatr € CL(QNW(Q) for somey > N and let s € C(Q) be such
that 1 < s(z) < ri(x) for all x € Q. Then, the embedding W) (Q) —
L50)(09) is continuous. If r € C(Q), s € C(Q) and 1 < s(x) < r.(x) for
all x € Q, then the embedding above is compact.

Remark 2.3. Note that for a bounded domain Q C RN and v > N we have the
following inclusions

COL@Q) c W(Q) c COVF (@) ¢ ¢ T (Q).

Now, we introduce the Musielak-Orlicz space, the Musielak-Orlicz Sobolev space
and we recall some properties that will be useful in the sequel. From now on, we
assume the following;:

(H) p,q € C(Q) such that 1 < p(x) < N and p(z) < q(z) < p*(z) for all z € Q
and p € L>®(Q) with p(z) > 0 for a.a.x € Q.
We consider the nonlinear function H: 2 x [0,00) — [0, 00) defined by

H(z,t) = tP@ + p(2)t?@  for all (x,t) € Q x [0,00),

and we denote by py(-) the corresponding modular, namely

/’H Jul) da:—/ (1uP® + () ) d.
Q

Then, we indicate with L*(£2) the Musielak-Orlicz space, given by
LH(@) = {u e M(®) : pulu) < +00},
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endowed with the Luxemburg norm
l[ull# = inf{T >0: py (%) < 1}.
Let W(Q) be the Musielak-Orlicz Sobolev space, defined by
WhH(Q) = {ue L*(Q) : |Vu| € L*(Q)},
equipped with the usual norm
[l = [IVulla + flull,

where ||Vul|ly = || |Vul ||%. From Crespo-Blanco-Gasiriski-Harjulehto-Winkert [13,
Proposition 2.12] we know that L*(Q) and W1#(Q) are reflexive Banach spaces.
Further, we introduce the seminormed space

Li(Q) = {u e M(Q) : /Qu(x)\uw(@ dz < —I—oo} ,

and endow it with the seminorm

q(z)
lully(ye = inf {T >0 / () ('“') dz < 1} .
Q T

The following result about the main embeddings of W7 (Q) can be found in
Crespo-Blanco-Gasiriski-Harjulehto-Winkert [13, Propositions 2.16 and 2.18].

Proposition 2.4. Let (H) be satisfied. Then the following embeddings hold:
(i) L*(Q) — L"O(Q) and WHH(Q) — WLTO)(Q) are continuous for all r €
C(Q) with 1 <r(x) < p(z) for all z € Q;
(i) if p € CL(Q) N CO s (Q), then WHH(Q) < L™O(Q) is continuous for
r e Q) with 1 < r(x) < p*(x) for all x € Q;
(iii) WHH(Q) < L™C)(Q) is compact for all v € C(Q) with 1 < r(z) < p*(z) for
all z € Q.
(iv) if p € C1(Q) N W (Q) for some v > N, then WHH(Q) — L) (99Q) is
continuous for r € C(Q) with 1 < r(z) < p.(x) for all x € Q;
(v) WEH(Q) «— L™)(8Q) is compact for r € C(Q) with 1 < r(z) < p.(x) for
all x € Q;
(vi) L*(Q2) — LZ(')(Q) is continuous;
(vii) LIC)(Q) — L™(Q) is continuous;
(viil) WHH(Q) — LM(Q) is compact.

For our existence results, we equip the space W7 (Q) with the following norm

q(x)
Hunsz{wo:/(w vu )dx
Q

T T
() ()
+/(3\p dx+/ 4" do <1y,
Q'!'T on'!T
induced by the modular

) = [ (19 + @) 9ul®) do+ [ fup@ ot [ o,
Q Q o0

for all w € WL*(Q). We emphasize that in Section 3 we prove in Proposition
3.1 the existence of a new equivalent norm in W1*(€), denoted by || - 14, in a

p(z)

+ p(z)

(2.2)
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more general setting and the norm (2.2) derives from || - [|7 5, defined in (3.2) by
choosing ¥1 = 93 = 1 and §; = d2 = p. For reader’s convenience, we give here the
relationship between the modular p(-) and the norm || - ||, while in Section 3 we

present the same proposition for the general ones, see Proposition 3.2.
Proposition 2.5. Let hypothesis (H) be satisfied, u € WH1H(Q) and A € R. Then
the following hold:

() Ifu0, then Jul =X\ <= p(%)=1;

i) lul| <1 (resp.>1,=1) <= pu)<1 (resp.>1,=1);
(i) If lul <1 = [lul|** < p(u) < |lu|P-;
< lul[®*;

v) Jlu| =0 <= p(u) = 0;
(vi) flu]] = 400 = p(u) = +o0;
(vii) flu]| =1 <= pu) —1;

(i)

iii)

(évg fllull >1 = lu|"~ < p(u)
)

Moreover, for any h € R let ht = max{h,0} and h~ = max{—h,0}, then one
has that h = h™ — h™ and |h| = hT + h~. Also, from Crespo-Blanco-Gasiriski-
Harjulehto-Winkert [13, Proposition 2.17] we know that, under assumption (H), if
u € WHH(Q) then ut € WHH(Q).

Now, denote by (-, -) the duality pairing between W (Q) and its dual space
WEH(Q)* and by A: WHH(Q) — WH7(Q)* the nonlinear operator defined for all
u,v € WHR(Q) by

(A(u), v) :/ <|Vu|p(w)72Vu + ,u(x)|Vu|q($)*2Vu) -Vodx
Q

—|—/ |u\p($)_2uvdx+/ luP@ =2y do.
Q G19)

In the following proposition we give the properties of this operator, see Proposition
3.3 in Section 3.

Proposition 2.6. Let hypothesis (H) be satisfied. Then, the operator A: W1 (€2)
— WHH(Q)* is bounded, continuous, strictly monotone and of type (S, ), that is,
if up, —u in WHR(Q)  and  limsup (A(uy), u, —u) <0,

n—oo

then u, — u in WHH(Q). Moreover, it is coercive and a homeomorphism.

Next, we recall some tools needed in our investigations. In the sequel, for X
being a Banach space, we denote by X* its topological dual space.

Definition 2.7. Given L € C*(X), we say that L satisfies the Cerami condition

( C-condition for short), if every sequence {u,}nen € X such that
(C1) {L(un)}n>1 € R is bounded,
(C2) (14 [|unllx) L'(up) = 0 in X* as n — oo,
admits a strongly convergent subsequence in X. We say that L satisfies the Cerami

condition at level ¢ € R (C.-condition for short), if (C1) is replaced by L(u,) — ¢
as n — oo.

The following version of the Mountain-Pass Theorem is stated in the book of
Papageorgiou-Radulescu-Repovs [42, Theorem 5.4.6].
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Theorem 2.8. Let X be a Banach space and suppose ¢ € CH(X),ug,u; € X with
|lur — ugl| > 6 >0,

max {p(ug), p(u1)} < inf {p(u) : flu—uoll = 6} = ms,

c= inf max o(y(t)) with T'={y€C([0,1],X) : (0) = uo,¥(1) = w},

and ¢ satisfies the C.-condition. Then ¢ > mgs and c is a critical value of p.
Moreover, if ¢ = mg, then there exists u € Bs(ug) such that ¢'(u) = 0.

Finally, we present a version of the Quantitative Deformation Lemma, which can
be found in Willem [49, Lemma 2.3].

