
SUPERLINEAR ELLIPTIC EQUATIONS WITH UNBALANCED

GROWTH AND NONLINEAR BOUNDARY CONDITION
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Abstract. In this paper we first introduce an innovative equivalent norm
in the Musielak-Orlicz Sobolev spaces in a very general setting and we then

present a new result on the boundedness of the solutions of a wide class of non-

linear Neumann problems, both of independent interest. Moreover, we study a
variable exponent double phase problem with a nonlinear boundary condition

and prove the existence of multiple solutions under very general assumptions

on the nonlinearities. To be more precise, we get constant sign solutions (non-
positive and nonnegative) via a mountain-pass approach and a sign-changing

solution by using an appropriate subset of the corresponding Nehari manifold

along with the Brouwer degree and the Quantitative Deformation Lemma.

1. Introduction

A differential operator that has found a place in many research fields in recent
years is the so-called “double phase operator”, which is defined by

u 7→ −div
(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
,

for every function u belonging to a suitable Musielak-Orlicz Sobolev spaceW 1,H(Ω),
where Ω ⊂ RN is supposed to be a bounded domain with Lipschitz boundary ∂Ω.
The integral functional related to this operator, given by∫

Ω

(
|∇u|p(x) + µ(x)|∇u|q(x)

)
dx, u ∈W 1,H(Ω),

changes ellipticity in two different phases and has been first introduced in 1986 by
Zhikov [53] with constant exponents. Since then, many authors studied problems
involving this operator, which has been used to model different phenomena. Among
the topics, we mention first the elasticity theory in which it describes the behav-
ior of strongly anisotropic materials, whose hardening properties are related to the
exponents p(·) and q(·) and significantly change with the point and the coefficient
µ(·) determines the geometry of a composite made of two different materials, see
Zhikov [54]. Moreover, other applications can be found in the works of Bahrouni-
Rădulescu-Repovš [2] on transonic flows, Benci-D’Avenia-Fortunato-Pisani [8] on
quantum physics and Zhikov [54] on the Lavrentiev gap phenomenon, the ther-
mistor problem and the duality theory. For a mathematical study of such integral
functionals with (p, q)-growth we refer to the works of Baroni-Colombo-Mingione
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[4, 5, 6], Colombo-Mingione [11, 12], Cupini-Marcellini-Mascolo [16], De Filippis-
Mingione [18], Marcellini [38, 39, 40], Ragusa-Tachikawa [46], see also the papers of
Beck-Mingione [7] and De Filippis-Mingione [17] for nonautonomous integrals. Fur-
thermore it should be mentioned that the double phase operator generalizes several
other differential operators, for example, the (p(·), q(·))- Laplacian when infΩ µ > 0
and the p(·)-Laplacian if µ ≡ 0, respectively, both of which have been extensively
studied in the literature.

Concerning applications in partial differential equations, the double phase oper-
ator arises from the study of general reaction–diffusion equations with nonhomoge-
neous diffusion and transport aspects. These nonhomogeneous operators have ap-
plications in biophysics, plasma physics and chemical reactions, with double phase
features, where the function u corresponds to the concentration term, and the dif-
ferential operator represents the diffusion coefficient.

The weak solutions of related problems are functions belonging to an appropri-
ate Musielak-Orlicz Sobolev space W 1,H(Ω), where H : Ω × [0,∞) → [0,∞) is a
nonlinear function defined by

(x, t) 7→ tp(x) + µ(x)tq(x),

with

1 < p(x) < N, p(x) < q(x) < p∗(x) =
Np(x)

N − p(x)
for all x ∈ Ω,

and 0 ≤ µ(·) ∈ L∞(Ω). The novelties of our paper can be summarized as follows
and affect different results of independent interest. First, we prove the existence of
a new general equivalent norm on W 1,H(Ω) given by

∥u∥∗1,H = inf

{
τ > 0 :

∫
Ω

((
|∇u|
τ

)p(x)

+ µ(x)

(
|∇u|
τ

)q(x)
)

dx

+

∫
Ω

ϑ1(x)

(
|u|
τ

)δ1(x)

dx

+

∫
∂Ω

ϑ2(x)

(
|u|
τ

)δ2(x)

dσ ≤ 1

}
,

(1.1)

where 0 ≤ ϑ1(·) ∈ L∞(Ω), 0 ≤ ϑ2(·) ∈ L∞(∂Ω) and δ1, δ2 are of class C(Ω),
satisfying 1 ≤ δ1(x) ≤ p∗(x) and 1 ≤ δ2(x) ≤ p∗(x) for all x ∈ Ω. For more details
we refer to (H1). Let us emphasize that in this setting the exponents δ1(·) and
δ2(·) can be also critical, namely they can coincide (at some points or at all ones)
with the Sobolev critical exponents p∗(·) and p∗(·), respectively, see (2.1) for the
definition of them. There is a trade-off for allowing the exponents δ1 and δ2 to
be equal to the Sobolev critical exponents at some points: it does not suffice that
δ1 and δ2 are continuous functions, we require that they are log-Hölder continuous
and in W 1,γ(Ω) for γ > N , respectively. The reason is the Sobolev embedding
theorem in variable exponent spaces, which requires this extra regularity if you
achieve equality with the critical Sobolev exponent. Note that in the constant
exponent case there would be no difference. All in all, the norm in (1.1) generalizes
different known norms in W 1,p(Ω), W 1,p(·)(Ω) or in the Musielak-Orlicz Sobolev
space with constant exponents, see Crespo-Blanco-Papageorgiou-Winkert [14].
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In the second part of the paper, we are interested in the boundedness of weak
solutions of the following nonlinear Neumann problem

−divA(x, u,∇u) = B(x, u,∇u) in Ω,

A(x, u,∇u) · ν = C(x, u) on ∂Ω,
(1.2)

where the right-hand side in Ω can also depend on the gradient of the solution
and A,B and C are Carathéodory functions satisfying suitable and general growth
conditions presented in (H∞). In particular, any weak solution of (1.2) turns out
to be in L∞(Ω) and we give in Theorem 4.1 a priori estimates on its L∞(Ω)-
norm. Such a result can be applied in several other problems involving the variable
exponent double phase operator as well as general right-hand sides.

In the last part of this paper our purpose is to prove existence and multiplicity
results for a variable exponent double phase problem with nonlinear boundary con-
dition and superlinear nonlinearities. Inspired by the recent work of Crespo-Blanco-
Winkert [15] on a Dirichlet problem, the new equivalent norm that we present in
Section 3 plays an important role. In particular, given a bounded domain Ω ⊂ RN ,
N ≥ 2, with Lipschitz boundary ∂Ω and denoting with ν(x) the outer unit normal
of Ω at x ∈ ∂Ω, we study the following problem

−divF(u) + |u|p(x)−2u = f(x, u) in Ω,

F(u) · ν = g(x, u)− |u|p(x)−2u on ∂Ω,
(P )

where divF(u) is the variable exponent double phase operator given by

F(u) := |∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u,
and f : Ω × R → R as well as g : ∂Ω × R → R are Carathéodory functions which
are superlinear with respect to the second argument, see the precise conditions in
(Hf,g) and some examples in Example 5.2.

In recent years, many authors have dealt with double phase problems in the
constant exponents case, see for instance Biagi-Esposito-Vecchi [9], Colasuonno-
Squassina [10], Farkas-Winkert [25], Fiscella [26], Gasiński-Papageorgiou [27], Gas-
iński-Winkert [28, 29], Ge-Pucci [30], Liu-Dai [35], Liu-Papageorgiou [36], Papageor-
giou-Rădulescu-Repovš [41], Perera-Squassina [44], Pucci [45], Stegliński [47], Zeng-
Bai-Gasiński-Winkert [51] and the references therein.

On the other hand, there are much fewer results for the variable exponents
case, see Amoroso-Bonanno-D’Agùı-Winkert [1], Bahrouni-Rădulescu-Winkert [3],
Crespo-Blanco-Gasiński-Harjulehto-Winkert [13], Crespo-Blanco-Winkert [15], Leo-
nardi-Papageorgiou [34], Liu-Pucci [37], Kim-Kim-Oh-Zeng [33], Ragusa-Tachikawa
[46], Vetro-Winkert [50] and Zeng-Rădulescu-Winkert [52].

As mentioned before, we present existence and multiplicity results for problem
(P ) by using critical point theory and the Nehari manifold approach, that is, we
are able to provide the existence of three bounded weak solutions of problem (P )
with precise information on the sign. Indeed, through a mountain-pass approach we
obtain the existence of two solutions with constant sign. In addition, through the
Nehari manifold method along with the Quantitative Deformation Lemma and the
Brouwer degree we establish the existence of a sign-changing solution, that turns
out to have exactly two nodal domains. We emphasize that we do not require a
monotonicity condition on the exponent p(·) as it was needed in the work of Crespo-
Blanco-Winkert [15, hypothesis (H1)], since we do not need Poincarè’s inequality
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for the modular function related to the norm. Moreover, as far as we know, the
growth assumption on the boundary ∂Ω stated in (h4) is new and optimal for this
treatment.

The paper is organized as follows. In Section 2 we recall the definitions and
some properties of the Lebesgue and Sobolev spaces with variable exponents and
of the Musielak-Orlicz Sobolev spaces as well as the main tools needed in our
treatment, such as the Mountain-Pass Theorem (Theorem 2.8) and the Quantitative
Deformation Lemma (Lemma 2.9). In Section 3 we present the proof of a new
equivalent norm in the Musielak-Orlicz Sobolev space and we give some properties
related to the corresponding modular and the operator. In Section 4 we provide a
result on the boundedness of the weak solutions of a more general problem than
(P ), giving also in Theorem 4.1 a priori estimates on the L∞(Ω)-norm of the weak
solutions. Then, in Section 5 we state the assumptions on the nonlinearities f
and g and in Theorem 5.7 we prove the existence of two constant sign solutions,
in particular one is nonnegative and the other one is nonpositive. After this, in
Section 6 we state Theorem 6.6 concerning the existence of a third solution, which
is sign-changing, obtained minimizing the energy functional related to our problem
in a suitable Nehari manifold subset. Finally, Theorem 6.9 gives information on
the nodal domains of this sign-changing solution.

2. Preliminaries

For any 1 ≤ r ≤ ∞, Lr(Ω) indicates the usual Lebesgue spaces equipped with
the norm ∥ · ∥r and for 1 ≤ r < ∞, W 1,r(Ω) denotes the Sobolev space endowed
with the usual norm ∥ · ∥1,r. First, we introduce the Lebesgue and Sobolev spaces
with variable exponents and some properties that will be useful in our treatment.
For a detailed overview we refer to the book of Diening-Harjulehto-Hästö-Růžička
[19]. For any r ∈ C(Ω), we set

r+ := max
x∈Ω

r(x) and r− := min
x∈Ω

r(x),

and define

C+(Ω) = {r ∈ C(Ω) : r− > 1}.
Denoting by M(Ω) the space of all measurable functions u : Ω → R, we define for
any r ∈ C+(Ω) the Lebesgue space with variable exponent by

Lr(·)(Ω) = {u ∈M(Ω) : ρr(·)(u) <∞},
where the modular is given by

ρr(·)(u) =

∫
Ω

|u|r(x) dx,

endowed with the Luxemburg norm

∥u∥r(·) = inf
{
τ > 0 : ρr(·)

(u
τ

)
≤ 1
}
.

Here, we recall the relation between the norm and the modular, see Fan-Zhao
[24, Theorems 1.2 and 1.3].

Proposition 2.1. Let r ∈ C+(Ω), u ∈ Lr(·)(Ω) and λ ∈ R. Then the following
hold:

(i) If u ̸= 0, then ∥u∥r(·) = λ ⇐⇒ ρr(·)(
u
λ ) = 1;
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(ii) ∥u∥r(·) < 1 (resp.> 1, = 1) ⇐⇒ ρr(·)(u) < 1 (resp.> 1, = 1);

(iii) If ∥u∥r(·) < 1 =⇒ ∥u∥r+r(·) ≤ ρr(·)(u) ≤ ∥u∥r−r(·);
(iv) If ∥u∥r(·) > 1 =⇒ ∥u∥r−r(·) ≤ ρr(·)(u) ≤ ∥u∥r+r(·);
(v) ∥u∥r(·) → 0 ⇐⇒ ρr(·)(u) → 0;
(vi) ∥u∥r(·) → 1 ⇐⇒ ρr(·)(u) → 1;
(vii) ∥u∥r(·) → +∞ ⇐⇒ ρr(·)(u) → +∞;

(viii) un → u in Lr(·)(Ω) =⇒ ρr(·)(un) → ρ(u).

