MULTIPLICITY RESULTS FOR LOGARITHMIC DOUBLE PHASE PROBLEMS
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ABSTRACT. In this paper we study elliptic equations of the form
—divL(u) = f(z,u) inQ, w=0 onodQ,

where div £ is the logarithmic double phase operator given by

div (|Vu|p72Vu + u(zx) (log(e + |Vu]) + ﬂ) \Vu|q72Vu) ,
qa(e+ [Vul)

e is Buler’s number, @ C RY, N > 2, is a bounded domain with Lipschitz boundary 992, 1 < p < N,
p<qg<qg+kr<p" = I\J]pr with k = e/(e + to), to = elog(e + tp) and 0 < p(-) € L*°(2). Under
mild assumptions on the nonlinearity f: & x R — R we prove multiplicity results for the problem
above and get two constant sign solutions and another third nontrivial solution. This third solution
is obtained by using the theory of critical groups. As a result of independent interest, we show that
every weak solution of the problem above is essentially bounded.

1. INTRODUCTION AND NOTATION

In recent years, double phase problems have been intensely studied. These problems usually involve
an operator of the form

—div (|VulP?Vu + p(z)|Vu|!2Vu)

which is associated to the functional given by

VulP Vul|?
u— (| Y + p(x) [Vl ) dz. (1.1)
Q p q
Such type of functionals appeared for the first time in the work of Zhikov [13] and is useful in the

context of homogenization and elasticity theory. In this setting, the coefficient p is associated to the
geometry of composites made of two materials of hardness p and ¢. Functionals of the form (1.1)
can be seen as special cases of the pioneering works by Marcellini [30, 31] which deal with problems
with nonstandard growth and p, g-growth conditions. Indeed, the regularity theory in [30] applies to
double phase integrals of the form (1.1) as well, see also the more recent papers by Cupini-Marcellini—
Mascolo [16] and Marcellini [28, 29]. Later, the results of Marcellini in the setting of double phase
integrals have been improved by the groundbreaking papers by Baroni—-Colombo—Mingione [7, 8, 9] and
Colombo—-Mingione [13, 14]. We also point out that double phase problems describe several interesting
applications, see the works by Bahrouni-Radulescu—Repovs [6] on transonic flows, Benci—-D’Avenia—
Fortunato—Pisani [10] on quantum physics, Cherfils—II'yasov [11] for reaction diffusion systems and
Zhikov [44, 45] on the Lavrentiev gap phenomenon, the thermistor problem and the duality theory.
For the main properties of the related function space and the double phase operator, we refer to the
papers by Colasuonno—Squassina [12], Crespo-Blanco—Gasiniski-Harjulehto-Winkert [15], Ho-Winkert
[25], Liu-Dai [26], and Perera—Squassina [30].
Recently, Arora—Crespo-Blanco-Winkert [5] studied the properties of the functional

" %/ (IVul? + (@) Vu|? log(e + |Vul)) dz, (1.2)
Q
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and the related so-called logarithmic double phase operator

div £(u) = div <|Vup_2Vu
Vu
+ () <log(e + |Vu|) + q(e|+|Vu|)> |Vul? 2Vu),
where u € W, Hies () and
Hiog(w,t) = P + p(z)t?log(e +t) for all (z,t) € Q x [0, 00),
for 1 <p < N,p<qand0 < pu(-) € L>®(Q). Functionals of the form (1.2) have been studied for
special cases in several works. Baroni-Colombo-Mingione [8] studied (1.2) in case p = ¢, that is,

w /Q (1707 + () [Vl og(e + | Vu))| dz, (1.4)

and proved local Holder continuity of the gradient of local minimizers of (1.4) whenever 1 < p < oo
and 0 < p(-) € C%%(Q). In a recent work by De Filippis—Mingione [17], the local Hélder continuity of
the gradients of local minimizers of the functional

u / [[Vullog(1 + [Vu|) 4+ p(z)|Vul?] dz, (1.5)
Q

has been shown provided 0 < p(-) € C%*(Q) and 1 < ¢ < 1+ 2. Functionals of the shape (1.5) have
their origin in functionals with nearly linear growth of the form

s / IVl log(1 + [Val) da, (1.6)
Q
see the works by Fuchs—Mingione [20] and Marcellini-Papi [32]. Note that (1.6) appear in the theory
of plasticity with logarithmic hardening, see, for example, Seregin—Frehse [37] and the monograph by
Fuchs—Seregin [21]. In this direction, we also mention the functional