Lemma 2.9. Let X be a Banach space, p € CY(X;R), 0 #S C X,c€R,&,6 >0
such that
8¢
Il = %
where S = {u € X : d(u,S) = infy es ||u — uol| < r} for any r > 0. Then there
exists n € C([0,1] x X; X) such that
(i) n(t,u) =u, ift =0 orifu g o= ([c — 2¢,c+ 2¢]) N Sas,
o(n(l,u)) < c—e for allu € p=((—oo,c+¢]) NS,
u

for all u € o™ ([ — 2¢, ¢ + 2¢]) N Sas,

—~

w(n(-,u)) is decreasing for all u € X,
o(n(t,u)) < c for allu € p=((—o00,c]) NS5 and t € (0,1].

3. A NEW EQUIVALENT NORM

In this section we prove the existence of a new and general equivalent norm in
WLH(Q). First, in addition to (H), we suppose the following conditions:
(H1) (i) 01,62 € C(Q) with 1 < §;(z) < p*(z) and 1 < da(x) < pu(z) for all
z € Q, where
(a1) p € C(Q) N CO s (Q), if 61 (x) = p*(z) for some z € O
(ag) p € C(Q)NWLY(Q) for some v > N, if do(z) = p.(x) for some
HASS ﬁ;
(if) ¥4 € L*™°(Q) with 91 (z) > 0 for a.a.x € €
(iii) Y2 € L*>(09Q) with ¥5(x) > 0 for a.a.x € I
(IV) '191 ;é 0 or 192 ;é 0.

In the sequel we use the seminormed spaces

LyO@) = {u e M(Q) : /Qﬁl(x)wlm dz < oo} ,

Ly (09) = {u e M(Q) : / 9a(@) 0@ do < oo} ,
o0

with corresponding seminorms

. u
ulsy .01 =1nf{7' SIRICIE
9] T

62(1)
do < 1} ,

51(m)
dzx < 1} ,

!

|wlls,(),00,00 = inf {7’ >0 :
oQ
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respectively. We set

S 30 = [IVullag + lulls, )00 + lullsy(),0..00, (3.1)
and
Vo [P v |1
ull} 4 _inf{r >0 / < - () |— de
’ o) T T
(3.2)
61(2) 62(z)
+/ ﬂl(x)’E e+ ﬁg(m)‘g ’ do <15.
Q T o0 T
It can be easily seen that || - || 5, and || - ||} 5, are norms on WH*(Q). In the next
result, we prove that they are both equivalent to the usual one.
Proposition 3.1. Let hypotheses (H) and (H1) be satisfied. Then, || - [|7 4 and

-5 2 given in (3.1) and (3.2), respectively, are both equivalent norms on W(Q).

Proof. We only prove the result when 6;(x) = p*(z) and dz(z) = p.(x) for all
T € Q, the other cases can be shown in a similar way. So, we suppose that D€
C(Q) N WL7(Q) for some v > N. Then, by Remark 2.3 we know that p € C(Q) N

CO Troge (Q) as well.
First, for u € WH(Q) \ {0} we have

|u‘ ),’D*(I) ( U >
Y1 (z dz < ||%1]|oo Ppy | ——— | = |?1]|00-
/Q N )(W”p*(_) <l () = 191

[[u

Hence,

pr ()01 < [91lloollu

In the same way, we show that

p*()-

[ullp. ().00.00 < 192]lc0.00 [ullp. () 00-
Using these along with Proposition 2.4(ii), (iv), we obtain
[l 3 < [IVulla + Crllullp- ) + Collullp. )00
< IVulla + Csllulli,a + Callulli
< Csllu

Il,'Ha

for all u € WH(Q), with positive constants C;, i = 1,...5.
Next, we are going to prove that

[ullw < Collully 3, (3.3)

for some Cg > 0. We argue indirectly and assume that (3.3) does not hold. Then,
we find a sequence {uy, }neny C WHH(Q) such that

unllz > nllun|f 4 for all n € N. (3.4)

Let yn = 124, Hence, llynll% = 1 and from (3.4) we get

[un [l

1
> ynllS 4 3.5
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From |y, |l3 = 1 and (3.5), we know that {y, }nen C W1 #(Q) is bounded. There-
fore, using the embeddings in Proposition 2.4(ii), (iv) and up to a subsequence if
necessary, we may assume that

Yo =y mWHQ) and y, —y in L O(Q) and LP-O)(0Q). (3.6)

Furthermore, from (3.6) and Proposition 2.4(viii), we conclude that y, — y in
L*(Q) and because of ||y,|ls = 1 we have y # 0. Passing to the limit in (3.5)
as n — oo and using (3.6) along with the weak lower semicontinuity of the norm
|V - |3 and of the seminorms || - ||,«(.y,0,, ||  [|p.(),0.,00 We obtain

0= VYl + 1wllp= )00 + [19llp. ().00,00- (3.7)
Inequality (3.7) implies that y = # 0 is a constant and so we have a contradiction
0= [nllILllp~ )00 + llp. ),05,00 > 0,

because of (H1)(iv). Therefore (3.3) holds and we get

lullin < Crllulli a0,

for some C7 > 0.
Next, we are going to show that || - [|7;, and || - [|7 5 are equivalent norms in
WLH(Q). For u € W (Q), we obtain

IVl p(w) vl q
5 + p(x) 5 dz
Q ||U||1H ||u||1H

lul p"(z) lul p« ()
+/ Y (x) = dz + Ya(x) S do
Q ||“H1,H o0 ||u||1H
Vu | P ()
(25 L )
[Vl Q l[ullp=(),00

P+ ()
o) (") do
a0 Ju P (+),02,00

=3.

Thus,
l[ull? 2 < 3llull? 2 (3.8)
On the other hand, we have

IVl p(w) vl q
- + u(x) . dz
Q ||U||1H ||u||1H

s

lul p" (@) lul P« (@)
+ / 91 () 4 de+ [ Oa(x) Y o (39)
Q ||“H1,H o0 ||u||1H

<pi v
S P1H
B Nully 5 )
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where p} 4, is the corresponding modular to || - [|7 5, given by
piwtn) = [ (1Yl 4 u(@) V@) do [ da(@lap”® do
Q Q

+ V9 (2)|ulP*® do.

o0

Note that, for u € W1#(Q), the function 7 p1 #(Tu) is continuous, convex and
even and it is strictly increasing when 7 € [0,00). So, by definition, we directly
obtain

ullf 3, =7 if and only if p7 4 (%) =1.
From this and (3.9) we conclude that

IVullae <flullipe lullpr (o < llullize and flullp.).0..00 < lulli -
Therefore,
1 o *
g”“ |1,H < HU||1H (3.10)
From (3.8) and (3.10) the proof is complete. O
Let

ri:=min{p_,(61)—,(62)-} and re:=max{qs, (d1)+,(02)+}-
In the following proposition we give the relation between the norm | - ||} ;, and the
related modular function p7 4,(-). The proof is similar to that one of Propositions
2.13 and 2.14 given by Crespo-Blanco-Gasinski-Harjulehto-Winkert in [13].

Proposition 3.2. Let hypotheses (H) and (H1) be satisfied, u € WH7(Q) and
A € R. Then the following hold:
(i) [fu#0, then [lullfs =X <<= piy(3) =1
(ii) [[ulli <1 (resp.>1,=1) <= pjyu) <1 (resp.>1, =1);
(i) If ulipe <1 = (lullip)”™ < pipw) < (lulfs)";
() Ifllullis >1 = (lulliz)" < pin) < (lulliz)
W) llulliz =0 <= pfy(u) =0;
(Vi) flullf 4 — o0 <= p]ylu) = o0;
Vi) Jullf =1 = plplw) = 1.
Finally, denote by B: WL (Q) — WLM(Q)* the nonlinear operator defined

pointwise by

(B(u),v) z/ (|Vu|p(x)72Vu—|— u(x)|Vu|q(m)72Vu) -Vodx
Q

+/191\u|51(“’)72uvdx+/ Da|u)?2®2up do,
Q o0

for all u,v € WHM(Q). Arguing as in the in proof of Propositions 3.4 and 3.5 in
[13], we have the following the properties.