For r′ ∈ C+(Ω) being the conjugate variable exponent to r, that is,

1

r(x)
+

1

r′(x)
= 1 for all x ∈ Ω,

it is clear that Lr(·)(Ω)∗ = Lr′(·)(Ω) and the following Hölder’s inequality hold

∥uv∥1 ≤ 2∥u∥r(·)∥v∥r′(·),

for all u ∈ Lr(·)(Ω) and for all v ∈ Lr′(·)(Ω), see Diening-Harjulehto-Hästö-Růžička
[19, Lemma 3.2.20].

Furthermore, for r1, r2 ∈ C+(Ω) with r1(x) ≤ r2(x) for all x ∈ Ω, we have the
continuous embedding

Lr2(·)(Ω) ↪→ Lr1(·)(Ω).

Moreover, we can define variable exponent Lebesgue spaces with weights: for
any ω ∈ L1(Ω), ω ≥ 0, we can define the modular

ρr(·),ω(u) =

∫
Ω

ω(x)|u|r(x) dx.

Then, we define the space

Lr(·)
ω (Ω) =

{
u ∈M(Ω) :

∫
Ω

ρr(·),ω(u) dx <∞
}
,

endowed with the corresponding Luxemburg norm

∥u∥r(·),ω = inf
{
λ > 0 : ρr(·),ω

(u
λ

)
≤ 1
}
.

Next we can define the corresponding variable exponent Sobolev spaceW 1,r(·)(Ω)
which is given by, for r ∈ C+(Ω),

W 1,r(·)(Ω) =
{
u ∈ Lr(·)(Ω) : |∇u| ∈ Lr(·)(Ω)

}
,

equipped with the norm

∥u∥1,r(·) = ∥u∥r(·) + ∥∇u∥r(·),

where ∥∇u∥r(·) = ∥ |∇u| ∥r(·). It is well known that Lr(·)(Ω) and W 1,r(·)(Ω) are
separable and reflexive Banach spaces and possess an equivalent, uniformly convex
norm, see for example Diening-Harjulehto-Hästö-Růžička [19].

For any r ∈ C+(Ω) with r+ < N , we denote by r∗ and r∗ the critical Sobolev
exponents, defined for all x ∈ Ω as follows

r∗(x) =
Nr(x)

N − r(x)
and r∗(x) =

(N − 1)r(x)

N − r(x)
. (2.1)

Furthermore, let σ be the (N −1)-dimensional Hausdorff measure on the boundary
∂Ω and indicate with Lr(·)(∂Ω) the boundary Lebesgue space endowed with the
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usual norm ∥ · ∥r,∂Ω. We can consider a trace operator, i.e., a continuous linear

operator γ : W 1,r(·)(Ω) → Lm(·)(∂Ω) for all m ∈ C(Ω) with 1 ≤ m(x) < r∗(x) for
every x ∈ Ω, such that

γ(u) = u|∂Ω for all u ∈W 1,r(·)(Ω) ∩ C(Ω).

If it also holds that r ∈W 1,γ(Ω) with γ > N , then we can take any m ∈ C(Ω) with
1 ≤ m(x) ≤ r∗(x) for every x ∈ Ω. By the trace embedding theorem, it is known
that γ is compact for any r ∈ C(Ω) with 1 ≤ r(x) < r∗(x) for all x ∈ Ω, see Fan
[21, Corollary 2.4]. In this paper we avoid the notation of the trace operator and we
consider all the restrictions of Sobolev functions to the boundary ∂Ω in the sense
of traces. Moreover, we indicate with ρr(·),∂Ω(·) and ∥ ·∥r(·),∂Ω the modular and the

norm, respectively, of the space Lr(·)(∂Ω) with exponent r(·) on the boundary ∂Ω.

By C0, 1
| log t| (Ω) we denote the set of all functions h : Ω → R that are log-Hölder

continuous, that is, there exists a constant C > 0 such that

|h(x)− h(y)| ≤ C

| log |x− y||
for all x, y ∈ Ω with |x− y| < 1

2
.

Next, we present some embedding results, see Diening-Harjulehto-Hästö-Růžička
[19, Corollary 8.3.2], Fan [21, Corollary 2.4], Fan [22, Propositions 2.1 and 2.2],
Fan-Shen-Zhao [23] and Ho-Kim-Winkert-Zhang [31, Proposition 2.5].
Proposition 2.2.

(i) Let r ∈ C0, 1
| log t| (Ω)∩C+(Ω) and let s ∈ C(Ω) be such that 1 ≤ s(x) ≤ r∗(x)

for all x ∈ Ω. Then, the embedding W 1,r(·)(Ω) ↪→ Ls(·)(Ω) is continuous.
If r ∈ C+(Ω), s ∈ C(Ω) and 1 ≤ s(x) < r∗(x) for all x ∈ Ω, then the
embedding above is compact.

(ii) Suppose that r ∈ C+(Ω)∩W 1,γ(Ω) for some γ > N and let s ∈ C(Ω) be such
that 1 ≤ s(x) ≤ r∗(x) for all x ∈ Ω. Then, the embedding W 1,r(·)(Ω) ↪→
Ls(·)(∂Ω) is continuous. If r ∈ C+(Ω), s ∈ C(Ω) and 1 ≤ s(x) < r∗(x) for
all x ∈ Ω, then the embedding above is compact.

Remark 2.3. Note that for a bounded domain Ω ⊂ RN and γ > N we have the
following inclusions

C0,1(Ω) ⊂W 1,γ(Ω) ⊂ C0,1−N
γ (Ω) ⊂ C0, 1

| log t| (Ω).

Now, we introduce the Musielak-Orlicz space, the Musielak-Orlicz Sobolev space
and we recall some properties that will be useful in the sequel. From now on, we
assume the following:

(H) p, q ∈ C(Ω) such that 1 < p(x) < N and p(x) < q(x) < p∗(x) for all x ∈ Ω
and µ ∈ L∞(Ω) with µ(x) ≥ 0 for a.a.x ∈ Ω.

We consider the nonlinear function H : Ω× [0,∞) → [0,∞) defined by

H(x, t) = tp(x) + µ(x)tq(x) for all (x, t) ∈ Ω× [0,∞),

and we denote by ρH(·) the corresponding modular, namely

ρH(u) =

∫
Ω

H(x, |u|) dx =

∫
Ω

(
|u|p(x) + µ(x)|u|q(x)

)
dx.

Then, we indicate with LH(Ω) the Musielak-Orlicz space, given by

LH(Ω) = {u ∈M(Ω) : ρH(u) < +∞} ,



SUPERLINEAR ELLIPTIC EQUATIONS WITH UNBALANCED GROWTH 7

endowed with the Luxemburg norm

∥u∥H = inf
{
τ > 0 : ρH

(u
τ

)
≤ 1
}
.

Let W 1,H(Ω) be the Musielak-Orlicz Sobolev space, defined by

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
,

equipped with the usual norm

∥u∥1,H = ∥∇u∥H + ∥u∥H,
where ∥∇u∥H = ∥ |∇u| ∥H. From Crespo-Blanco-Gasiński-Harjulehto-Winkert [13,
Proposition 2.12] we know that LH(Ω) and W 1,H(Ω) are reflexive Banach spaces.
Further, we introduce the seminormed space

Lq(·)
µ (Ω) =

{
u ∈M(Ω) :

∫
Ω

µ(x)|u|q(x) dx < +∞
}
,

and endow it with the seminorm

∥u∥q(·),µ = inf

{
τ > 0 :

∫
Ω

µ(x)

(
|u|
τ

)q(x)

dx ≤ 1

}
.

The following result about the main embeddings of W 1,H(Ω) can be found in
Crespo-Blanco-Gasiński-Harjulehto-Winkert [13, Propositions 2.16 and 2.18].

Proposition 2.4. Let (H) be satisfied. Then the following embeddings hold:

(i) LH(Ω) ↪→ Lr(·)(Ω) and W 1,H(Ω) ↪→ W 1,r(·)(Ω) are continuous for all r ∈
C(Ω) with 1 ≤ r(x) ≤ p(x) for all x ∈ Ω;

(ii) if p ∈ C+(Ω) ∩ C0, 1
| log t| (Ω), then W 1,H(Ω) ↪→ Lr(·)(Ω) is continuous for

r ∈ C(Ω) with 1 ≤ r(x) ≤ p∗(x) for all x ∈ Ω;
(iii) W 1,H(Ω) ↪→ Lr(·)(Ω) is compact for all r ∈ C(Ω) with 1 ≤ r(x) < p∗(x) for

all x ∈ Ω.
(iv) if p ∈ C+(Ω) ∩W 1,γ(Ω) for some γ > N , then W 1,H(Ω) ↪→ Lr(·)(∂Ω) is

continuous for r ∈ C(Ω) with 1 ≤ r(x) ≤ p∗(x) for all x ∈ Ω;
(v) W 1,H(Ω) ↪→ Lr(·)(∂Ω) is compact for r ∈ C(Ω) with 1 ≤ r(x) < p∗(x) for

all x ∈ Ω;

(vi) LH(Ω) ↪→ L
q(·)
µ (Ω) is continuous;

(vii) Lq(·)(Ω) ↪→ LH(Ω) is continuous;
(viii) W 1,H(Ω) ↪→ LH(Ω) is compact.

For our existence results, we equip the space W 1,H(Ω) with the following norm

∥u∥ = inf

{
τ > 0 :

∫
Ω

(∣∣∣∣∇uτ
∣∣∣∣p(x) + µ(x)

∣∣∣∣∇uτ
∣∣∣∣q(x)

)
dx

+

∫
Ω

∣∣∣u
τ

∣∣∣p(x) dx+

∫
∂Ω

∣∣∣u
τ

∣∣∣p(x) dσ ≤ 1

}
,

(2.2)

induced by the modular

ρ(u) =

∫
Ω

(
|∇u|p(x) + µ(x)|∇u|q(x)

)
dx+

∫
Ω

|u|p(x) dx+

∫
∂Ω

|u|p(x) dσ,

for all u ∈ W 1,H(Ω). We emphasize that in Section 3 we prove in Proposition
3.1 the existence of a new equivalent norm in W 1,H(Ω), denoted by ∥ · ∥∗1,H, in a
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more general setting and the norm (2.2) derives from ∥ · ∥∗1,H defined in (3.2) by
choosing ϑ1 ≡ ϑ2 ≡ 1 and δ1 ≡ δ2 ≡ p. For reader’s convenience, we give here the
relationship between the modular ρ(·) and the norm ∥ · ∥, while in Section 3 we
present the same proposition for the general ones, see Proposition 3.2.

Proposition 2.5. Let hypothesis (H) be satisfied, u ∈ W 1,H(Ω) and λ ∈ R. Then
the following hold:

(i) If u ̸= 0, then ∥u∥ = λ ⇐⇒ ρ(uλ ) = 1;
(ii) ∥u∥ < 1 (resp.> 1, = 1) ⇐⇒ ρ(u) < 1 (resp.> 1, = 1);
(iii) If ∥u∥ < 1 =⇒ ∥u∥q+ ≤ ρ(u) ≤ ∥u∥p− ;
(iv) If ∥u∥ > 1 =⇒ ∥u∥p− ≤ ρ(u) ≤ ∥u∥q+ ;
(v) ∥u∥ → 0 ⇐⇒ ρ(u) → 0;
(vi) ∥u∥ → +∞ ⇐⇒ ρ(u) → +∞;
(vii) ∥u∥ → 1 ⇐⇒ ρ(u) → 1;

Moreover, for any h ∈ R let h+ = max{h, 0} and h− = max{−h, 0}, then one
has that h = h+ − h− and |h| = h+ + h−. Also, from Crespo-Blanco-Gasiński-
Harjulehto-Winkert [13, Proposition 2.17] we know that, under assumption (H), if
u ∈W 1,H(Ω) then u± ∈W 1,H(Ω).