" / (14 |Vul)% log(1 + [Vu|) da.
Q

which has been studied by Marcellini [30].
In this paper we are interested in the weak solvability of Dirichlet problems of the form

—divL(u) = f(z,u) inQ, w=0 ondQ, (1.7)

where div £ is the logarithmic double phase operator given in (1.3) while Q C RN, N > 2,is a bounded
domain with Lipschitz boundary 9€2. Throughout this paper, we denote by k the constant given by
e

_ 1.8
" e+ty’ (1.8)
where e is Euler’s number and t is the positive number that satisfies ¢y = elog(e + tg). We suppose
the following hypotheses on the data:
(Hy)) 1<p<N,p<qg<qg+r<p and 0<pu(-)e L>(Q)
(Hz) f: @ x R = R is a Carathéodory function with f(z,0) = 0 for a.a.z € Q and F(z,s) =
Jy f(x,t)dt such that the following hold:
(i) there exist n € (¢ + &, p*) and C' > 0 such that
[f(z, )] < CA+][s]") (1.9)
for a.a.z € Q and for all s € R;
(ii) there exist 7 > x and ¢ > 0 such that
(¢ +7)F(z,5) = fz,5)s <, (1.10)
(g+ k)F(z,s) — f(z,8)s < ¢ (1.11)

for a.a.z € Q and for all s € R;
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f(z,s)

5[ =0 uniformly for a.a.z € € (1.12)

lim sup
s—0

) F(z,s)
lim ——m————
s—Foo |8|q log(e + |8|)

(v) for all intervals I C R there exists C; > 0 such that

=00 uniformly for a.a.x € §; (1.13)

|F(z,s) — F(z,t)| < Crls — ¢ (1.14)
for a.a.z € Q and for all s,t € T and that there exists 0 < § < min{1, p* — 1} such that
F(z.5) — f(z,8)] < Crls — t]? (1.15)

for a.a.z € Q and for all s,t € 1.

Remark 1.1. There are examples of [ satisfying (1.9) and (1.10). Let us test the polynomial functions
of the form
5| fors>0
£(s) = { |

—|s]* fors<0

with certain exponent a < p* — 1. Observe that

(q+ TV F(z,8) — f(z,8)s = LT |s|l+e _ 5|1+ = (H - 1) [s['Fe,

Cl+a 1+«
for all s € R. Therefore, condition (1.10) holds provided
atT —1<0 difandonlyif 1+a>q+r.
1+«

Thus, if we take k < 7 < 1+ «a — q, then condition (1.10) is fulfilled. In order words, o must be
strictly greater than ¢ — 1+ k. Since a < p* — 1, this yields the admissibility conditions ¢+ x < p* and
g+ Kk —1<a<p*—1. This corresponds more or less to the polynomial functions satisfying (f5) and
(f2) in the work by Arora—Crespo-Blanco—Winkert [5], since there it is supposed that

(g +7)F(z,5) = f(z,5)]s]

li <0.
jslsoc |s[t+e B
Example 1.2. Let f: R — R be defined by
F(s) = (k + a)stto=llog s 4 stta-l for s >0
| = (k+a)|s|Fteog|s| — |s|ftet for s <0,

with ¢ < a and K+« < p*. This function satisfies the assumptions in (Hy). Let us check (1.10). Here
we have

F(s) = |s|"t*log|s| for all s € R
and so
(g+7)F(s) — f(s)s = ‘S‘fc-&-a log |s|(q+7 — (k+a)) — ‘S‘K,-‘r(x.

Consequently, condition (1.10) holds for f if and only if g+7 < k+«. Thus, we need k < 7 < k+a—q
which gives ¢ < « as above.

Our main result is the following one.
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Theorem 1.3. Let hypotheses (Hy) and (Hz) be satisfied. Then, problem (1.7) admits three nontrivial
distinct solutions ug, vo, Yo € Wol’Hl"g(Q) N L>(82) such that

vg <0< ug inf,
whereby ug and vy have positive energy.