Proposition 3.3. Let hypotheses (H) and (H1) be satisfied. Then, the operator
B: WLH(Q) — WLH(Q)* is bounded, continuous and strictly monotone. If, in
addition, 1 < 61(x), 62(x) for all x € Q, then B is coercive, a homeomorphism and
of type (S+).
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Proof. As in the proof of Proposition 3.1 we only consider the case when d1(x) =
p*(x) and §3(x) = pi(x) for all z € Q. Similarly to the proof of Theorem 3.3 in
[13], we can show that B is bounded, continuous and strictly monotone. Let us
only show the proof for the (S )-property. To this end, let {u,}nen € WHH(Q) be
a sequence such that

Up —u in WHH(Q) and  limsup (B(uy),u, — u) < 0. (3.11)

n— o0
From Proposition 2.4(ii) and (iv) we know, up to a subsequence if necessary, that
Up —u in P Q) and w, —u in LP-O)(8Q). (3.12)
The strict monotonicity of B implies that
HILH;O (B(un) — B(u),up —uy =0= nl;n;o (B(w), up — u) .

This yields

n—oo

lim (\Vun|p(x)_2Vun — \Vu\p(x)_QVu) - (Vu, — Vu) dz =0,
Q

lim [ ¢41(z) (\un\p*(x)_zun - |u|p*(m)_2u) (up, —u)dz =0,

n—oo Q
lim Ya(x) (|un Pe(@)=2 1y p*(z)_zu) (uy, —u)do = 0.
Then, in the same way as the claim in [13, Proof of Theorem 3.3, after (3.2)], taking

(3.12) into account, we can show that
Vu, — Vu in LPO(Q),
u, —u in LY (Q), (3.13)
U, = u in Lg’;(')(aQ).
From (3.13) we know that

Vu, — Vu in measure in €,

91 (z) pae) Uy, — V1 () 7y in measure in Q, (3.14)

Io(x) P, — Ua(x) 7@y  in measure in OL.
Note that if a,, b, > 0 for all n € N, we have
lim sup a,, < limsup(a, + by). (3.15)

n—00 n—o0

Therefore, from (3.15), the lim sup-condition in (3.11) in the shape
lim sup (B(u,) — B(w),u, —u) <0
n—oo

and the weak convergence of (3.11) as well as the embeddings W7 (Q) — ng(') (Q),
WEH(Q) — Lf;;(')(aa), we obtain that
lim sup/ (\Vun|p(“")72Vun + u(:c)\Vun|q(x)72Vun> - (Vu, — Vu)dz <0,
Q

n— oo

lim sup/ 1) [wn [P 20y, (1 — u) da <0,
Q

n— oo
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P=(@)=2y (up, —u)do < 0.

lim sup Vo ()|
n—oo JoQ

Arguing as in [13, (3.8), (3.9) and (3.10)] it can be shown that

) |V, |P(®) |V, |96%) )
lim — t+ () ———— | dx
s ( o) MO T

- |vu|p(:c) . |vu|q(w) .
_/Q( p(x) + o) q(x) )d’ (3.16)

lim /191(:c)|un\p*(m) da::/ﬂl(x)|u|p*(“") dz,

P(2) 4o = / Io(z)|u
o

Due to (3.14), the left-hand sides of (3.16) converge in measure to those on the right-
hand sides. Then, the converse of Vitali’s theorem implies the uniform integrability
of the sequences of functions

([Tt e}
p(l‘) : q(m) neN 7

{ﬁl(x)%}neN’ {792(””)%}@'

But then the sequences

A, = {|Vun — Vu|P® 4 p(z)|Vu, — Vu|q<m)}

By, = {191(:6)|un — u\P*(w)}

P () do.

lim Ia () |up

neN ’

, Ci= {192(56)|un _ u|p*<x>}

neN nen’
are uniformly integrable. This gives
0= lim A, dzr = lim / B, dz = lim C, do,
n—oo O n—oo Q n—oQ oQ

which implies that

Jim gy (un — u)

= lim </ (\Vun — VulP® 4 p(2)| Vi, — VU|Q(z)) dz

n—00 Q
+/ O1(x) |ty —ulP” @ da +/ Vo () [y, — ulP® da> =0.
Q a0

But this is equivalent to ||u, — u||1,4# — 0, see Proposition 3.2 (v). Thus, u, — u
in WH(Q). O

4. BOUNDED SOLUTIONS

In this section we give a result about the boundedness in the L*°-norm of the
solutions of (P). We state the theorem in a more general and more natural setting
than in (P) and even allow a gradient dependency on the nonlinearity at the right-
hand side in the domain. For this purpose we need the following assumptions.
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(Ho) Let A: @ x R x RY — RY and B: Q x R x RY — R be Carathéodory
functions and assume that there exist constants aj,az2,a3,b > 0 and r €
C4(Q) with ¢(z) < r(z) < p*(x) for all x € ) such that

@) p()—1 a(z)—1
|A(z,t,8)] < a1 |[t[7"@) + [¢] + p(z) €] +11,

Ale,1,€) - € 2 az |61 + p(@)|e["] = as || +1] .

B, t,6)] < b [m

for a.a.z € Q and for all (t,¢) € R x RY. Furthermore, let C: 9Q x R — R

be also a Carathéodory function, ¢ > 0 and [ € C(Q) with p(z) < l(z) <
p« () for all z € Q such that
C(z,1)] < ¢ [|t|l(”c>—1 + 1} ,
for a.a.x € 0f2 and for all t € R.
We consider the problem
—div A(z, u, Vu) = B(z,u, Vu) in Q,
A(z,u, Vu) - v =C(z,u) on 99,

already presented in the Introduction, see (1.2). We say that v € WH(Q) is a
weak solution of (4.1) if for all v € W17 () it holds that

HE e 1),

(4.1)

/ A(z,u,Vu) - Vodz = / B(z,u, Vu)vdx + C(z,u)vdo.
Q Q o9

Following Theorem 4.3 due to Ho-Winkert [32], we obtain a priori L>°-estimates
for the problem (4.1).

Theorem 4.1. Let hypotheses (H) and (H..) be satisfied and let u € W (Q) be
a weak solution of problem (4.1). Then, u € L>=(Q2) N L>(092) and

[ulloo + l[tlloc,00 < CmaX{llU\ vl NallZey Tl oo ||UI|Z—(2.),8Q} ;
where C, 71,79 > 0 are independent of u.

Proof. We base our arguments on the proof of [32, Theorem 4.3] introducing the
following changes.
First, take

U(z,t) =t"@  for all (z,t) € Q x [0, 00),
Zn = / (u — kn)"@ da,
A

Kn

T(z,t) =" for all (z,t) € Q x [0, 00),

Y, = / (u — k) @ de,
r

instead of the definitions given there. Then the Step 1 works exactly the same
except for (4.9), which now is true because ¢(x) < r(z) for all z € Q and

/A (1= 2P ()~ )]

Kn+41
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<[ ) L e = )+l
A

Kn+1

Later, we take
Thi(a) = / vyde forallie{l,...,m},a>0,
Q;

Hnyi(a):/ vydr foralliel,a>0,
Q

i

skip the 1, and ®, parts and then use only the embeddings
Mprtygh)<_>Lvlipﬁ—(Qi)L+ALT:+s(Qi%
WO (Q;) — WhE)-(Q,) — LE+(59;).