Now, denote by ⟨ · , · ⟩ the duality pairing between W 1,H(Ω) and its dual space
W 1,H(Ω)∗ and by A : W 1,H(Ω) →W 1,H(Ω)∗ the nonlinear operator defined for all
u, v ∈W 1,H(Ω) by

⟨A(u), v⟩ =
∫
Ω

(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇v dx

+

∫
Ω

|u|p(x)−2uv dx+

∫
∂Ω

|u|p(x)−2uv dσ.

In the following proposition we give the properties of this operator, see Proposition
3.3 in Section 3.

Proposition 2.6. Let hypothesis (H) be satisfied. Then, the operator A : W 1,H(Ω)
→W 1,H(Ω)∗ is bounded, continuous, strictly monotone and of type (S+), that is,

if un ⇀ u in W 1,H(Ω) and lim sup
n→∞

⟨A(un), un − u⟩ ≤ 0,

then un → u in W 1,H(Ω). Moreover, it is coercive and a homeomorphism.

Next, we recall some tools needed in our investigations. In the sequel, for X
being a Banach space, we denote by X∗ its topological dual space.

Definition 2.7. Given L ∈ C1(X), we say that L satisfies the Cerami condition
(C-condition for short), if every sequence {un}n∈N ⊆ X such that

(C1) {L(un)}n≥1 ⊆ R is bounded,

(C2) (1 + ∥un∥X)L′(un) → 0 in X∗ as n→ ∞,

admits a strongly convergent subsequence in X. We say that L satisfies the Cerami
condition at level c ∈ R (Cc-condition for short), if (C1) is replaced by L(un) → c
as n→ ∞.

The following version of the Mountain-Pass Theorem is stated in the book of
Papageorgiou-Rădulescu-Repovš [42, Theorem 5.4.6].
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Theorem 2.8. Let X be a Banach space and suppose φ ∈ C1(X), u0, u1 ∈ X with
∥u1 − u0∥ > δ > 0,

max {φ(u0), φ(u1)} ≤ inf {φ(u) : ∥u− u0∥ = δ} = mδ,

c = inf
γ∈Γ

max
0≤t≤1

φ(γ(t)) with Γ = {γ ∈ C ([0, 1], X) : γ(0) = u0, γ(1) = u1} ,

and φ satisfies the Cc-condition. Then c ≥ mδ and c is a critical value of φ.
Moreover, if c = mδ, then there exists u ∈ Bδ(u0) such that φ′(u) = 0.

Finally, we present a version of the Quantitative Deformation Lemma, which can
be found in Willem [49, Lemma 2.3].

Lemma 2.9. Let X be a Banach space, φ ∈ C1(X;R), ∅ ≠ S ⊂ X, c ∈ R, ε, δ > 0
such that

∥φ′(u)∥∗ ≥ 8ε

δ
for all u ∈ φ−1 ([c− 2ε, c+ 2ε]) ∩ S2δ,

where Sr = {u ∈ X : d(u, S) = infu0∈S ∥u − u0∥ < r} for any r > 0. Then there
exists η ∈ C([0, 1]×X;X) such that

(i) η(t, u) = u, if t = 0 or if u /∈ φ−1 ([c− 2ε, c+ 2ε]) ∩ S2δ,
(ii) φ(η(1, u)) ≤ c− ε for all u ∈ φ−1((−∞, c+ ε]) ∩ S,
(iii) η(t, ·) is an homeomorphism of X for all t ∈ [0, 1],
(iv) ∥η(t, u)− u∥ ≤ δ for all u ∈ X and t ∈ [0, 1],
(v) φ(η(·, u)) is decreasing for all u ∈ X,
(vi) φ(η(t, u)) < c for all u ∈ φ−1((−∞, c]) ∩ Sδ and t ∈ (0, 1].

3. A new equivalent norm

In this section we prove the existence of a new and general equivalent norm in
W 1,H(Ω). First, in addition to (H), we suppose the following conditions:

(H1) (i) δ1, δ2 ∈ C(Ω) with 1 ≤ δ1(x) ≤ p∗(x) and 1 ≤ δ2(x) ≤ p∗(x) for all
x ∈ Ω, where

(a1) p ∈ C(Ω) ∩ C0, 1
| log t| (Ω), if δ1(x) = p∗(x) for some x ∈ Ω;

(a2) p ∈ C(Ω) ∩W 1,γ(Ω) for some γ > N , if δ2(x) = p∗(x) for some
x ∈ Ω;

(ii) ϑ1 ∈ L∞(Ω) with ϑ1(x) ≥ 0 for a.a.x ∈ Ω;
(iii) ϑ2 ∈ L∞(∂Ω) with ϑ2(x) ≥ 0 for a.a.x ∈ ∂Ω;
(iv) ϑ1 ̸≡ 0 or ϑ2 ̸≡ 0.

In the sequel we use the seminormed spaces

L
δ1(·)
ϑ1

(Ω) =

{
u ∈M(Ω) :

∫
Ω

ϑ1(x)|u|δ1(x) dx <∞
}
,

L
δ2(·)
ϑ2

(∂Ω) =

{
u ∈M(Ω) :

∫
∂Ω

ϑ2(x)|u|δ2(x) dσ <∞
}
,

with corresponding seminorms

∥u∥δ1(·),ϑ1
= inf

{
τ > 0 :

∫
Ω

ϑ1(x)
∣∣∣u
τ

∣∣∣δ1(x) dx ≤ 1

}
,

∥u∥δ2(·),ϑ2,∂Ω = inf

{
τ > 0 :

∫
∂Ω

ϑ2(x)
∣∣∣u
τ

∣∣∣δ2(x) dσ ≤ 1

}
,
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respectively. We set

∥u∥◦1,H = ∥∇u∥H + ∥u∥δ1(·),ϑ1
+ ∥u∥δ2(·),ϑ2,∂Ω, (3.1)

and

∥u∥∗1,H = inf

{
τ > 0 :

∫
Ω

(∣∣∣∣∇uτ
∣∣∣∣p(x) + µ(x)

∣∣∣∣∇uτ
∣∣∣∣q(x)

)
dx

+

∫
Ω

ϑ1(x)
∣∣∣u
τ

∣∣∣δ1(x) dx+

∫
∂Ω

ϑ2(x)
∣∣∣u
τ

∣∣∣δ2(x) dσ ≤ 1

}
.

(3.2)

It can be easily seen that ∥ · ∥◦1,H and ∥ · ∥∗1,H are norms on W 1,H(Ω). In the next
result, we prove that they are both equivalent to the usual one.

Proposition 3.1. Let hypotheses (H) and (H1) be satisfied. Then, ∥ · ∥◦1,H and

∥·∥∗1,H given in (3.1) and (3.2), respectively, are both equivalent norms onW 1,H(Ω).

Proof. We only prove the result when δ1(x) = p∗(x) and δ2(x) = p∗(x) for all
x ∈ Ω, the other cases can be shown in a similar way. So, we suppose that p ∈
C(Ω) ∩W 1,γ(Ω) for some γ > N . Then, by Remark 2.3 we know that p ∈ C(Ω) ∩
C0, 1

| log t| (Ω) as well.
First, for u ∈W 1,H(Ω) \ {0} we have∫

Ω

ϑ1(x)

(
|u|

∥u∥p∗(·)

)p∗(x)

dx ≤ ∥ϑ1∥∞ ρp∗(·)

(
u

∥u∥p∗(·)

)
= ∥ϑ1∥∞.

Hence,

∥u∥p∗(·),ϑ1
≤ ∥ϑ1∥∞∥u∥p∗(·).

In the same way, we show that

∥u∥p∗(·),ϑ2,∂Ω ≤ ∥ϑ2∥∞,∂Ω ∥u∥p∗(·),∂Ω.

Using these along with Proposition 2.4(ii), (iv), we obtain

∥u∥◦1,H ≤ ∥∇u∥H + C1∥u∥p∗(·) + C2∥u∥p∗(·),∂Ω

≤ ∥∇u∥H + C3∥u∥1,H + C4∥u∥1,H
≤ C5∥u∥1,H,

for all u ∈W 1,H(Ω), with positive constants Ci, i = 1, . . . 5.
Next, we are going to prove that

∥u∥H ≤ C6∥u∥◦1,H, (3.3)

for some C6 > 0. We argue indirectly and assume that (3.3) does not hold. Then,
we find a sequence {un}n∈N ⊂W 1,H(Ω) such that

∥un∥H > n∥un∥◦1,H for all n ∈ N. (3.4)

Let yn = un

∥un∥H
. Hence, ∥yn∥H = 1 and from (3.4) we get

1

n
> ∥yn∥◦1,H. (3.5)
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From ∥yn∥H = 1 and (3.5), we know that {yn}n∈N ⊂W 1,H(Ω) is bounded. There-
fore, using the embeddings in Proposition 2.4(ii), (iv) and up to a subsequence if
necessary, we may assume that

yn ⇀ y in W 1,H(Ω) and yn ⇀ y in Lp∗(·)(Ω) and Lp∗(·)(∂Ω). (3.6)

Furthermore, from (3.6) and Proposition 2.4(viii), we conclude that yn → y in
LH(Ω) and because of ∥yn∥H = 1 we have y ̸= 0. Passing to the limit in (3.5)
as n → ∞ and using (3.6) along with the weak lower semicontinuity of the norm
∥∇ · ∥H and of the seminorms ∥ · ∥p∗(·),ϑ1

, ∥ · ∥p∗(·),ϑ2,∂Ω we obtain

0 ≥ ∥∇y∥H + ∥y∥p∗(·),ϑ1
+ ∥y∥p∗(·),ϑ2,∂Ω. (3.7)

Inequality (3.7) implies that y ≡ η ̸= 0 is a constant and so we have a contradiction

0 ≥ |η|∥1∥p∗(·),ϑ1
+ |η|∥1∥p∗(·),ϑ2,∂Ω > 0,

because of (H1)(iv). Therefore (3.3) holds and we get

∥u∥1,H ≤ C7∥u∥◦1,H,
for some C7 > 0.

Next, we are going to show that ∥ · ∥◦1,H and ∥ · ∥∗1,H are equivalent norms in

W 1,H(Ω). For u ∈W 1,H(Ω), we obtain∫
Ω

( |∇u|
∥u∥◦1,H

)p(x)

+ µ(x)

(
|∇u|
∥u∥◦1,H

)q(x)
 dx

+

∫
Ω

ϑ1(x)

(
|u|

∥u∥◦1,H

)p∗(x)

dx+

∫
∂Ω

ϑ2(x)

(
|u|

∥u∥◦1,H

)p∗(x)

dσ

≤ ρH

(
∇u

∥∇u∥H

)
+

∫
Ω

ϑ1(x)

(
|u|

∥u∥p∗(·),θ1

)p∗(x)

dx

+

∫
∂Ω

ϑ2(x)

(
|u|

∥u∥p∗(·),θ2,∂Ω

)p∗(x)

dσ

= 3.

Thus,

∥u∥∗1,H ≤ 3∥u∥◦1,H. (3.8)

On the other hand, we have∫
Ω

( |∇u|
∥u∥∗1,H

)p(x)

+ µ(x)

(
|∇u|
∥u∥∗1,H

)q(x)
 dx

+

∫
Ω

ϑ1(x)

(
|u|

∥u∥∗1,H

)p∗(x)

dx+

∫
∂Ω

ϑ2(x)

(
|u|

∥u∥∗1,H

)p∗(x)

dσ

≤ ρ∗1,H

(
u

∥u∥∗1,H

)
,

(3.9)
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where ρ∗1,H is the corresponding modular to ∥ · ∥∗1,H given by

ρ∗1,H(u) =

∫
Ω

(
|∇u|p(x) + µ(x)|∇u|q(x)

)
dx+

∫
Ω

ϑ1(x)|u|p
∗(x) dx

+

∫
∂Ω

ϑ2(x)|u|p∗(x) dσ.

Note that, for u ∈ W 1,H(Ω), the function τ 7→ ρ∗1,H(τu) is continuous, convex and

even and it is strictly increasing when τ ∈ [0,∞). So, by definition, we directly
obtain

∥u∥∗1,H = τ if and only if ρ∗1,H

(u
τ

)
= 1.