The proof of Theorem 1.3 is based on truncation and comparison techniques along with the mountain-
pass geometry of problem (1.7). The third solution yg is obtained by using Morse theory in terms of
critical groups. Our result should be compared with the one in Arora—Crespo-Blanco-Winkert [5],
where the authors obtain similar results with different conditions on f. In contrast to [5] we do not
make any assumptions on the sign of f. Also, there is no assumption on the behavior of f at infinity
apart from the one in (1.13). Moreover, when comparing our results with the work by Papageorgiou—
Qin [34], we point out that we do not require p to be Lipschitz continuous, Holder continuity suffices.
Another feature of this work is the fact that we do not require f to satisfy the Ambrosetti-Rabinowitz
condition.

Since the operator (1.3) has been introduced very recently, only few works concerning existence
results involving such logarithmic operator exist. The first work has been done by Arora—Crespo-
Blanco—Winkert [5] who studied the problem

—divL(u) = f(z,u) in, u=0 ondQ, (1.16)

where £ is as in (1.3) but with variable exponents and f: Q@ x R — R is a Carathéodory function with
subcritical growth which satisfies appropriate conditions. Based on the Nehari manifold, the existence
of a sign-changing solution of (1.16) has been shown under the more strict assumption that ¢+1 < p*,
see also the recent work by the same authors [4] related to more general embeddings and existence
results based on the concentration compactness principle. Furthermore, Lu—Vetro—Zeng [27] studied
existence and uniqueness of equations involving the operator

Hi (2, [Vu])

UHA’HLU;:diV< Yl

w) . uwe Whte(Q), (1.17)

where Hr: Q x x[0,00) = [0,00) is given by
Hi(z,t) = [tP@ + ()t log(e + at),

with @ > 0, see also Vetro-Zeng [12]. We point out that the operator (1.17) is different from the one in
(1.3). Another work dealing with the logarithmic double phase operator has been published by Vetro—
Winkert [41] who obtained the existence of a solution to the logarithmic problem with convection term
of the form

—divL(u) = f(z,u,Vu) inQ, uw=0 ondQ, (1.18)

where L is as in (1.3) but with variable exponents and f: Q x R x RY — R is a Carathéodory function
satisfying certain growth and coercivitiy conditions. The authors prove the boundedness, closedness
and compactness of the corresponding solution set to (1.18). In this direction we also refer to the work
by Vetro [40] who considered related Kirchhoff type equations involving the logarithmic double phase
operator as in (1.3) with variable exponents. We also mention some papers who study logarithmic
terms on the right-hand side for Schrodinger equations or p-Laplace problems. Montenegro—de Queiroz
[33] considered nonlinear elliptic problems

—Au = xuso(log(u) + Af(z,u)) in, w=0 ondQ, (1.19)
1.1

where f: Q x [0,00) — [0, 00) is nondecreasing, sublinear and f,, is continuous and proved that (1.19)
has a maximal solution uy > 0 of type C17(£2), see also Figueiredo-Montenegro—Stapenhorst [13, 19]
where a similar problem was studied in planar domains with f being of exponential growth. Squassina—
Szulkin [39] studied logarithmic Schrodinger equations given by

—Au+V(z)u = Q(x)ulog(u?) in RN (1.20)
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and proved that (1.20) has infinitely many solutions, whereby V' and @ are 1-periodic functions of the
variables z1,...,rx and Q € CY(RY). Further results for logarithmic Schrédinger equations can be
found in the works of Alves—de Morais Filho [2], Alves—Ji [3] and Shuai [38], see also Alves—da Silva
[1] about logarithmic Schrodinger equations on exterior domains.

As a result of independent interest, we prove the boundedness of weak solutions to more general
equations than (1.7) of the form

—divL(u) = R(z,u,Vu) in Q, u=0 on 0, (1.21)

where R: QxR x RY — R is a Carathéodory function depending on the gradient of the solutions which
may have critical growth with respect to the second argument. Finally, we also give some comments
on parametric problems given by
—divL(u) = Af(z,u) in Q, u=0 on 04, (1.22)
where div £ is as in (1.3) and A > 0. For A > 0 large enough, (1.22) has at least two constant-sign
solutions, whereby one is positive and the other one negative.
This work is structured as follows: In Section 2 we present some properties of the logarithmic
Musielak-Orlicz Sobolev spaces and the related logarithmic double phase operator while Section 3 is
devoted to a priori bounds of equations of the form (1.21). In Section 4 we prove the existence of

constant-sign solutions by showing the mountain-pass geometry of problem (1.7) and in Section 5 we
use critical groups to show an additional nontrivial solution of (1.7).