Then one can complete Step 2 with a completely analogous argument. We finish
the proof by repeating exactly the treatment of Step 3. O

(4.2)

Remark 4.2. Let us emphasize that Theorem 4.1 holds under the weaker hypothesis
on the exponents given in (Hy,) instead of the much more restrictive assumptions
needed in [32, Theorem 4.3]. The reason behind this relies on the less general growth
condition we require on the main operators, so we only need to use the embeddings
(4.2) instead of the other stronger and sharper embeddings used in (4.19) and (4.49)
of [32] and for which the authors require the aforementioned stronger hypothesis on
the exponents.

5. CONSTANT SIGN SOLUTIONS

In this section we establish existence of two constant sign solutions obtained
through Theorem 2.8. In particular, one solution turns out to be nonnegative and
the other one to be nonpositive. First, we have to strengthen the hypotheses (H)
as follows:

(H2) p,q € C(Q) such that 1 < p(x) < N and p(z) < q(x) < (p_)« for all x € Q
and p € L*°(Q) with p(x) > 0 for a.a.z € Q.
Next, we state the required assumptions on the nonlinearities:

(Hyy) Let f: @ xR — R and g: 92 x R — R be Carathéodory functions and
F(z,t) = fot f(x,s)ds and G(z,t) = fot g(z, s) ds be such that the following
hold:

(hy) there exist £,k € C(Q) and K1, Ko > 0 with £, < (p_)* and k4 <
(p—)« such that

f(z,0)] < K (1 + |t|f(x>—1) for a.a.z € Q,

lg(z, )| < K> (1 + |t|’"‘($)*1) for a.a.x € 99,
and for all t € R;
(ha)
F
PG
t—+oo |t|q+
G(z,t)

im
t—too |¢[9+

= oo uniformly for a.a.x € Q,

= oo uniformly for a.a.x € 0€;
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(hs)
F
im (z,1) =0 uniformly for a.a.z € Q,
t—0 |t|1’($)
t
Glz,t) =0 uniformly for a.a.z € 99;
t—0 |t|P(z)

(hg) there exist o, 3,(,0 € C1(Q) with

minfa, 5.} € (62 = po) 206 )

min{¢_,0_} € ((mr —p_)M ) ;

b= TRk
and K3 > 0 such that
[z, )t — g F(a, t)
GRS
f(xvt)t — q+F(a§,t)
|t|6(w) ’
uniformly for a.a.x € Q and K4 > 0 such that
(.13, t)t - Q-‘!—G('xa t)

0 < K3 <liminf
t—o00

0 < K3 <liminf
t——o0

0 < K4 <liminf ?
t—o0

|t|C(w) ’
t)t — t
0 < Ky <limint gz, 1)t — g4 G(x, )7
t——o0 |t‘6(93)
uniformly for a.a.x € 99;
(hs) the functions
I LC) )
g1 o1

are increasing in (—o0,0) and in (0, 00) for a.a.x € Q and for a.a.z €
01, respectively.
We note that assumption (hs) together with the continuity of f(x,-) and g(z,-)
implies that

f(x,00)=0 foraa.zeQ and g(x,00=0 fora.a.zec . (5.1)

Moreover, in Lemma 4.4 of Crespo-Blanco-Winkert [15], the authors summarize
the properties that the nonlinear term of the equation (i.e. function f) verifies
as consequences of the previous assumptions. Clearly, as the nonlinear function g
satisfies similar hypotheses on the boundary, it also verifies the same properties on
on.

Remark 5.1. The conditions on the exponents in (hy) are well defined since from
(hy) we have £y < (p_)* and k4 < (p—)« and the following hold

N N N —p_ N N —p_
by —p)—=lr— — (p)* <lyp— -V =/,
(£+ )p, o (p-)" = tpm T +
N -1 N -1 N —p_ N -1 N —p_
<K+_p7)p_—1:K+p_—1_(p7)*p_fl <f<~'+p_71—"€+p_71 = K.
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Example 5.2. Simple examples of f and g satisfying (Hy,) are
f(x,t) = [t 72 and  g(x,t) = [¢t|7+ 9272,

i.e. independent of x, where 0 < €1 < min{(p_)*—q+),1} and 0 < g2 < min{(p_).—
q+),1}. For the assumption (hy) choose a(x) = q4 +e1 — € — 1, where € is small
enough, and choose 3,( and 6 analogously.
Less trivial examples of f and g are
[t 721+ log (1)), if  t< -1,
fz,t) = S [t =2, if —1<t<l,
[t2@=2¢[1 +log(t)], if 1<t

[t @ =21 +log(—t)], if t< -1,
glx,t) = < [t|7®) =2, if —1<t<l,
t=2(=2¢[1 + log(t)], if 1<t
where l1,12,m € C(Q), qr < n(x) and ¢4 < i (x),la(x) < (p_)* for all z € Q, and

they satisfy
max{(l1)+, (o) +} _ (h)-
p— N
and also k1, k2,v € C(Q), ¢+ < v(z) and qy < k1(x), k2(x) < (p_)« for all x € Q,
and they satisfy

<1, forallie{l,2},

max{(;i)i,fnz)+} 3 z(\?_)l < p_P:17 for alli € {1,2}.

Then f and g satisfy all the assumptions above. For the assumption (hs) of f
take I(x) = max{ly(x),l2(z)} + & for all x € Q, with € > 0 small enough so that
Iy <(p-)* and

L ()=

p— N
For the assumption (hy) of f, take a(x) = li(z), B(x) = lo(x) for all z € Q.
This is the reason for the assumption on (I1)x+ and (l2)x. Observe that if we take
l1 = Iy =1 constant, the condition is equivalent to | < (p_)*, hence redundant in
that case. For the assumptions (hy) and (hy) of g, analogous considerations apply.

<1, forallie{1,2}.

Our aim is to establish results on the existence of weak solutions for problem
(P), namely functions u € W7 (Q) such that

/ (|Vu|p(’”)_2Vu + ,u(a:)|Vu|q(x)_2Vu) -Vudzx —|—/ JulP@ =2y dz
Q Q

:/f(x,u)vdx—i—/ g(w,u)vda—/ [ulP@ =2y do,
Q re)

o0
for every v € W1 (Q). In particular, these weak solutions are critical points of the
energy functional I: W1#(Q) — R associated to the problem (P) given by

0= [ (S ) s [

|u|P(®)
+/ da—/F(aau)dx— G(x,u)do,
o Q

o p(z) o0
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for all u € W7 (). Since we are interested in constant sign solutions, we consider
the positive and negative truncations of the functional I, that are I : W1H(Q) — R
defined by

Vu|P@) V1@ wlP®)
nw = [ (B ) ao [ 1
|u|P(®)
—I—/ do — / F(m,iui)dx— G(a:,iui)da,
oo P(2) Q o0

for all u € WH7(Q), where we have taken (5.1) into account. Our existence result
is based on the Mountain-Pass Theorem. First we give preliminary results in order
to verify the assumptions required in Theorem 2.8. We start with the compactness
condition on the functional.

Proposition 5.3. Let hypotheses (H2), (hy), (hs) and (hy) be satisfied. Then, the
functionals Iy satisfy the C-condition.

Proof. We show the proof for I, the case for I_ works in the same way. Let
{tn}nen € WEH(Q) be a sequence such that (C1) and (C2) from Definition 2.7
hold. From (C2), there exists {e,, }nen with &, — 0T such that

enl|v]]
I/ Uy ), U < _Znizhn
0 o). < 0
Choosing v = —u,;, € WHH(Q), one has

- / fa+ud) (—uy) de - / o +ul)(~ug) do < &,
Q o0

for all n € N, which leads to p(—u, ) — 0 as n — oo, since the supports of +u,"
and —u,, do not overlap. From Proposition 2.5(v) it follows that

—u, =0 in WH?(Q). (5.3)
Claim 1: {u] },cy is bounded in L%~ () and in L¢- (9Q).