From this and (3.9) we conclude that

∥∇u∥H ≤ ∥u∥∗1,H, ∥u∥p∗(·),ϑ1
≤ ∥u∥∗1,H and ∥u∥p∗(·),ϑ2,∂Ω ≤ ∥u∥∗1,H.

Therefore,

1

3
∥u∥◦1,H ≤ ∥u∥∗1,H. (3.10)

From (3.8) and (3.10) the proof is complete. □

Let

r1 := min {p−, (δ1)−, (δ2)−} and r2 := max {q+, (δ1)+, (δ2)+} .
In the following proposition we give the relation between the norm ∥ · ∥∗1,H and the

related modular function ρ∗1,H(·). The proof is similar to that one of Propositions

2.13 and 2.14 given by Crespo-Blanco-Gasiński-Harjulehto-Winkert in [13].

Proposition 3.2. Let hypotheses (H) and (H1) be satisfied, u ∈ W 1,H(Ω) and
λ ∈ R. Then the following hold:

(i) If u ̸= 0, then ∥u∥∗1,H = λ ⇐⇒ ρ∗1,H(uλ ) = 1;

(ii) ∥u∥∗1,H < 1 (resp.> 1, = 1) ⇐⇒ ρ∗1,H(u) < 1 (resp.> 1, = 1);

(iii) If ∥u∥∗1,H < 1 =⇒
(
∥u∥∗1,H

)r2 ≤ ρ∗1,H(u) ≤
(
∥u∥∗1,H

)r1
;

(iv) If ∥u∥∗1,H > 1 =⇒
(
∥u∥∗1,H

)r1 ≤ ρ∗1,H(u) ≤
(
∥u∥∗1,H

)r2
;

(v) ∥u∥∗1,H → 0 ⇐⇒ ρ∗1,H(u) → 0;

(vi) ∥u∥∗1,H → ∞ ⇐⇒ ρ∗1,H(u) → ∞;

(vii) ∥u∥∗1,H → 1 ⇐⇒ ρ∗1,H(u) → 1.

Finally, denote by B : W 1,H(Ω) → W 1,H(Ω)∗ the nonlinear operator defined
pointwise by

⟨B(u), v⟩ =
∫
Ω

(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇v dx

+

∫
Ω

ϑ1|u|δ1(x)−2uv dx+

∫
∂Ω

ϑ2|u|δ2(x)−2uv dσ,

for all u, v ∈ W 1,H(Ω). Arguing as in the in proof of Propositions 3.4 and 3.5 in
[13], we have the following the properties.

Proposition 3.3. Let hypotheses (H) and (H1) be satisfied. Then, the operator
B : W 1,H(Ω) → W 1,H(Ω)∗ is bounded, continuous and strictly monotone. If, in
addition, 1 < δ1(x), δ2(x) for all x ∈ Ω, then B is coercive, a homeomorphism and
of type (S+).
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Proof. As in the proof of Proposition 3.1 we only consider the case when δ1(x) =
p∗(x) and δ2(x) = p∗(x) for all x ∈ Ω. Similarly to the proof of Theorem 3.3 in
[13], we can show that B is bounded, continuous and strictly monotone. Let us
only show the proof for the (S+)-property. To this end, let {un}n∈N ⊆W 1,H(Ω) be
a sequence such that

un ⇀ u in W 1,H(Ω) and lim sup
n→∞

⟨B(un), un − u⟩ ≤ 0. (3.11)

From Proposition 2.4(ii) and (iv) we know, up to a subsequence if necessary, that

un ⇀ u in Lp∗(·)(Ω) and un ⇀ u in Lp∗(·)(∂Ω). (3.12)

The strict monotonicity of B implies that

lim
n→∞

⟨B(un)−B(u), un − u⟩ = 0 = lim
n→∞

⟨B(u), un − u⟩ .

This yields

lim
n→∞

∫
Ω

(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· (∇un −∇u) dx = 0,

lim
n→∞

∫
Ω

ϑ1(x)
(
|un|p

∗(x)−2un − |u|p
∗(x)−2u

)
(un − u) dx = 0,

lim
n→∞

∫
∂Ω

ϑ2(x)
(
|un|p∗(x)−2un − |u|p∗(x)−2u

)
(un − u) dσ = 0.

Then, in the same way as the claim in [13, Proof of Theorem 3.3, after (3.2)], taking
(3.12) into account, we can show that

∇un → ∇u in Lp(·)(Ω),

un → u in L
p∗(·)
ϑ1

(Ω),

un → u in L
p∗(·)
ϑ2

(∂Ω).

(3.13)

From (3.13) we know that

∇un → ∇u in measure in Ω,

ϑ1(x)
1

p∗(x)un → ϑ1(x)
1

p∗(x)u in measure in Ω,

ϑ2(x)
1

p∗(x)un → ϑ2(x)
1

p∗(x)u in measure in ∂Ω.

(3.14)

Note that if an, bn ≥ 0 for all n ∈ N, we have

lim sup
n→∞

an ≤ lim sup
n→∞

(an + bn). (3.15)

Therefore, from (3.15), the lim sup-condition in (3.11) in the shape

lim sup
n→∞

⟨B(un)−B(u), un − u⟩ ≤ 0

and the weak convergence of (3.11) as well as the embeddingsW 1,H(Ω) ↪→ L
p∗(·)
ϑ1

(Ω),

W 1,H(Ω) ↪→ L
p∗(·)
ϑ2

(∂Ω), we obtain that

lim sup
n→∞

∫
Ω

(
|∇un|p(x)−2∇un + µ(x)|∇un|q(x)−2∇un

)
· (∇un −∇u) dx ≤ 0,

lim sup
n→∞

∫
Ω

ϑ1(x)|un|p
∗(x)−2un(un − u) dx ≤ 0,
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lim sup
n→∞

∫
∂Ω

ϑ2(x)|un|p∗(x)−2un(un − u) dσ ≤ 0.

Arguing as in [13, (3.8), (3.9) and (3.10)] it can be shown that

lim
n→∞

∫
Ω

(
|∇un|p(x)

p(x)
+ µ(x)

|∇un|q(x)

q(x)

)
dx

=

∫
Ω

(
|∇u|p(x)

p(x)
+ µ(x)

|∇u|q(x)

q(x)

)
dx,

lim
n→∞

∫
Ω

ϑ1(x)|un|p
∗(x) dx =

∫
Ω

ϑ1(x)|u|p
∗(x) dx,

lim
n→∞

∫
∂Ω

ϑ2(x)|un|p∗(x) dσ =

∫
∂Ω

ϑ2(x)|u|p∗(x) dσ.

(3.16)

Due to (3.14), the left-hand sides of (3.16) converge in measure to those on the right-
hand sides. Then, the converse of Vitali’s theorem implies the uniform integrability
of the sequences of functions{

|∇un|p(x)

p(x)
+ µ(x)

|∇un|q(x)

q(x)

}
n∈N

,{
ϑ1(x)

|un|p
∗(x)

p∗(x)

}
n∈N

,

{
ϑ2(x)

|un|p∗(x)

p∗(x)

}
n∈N

.

But then the sequences

An :=
{
|∇un −∇u|p(x) + µ(x)|∇un −∇u|q(x)

}
n∈N

,

Bn :=
{
ϑ1(x)|un − u|p

∗(x)
}
n∈N

, Cn :=
{
ϑ2(x)|un − u|p∗(x)

}
n∈N

,

are uniformly integrable. This gives

0 = lim
n→∞

∫
Ω

An dx = lim
n→∞

∫
Ω

Bn dx = lim
n→∞

∫
∂Ω

Cn dσ,

which implies that

lim
n→∞

ρ∗1,H(un − u)

= lim
n→∞

(∫
Ω

(
|∇un −∇u|p(x) + µ(x)|∇un −∇u|q(x)

)
dx

+

∫
Ω

ϑ1(x)|un − u|p
∗(x) dx+

∫
∂Ω

ϑ2(x)|un − u|p∗(x) dσ

)
= 0.

But this is equivalent to ∥un − u∥1,H → 0, see Proposition 3.2 (v). Thus, un → u
in W 1,H(Ω). □

4. Bounded solutions

In this section we give a result about the boundedness in the L∞-norm of the
solutions of (P ). We state the theorem in a more general and more natural setting
than in (P ) and even allow a gradient dependency on the nonlinearity at the right-
hand side in the domain. For this purpose we need the following assumptions.
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(H∞) Let A : Ω × R × RN → RN and B : Ω × R × RN → R be Carathéodory
functions and assume that there exist constants a1, a2, a3, b > 0 and r ∈
C+(Ω) with q(x) < r(x) < p∗(x) for all x ∈ Ω such that

|A(x, t, ξ)| ≤ a1

[
|t|

r(x)

p′(x) + |ξ|p(x)−1 + µ(x)|ξ|q(x)−1 + 1

]
,

A(x, t, ξ) · ξ ≥ a2

[
|ξ|p(x) + µ(x)|ξ|q(x)

]
− a3

[
|t|r(x) + 1

]
,

|B(x, t, ξ)| ≤ b

[
|ξ|

p(x)

r′(x) + |t|r(x)−1 + 1

]
,

for a.a.x ∈ Ω and for all (t, ξ) ∈ R×RN . Furthermore, let C : ∂Ω×R → R
be also a Carathéodory function, c > 0 and l ∈ C+(Ω) with p(x) < l(x) <
p∗(x) for all x ∈ Ω such that

|C(x, t)| ≤ c
[
|t|l(x)−1 + 1

]
,

for a.a.x ∈ ∂Ω and for all t ∈ R.
We consider the problem

−divA(x, u,∇u) = B(x, u,∇u) in Ω,

A(x, u,∇u) · ν = C(x, u) on ∂Ω,
(4.1)

already presented in the Introduction, see (1.2). We say that u ∈ W 1,H(Ω) is a
weak solution of (4.1) if for all v ∈W 1,H(Ω) it holds that∫

Ω

A(x, u,∇u) · ∇v dx =

∫
Ω

B(x, u,∇u)v dx+

∫
∂Ω

C(x, u)v dσ.

Following Theorem 4.3 due to Ho-Winkert [32], we obtain a priori L∞-estimates
for the problem (4.1).

Theorem 4.1. Let hypotheses (H) and (H∞) be satisfied and let u ∈ W 1,H(Ω) be
a weak solution of problem (4.1). Then, u ∈ L∞(Ω) ∩ L∞(∂Ω) and

∥u∥∞ + ∥u∥∞,∂Ω ≤ Cmax
{
∥u∥τ1r(·), ∥u∥

τ2
r(·), ∥u∥

τ1
l(·),∂Ω, ∥u∥

τ2
l(·),∂Ω

}
,

where C, τ1, τ2 > 0 are independent of u.

Proof. We base our arguments on the proof of [32, Theorem 4.3] introducing the
following changes.

First, take

Ψ(x, t) = tr(x) for all (x, t) ∈ Ω× [0,∞),

Zn =

∫
Aκn

(u− κn)
r(x) dx,

Υ(x, t) = tl(x) for all (x, t) ∈ Ω× [0,∞),

Yn =

∫
Γκn

(u− κn)
l(x) dx,

instead of the definitions given there. Then the Step 1 works exactly the same
except for (4.9), which now is true because q(x) ≤ r(x) for all x ∈ Ω and∫

Aκn+1

[
(u− κn+1)

p(x) + µ(x)(u− κn+1)
q(x)
]
dx
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≤
∫
Aκn+1

[
(u− κn+1)

r(x) + 1 + ||µ||∞(u− κn+1)
r(x) + ||µ||∞

]
dx.