2. PRELIMINARIES

In this section we recall some basic facts about logarithmic Musielak-Orlicz Sobolev spaces and the
related logarithmic double phase operator given in (1.3). Most of the results are taken from the paper
by Arora—Crespo-Blanco-Winkert [5]. To this end, we denote by L"(§2) the usual Lebesgue space with
norm || - ||, for 1 < 7 < oo while W," () is the related Sobolev space with zero trace equipped with
the equivalent norm ||V - ||, for 1 < r < oo. Suppose now hypothesis (H;) and consider the map
Hiog: 2 % [0,00) — [0,00) defined by

Hiog(,1) = 17 + ()t og(e + 1).
Let L°(2) be the space of all measurable functions on Q. We define

(@) = {0 € L) a0 = [ Hiloful o <

where p3;, . is the modular function corresponding to Hiog. We equip L*es(Q) with the Luxemburg
norm || - |34, defined by
U

lullpee = inf {2 > 0: pae, (5

With this norm, L*mz () becomes a Banach space which is separable and reflexive. Next, we introduce
the related Musielak-Orlicz Sobolev space given by
WhHtes(Q) = {u € L™= (Q): |Vu| € LMes(Q)}

and endow it with the norm

) < 1} for u € L= (Q).

[l 00 = 0l 10 + VUl

Also, we set

Wol,Hlog (Q) _ WH-”LHlOg.
Both W1Hee(Q) and WOI’Hlog (Q) are separable, reflexive Banach spaces. Moreover, on WOI’H“’?’(Q),
the Poincaré inequality holds, that is, we can find ¢ > 0 such that

1,H1o
[l < cllVullr, for uwe We™=(Q).
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Therefore, we can consider on VVO1 ’Hl"g(Q) the equivalent norm || - || defined by
Jull = [Vulls,, forall u e Wy s (9).
We have the following embedding results, see Arora—Crespo-Blanco-Winkert [5, Proposition 3.7]

Proposition 2.1. Let hypotheses (H1) be satisfied. Then the following hold:
(i) Wol’%"g(Q) < Wy P(Q) is continuous;
(ii) Wol’%"g(ﬂ) < LP (Q) is continuous;
(iii) Wol’H“g(Q) — L"(Q) is continuous and compact for all 1 < r < p*.

Also, there is a close relation between the norm || - || in I/VO1 Hios (€2) and the modular function py,_,
see Arora—Crespo-Blanco—Winkert [5, Proposition 3.6].

Proposition 2.2. Let hypotheses (Hy) be satisfied, A > 0, u € WS’H“’g(Q), and k as in (1.8). Then
the following hold:
(i) llull = X if and only if pu,,, (%%) =1;

)

) if llull <1 then |lul| 7 < payy,, (Vi) < [lullP;
(iv) if [luf > 1 then |lul]” < ppy,, (V) < JJul| 777

)

Next, consider the nonlinear map A: WOI’H“’g Q) — (Wol’%“g(Q)) defined by

(A(u),v) = /Q |Vu|P~2Vu - Vo de
(2.1)

_ Ve
+ /Q mey (log(e Vet e V)

This operator has the following properties, see Arora—Crespo-Blanco-Winkert [5, Theorem 4.4].

) |Vu|?72Vu - Vo da.

Theorem 2.3. Let hypotheses (Hy) be satisfied and A be given as in (2.1). Then A is bounded,
continuous, strictly monotone, coercive, a homeomorphism and satisfies the (Sy)-property, that is, any

sequence {Un }nen in Wol’Hbg(Q) such that u,, — u weakly in Wol’H“g(Q) and lim sup,,_, .o (A(un), uy —
u) <0 converges strongly to u in Wol’Hlog Q).