From (C1) we have that there exists a constant M7 > 0 such that for all n € N one
has |I+(un)\ < M, that is

for all n € N and for all v € WH(Q). (5.2)

1
/F dax — G(z,u}f)do < My — —p(—u,),
oQ q+
which, takmg (5.3) into account, leads to
plut) — / qiF(z,ul)de —/ q+G(z,ut)do < My, (5.4)
Q o0
for all n € N and for some My > 0. Testing (5.2) for v = u;}, we have
/f +dx—|—/ g(z,uf)uf do < e, (5.5)
o0
for all n € N. Adding (5.4) and (5.5) we obtain

(f(@,ub)uf — ¢ F(z,u))) dz

S— &

/ — q+G(x,u;)) do < M3,
o0
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for all n € N, with M3 > 0. Without loss of generahty, we can assume a_ < [_
and (— < 0_. From (hy), there exist K3,K3, K4, K4 > 0 such that for all ¢t € R the
following hold

F 1)t — gy (o,
g(z,t)t — q4 G(x,1
Exploiting these relations in (5.6), we derive

Rsllutlls + Kalluf ¢~ oo < Ma,

t|*- — K3 for a.a.x € Q,

) > K|
) > Kylt| — Ky for a.a.x € 9.

which gives
uf . < Ms and |jul|lc a0 < Ms for allm € N

for some Ms5, Mj; > 0 and Claim 1 is achieved.

Claim 2: {u; },en is bounded in W1#(Q).
From (h;) and (h4), we have that
o <ly <(po)" and (< ky < (p_)a-
Hence, there exist s,7 € (0, 1) such that
1 s n 1-s q 1 T n 1—7
— = —— and — = ,
b (p-)r oo Ky (p-)x G-
and applying the interpolation inequality, see Papageorgiou-Winkert [43, Proposi-
tion 2.3.17 p.116], we obtain

(5.7)

e llee < Nz lE -l lla ="

st 1y 00 < Nt Ty, aellud I o,
for all n € N. Taking Claim 1 into account, one has
[y lle, < MelluglIt, )« and  [luy lley 00 < Mellut 1T, ), a0 (5.8)
for some Mg, Mg > 0 and for all n € N. Again, from (5.2) with v = b, using (hy),
it follows that

ptut) < en K [ (fudl + 1) dot Ko [ (Juf] + Juf9) dov (59)
Q o9
We may assume that [Ju)|] > 1 for all n € N, otherwise we are done. Then, using
Proposition 2.5(iv), (5.9) and (5.8), we derive that
et 7= < p(u) < et K (sl + i 15) + Ko (i o + e 157 00)
st TK
<en o+ My (1 157 ) + 37 (1 Tt 15 o)
with My, My > 0. Then, considering the embeddings W% (Q) < Whr-(Q) —
LP-)"(Q) and WHH(Q) < WhP—(Q) — LFP-)-(9Q), we get
1P~ < en + Ms (14 g 1% + sy I77)

for all n € N and for some Mg > 0. From (5.7), the definition of (p_)* and (hy),
one has

_ ) —a)  Np_ (44— )
p_)¥— Np_ —Na_ +p_a_
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Np_(ly —a-)
Np_ —Na_ +p_(ty —p_) ¥

p_

:pi.

Similarly, from (5.7), the definition of (p_). and (h4), we have

_ N —
> (ry - )
pb— p

which implies
(p-)«(hiy —=C ) (N=Dp_(ky —C)
p-)e — (- (N—=1)p- = NC- +p-(-
(N — p—(re — ) L
(N—1)p- —NC +p- (ff + (kt —p—)b)

pP—

TRy =

<

This completes the proof of Claim 2.

Claim 3: u,, — v in W5 (Q) up to a subsequence.
From (5.3) and Claim 2, it follows that {u, },en is bounded in W (Q). Since
WLH(Q) is a reflexive space, there exists a weakly convergent subsequence in
WLH(Q), not relabeled, such that

u, —u in WHH(Q).

Then, as by (5.2) in correspondence of v = u,, — u, it holds

(I’ (un), up —u) = 0 asn — oo.
The f and g terms are strongly continuous (see for example [15, Lemma 4.4]), hence
their limit vanishes and we derive

(A(up),un —u) =0 asn — oo.
As A satisfies the (S )-property, see Proposition 2.6, the proof is complete. O

The following results are needed to verify the so-called mountain-pass geometry.

Proposition 5.4. Let hypotheses (H2), (hy) and (hs) be satisfied. Then, there
exist constants C; > 0,1 =1,...,5 such that

q4+ __ l_ _ K_ . < . 1
). Lo () > Clull C’gl\u||/ Cs||ul| zf|\u|| < min{1,Cy, Cs},
CillullP- = Collul|™ — Csllul|™ i |ul = max{1,Cy, Cs5}.

Proof. We give the proof only for the functional I, the proof for Iy is similar. From
assumptions (h;) and (hs) it follows that for all & > 0 there exist ¢, é > 0 such
that

|F(z,t)| < %|t|p(m) + ¢ [t]"®  for a.a.z € Q and for all t € R,
px

(5.10)
G(z,1)] < Z%x)w@ . t"@  for a.a.z € OQ and for all t € R.

Let u € WM (Q) be fixed. Using (5.10), Proposition 2.1, the embedding W7 (9)
< L*C)(Q) with constant C; and the embedding W% (Q) <« L*()(9Q) with con-
stant Cy g one has

1 1 1
I(w) 2 —pp(V) + —py( (1) + —pp(),00(w)
q+ P+ P+
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IS 9 ~
- E%(-)(U) = Cepu()(u) = Ij_ﬂpuasz(u) — Cepr(),00(u)
1 1 € 1 €
_ L Vu+<—> .u+(_) o0l
q+PH( ) P Pp() (1) P Pp(),00(1)

— Cepu()(U) = Cepr(),00(u)
> min {1 1 } p(u)

Q+7P+ p—

0_ 4 ~ _
— cemax {|Jullgp ), Il } = e max {ullZ0) oo 157 o0 §
. 1 1 €
>min{ =, — — = { p(u)
4+ P+ P-

£_ 4 ~ _
— comax { €L ull*=, CF ul} — emax { O g lull™, O lull* }

; (g+—p+)p- :
Choosing ¢ € (O, s ) and taking
1 1 1
01:77 04:7 and 05:
q+ Cy
our statement follows from Proposition 2.5(iii)-(iv) and by setting
Cy=c.Cy and  Cy=&Clpq  if lull < min{1,Cy,Cs),

Cy=cC;* and  C3=&Crh,  if lul| > max{1,Cy, Cs}.

b)
CH,@Q

The following result is a direct consequence of Proposition 5.4.
Proposition 5.5. Let hypotheses (H2), (hy) and (hg) be satisfied with ¢ < ¢_, k_.
Then there exists § > 0 such that

Hir”lféf(u)>0 and I\il\llf51i(U)>O,

or alternatively, there exists A > 0 such that I(u) > 0 for 0 < |lul| < A.
Proposition 5.6. Let hypotheses (H2), (hy) and (hy) be satisfied. Then, I(su) —

—o0 as 8 — Foo for every u € WHH(Q) \ {0}. Moreover, I.(su) — —oco as
s — 400 for allu € WHH(Q) \ {0} such that u > 0 a.e.in Q.