Later, we take

Tn,i(α) =

∫
Ωi

vαn dx for all i ∈ {1, . . . ,m}, α > 0,

Hn,i(α) =

∫
Ωi

vαn dx for all i ∈ I, α > 0,

skip the ψ⋆ and Φ⋆ parts and then use only the embeddings

W 1,p(·)(Ωi) ↪→W 1,(pi)−(Ωi) ↪→ Lr⋆i +ε(Ωi),

W 1,p(·)(Ωi) ↪→W 1,(pi)−(Ωi) ↪→ Ll⋆i +ε(∂Ωi).
(4.2)

Then one can complete Step 2 with a completely analogous argument. We finish
the proof by repeating exactly the treatment of Step 3. □

Remark 4.2. Let us emphasize that Theorem 4.1 holds under the weaker hypothesis
on the exponents given in (H∞) instead of the much more restrictive assumptions
needed in [32, Theorem 4.3]. The reason behind this relies on the less general growth
condition we require on the main operators, so we only need to use the embeddings
(4.2) instead of the other stronger and sharper embeddings used in (4.19) and (4.49)
of [32] and for which the authors require the aforementioned stronger hypothesis on
the exponents.

5. Constant sign solutions

In this section we establish existence of two constant sign solutions obtained
through Theorem 2.8. In particular, one solution turns out to be nonnegative and
the other one to be nonpositive. First, we have to strengthen the hypotheses (H)
as follows:

(H2) p, q ∈ C(Ω) such that 1 < p(x) < N and p(x) < q(x) < (p−)∗ for all x ∈ Ω
and µ ∈ L∞(Ω) with µ(x) ≥ 0 for a.a.x ∈ Ω.

Next, we state the required assumptions on the nonlinearities:

(Hf,g) Let f : Ω × R → R and g : ∂Ω × R → R be Carathéodory functions and

F (x, t) =
∫ t

0
f(x, s) ds and G(x, t) =

∫ t

0
g(x, s) ds be such that the following

hold:
(h1) there exist ℓ, κ ∈ C+(Ω) and K1,K2 > 0 with ℓ+ < (p−)

∗ and κ+ <
(p−)∗ such that

|f(x, t)| ≤ K1

(
1 + |t|ℓ(x)−1

)
for a.a.x ∈ Ω,

|g(x, t)| ≤ K2

(
1 + |t|κ(x)−1

)
for a.a.x ∈ ∂Ω,

and for all t ∈ R;

(h2)

lim
t→±∞

F (x, t)

|t|q+
= ∞ uniformly for a.a.x ∈ Ω,

lim
t→±∞

G(x, t)

|t|q+
= ∞ uniformly for a.a.x ∈ ∂Ω;
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(h3)

lim
t→0

F (x, t)

|t|p(x)
= 0 uniformly for a.a.x ∈ Ω,

lim
t→0

G(x, t)

|t|p(x)
= 0 uniformly for a.a.x ∈ ∂Ω;

(h4) there exist α, β, ζ, θ ∈ C+(Ω) with

min{α−, β−} ∈
(
(ℓ+ − p−)

N

p−
, ℓ+

)
,

min{ζ−, θ−} ∈
(
(κ+ − p−)

N − 1

p− − 1
, κ+

)
,

and K3 > 0 such that

0 < K3 ≤ lim inf
t→∞

f(x, t)t− q+F (x, t)

|t|α(x)
,

0 < K3 ≤ lim inf
t→−∞

f(x, t)t− q+F (x, t)

|t|β(x)
,

uniformly for a.a.x ∈ Ω and K4 > 0 such that

0 < K4 ≤ lim inf
t→∞

g(x, t)t− q+G(x, t)

|t|ζ(x)
,

0 < K4 ≤ lim inf
t→−∞

g(x, t)t− q+G(x, t)

|t|θ(x)
,

uniformly for a.a.x ∈ ∂Ω;

(h5) the functions

t 7→ f(x, t)

|t|q+−1
and t 7→ g(x, t)

|t|q+−1

are increasing in (−∞, 0) and in (0,∞) for a.a.x ∈ Ω and for a.a.x ∈
∂Ω, respectively.

We note that assumption (h3) together with the continuity of f(x, ·) and g(x, ·)
implies that

f(x, 0) = 0 for a.a.x ∈ Ω and g(x, 0) = 0 for a.a.x ∈ ∂Ω. (5.1)

Moreover, in Lemma 4.4 of Crespo-Blanco-Winkert [15], the authors summarize
the properties that the nonlinear term of the equation (i.e. function f) verifies
as consequences of the previous assumptions. Clearly, as the nonlinear function g
satisfies similar hypotheses on the boundary, it also verifies the same properties on
∂Ω.

Remark 5.1. The conditions on the exponents in (h4) are well defined since from
(h1) we have ℓ+ < (p−)

∗ and κ+ < (p−)∗ and the following hold

(ℓ+ − p−)
N

p−
= ℓ+

N

p−
− (p−)

∗N − p−
p−

< ℓ+
N

p−
− ℓ+

N − p−
p−

= ℓ+,

(κ+ − p−)
N − 1

p− − 1
= κ+

N − 1

p− − 1
− (p−)∗

N − p−
p− − 1

< κ+
N − 1

p− − 1
− κ+

N − p−
p− − 1

= κ+.
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Example 5.2. Simple examples of f and g satisfying (Hf,g) are

f(x, t) = |t|q++ε1−2t and g(x, t) = |t|q++ε2−2t,

i.e. independent of x, where 0 < ε1 < min{(p−)∗−q+), 1} and 0 < ε2 < min{(p−)∗−
q+), 1}. For the assumption (h4) choose α(x) = q+ + ε1 − ε̃ − 1, where ε̃ is small
enough, and choose β, ζ and θ analogously.

Less trivial examples of f and g are

f(x, t) =


|t|l1(x)−2t[1 + log(−t)], if t ≤ −1,

|t|η(x)−2t, if − 1 < t < 1,

|t|l2(x)−2t[1 + log(t)], if 1 ≤ t,

g(x, t) =


|t|κ1(x)−2t[1 + log(−t)], if t ≤ −1,

|t|ν(x)−2t, if − 1 < t < 1,

|t|κ2(x)−2t[1 + log(t)], if 1 ≤ t,

where l1, l2, η ∈ C(Ω), q+ ≤ η(x) and q+ ≤ l1(x), l2(x) < (p−)
∗ for all x ∈ Ω, and

they satisfy
max{(l1)+, (l2)+}

p−
− (li)−

N
< 1, for all i ∈ {1, 2},

and also κ1, κ2, ν ∈ C(Ω), q+ ≤ ν(x) and q+ ≤ κ1(x), κ2(x) < (p−)∗ for all x ∈ Ω,
and they satisfy

max{(κ1)+, (κ2)+}
p− − 1

− (κi)−
N − 1

<
p−

p− − 1
, for all i ∈ {1, 2}.

Then f and g satisfy all the assumptions above. For the assumption (h2) of f
take l(x) = max{l1(x), l2(x)} + ε for all x ∈ Ω, with ε > 0 small enough so that
l+ < (p−)

∗ and
l+
p−

− (li)−
N

< 1, for all i ∈ {1, 2}.

For the assumption (h4) of f , take α(x) = l1(x), β(x) = l2(x) for all x ∈ Ω.
This is the reason for the assumption on (l1)± and (l2)±. Observe that if we take
l1 = l2 = l constant, the condition is equivalent to l < (p−)

∗, hence redundant in
that case. For the assumptions (h2) and (h4) of g, analogous considerations apply.

Our aim is to establish results on the existence of weak solutions for problem
(P ), namely functions u ∈W 1,H(Ω) such that∫

Ω

(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇v dx+

∫
Ω

|u|p(x)−2uv dx

=

∫
Ω

f(x, u)v dx+

∫
∂Ω

g(x, u)v dσ −
∫
∂Ω

|u|p(x)−2uv dσ,

for every v ∈W 1,H(Ω). In particular, these weak solutions are critical points of the
energy functional I : W 1,H(Ω) → R associated to the problem (P ) given by

I(u) =

∫
Ω

(
|∇u|p(x)

p(x)
+ µ(x)

|∇u|q(x)

q(x)

)
dx+

∫
Ω

|u|p(x)

p(x)
dx

+

∫
∂Ω

|u|p(x)

p(x)
dσ −

∫
Ω

F (x, u) dx−
∫
∂Ω

G(x, u) dσ,
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for all u ∈W 1,H(Ω). Since we are interested in constant sign solutions, we consider
the positive and negative truncations of the functional I, that are I± : W 1,H(Ω) → R
defined by

I±(u) =

∫
Ω

(
|∇u|p(x)

p(x)
+ µ(x)

|∇u|q(x)

q(x)

)
dx+

∫
Ω

|u|p(x)

p(x)
dx

+

∫
∂Ω

|u|p(x)

p(x)
dσ −

∫
Ω

F (x,±u±) dx−
∫
∂Ω

G(x,±u±) dσ,

for all u ∈ W 1,H(Ω), where we have taken (5.1) into account. Our existence result
is based on the Mountain-Pass Theorem. First we give preliminary results in order
to verify the assumptions required in Theorem 2.8. We start with the compactness
condition on the functional.

Proposition 5.3. Let hypotheses (H2), (h1), (h3) and (h4) be satisfied. Then, the
functionals I± satisfy the C-condition.

Proof. We show the proof for I+, the case for I− works in the same way. Let
{un}n∈N ⊆ W 1,H(Ω) be a sequence such that (C1) and (C2) from Definition 2.7
hold. From (C2), there exists {εn}n∈N with εn → 0+ such that∣∣⟨I ′+(un), v⟩∣∣ ≤ εn∥v∥

1 + ∥un∥
for all n ∈ N and for all v ∈W 1,H(Ω). (5.2)

Choosing v = −u−n ∈W 1,H(Ω), one has

ρ(−u−n )−
∫
Ω

f(x,+u+n )(−u−n ) dx−
∫
∂Ω

g(x,+u+n )(−u−n ) dσ ≤ εn,

for all n ∈ N, which leads to ρ(−u−n ) → 0 as n → ∞, since the supports of +u+n
and −u−n do not overlap. From Proposition 2.5(v) it follows that

−u−n → 0 in W 1,H(Ω). (5.3)

Claim 1: {u+n }n∈N is bounded in Lα−(Ω) and in Lζ−(∂Ω).
From (C1) we have that there exists a constant M1 > 0 such that for all n ∈ N one
has |I+(un)| ≤M , that is

1

q+
ρ(u+n )−

∫
Ω

F (x, u+n ) dx−
∫
∂Ω

G(x, u+n ) dσ ≤M1 −
1

q+
ρ(−u−n ),

which, taking (5.3) into account, leads to

ρ(u+n )−
∫
Ω

q+F (x, u
+
n ) dx−

∫
∂Ω

q+G(x, u
+
n ) dσ ≤M2, (5.4)

for all n ∈ N and for some M2 > 0. Testing (5.2) for v = u+n , we have

−ρ(u+n ) +
∫
Ω

f(x, u+n )u
+
n dx+

∫
∂Ω

g(x, u+n )u
+
n dσ ≤ εn, (5.5)

for all n ∈ N. Adding (5.4) and (5.5) we obtain∫
Ω

(
f(x, u+n )u

+
n − q+F (x, u

+
n )
)
dx

+

∫
∂Ω

(
g(x, u+n )u

+
n − q+G(x, u

+
n )
)
dσ ≤M3,

(5.6)
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for all n ∈ N, with M3 > 0. Without loss of generality, we can assume α− ≤ β−
and ζ− ≤ θ−. From (h4), there exist K̂3, K̃3, K̂4, K̃4 > 0 such that for all t ∈ R the
following hold

f(x, t)t− q+F (x, t) ≥ K̂3|t|α− − K̃3 for a.a.x ∈ Ω,

g(x, t)t− q+G(x, t) ≥ K̂4|t|ζ− − K̃4 for a.a.x ∈ ∂Ω.

Exploiting these relations in (5.6), we derive

K̂3∥u+n ∥α−
α−

+ K̂4∥u+n ∥
ζ−
ζ−,∂Ω ≤M4,

which gives

∥u+n ∥α− ≤M5 and ∥u+n ∥ζ−,∂Ω ≤ M̃5 for all n ∈ N

for some M5, M̃5 > 0 and Claim 1 is achieved.

Claim 2: {u+n }n∈N is bounded in W 1,H(Ω).
From (h1) and (h4), we have that

α− < ℓ+ < (p−)
∗ and ζ− < κ+ < (p−)∗.