Also from Arora—Crespo-Blanco-Winkert [5, Lemma 5.1], we know that if f: @ xR — R is a
Carathéodory function with f(z,0) = 0 for a.a.z € Q satisfying (H2)(i) then the functional

If(u) = / F(z,u)dz
Q
and its derivative
(Ij(a),0) = [ (. wds,
Q
are strongly continuous in the sense that if u,, — u weakly in I/VOLH“’g (Q) then Ir(u,) — Iy(u) in R
and I (uy) = Ip(u) in (W7 (@))

Moreover, for u € L°(Q), we define u™ = max{u, 0} and v~ = max{—wu,0}. Then we have
—u, |ul=ut+u" andifuc V[/'Ol’ﬂ’l-tlog (Q) then u* € I/VOM{log Q).
Next, consider the functionals

1 1

I(u) = = [|Vul|} + f/ w(z)|Vul?log(e + |Vul) dx — / F(z,u)dz,
p q.Jq Q
1

1
o) = IVl + 2 [ (o) Vultlog(e + [V do [ Fa,ut)da, (2.2)

U:U+
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1 1
I_(u)= ];”VUHZ + E/ w(z)|Vul?log(e + |Vu|) doe — / F(z,—u")dz. (2.3)
Q Q
Then we know that I, I, and I_ are of class C' with derivatives

I = (A0 - [ feuods,
ILw)(0) = (4w.0) = [ flat)ods
I' (u)(v) = (A(u),v) — /Q flx,—u " )vdax,

where A is given in (2.1), see Arora—Crespo-Blanco-Winkert [5, Theorem 4.1].

We recall some results from calculus of variations. Let X be a Banach space. We say that a
functional ¢: X — R satisfies the Cerami condition or C-condition if for every sequence {uy, }nen € X
such that {o(un)}nen C R is bounded and it also satisfies

(1 + |lunl)¢' (un) = 0 asn — oo,

then it contains a strongly convergent subsequence. Furthermore, we say that it satisfies the Cerami
condition at the level ¢ € R or the C,.-condition if it holds for all the sequences such that ¢(u,) — ¢
as n — oo instead of for all the bounded sequences.

The proof of the following mountain-pass theorem can be found in the book by Papageorgiou—
Rédulescu—Repovs [35, Theorem 5.4.6].

Theorem 2.4 (Mountain-pass theorem). Let X be a Banach space and suppose ¢ € C*(X), ug,u; € X
with ||uy — ugl| > § > 0,
max{p(uo), p(u1)} < inf{p(u): [[u—uoll = 0} = ms,

¢= inf max p(v(t)) withT = {y € C([0,1], X): 7(0) = ug, y(1) = u1}

and ¢ satisfies the C.-condition. Then ¢ > mgs and c is a critical value of .
Next, we recall some results from the theory of critical groups. For this purpose, if Yo C Y7 C X

then by Hy(Y1,Ys) we denote the k-th singular homology group with integer coeflicients for the pair
(Y1,Ys) with k € Ny. Let p € C'(X). Then K, is the critical set of ¢, that is,

K,={ueX: ¢ (u)=0}
For ¢ € R, we define
e={ueX: pu) <cl.
Let u € K, be an isolated critical point with ¢(u) = ¢. Then the critical groups of ¢ at u are given by
Crlp,u) = He(e°NU, o NU \ {u}) for all k € Ny,

where U is a neighborhood of u such that ¢ N K, NU = {u}. The excision property of singular
homology implies that this definition is independent of the choice of the isolating neighborhood U. If
 fulfills the C-condition and if —oco < inf ¢(K,) we define the critical groups of ¢ at infinity by

Cr(p,00) = Hp (X, ¢°) for all k € Ny,
where ¢ € R is such that ¢ < inf ¢(K,). This definition is independent of the choice of ¢. Suppose
that K, is finite. Then we define
M(t,u) = Z rank Cy, (i, u)t* for all t € R and for all u € K,
keNy

P(t,00) = Z rank Cj,(p, 00)t*  for all t € R.
k€eNy
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The Morse relation says that

> M(t,u) = P(t,00) + (1 + 1)Q(t) for all t € R, (2.4)
u€K,

where Q(t) = >_yen, Bit* is a formal series in ¢ € R with nonnegative integer coefficients.