Proof. We give the proof only for the functional I, since if v > 0 a.e.in € then
I (su) = I(su) for +s > 0. Fix s,e € R and u € WH%(Q) such that |s| > 1, > 1
and v # 0. From (h) and (hy) it follows that

€
|F(z,t)| > —|t|% —c. for a.a.z €,
4+
Gz, )| > [t —c. for a.a.z € O,
4+
see also [15, Lemma 4.4]. Then, using the previous inequalities, one has

5|P+

1s0) = B (o (V) -y () -+ 0 0(0)) + - (92 + 062

Loy n(Vu) €
e | 202 - (gl )|
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Noting that [[ull,, < oo and |lullq, 00 < oo since ¢y < [- < (p—)* and ¢4 <
Kk— < (p—)«, we can choose € large enough such that the third term is negative and
I(su) —» —o0 as |s| — oc. O

Finally, we state the main result of this section.

Theorem 5.7. Let hypotheses (H2), (hy)—(hy) be satisfied. Then, there exist two
nontrivial weak solutions ug,vy € WHH(Q) N L>(Q) of problem (P) such that
ug > 0 and vg <0 a.e.in Q.

Proof. Thanks to Proposition 5.3, 5.5 and 5.6, we can apply Theorem 2.8 to both
functionals I1. Then, there exist ug,vo € WH™(Q) such that I' (up) = 0 and
I’ (vp) = 0, namely ug, vy are weak solutions of problem (P). In particular, from
Proposition 5.5 it follows that

I (uo) > HiIHliiLr(u) >0 =1,(0),
which implies up # 0. Analogously, I_(vg) > 0 and vy # 0. Finally, since
(I (up),v) = 0 for every v € WhH(Q), we can choose v = —u; and this leads
to

o) = [ foud)og)dot [ glod)(-up)do =0
Q o0

From Proposition 2.5 it follows that —u, = 0 a.e.in 2, hence uy > 0 a.e.in Q.
Similarly, we can test (I’ (vg),vg) = 0 and derive that vy < 0 a.e in Q. Finally, we
know that ug and vy are bounded functions because of Theorem 4.1. [l

6. SIGN CHANGING SOLUTION

In this section we present our main result on the existence of a sign-changing
solution through the Nehari manifold approach, in addition to the two constant
sign solutions obtained in Section 5. We indicate with A/ the Nehari manifold of I,
defined by

N ={ueWh™(Q) : (I'(u),u) =0, u#0}.

Clearly, any nontrivial weak solution of (P) belongs to N, because the weak so-
lutions of (P) are exactly the critical points of I. Since we are interested in sign-
changing solutions, we introduce the following subset of AN

No = {ue WHH(Q) : £u* e N} .

For an overview on the method of the Nehari manifold, we refer to the book chapter
of Szulkin-Weth [418].

First, we prove some properties of the Nehari manifold N (Proposition 6.1) and
of the energy functional I restricted to N (Proposition 6.2).

Proposition 6.1. Let hypotheses (H2), (hy)—(hs) and (hs) be satisfied. Then, for
any u € WHH(Q) \ {0}, there exists a unique s, > 0 such that s,u € N.
Moreover, one has

I(syu) >0 and I(syu)> I(su) for all s> 0 with s # s,.
and

0sI(su) >0 for0<s<s, and OsI(su) <0 fors> s,.
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Proof. For any fixed u € WH(Q) \ {0} we define ¢, : [0,00) — R as follows
du(s) = I(su) for all s € [0,00).
Clearly, ¢, belongs to C (]0,00)) and C! ((0,00)). From Propositions 5.5 and 5.6
we derive that there exist d, M > 0 such that
Pu(s) >0 forO0<t<d and ¢u(s) <0 fort> M. (6.1)

Then, applying the extreme value theorem, we get in particular that ¢, admits a
local maximum, i.e., there exists 0 < s, < M such that

su w(S) = max @u(8) = Oy(Sy)-
20 6u(9) = max 6u(s) = duls.)

Since s, is also a critical point of ¢, in combination with ¢/ (s) = (I'(su), u) for
every s > 0, one has

Ol (su) = (I'(syu),u) =0 = s,ucN.

Claim: s, is unique.
From assumption (h;) we have that

m increasing = s — % increasing in {z € Q : u(z) > 0},
s m decreasing = s — % increasing in {x € Q : u(z) < 0},
s m increasing = s — % increasing in {z € 9Q : u(z) > 0},
m decreasing = s +— g((ga;lrisjil)u increasing in {z € 0Q : u(z) < 0}.

Multiplying by 1/s%+~! the equation ¢/,(s) = (I'(su),u) = 0 (consider only s > 0),
which is a necessary condition for su € A/, we obtain

p(z) a(x) p(z) p(x)
[ (T T o [,
o \ s4+—p(@) ga+—4q(z) q s4+—p() 90 89+ P()

_/ f(z, su)u dx—/ g(w,su)udazo.
Q o0

sa+—1 ga+—1

As functions of s, the left-hand side is strictly decreasing, because it is so in the sets
{reQ:Vu#0}, {zeQ: u#0}and {xr € 90 : u##0} and at least decreasing
in the rest (recall that p(z) < g(z) < g4 for all z € Q and the previous comments
for f and g). Consequently, there can be at most one single value s,, > 0 for which
the equation holds, namely there exists a unique s, > 0 such that s,u € N.

Finally, since ¢/ (s) has constant sign for 0 < s < s, and s > s,, from (6.1) we
can derive

¢(s)>0 forO0<s<s, and ¢, (s)<0 fors> s,.
Thus s, is a strict maximum for ¢, and this completes the proof. O
Proposition 6.2. Let hypotheses (H2), (hy)—(h3) and (hs) be satisfied. Then, the

functional 1|z is sequentially coercive, namely for any sequence {un }nen C N such
that ||u,|| === co one has I(up) — cc.
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n—00

Proof. Let {uy,}neny C N be a sequence such that ||u,| —— oo and put
Yn = H”"H for all n € N. (6.2)
Up

Since {¥y, }nen is bounded in the reflexive space W17 () and due to the compact
embeddings W (Q) < LYO(Q) as well as W (Q) «— L) (99Q) (see Proposition
2.4(iii), (v)), there exists a subsequence {yn, }ren and y € WH#(Q) such that

Yn, —y in WHH(Q),

Yn, =y in L'O(Q) and pointwisely a.e.in €, (6.3)

Yn, =Y In L”(')(BQ) and pointwisely a.e.in 0€).

Claim: y = 0.
By contradiction, suppose that y # 0. As ||u,|| — oo, there exists kg € N such that
for every k > kg one has |Ju,, | > 1 and

I(uy, ) < ip(unk) —/ F(z,up,)dzr — G(z,up,)do
p— Q o0

1
< Hunk”qu 7/F(I,unk)d33*/ G(‘Taunk)doa
b— Q o0

where we have used Proposition 2.5(iv). Dividing by |lun, |9t and taking (6.2) into
account, we obtain

I n 1 F ) N G y '

e o U T P P ()
[un |9 = p— Jo lun|® o

Now, we observe that if f and g fulfill (h;) and (hs), then there exist Mg, M19 > 0

such that
F(x,t) > =My for a.a.z € Q and for all ¢t € R,

G(x,t) > =My for a.a.x € 90 and for all t € R.