Hence, there exist s, τ ∈ (0, 1) such that

1

ℓ+
=

s

(p−)∗
+

1− s

α−
and

1

κ+
=

τ

(p−)∗
+

1− τ

ζ−
, (5.7)

and applying the interpolation inequality, see Papageorgiou-Winkert [43, Proposi-
tion 2.3.17 p.116], we obtain

∥u+n ∥ℓ+ ≤ ∥u+n ∥s(p−)∗∥u
+
n ∥1−s

α−
,

∥u+n ∥κ+,∂Ω ≤ ∥u+n ∥τ(p−)∗,∂Ω
∥u+n ∥1−τ

ζ−,∂Ω,

for all n ∈ N. Taking Claim 1 into account, one has

∥u+n ∥ℓ+ ≤M6∥u+n ∥s(p−)∗ and ∥u+n ∥κ+,∂Ω ≤ M̃6∥u+n ∥τ(p−)∗,∂Ω
, (5.8)

for some M6, M̃6 > 0 and for all n ∈ N. Again, from (5.2) with v = u+n , using (h1),
it follows that

ρ(u+n ) ≤ εn +K1

∫
Ω

(
|u+n |+ |u+n |ℓ(x)

)
dx+K2

∫
∂Ω

(
|u+n |+ |u+n |κ(x)

)
dσ. (5.9)

We may assume that ∥u+n ∥ ≥ 1 for all n ∈ N, otherwise we are done. Then, using
Proposition 2.5(iv), (5.9) and (5.8), we derive that

∥u+n ∥p− ≤ ρ(u+n ) ≤ εn +K1

(
∥u+n ∥1 + ∥u+n ∥

ℓ+
ℓ+

)
+K2

(
∥u+n ∥1,∂Ω + ∥u+n ∥

κ+

κ+,∂Ω

)
≤ εn +M7

(
1 + ∥u+n ∥

sℓ+
(p−)∗

)
+ M̃7

(
1 + ∥u+n ∥

τκ+

(p−)∗,∂Ω

)
,

with M7, M̃7 > 0. Then, considering the embeddings W 1,H(Ω) ↪→ W 1,p−(Ω) ↪→
L(p−)∗(Ω) and W 1,H(Ω) ↪→W 1,p−(Ω) ↪→ L(p−)∗(∂Ω), we get

∥u+n ∥p− ≤ εn +M8

(
1 + ∥u+n ∥sℓ+ + ∥u+n ∥τκ+

)
,

for all n ∈ N and for some M8 > 0. From (5.7), the definition of (p−)
∗ and (h4),

one has

sℓ+ =
(p−)

∗(ℓ+ − α−)

(p−)∗ − α−
=

Np−(ℓ+ − α−)

Np− −Nα− + p−α−
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<
Np−(ℓ+ − α−)

Np− −Nα− + p−(ℓ+ − p−)
N
p−

= p−.

Similarly, from (5.7), the definition of (p−)∗ and (h4), we have

ζ− >
ζ−
p−

+ (κ+ − p−)
N − 1

p−
,

which implies

τκ+ =
(p−)∗(κ+ − ζ−)

(p−)∗ − ζ−
=

(N − 1)p−(κ+ − ζ−)

(N − 1)p− −Nζ− + p−ζ−

<
(N − 1)p−(κ+ − ζ−)

(N − 1)p− −Nζ− + p−

(
ζ−
p−

+ (κ+ − p−)
N−1
p−

) = p−.

This completes the proof of Claim 2.

Claim 3: un → u in W 1,H(Ω) up to a subsequence.
From (5.3) and Claim 2, it follows that {un}n∈N is bounded in W 1,H(Ω). Since
W 1,H(Ω) is a reflexive space, there exists a weakly convergent subsequence in
W 1,H(Ω), not relabeled, such that

un ⇀ u in W 1,H(Ω).

Then, as by (5.2) in correspondence of v = un − u, it holds

⟨I ′+(un), un − u⟩ → 0 as n→ ∞.

The f and g terms are strongly continuous (see for example [15, Lemma 4.4]), hence
their limit vanishes and we derive

⟨A(un), un − u⟩ → 0 as n→ ∞.

As A satisfies the (S+)-property, see Proposition 2.6, the proof is complete. □

The following results are needed to verify the so-called mountain-pass geometry.

Proposition 5.4. Let hypotheses (H2), (h1) and (h3) be satisfied. Then, there
exist constants Ci > 0, i = 1, . . . , 5 such that

I(u), I±(u) ≥

{
C1∥u∥q+ − C2∥u∥ℓ− − C3∥u∥κ− if ∥u∥ ≤ min{1, C4, C5},
C1∥u∥p− − C2∥u∥ℓ+ − C3∥u∥κ+ if ∥u∥ ≥ max{1, C4, C5}.

Proof. We give the proof only for the functional I, the proof for I± is similar. From
assumptions (h1) and (h3) it follows that for all ε > 0 there exist cε, c̃ε > 0 such
that

|F (x, t)| ≤ ε

p(x)
|t|p(x) + cε|t|ℓ(x) for a.a.x ∈ Ω and for all t ∈ R,

|G(x, t)| ≤ ε

p(x)
|t|p(x) + c̃ε|t|κ(x) for a.a.x ∈ ∂Ω and for all t ∈ R.

(5.10)

Let u ∈W 1,H(Ω) be fixed. Using (5.10), Proposition 2.1, the embedding W 1,H(Ω)
↪→ Lℓ(·)(Ω) with constant Cℓ and the embedding W 1,H(Ω) ↪→ Lκ(·)(∂Ω) with con-
stant Cκ,∂Ω one has

I(u) ≥ 1

q+
ρH(∇u) + 1

p+
ρp(·)(u) +

1

p+
ρp(·),∂Ω(u)
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− ε

p−
ρp(·)(u)− cερℓ(·)(u)−

ε

p−
ρp(·),∂Ω(u)− c̃ερκ(·),∂Ω(u)

=
1

q+
ρH(∇u) +

(
1

p+
− ε

p−

)
ρp(·)(u) +

(
1

p+
− ε

p−

)
ρp(·),∂Ω(u)

− cερℓ(·)(u)− c̃ερκ(·),∂Ω(u)

≥ min

{
1

q+
,
1

p+
− ε

p−

}
ρ(u)

− cε max
{
∥u∥ℓ−ℓ(·), ∥u∥

ℓ+
ℓ(·)

}
− c̃ε max

{
∥u∥κ−

κ(·),∂Ω, ∥u∥
κ+

κ(·),∂Ω

}
≥ min

{
1

q+
,
1

p+
− ε

p−

}
ρ(u)

− cε max
{
C

ℓ−
ℓ ∥u∥ℓ− , Cℓ+

ℓ ∥u∥ℓ+
}
− c̃ε max

{
C

κ−
κ,∂Ω∥u∥

κ− , C
κ+

κ,∂Ω∥u∥
κ+

}
.

Choosing ε ∈
(
0, (q+−p+)p−

p+q+

)
and taking

C1 =
1

q+
, C4 =

1

Cℓ
and C5 =

1

Cκ,∂Ω
,

our statement follows from Proposition 2.5(iii)-(iv) and by setting

C2 = cεC
ℓ−
ℓ and C3 = c̃εC

κ−
κ,∂Ω if ∥u∥ ≤ min{1, C4, C5},

C2 = cεC
ℓ+
ℓ and C3 = c̃εC

κ+

κ,∂Ω if ∥u∥ ≥ max{1, C4, C5}.
□

The following result is a direct consequence of Proposition 5.4.

Proposition 5.5. Let hypotheses (H2), (h1) and (h3) be satisfied with q+ < ℓ−, κ−.
Then there exists δ > 0 such that

inf
∥u∥=δ

I(u) > 0 and inf
∥u∥=δ

I±(u) > 0,

or alternatively, there exists λ > 0 such that I(u) > 0 for 0 < ∥u∥ < λ.

Proposition 5.6. Let hypotheses (H2), (h1) and (h2) be satisfied. Then, I(su) →
−∞ as s → ±∞ for every u ∈ W 1,H(Ω) \ {0}. Moreover, I±(su) → −∞ as
s→ ±∞ for all u ∈W 1,H(Ω) \ {0} such that u ≥ 0 a.e. in Ω.

Proof. We give the proof only for the functional I, since if u ≥ 0 a.e. in Ω then
I±(su) = I(su) for ±s > 0. Fix s, ε ∈ R and u ∈ W 1,H(Ω) such that |s| ≥ 1, ε ≥ 1
and u ̸= 0. From (h1) and (h2) it follows that

|F (x, t)| ≥ ε

q+
|t|q+ − cε for a.a.x ∈ Ω,

|G(x, t)| ≥ ε

q+
|t|q+ − cε for a.a.x ∈ ∂Ω,

see also [15, Lemma 4.4]. Then, using the previous inequalities, one has

I(su) ≤ |s|p+

p−

(
ρp(·)(∇u) + ρp(·)(u) + ρp(·),∂Ω(u)

)
+ cε (|Ω|+ |∂Ω|)

+ |s|q+
[
ρq(·),µ(∇u)

q−
− ε

q+

(
∥u∥q+q+ + ∥u∥q+q+,∂Ω

)]
.
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Noting that ∥u∥q+ < ∞ and ∥u∥q+,∂Ω < ∞ since q+ < l− < (p−)
∗ and q+ <

κ− < (p−)∗, we can choose ε large enough such that the third term is negative and
I(su) → −∞ as |s| → ∞. □

Finally, we state the main result of this section.

Theorem 5.7. Let hypotheses (H2), (h1)–(h4) be satisfied. Then, there exist two
nontrivial weak solutions u0, v0 ∈ W 1,H(Ω) ∩ L∞(Ω) of problem (P ) such that
u0 ≥ 0 and v0 ≤ 0 a.e. in Ω.

Proof. Thanks to Proposition 5.3, 5.5 and 5.6, we can apply Theorem 2.8 to both
functionals I±. Then, there exist u0, v0 ∈ W 1,H(Ω) such that I ′+(u0) = 0 and
I ′−(v0) = 0, namely u0, v0 are weak solutions of problem (P ). In particular, from
Proposition 5.5 it follows that

I+(u0) ≥ inf
∥u∥=δ

I+(u) > 0 = I+(0),

which implies u0 ̸= 0. Analogously, I−(v0) > 0 and v0 ̸= 0. Finally, since
⟨I ′+(u0), v⟩ = 0 for every v ∈ W 1,H(Ω), we can choose v = −u−0 and this leads
to

ρ(−u−0 ) =
∫
Ω

f(x, u+0 )(−u
−
0 ) dx+

∫
∂Ω

g(x, u+0 )(−u
−
0 ) dσ = 0.

From Proposition 2.5 it follows that −u−0 = 0 a.e. in Ω, hence u0 ≥ 0 a.e. in Ω.
Similarly, we can test ⟨I ′−(v0), v+0 ⟩ = 0 and derive that v0 ≤ 0 a.e in Ω. Finally, we
know that u0 and v0 are bounded functions because of Theorem 4.1. □

6. Sign changing solution

In this section we present our main result on the existence of a sign-changing
solution through the Nehari manifold approach, in addition to the two constant
sign solutions obtained in Section 5. We indicate with N the Nehari manifold of I,
defined by

N =
{
u ∈W 1,H(Ω) : ⟨I ′(u), u⟩ = 0, u ̸= 0

}
.

Clearly, any nontrivial weak solution of (P ) belongs to N , because the weak so-
lutions of (P ) are exactly the critical points of I. Since we are interested in sign-
changing solutions, we introduce the following subset of N

N0 =
{
u ∈W 1,H(Ω) : ±u± ∈ N

}
.

For an overview on the method of the Nehari manifold, we refer to the book chapter
of Szulkin-Weth [48].

First, we prove some properties of the Nehari manifold N (Proposition 6.1) and
of the energy functional I restricted to N (Proposition 6.2).

Proposition 6.1. Let hypotheses (H2), (h1)–(h3) and (h5) be satisfied. Then, for
any u ∈W 1,H(Ω) \ {0}, there exists a unique su > 0 such that suu ∈ N .
Moreover, one has

I(suu) > 0 and I(suu) > I(su) for all s > 0 with s ̸= su.

and

∂sI(su) > 0 for 0 < s < su and ∂sI(su) < 0 for s > su.
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Proof. For any fixed u ∈W 1,H(Ω) \ {0} we define ϕu : [0,∞) → R as follows

ϕu(s) = I(su) for all s ∈ [0,∞).