3. A PRIORI BOUNDS

In this section we are going to prove that every weak solution of problems of type (1.7) is essentially
bounded. We present the result for more general problems and study the equation
—div L(u) = R(x,u, Vu) in £, u=0 on 09, (3.1)
where div £ is the logarithmic double phase operator given in (1.3). A weak solution of equation (3.1)
is a function u € W()I’Hl"g(Q) such that

\Y%
/(\Vu|p*2Vu+u(x) log(e+|Vu|)+q Vel
Q

q—2 .
o+ |Vu|)} |Vul Vu) Voudx

= / R(z,u, Vu)vdx
Q

is fulfilled for all v € WO1 ’Hl"g(Q). We also include the critical case for problem (3.1) and suppose the
following assumptions.

(Hs3) R: Q x RxRY — R is a Carathéodory function and there exists £ € (1, p*] such that
Rz, ) <b[Iel# +1t* +1],

for a.a.z € Q, for all t € R and for all £ € RY with a positive constant b.
We have the following result.

Theorem 3.1. Let hypotheses (Hy) and (H3) be satisfied and let u € I/Vol’Hlog (Q) be a weak solution
of problem (3.1). Then, u € L*>(Q).

Proof. From Proposition 2.1 (i) we know that Wy "% (Q) < W*P(Q) continuously. Since
L)€ = [€
for all ¢ € RY, the result follows from Ho-Kim-Winkert-Zhang [24, Theorem 3.1]. O

4. EXISTENCE OF TWO SOLUTIONS

In this section we are going to prove that problem (1.7) admits two nontrivial bounded weak
solutions with constant sign. To this end, we first show that the truncated functionals Iy and I_
given by (2.2) and (2.3) satisfy the Cerami condition. Before, we recall the following lemma, see
Arora—Crespo-Blanco-Winkert [5, Lemma 5.4]

Lemma 4.1. Let ¢ > 1 and
t
h(t) = , t>0.
®) g(e +1t)log(e+t)

Then, h attains its mazimum value at to and its value is g, where ty and k are given by (1.8).

Proposition 4.2. Let hypotheses (Hy) and (H2)(i)—(iv) be satisfied. Then the functionals Iy and I_
satisfy the Cerami condition.
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Proof. We only show the assertion of the proposition for I, the proof for I_ is very similar. To this
end, let {u, }nen be a sequence in Wol’H]"g (€2) such that

1 (un)| < c1, (4.1)
(U Jual) () > 0 in (W57 ()) (4.2)
Relation (4.2) implies the existence of a sequence €,, — 0 such that

‘/ |Vu,|P~2Vu, - Vudzr
Q
|vu7l‘ q—2
+ [ p(x) (log(e + |Vun,|) + . |Vu,|?*Vu, - Vodz (4.3)
Q
_ el

(e + |Vuy|)
— f x,u;‘; vdr|< ———,
i< s

for all n € N and for all v € Wol’H“g(Q). Taking v = —u,, € WOI’HIO'%(Q) in (4.3) and using the fact
that f(z,u})u, =0 for a.a.z € Q (since f(z,0) =0 for a.a.z € ), we obtain

PHiog (VU;)

< [ (190 + o) Jlogte + 190 + -l v as
) (e + [Vun])

<eg, forallneN,

[Vu, |
q(e+|Vun|)
now prove that u, is bounded in Wol’Hlog (Q). Choosing v = u; € WOI’Hlog (Q) as a test function in
(4.3) gives

because > 0. From Proposition 2.2 (v) we then conclude that u,, — 0 in W&’Hl"g (Q). We

/Q fle,ufyut de — ||Vt |2

v +
- [ uta (log<e+|w:|>+ q Vs
Q

+

Applying Lemma 4.1 leads to

/Q fa, byt dz — |Vu |

(4.4)
— <1 + Z) / p(x)log(e + |Vu )| Vul|9dz < e,.
Q
On the other hand, (4.1) and the fact that u,, — 0 in VVOMLLlog (©) imply that
1 1
IVl [ @V togte + (Vuil) o - [ Pl de < e (1.5
Q Q

for some co > 0, which implies

TR |+ <1+ q) [ n@viitog(e + 9t da
Q

p
- / (q+ 5Pz, ul) dz < (g + K)es.