Setting Qg = {x € Q : y(x) = 0}, by using (6.5), (h2), (6.3) and Fatou’s Lemma,
we get

(6.5)

lim Fla, un,)
k—oo Jo |unk |q+

— hm / F(xau7lk)|y ‘q+ d$+/ F<x?unk)
koo \ Javay g |t " Qo llun,llo

F My|Q2
Z/ (klim (:c,u:k)ynk|q+) dz — lim Ms|€h] 2|
O\Qe \F—00 [t |7+ k=00 [[un, |7+

= Q.

Y | o

Analogously, for g = {z € 9Q : y(z) = 0}, we have

lim 7@(% U )

k—oo Jan |unk |q+

= lim / G(maunk)w ‘q+ d0+/ G(x7unk)
k—oo \ Joo\s,  [tng[7F § so |[Un,l|7F

>/ (hm G(x’u”’“)ym“) do — Tim Mao/Zol
~ Jaans, \k—oe [up, |7+ koo |[up, [|%+

Yy |7 do
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= 0.
Hence, passing to the limit as k — oo in (6.4), it follows that
I(un,)

lim —— = -
k=00 ||t [|7+
which is a contradiction with {u,}ney € N that implies I(u,) > 0 for all n € N
(see Proposition 6.1). Thus, the proof of our claim is complete.
Recall that u,, € N for every k € N, from Proposition 6.1 it follows that
I(up, ) > I(suy, ) for every s > 0,s # 1 and for all k¥ € N. Fixing s > 1 and using
Proposition 2.5(iv), one has

I(unk) > I(Synk)

1
—p(8yn,.) —/F(x,synk)dx— G(z, syn, ) do
q+ Q N

1
2 — |[sym, |17~ —/ F(%Synk)dx—/ G(z, syn, ) do
q+ " o9

p7
:S——‘/F(Qﬁsynk)dl‘*/ G(x’sy"k)dg'
Q

4+ o0
Moreover, as a consequence of the assumptions on the nonlinear functions f and
g, it follows that the integral terms are strongly continuous (see for example [15,
Lemma 4.4]). Since sy,, — 0, we derive that there exists k1 € N such that

7

>

y
I(un) > 2 —1 forallk> k.

q+
From the arbitrariness of s > 1, we get I(uy, ) — 0o as k — oo, which implies that
I(un) =25 00 and our statement is achieved. O

Now, we are able to prove the existence of a minimizer of I restricted to Nj.
Proposition 6.3. Let hypotheses (H2), (hy)—(hs3) and (hs) be satisfied. Then
inf I'(u) >0 and inf I(u) > 0.
ueN u€Ny

Proof. Fix uw € N. Then, from Proposition 6.1 we have that I(u) > I(su) for all
s > 0,s # 1. In particular, applying Proposition 5.5, it follows that

I(u) Zl(mu> > \|iI|\1f5[(u) >0 forallueN,
u ul|=

that implies
ulgjfvl(u) > 0.
Now, fix u € Np. Since by definition +u* € N, we get
I(w)=I(u")+I(—u") > 21}2{[[(11) >0 for all u € N,
so we obtain

inf I(u)> 0.
UGN()
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Proposition 6.4. Let hypotheses (H2), (hy)—-(hs) and (hs) be satisfied. Then,
there exists wo € Ny such that

I = inf I(u).

(wo) = inf 1(w)

Proof. Let {u,}nen € Ny be a minimizing sequence, that is, I(u,) \ infyen, I(u).
As u, € Ny, then +ut € N and I(£u}l) > 0 for all n € N (see Proposition 6.1).
Moreover, since I(u,) = I(u}) + I(—u, ) for every n € N and from Proposition
6.2, one has that {fu},en are both bounded. Then, by the compact embeddings
WEH(Q) — L'O(Q) as well as WHH(Q) — L#)(9Q) (see Proposition 2.4(iii),
(v)), there exist subsequences {uZ }ren and vi,va € WHH(Q) such that

ut — v, —wvy in whH(Q),
ut —vi,u, —vy in L) (Q) and pointwisely a.e.in €,

ut —vi,u, — vy in L0 (0Q) and pointwisely a.e. in 99,
with v1 > 0,v2 > 0 and vivs = 0 a.e.in Q.
Claim: vy, v9 # 0.

Arguing by contradiction, suppose that v; = 0. Recalling that uf{k € N implies
that

(I'(ut ),ut ) =0,

s Yy
one has
ptut,) = [ fu)tut)de— [ gleuf )l do =0,
Q a0
From the Carathéodory assumption and (h;) on the nonlinearities f and g, it
follows that the two integral terms are strongly continuous (see [15, Lemma 4.4]),

thus p(u,} ) — 0 as k — co. By Proposition 2.5(v), we get u;}, — 0 in WH(Q)
and

0< inf I(u) <I(u})—1I(0)=0 ask— oo,
ueN k
that is a contradiction. Analogously we prove that vo # 0 and our claim is true.
Now, using Proposition 6.1, there exist s1,s3 > 0 such that sjvi, sav2 € N. We
put
Wy = §1V1 — Solo = wg' —wy ,

hence wy € Ny. Finally, it remains to prove that I(wg) = inf,en; I(u). It is worth
noticing that all the positive terms of I are convex and continuous, thus sequentially
weakly lower semicontinuous. On the other hand, we know that the F' and G terms

are strongly continuous. Hence, I is sequentially weakly lower semicontinuous and
this leads to

inf I(u) = lim I(uy,)= lim (I(u))+1(~u;,))

uENy k— o0 k—oo
> likrgicgf (I(s1u),) + I(—s2up, )
> I(s1v1) + I(—s2v2)
=I(wg) + I(—wy)

= I(wg) > uienj\f/O I(u).
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The proof is complete. O

Now, we prove that the minimizer obtained in Proposition 6.4 is a critical point
of the functional I.

Proposition 6.5. Let hypotheses (H2), (hy)—(hs) and (hs) be satisfied and let
wo € Ny such that I(wg) = ir;\f/ I(u). Then, wy is a critical point of the functional
ueNo

1.

Proof. First, we observe something that will be useful in the sequel. Recalling that
+wi # 0 and indicating with C,_ the constant of the embedding W1H*(Q) —
LP-(Q), we have that

C H|wy || ifv= =0,
lwo — vl > Cptlwo = vllp > P50 5
: ' Gyt lwg [l if vt =0,
for all v € WM (Q). Thus, taking
0 < do < min { G il ,_, G5 wg [}
we have the following implication
if |wo —v|| < o, then ovT #£0#0v". (6.6)

Now, arguing by contradiction, suppose that I’(wg) # 0. Then there exist v,d; > 0
such that

[T (u)||« >~ for all u € WHH(Q) with ||u — wo| < 36;. (6.7)
Put
(5:min{620,(51}. (6.8)
From the continuity of the map defined by (s,t) — swg — tw, for every (s,t) €
[0,00)2, we have that for every J > 0 there exists A € (0,1) such that
|swg — twy — wol| < 6, (6.9)
for all (s,t) € [0,00)? with max{|s — 1|, [t — 1|} < A. Let

D=(1-X1+))? = I(swi — twy
( 1+ )7 mo (s%%)égD (Swo Wo )’

and

c= uler}\f/o I(u). (6.10)

We emphasize that for any (s,t) € [0,00)%\ {(1,1)}, using Proposition 6.1, one has
I(swi —twy ) = I(swg) + I(—twy)

< Iwif) + I(=ug) = I(wo) = inf I(u),

(6.11)

which implies that mg < c.