Clearly, ϕu belongs to C ([0,∞)) and C1 ((0,∞)). From Propositions 5.5 and 5.6
we derive that there exist δ,M > 0 such that

ϕu(s) > 0 for 0 < t < δ and ϕu(s) < 0 for t > M. (6.1)

Then, applying the extreme value theorem, we get in particular that ϕu admits a
local maximum, i.e., there exists 0 < su ≤M such that

sup
s∈[0,∞)

ϕu(s) = max
s∈[0,M ]

ϕu(s) = ϕu(su).

Since su is also a critical point of ϕu, in combination with ϕ′u(s) = ⟨I ′(su), u⟩ for
every s > 0, one has

ϕ′u(su) = ⟨I ′(suu), u⟩ = 0 =⇒ suu ∈ N .

Claim: su is unique.
From assumption (h5) we have that

s 7→ f(x, su)

sq+−1|u|q+−1
increasing ⇒ s 7→ f(x, su)u

sq+−1
increasing in {x ∈ Ω : u(x) > 0},

s 7→ f(x, su)

sq+−1|u|q+−1
decreasing ⇒ s 7→ f(x, su)u

sq+−1
increasing in {x ∈ Ω : u(x) < 0},

s 7→ g(x, su)

sq+−1|u|q+−1
increasing ⇒ s 7→ g(x, su)u

sq+−1
increasing in {x ∈ ∂Ω : u(x) > 0},

s 7→ g(x, su)

sq+−1|u|q+−1
decreasing ⇒ s 7→ g(x, su)u

sq+−1
increasing in {x ∈ ∂Ω : u(x) < 0}.

Multiplying by 1/sq+−1 the equation ϕ′u(s) = ⟨I ′(su), u⟩ = 0 (consider only s > 0),
which is a necessary condition for su ∈ N , we obtain∫

Ω

(
|∇u|p(x)

sq+−p(x)
+
µ(x)|∇u|q(x)

sq+−q(x)

)
dx+

∫
Ω

|u|p(x)

sq+−p(x)
dx+

∫
∂Ω

|u|p(x)

sq+−p(x)
dσ

−
∫
Ω

f(x, su)u

sq+−1
dx−

∫
∂Ω

g(x, su)u

sq+−1
dσ = 0.

As functions of s, the left-hand side is strictly decreasing, because it is so in the sets
{x ∈ Ω : ∇u ̸= 0}, {x ∈ Ω : u ̸= 0} and {x ∈ ∂Ω : u ̸= 0} and at least decreasing
in the rest (recall that p(x) < q(x) ≤ q+ for all x ∈ Ω and the previous comments
for f and g). Consequently, there can be at most one single value su > 0 for which
the equation holds, namely there exists a unique su > 0 such that suu ∈ N .

Finally, since ϕ′u(s) has constant sign for 0 < s < su and s > su, from (6.1) we
can derive

ϕ′u(s) > 0 for 0 < s < su and ϕ′u(s) < 0 for s > su.

Thus su is a strict maximum for ϕu and this completes the proof. □

Proposition 6.2. Let hypotheses (H2), (h1)–(h3) and (h5) be satisfied. Then, the
functional I|N is sequentially coercive, namely for any sequence {un}n∈N ⊂ N such

that ∥un∥
n→∞−−−−→ ∞ one has I(un)

n→∞−−−−→ ∞.
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Proof. Let {un}n∈N ⊂ N be a sequence such that ∥un∥
n→∞−−−−→ ∞ and put

yn =
un

∥un∥
for all n ∈ N. (6.2)

Since {yn}n∈N is bounded in the reflexive space W 1,H(Ω) and due to the compact
embeddingsW 1,H(Ω) ↪→ Lℓ(·)(Ω) as well asW 1,H(Ω) ↪→ Lκ(·)(∂Ω) (see Proposition
2.4(iii), (v)), there exists a subsequence {ynk

}k∈N and y ∈W 1,H(Ω) such that

ynk
⇀ y in W 1,H(Ω),

ynk
→ y in Lℓ(·)(Ω) and pointwisely a.e. in Ω,

ynk
→ y in Lκ(·)(∂Ω) and pointwisely a.e. in ∂Ω.

(6.3)

Claim: y = 0.
By contradiction, suppose that y ̸= 0. As ∥un∥ → ∞, there exists k0 ∈ N such that
for every k ≥ k0 one has ∥unk

∥ ≥ 1 and

I(unk
) ≤ 1

p−
ρ(unk

)−
∫
Ω

F (x, unk
) dx−

∫
∂Ω

G(x, unk
) dσ

≤ 1

p−
∥unk

∥q+ −
∫
Ω

F (x, unk
) dx−

∫
∂Ω

G(x, unk
) dσ,

where we have used Proposition 2.5(iv). Dividing by ∥unk
∥q+ and taking (6.2) into

account, we obtain

I(unk
)

∥unk
∥q+

≤ 1

p−
−
∫
Ω

F (x, unk
)

|unk
|q+

|ynk
|q+ dx−

∫
∂Ω

G(x, unk
)

|unk
|q+

|ynk
|q+ dσ. (6.4)

Now, we observe that if f and g fulfill (h1) and (h2), then there exist M9,M10 > 0
such that

F (x, t) > −M9 for a.a.x ∈ Ω and for all t ∈ R,
G(x, t) > −M10 for a.a.x ∈ ∂Ω and for all t ∈ R.

(6.5)

Setting Ω0 = {x ∈ Ω : y(x) = 0}, by using (6.5), (h2), (6.3) and Fatou’s Lemma,
we get

lim
k→∞

∫
Ω

F (x, unk
)

|unk
|q+

|ynk
|q+ dx

= lim
k→∞

(∫
Ω\Ω0

F (x, unk
)

|unk
|q+

|ynk
|q+ dx+

∫
Ω0

F (x, unk
)

∥unk
∥q+

)

≥
∫
Ω\Ω0

(
lim
k→∞

F (x, unk
)

|unk
|q+

|ynk
|q+
)

dx− lim
k→∞

M9|Ω0|
∥unk

∥q+
= ∞.

Analogously, for Σ0 = {x ∈ ∂Ω : y(x) = 0}, we have

lim
k→∞

∫
∂Ω

G(x, unk
)

|unk
|q+

|ynk
|q+ dσ

= lim
k→∞

(∫
∂Ω\Σ0

G(x, unk
)

|unk
|q+

|ynk
|q+ dσ +

∫
Σ0

G(x, unk
)

∥unk
∥q+

)

≥
∫
∂Ω\Σ0

(
lim
k→∞

G(x, unk
)

|unk
|q+

|ynk
|q+
)

dσ − lim
k→∞

M10|Σ0|
∥unk

∥q+
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= ∞.

Hence, passing to the limit as k → ∞ in (6.4), it follows that

lim
k→∞

I(unk
)

∥unk
∥q+

= −∞,

which is a contradiction with {un}n∈N ⊆ N that implies I(un) > 0 for all n ∈ N
(see Proposition 6.1). Thus, the proof of our claim is complete.

Recall that unk
∈ N for every k ∈ N, from Proposition 6.1 it follows that

I(unk
) ≥ I(sunk

) for every s > 0, s ̸= 1 and for all k ∈ N. Fixing s > 1 and using
Proposition 2.5(iv), one has

I(unk
) ≥ I(synk

)

≥ 1

q+
ρ(synk

)−
∫
Ω

F (x, synk
) dx−

∫
∂Ω

G(x, synk
) dσ

≥ 1

q+
∥synk

∥p− −
∫
Ω

F (x, synk
) dx−

∫
∂Ω

G(x, synk
) dσ

=
sp−

q+
−
∫
Ω

F (x, synk
) dx−

∫
∂Ω

G(x, synk
) dσ.

Moreover, as a consequence of the assumptions on the nonlinear functions f and
g, it follows that the integral terms are strongly continuous (see for example [15,
Lemma 4.4]). Since synk

⇀ 0, we derive that there exists k1 ∈ N such that

I(unk
) ≥ sp−

q+
− 1 for all k ≥ k1.

From the arbitrariness of s > 1, we get I(unk
) → ∞ as k → ∞, which implies that

I(un)
n→∞−−−−→ ∞ and our statement is achieved. □

Now, we are able to prove the existence of a minimizer of I restricted to N0.

Proposition 6.3. Let hypotheses (H2), (h1)–(h3) and (h5) be satisfied. Then

inf
u∈N

I(u) > 0 and inf
u∈N0

I(u) > 0.

Proof. Fix u ∈ N . Then, from Proposition 6.1 we have that I(u) ≥ I(su) for all
s > 0, s ̸= 1. In particular, applying Proposition 5.5, it follows that

I(u) ≥ I

(
δ

∥u∥
u

)
≥ inf

∥u∥=δ
I(u) > 0 for all u ∈ N ,

that implies

inf
u∈N

I(u) > 0.

Now, fix u ∈ N0. Since by definition ±u± ∈ N , we get

I(u) = I(u+) + I(−u−) ≥ 2 inf
u∈N

I(u) > 0 for all u ∈ N0,

so we obtain

inf
u∈N0

I(u) > 0.

□
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Proposition 6.4. Let hypotheses (H2), (h1)–(h3) and (h5) be satisfied. Then,
there exists w0 ∈ N0 such that

I(w0) = inf
u∈N0

I(u).

Proof. Let {un}n∈N ⊆ N0 be a minimizing sequence, that is, I(un) ↘ infu∈N0
I(u).

As un ∈ N0, then ±u±n ∈ N and I(±u±n ) > 0 for all n ∈ N (see Proposition 6.1).
Moreover, since I(un) = I(u+n ) + I(−u−n ) for every n ∈ N and from Proposition
6.2, one has that {±u±n }n∈N are both bounded. Then, by the compact embeddings
W 1,H(Ω) ↪→ Lℓ(·)(Ω) as well as W 1,H(Ω) ↪→ Lκ(·)(∂Ω) (see Proposition 2.4(iii),
(v)), there exist subsequences {±u±nk

}k∈N and v1, v2 ∈W 1,H(Ω) such that

u+nk
⇀ v1, u

−
nk
⇀ v2 in W 1,H(Ω),

u+nk
→ v1, u

−
nk

→ v2 in Lℓ(·)(Ω) and pointwisely a.e. in Ω,

u+nk
→ v1, u

−
nk

→ v2 in Lκ(·)(∂Ω) and pointwisely a.e. in ∂Ω,

with v1 ≥ 0, v2 ≥ 0 and v1v2 = 0 a.e. in Ω.

Claim: v1, v2 ̸= 0.
Arguing by contradiction, suppose that v1 = 0. Recalling that u+nk

∈ N implies
that

⟨I ′(u+nk
), u+nk

⟩ = 0,

one has

ρ(u+nk
)−

∫
Ω

f(x, u+nk
)(u+nk

) dx−
∫
∂Ω

g(x, u+nk
)(u+nk

) dσ = 0.

From the Carathéodory assumption and (h1) on the nonlinearities f and g, it
follows that the two integral terms are strongly continuous (see [15, Lemma 4.4]),
thus ρ(u+nk

) → 0 as k → ∞. By Proposition 2.5(v), we get u+nk
→ 0 in W 1,H(Ω)

and

0 < inf
u∈N

I(u) ≤ I(u+nk
) → I(0) = 0 as k → ∞,

that is a contradiction. Analogously we prove that v2 ̸= 0 and our claim is true.
Now, using Proposition 6.1, there exist s1, s2 > 0 such that s1v1, s2v2 ∈ N . We
put

w0 = s1v1 − s2v2 = w+
0 − w−

0 ,

hence w0 ∈ N0. Finally, it remains to prove that I(w0) = infu∈N0
I(u). It is worth

noticing that all the positive terms of I are convex and continuous, thus sequentially
weakly lower semicontinuous. On the other hand, we know that the F and G terms
are strongly continuous. Hence, I is sequentially weakly lower semicontinuous and
this leads to

inf
u∈N0

I(u) = lim
k→∞

I(unk
) = lim

k→∞

(
I(u+nk

) + I(−u−nk
)
)

≥ lim inf
k→∞

(
I(s1u

+
nk
) + I(−s2u−nk

)
)

≥ I(s1v1) + I(−s2v2)
= I(w+

0 ) + I(−w−
0 )

= I(w0) ≥ inf
u∈N0

I(u).
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The proof is complete. □

Now, we prove that the minimizer obtained in Proposition 6.4 is a critical point
of the functional I.