Summing with (4.4), we get

(

q —; k 1) [Vt || +/ (f(@,u)ut = (¢ + k)F(z,u))) do < (¢ + K)cz + en.
Q
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Using (1.11), we obtain

q+K
( : —4)nv%m5s<q+nw2+en+o

We conclude that {u}},en is bounded in W, P(£2). Going back to (4.5), we get
1

7/ p(x)| V% log(e + |[Vul|) do < c3 +/ F(z,u})dz

qJa Q

for some ¢z > 0. Using (1.10), one can estimate the right hand side of this inequality, thus obtaining

1 1
7/ p(x)| V% log(e + |Vul ) de < ey + 7/ fla,wHut do
q.Ja q+7 Jo

for ¢4 > 0. But from (4.4) and the fact that {u; },ey is uniformly bounded in Wy*(Q2), we get, for
cs > 0, that

1
g/mmW@m%@+wwnm
Q

q+”>1/ + +
<cs5+ — [ p(x)log(e + |Vu,|)|Vul|?de.
st (TEE) 2 [ totonte + (9u i

Consequently,

/ w(x)|Vaurl|9log(e + |[Vult|)de < ¢ for all n € N.
0

since 7 > k. We conclude that {u, },en is bounded in W, Mo (©2), and hence one can find a subse-

quence {u,, }ren and an element u € I/V1 Hl"g(Q) such that u,, — w weakly. Choosing u,, —u as a
test function in (4.3) and letting k& — oo, we arrive at

kli_}rr;o<l’+(unk),unk —u) =0.
On the other hand, the strong continuity of Iy (see Section 2) implies that

lim /f z,ut ) (un, —u)dz = 0.
k—o0
Taking these two limits together yields (see again Section 2)

lim (A(un, ), tn, —u) =0,

k—o0
whereby the operator A given by (2.1) satisfies the (S, )-property, see Theorem 2.3. Thus, u,, — u
strongly in Wg Hios (€2). This proves that I satisfies the Cerami condition. O

Next, we show that zero is a local minimizer for the functionals I and I..

Proposition 4.3. Let hypotheses (Hy) and (Hs)(i)—(iv) be satisfied. Then, zero is a local minimizer
of I and I4.

Proof. We only prove it for I, the proofs are similar for 71 and I_. From (1.9) and (1.12), we know
that for each € > 0 there exists ¢, > 0 such that

|F(x,s)| < §|s|p +cels|? for a.a.x € Q and for all s € R. (4.6)
b

In (4.6) we choose ¢ = i with ¢; > 0 being an embedding constant of W, () < LP(£2). Then,

from this and for u € W1 Hl"g(Q) with ||u|| < 1 by using the embeddings W, *(€) < LP(2) as well as
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Wy "5 (Q) < L"(2) (see Proposition 2.1(iii)) and Proposition 2.2 (iii), we have

1 1 e
I(u) > ];IIWH,’i + 5 /Q w(@)|Vul?log(e + [Vul) dz — ];Ilull,’i — cel|ull}

1 1

z ~(1—ce)l[Vullj + */ pu(x)|Vu|*log(e + [Vul) dz — ca[ul]”
" N (4.7)

. — C1€

> win {205 L (90) = callul
1

A A

for some ¢z > 0. Since ¢+ x < n by (Hz) (i) the result of the proposition follows. O

Now we study the energy level of the functionals Iy and I_.

Proposition 4.4. Let hypotheses (Hy) and (Hy)(i)—(iv) be satisfied. Then, it holds I (tu) — —oco as
t — oo forallu e Wol’ch’g(Q) \ {0} such that uw >0 a.e.in Q. Similarly, I_(tu) — —oc0 ast — oo for
all u € WOI’HI"E’(Q) \ {0} such that u <0 a.e.in Q, u Z 0.