In order to use the same notation of the Quantitative Deformation Lemma given
in Lemma 2.9, we set
4 8

S = B(wg,d), &= min{c_mo 76},
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and ¢, ¢ as in (6.8) and (6.10), respectively. We also notice that by the definition of
S it follows that Ss = B(wg,2d) and Sas = B(wo, 39). From (6.7), we get

I (w)||« >~ > % for all u € Sas,

so all the assumptions of Lemma 2.9 are verified. Hence, there exists a mapping
n € C ([0,1] x WEH(Q), WhH(Q)) such that

(i) n(t,u) =u,if t =0orif u g I ([c — 2¢,c+ 2¢]) N Sas,

(i) I(n(l,u)) <c—cforallue It ((—oco,c+e])NS,

(iii) n(t,-) is an homeomorphism of W% (Q) for all ¢ € [0, 1],
(iv) ||n(t,u) —ul| < 6 for all w € WHH(Q) and ¢ € [0, 1],

(v) I(n(-,u)) is decreasing for all u € W17 (),

(vi) I(n(t,u)) < cfor all u € I7! ((—o0,c]) N Ss and t € (0,1].

Afterwards, we consider h: [0,00)% — W1 (Q) defined by
h(s,t) =n(1,swi —twy) for all (s,t) € [0,00)?,

which has the following properties:
h € C([0,00)%, WHH(Q)),

I(h(s,t)) < c—¢forall (s,t) € D, by (ii), (6.9) and (6.11),
(ix) h(D) C Sy, by (iv) and (6.9),

(x) h(s,t) =swg —twy for all (s,t) € dD,
where the last one follows from (i) and

(n
t,
U
(n

(vii
(viii

\/\/\_/\/

C— My

I(swg—tw0)§m0+c—c<c—( >§C—25 for all (s,t) € 9D.

Now, we define two mappings Ho, Hy: (0,00)? — R? given by

Ho(s,t) = ({I'(swq ), wy ) , (I'(~twg ), ~wq) ),

Hi(s.0) = (SO 0LIF 6,0} =0 (50). =0 (1) )
which are clearly continuous. From Proposition 6.1 it follows that

>0 forall0<s<1
I +’ + ’
(' (swg) w0>{<0 for all s > 1,

(6.12)

>0 forall0<t <1,
<0 forallt>1.

(I'(=twy ), —wy ) {

Given A C R"™ open and bounded and g € C(A,RY), we denote by deg(g, A,y)
the Brouwer degree over A of g at the value y € RV \ g(0A). From the Cartesian
product property of the Brouwer degree (see the book of Dinca-Mawhin[20, Lemma
7.1.1 and Theorem 7.1.1]) we get

deg(Ho, D,0) = deg ( (I'(swg),wg), (1—A,1+A), 0)
x deg (((I'(—twg ), —wg ), (1=X1+A), 0),
and by (6.12) and Proposition 1.2.3 of Dinca-Mawhin[20], we obtain
deg(Hy, D,0) = (-1)(—1) = 1.
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We observe that (x) implies Hyolop = Hi|op, so as the Brouwer degree depends on
the boundary ([20, Corollary 1.2.7]), we have

deg(H,,D,0) = deg(Hy, D,0) =1,
and by the solution property ([20, Corollary 1.2.5]) it follows that there exists
(so0,to) € D such that Hy(sg,to) = (0,0), namely

(I'(h*(s0,t0)), h* (s0, t0)) = 0 = (I'(—=h™ (s0, t0)), —h ™ (s0, t0))-
Finally, by (ix)
[A(s0,t0) — wol| < 26 < do,
which, taking (6.6) into account, leads to
h*(so,t0) #0 and — h™ (sg,tg) # 0.

Thus, h(sg,to) € No, that is a contradiction with

I(h(s0,t0)) <c—e= ulel}\ffo I(u) -,

obtained by (viii). This completes the proof. O

Combining Theorem 5.7 with Propositions 6.4 and 6.5, we get the existence of
three weak solutions for problem (P). We further know that they are bounded
functions thanks to Theorem 4.1.

Theorem 6.6. Let hypotheses (H2) and (Hy ) be satisfied. Then, there exist three
nontrivial weak solutions ug, v, wyg € WHH(Q) N L>(Q) of problem (P) such that
ug > 0, vg <0 and wqy is sign-changing.

In the last part of this section, we derive information about the number of nodal
domains of the sign-changing solution, that is the number of maximal regions where
it has constant sign. The usual definition of nodal domains of a function deals with
a continuous function. Nevertheless, we do not know whether our solutions are
continuous. Therefore, we use the definition proposed by Crespo-Blanco-Winkert
[15, Section 6] that we recall in the following.

Definition 6.7. Let u € WH(Q) and A be a Borelian subset of Q with |A| > 0.
We say that A is a nodal domain of u if
(i) u>0aeonAoru<0ae onA;
(i) 0#£uly € WHH(Q);
(ii) A is minimal w.r.t. (i) and (ii), i.e., if B C A with B being a Borelian
subset of Q, |B| > 0 and B satisfies (i) and (ii), then |A\ B| = 0.
For our purposes, we need to require one more assumption on the nonlinearities:
(he) f(x,t)t — q4F(z,t) > 0 and g(z,t)t — ¢4 G(x,t) > 0 for all t € R and for
a.a.x € ) and for a.a.xz € 99, respectively.
Proposition 6.8. Let hypotheses (H2), (Hy,) and (hg) be satisfied. Then, any

minimizer of I|a,, which is also a sign-changing weak solution of problem (P), has
ezactly two nodal domains.

Proof. Let wq be such that I(wg) = ir}\ff I(u), fix any wy representative of wy and
ueNg
set

Q. ={x€Q: twy(x) > 0}.
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As wolg, = +wo T ae.in ©, it follows that €, and Q_ satisfy conditions (i) and
(ii) of Definition 6.7. By contradiction, we prove that they are also minimal. We
assume, without loss of generality, that there exist Borelian subsets Ay, Ay of Q,
with A1 N Az = 0,|A1] > 0 and |As| > 0, such that Q_ = A;UAs and A; satisfies
(1) and (ii) of Definition 6.7. Moreover, it holds

woly, = wola, <0 ae.in Ay,
wol g, = wolg_ —wela, € WHH(Q),
thus As also satisfies (i) and (ii). Summarizing, we have
Io,wp >0, Tgwo<0, Tg,wog<0 aein, (6.13)
and
wo = Lo, wo + La,wo + La,wo a.e.in Q.

Setting y1 = Lo, wo + 14, wo and y2 = 14, wo, from (6.13) we have yi = Lo, wo
and —y; = 14, wp. Since I'(wp) = 0 and as the supports of y;", —y;” and y» do not
overlap, one has

0= (I'"(wo), yi") = (I'(yi"), yi)-

Hence y; € N and analogously, —y; € N. Therefore, y; € Ny. With the same
argument one can show that (I’(y2),y2) = 0. Then, from these properties, we
obtain

I(yz) = I(yz) - i<1/(y2)>y2>

> (1 - 1) Pp()(Vya) + (1 - 1) Pp() (Y2) + (1 - 1) Pp().00(Y2)

P+ g+ P+ q+ P+ g+

1 1
# [ (s - Feaw) o+ [ (Lo - ) a.
Q \9+ a0 \ 4+
which leads to
I(y2) > 07
because of p; < ¢y, y2 # 0 and (hg). Finally, we get
inf I(u)=1 =1 1 > 1T > inf I(u),
. T(w) = Two) = I(ys) + 1) > 1) = inf. ()
which is a contradiction and this completes the proof. O

Combining Theorem 6.6 and Proposition 6.8, we get the main existence result
of this paper.

Theorem 6.9. Let hypotheses (H2), (H; ;) and (hg) be satisfied. Then, there exist
three nontrivial weak solutions ug, v, wo € WH(Q) N L>®(Q) of problem (P) such
that

ug >0, w9 <0, wy being sign-changing with two nodal domains.
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