Proposition 6.5. Let hypotheses (H2), (h1)–(h3) and (h5) be satisfied and let
w0 ∈ N0 such that I(w0) = inf

u∈N0

I(u). Then, w0 is a critical point of the functional

I.

Proof. First, we observe something that will be useful in the sequel. Recalling that
±w±

0 ̸= 0 and indicating with Cp− the constant of the embedding W 1,H(Ω) ↪→
Lp−(Ω), we have that

∥w0 − v∥ ≥ C−1
p−

∥w0 − v∥p− ≥

{
C−1

p−
∥w−

0 ∥p− if v− = 0,

C−1
p−

∥w+
0 ∥p− if v+ = 0,

for all v ∈W 1,H(Ω). Thus, taking

0 < δ0 < min
{
C−1

p−
∥w+

0 ∥p− , C
−1
p−

∥w−
0 ∥p−

}
,

we have the following implication

if ∥w0 − v∥ < δ0, then v+ ̸= 0 ̸= v−. (6.6)

Now, arguing by contradiction, suppose that I ′(w0) ̸= 0. Then there exist γ, δ1 > 0
such that

∥I ′(u)∥∗ ≥ γ for all u ∈W 1,H(Ω) with ∥u− w0∥ < 3δ1. (6.7)

Put

δ = min

{
δ0
2
, δ1

}
. (6.8)

From the continuity of the map defined by (s, t) 7→ sw+
0 − tw−

0 for every (s, t) ∈
[0,∞)2, we have that for every δ > 0 there exists λ ∈ (0, 1) such that

∥sw+
0 − tw−

0 − w0∥ < δ, (6.9)

for all (s, t) ∈ [0,∞)2 with max{|s− 1|, |t− 1|} < λ. Let

D = (1− λ, 1 + λ)2, m0 = max
(s,t)∈∂D

I(sw+
0 − tw−

0 ),

and

c = inf
u∈N0

I(u). (6.10)

We emphasize that for any (s, t) ∈ [0,∞)2 \ {(1, 1)}, using Proposition 6.1, one has

I(sw+
0 − tw−

0 ) = I(sw+
0 ) + I(−tw−

0 )

< I(w+
0 ) + I(−w−

0 ) = I(w0) = inf
u∈N0

I(u),
(6.11)

which implies that m0 < c.
In order to use the same notation of the Quantitative Deformation Lemma given

in Lemma 2.9, we set

S = B(w0, δ), ε = min

{
c−m0

4
,
γ δ

8

}
,
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and δ, c as in (6.8) and (6.10), respectively. We also notice that by the definition of
S it follows that Sδ = B(w0, 2δ) and S2δ = B(w0, 3δ). From (6.7), we get

∥I ′(u)∥∗ ≥ γ ≥ 8ε

δ
for all u ∈ S2δ,

so all the assumptions of Lemma 2.9 are verified. Hence, there exists a mapping
η ∈ C

(
[0, 1]×W 1,H(Ω),W 1,H(Ω)

)
such that

(i) η(t, u) = u, if t = 0 or if u /∈ I−1 ([c− 2ε, c+ 2ε]) ∩ S2δ,
(ii) I(η(1, u)) ≤ c− ε for all u ∈ I−1 ((−∞, c+ ε]) ∩ S,
(iii) η(t, ·) is an homeomorphism of W 1,H(Ω) for all t ∈ [0, 1],
(iv) ∥η(t, u)− u∥ ≤ δ for all u ∈W 1,H(Ω) and t ∈ [0, 1],
(v) I(η(·, u)) is decreasing for all u ∈W 1,H(Ω),
(vi) I(η(t, u)) < c for all u ∈ I−1 ((−∞, c]) ∩ Sδ and t ∈ (0, 1].

Afterwards, we consider h : [0,∞)2 →W 1,H(Ω) defined by

h(s, t) = η(1, sw+
0 − tw−

0 ) for all (s, t) ∈ [0,∞)2,

which has the following properties:

(vii) h ∈ C
(
[0,∞)2,W 1,H(Ω)

)
,

(viii) I(h(s, t)) ≤ c− ε for all (s, t) ∈ D, by (ii), (6.9) and (6.11),
(ix) h(D) ⊆ Sδ, by (iv) and (6.9),
(x) h(s, t) = sw+

0 − tw−
0 for all (s, t) ∈ ∂D,

where the last one follows from (i) and

I(sw+
0 − tw−

0 ) ≤ m0 + c− c < c−
(
c−m0

2

)
≤ c− 2ε for all (s, t) ∈ ∂D.

Now, we define two mappings H0, H1 : (0,∞)2 → R2 given by

H0(s, t) =
(
⟨I ′(sw+

0 ), w
+
0 ⟩ , ⟨I ′(−tw

−
0 ),−w

−
0 ⟩
)
,

H1(s, t) =

(
1

s
⟨I ′(h+(s, t)), h+(s, t)⟩ , 1

t
⟨(−h−(s, t)),−h−(s, t)⟩

)
,

which are clearly continuous. From Proposition 6.1 it follows that

⟨I ′(sw+
0 ), w

+
0 ⟩

{
> 0 for all 0 < s < 1,

< 0 for all s > 1,

⟨I ′(−tw−
0 ),−w

−
0 ⟩

{
> 0 for all 0 < t < 1,

< 0 for all t > 1.

(6.12)

Given A ⊆ Rn open and bounded and g ∈ C(A,RN ), we denote by deg(g,A, y)
the Brouwer degree over A of g at the value y ∈ RN \ g(∂A). From the Cartesian
product property of the Brouwer degree (see the book of Dinca-Mawhin[20, Lemma
7.1.1 and Theorem 7.1.1]) we get

deg(H0, D, 0) = deg
(
⟨I ′(sw+

0 ), w
+
0 ⟩ , (1− λ, 1 + λ) , 0

)
× deg

(
⟨I ′(−tw−

0 ),−w
−
0 ⟩ , (1− λ, 1 + λ) , 0

)
,

and by (6.12) and Proposition 1.2.3 of Dinca-Mawhin[20], we obtain

deg(H0, D, 0) = (−1)(−1) = 1.
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We observe that (x) implies H0|∂D = H1|∂D, so as the Brouwer degree depends on
the boundary ([20, Corollary 1.2.7]), we have

deg(H1, D, 0) = deg(H0, D, 0) = 1,

and by the solution property ([20, Corollary 1.2.5]) it follows that there exists
(s0, t0) ∈ D such that H1(s0, t0) = (0, 0), namely

⟨I ′(h+(s0, t0)), h+(s0, t0)⟩ = 0 = ⟨I ′(−h−(s0, t0)),−h−(s0, t0)⟩.
Finally, by (ix)

∥h(s0, t0)− w0∥ ≤ 2δ ≤ δ0,

which, taking (6.6) into account, leads to

h+(s0, t0) ̸= 0 and − h−(s0, t0) ̸= 0.

Thus, h(s0, t0) ∈ N0, that is a contradiction with

I(h(s0, t0)) ≤ c− ε = inf
u∈N0

I(u)− ε,

obtained by (viii). This completes the proof. □

Combining Theorem 5.7 with Propositions 6.4 and 6.5, we get the existence of
three weak solutions for problem (P ). We further know that they are bounded
functions thanks to Theorem 4.1.

Theorem 6.6. Let hypotheses (H2) and (Hf,g) be satisfied. Then, there exist three
nontrivial weak solutions u0, v0, w0 ∈ W 1,H(Ω) ∩ L∞(Ω) of problem (P ) such that
u0 ≥ 0, v0 ≤ 0 and w0 is sign-changing.

In the last part of this section, we derive information about the number of nodal
domains of the sign-changing solution, that is the number of maximal regions where
it has constant sign. The usual definition of nodal domains of a function deals with
a continuous function. Nevertheless, we do not know whether our solutions are
continuous. Therefore, we use the definition proposed by Crespo-Blanco-Winkert
[15, Section 6] that we recall in the following.

Definition 6.7. Let u ∈ W 1,H(Ω) and A be a Borelian subset of Ω with |A| > 0.
We say that A is a nodal domain of u if

(i) u ≥ 0 a.e. on A or u ≤ 0 a.e. on A;
(ii) 0 ̸= u1A ∈W 1,H(Ω);
(iii) A is minimal w.r.t. (i) and (ii), i.e., if B ⊆ A with B being a Borelian

subset of Ω, |B| > 0 and B satisfies (i) and (ii), then |A \B| = 0.

For our purposes, we need to require one more assumption on the nonlinearities:

(h6) f(x, t)t − q+F (x, t) ≥ 0 and g(x, t)t − q+G(x, t) ≥ 0 for all t ∈ R and for
a.a.x ∈ Ω and for a.a.x ∈ ∂Ω, respectively.

Proposition 6.8. Let hypotheses (H2), (Hf,g) and (h6) be satisfied. Then, any
minimizer of I|N0 , which is also a sign-changing weak solution of problem (P ), has
exactly two nodal domains.

Proof. Let w0 be such that I(w0) = inf
u∈N0

I(u), fix any w̃0 representative of w0 and

set

Ω± = {x ∈ Ω : ±w̃0(x) > 0} .
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As w01Ω± = ±w̃0
±

a.e. in Ω, it follows that Ω+ and Ω− satisfy conditions (i) and
(ii) of Definition 6.7. By contradiction, we prove that they are also minimal. We
assume, without loss of generality, that there exist Borelian subsets A1, A2 of Ω,
with A1 ∩ A2 = ∅, |A1| > 0 and |A2| > 0, such that Ω− = A1∪̇A2 and A1 satisfies
(i) and (ii) of Definition 6.7. Moreover, it holds

w01A2 = w̃01A2 < 0 a.e. in A2,

w01A2
= w01Ω− − w01A1

∈W 1,H(Ω),

thus A2 also satisfies (i) and (ii). Summarizing, we have

1Ω+
w0 ≥ 0, 1A1

w0 ≤ 0, 1A2
w0 ≤ 0 a.e. in Ω, (6.13)

and

w0 = 1Ω+
w0 + 1A1

w0 + 1A2
w0 a.e. in Ω.

Setting y1 = 1Ω+w0 + 1A1w0 and y2 = 1A2w0, from (6.13) we have y+1 = 1Ω+w0

and −y−1 = 1A1w0. Since I
′(w0) = 0 and as the supports of y+1 ,−y

−
1 and y2 do not

overlap, one has

0 = ⟨I ′(w0), y
+
1 ⟩ = ⟨I ′(y+1 ), y

+
1 ⟩.

Hence y+1 ∈ N and analogously, −y−1 ∈ N . Therefore, y1 ∈ N0. With the same
argument one can show that ⟨I ′(y2), y2⟩ = 0. Then, from these properties, we
obtain

I(y2) = I(y2)−
1

q+
⟨I ′(y2), y2⟩

≥
(

1

p+
− 1

q+

)
ρp(·)(∇y2) +

(
1

p+
− 1

q+

)
ρp(·)(y2) +

(
1

p+
− 1

q+

)
ρp(·),∂Ω(y2)

+

∫
Ω

(
1

q+
f(x, y2)y2 − F (x, y2)

)
dx+

∫
∂Ω

(
1

q+
g(x, y2)y2 −G(x, y2)

)
dσ,

which leads to

I(y2) > 0,

because of p+ < q+, y2 ̸= 0 and (h6). Finally, we get

inf
u∈N0

I(u) = I(w0) = I(y1) + I(y2) > I(y1) ≥ inf
u∈N0

I(u),

which is a contradiction and this completes the proof. □

Combining Theorem 6.6 and Proposition 6.8, we get the main existence result
of this paper.

Theorem 6.9. Let hypotheses (H2), (Hf,g) and (h6) be satisfied. Then, there exist
three nontrivial weak solutions u0, v0, w0 ∈W 1,H(Ω)∩L∞(Ω) of problem (P ) such
that

u0 ≥ 0, v0 ≤ 0, w0 being sign-changing with two nodal domains.
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