Proof. We show the result only for I, it can be shown in a similar way for I_. Let M > 0 be a
positive number. From (Hz) (iv) (see (1.13)), we know that there exists a number sps > 0 such that

F(z,s) > Ms?log(e+s) for a.a.z € Q and for all s > spy.
On the other hand, from the continuity there exists cp; > 0 such that
|F(z,8)] <cp  for aa.xz e Qand for all s < sp.
Thus, we have
F(xz,s) > —cp + MsTlog(e + s) — Ms?log(e + s)

> Mslog(e +s) — (e + MsS, log(e + su))

= Ms%log(e+s) — ¢y for a.a.x € Q and for all 0 < s < 5.
Taking everything together, we conclude that

F(z,s) > Ms?log(e+s) — ¢y for a.a.z €  and for all s > 0.

Consequently, for ¢ > 0, it follows that, for all u € Wol’Hl"g(Q) \ {0} such that u > 0 a.e.in €,
Futtw) = SIVallp + 5 [ @)Vl (e 4119 ds
— M1 /Q u?log(e + tu) dx — ¢pr]9.
Since log(e + zy) < log(e + z) + log(e + y) for all =,y > 0, we have
Lot < Sguly + D ) valr o
p q Q
+ %/Qp(xﬂvmq log(e + |Vu|) dx (4.8)

- Mtq/ u?log(e + tu) dx — cpr]9).
Q

From the inequality e + tu > e+t for t > 0 and v > 1 along with the monotonicity of log, we derive
that

/ u?log(e + tu) da > log(e + t) / ul dzx
{zeQ: u>1} {zeQ: u>1}
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and

1
/ u?log(e + tu) da = / udt = log(e + tu) dz
{z€Q: O<u<1} {z€Q: O<u<1} u

> log(e +t) / ultt da,
{zeQ: O<u<1}

where in the last inequality we used that C'log(e + s) > log(e + C's) for all C' > 1 and s > 0. Using
this in (4.8) gives
I (tu)
tP 1
< IVl + t7og(e +1 (q/ () [Vul? dz — M w dz
Q

{zeQ: u>1}
-M it dx
{z€Q: 0<u<1}

4 ~
+ E/ w(z)|Vul?log(e + |Vul) de — cp Q.
Q

(4.9)

Choosing M > 0 such that

1
7/ w(@)|Vulfde < M / uquJr/ ult dz
q.Jo {z€Q: u>1} {z€Q: 0<u<1}

yields that lim;_, I} (tu) = —oo. This proves the result. O
Now we can prove the existence of two constant sign solutions to problem (1.7).

Proposition 4.5. Let hypotheses (Hy) and (Hz)(i)—(iv) be satisfied. Then, problem (1.7) admits two
nontrivial weak solutions ug, vy € Wol’Hl”g(Q) NL>(9Q) such that vg <0 < ug in Q as well as I(ug) >0
and I(vg) > 0.

Proof. From Proposition 4.3, we know that zero is a local minimum of I and that there exist p,m > 0
such that
Ii(u)>m foraluce W()I’Hl"g(ﬂ) with ||u]| = p.

Taking Proposition 4.4 and Theorem 2.4 into account, we can find an element w € I/VO1 Hio (Q) such

that |Jw|| > p and I(w) < 0 = I(0). Thus,

¢ = inf max L (v(1)),

with

r={yec(0.0,wg™ (@) : 7(0) = 0.9(1) = w},
is a critical point for I, . Since ¢ > m and because critical points of I are all nonnegative, we conclude
that there exists a nonnegative weak solution ug € VVO1 Hiog (©) of problem (1.7) such that I(ug) > m.
Similarly, we can show the assertion for I_ getting a nonnegative weak solution vy € T/VO1 Hios (Q).

Using Theorem 3.1 gives the desired results. g
Remark 4.6. Note that condition (Hs)(v) was not needed in the proof of Proposition 4.5.
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5. THIRD SOLUTION VIA CRITICAL GROUPS

In this section we are going to prove the existence of a third nontrivial solutions by using tools from
critical groups.

Proposition 5.1. Let hypotheses (Hy) and (Hs) be satisfied. Then, Ci(Ix,00) = C(I,00) =0 for all
k € Np.

Proof. We show the proof only for I, it works in a similar way for I_ and I. Let u € OB := {u €
VVOI’H“’g (Q): |lu|]| =1 and u* £ 0}. First, observe that, due to (4.9), we get

I
lim +(tu) =

t—00 ta

—oo for all u € Wy "= (Q) \ {0}. (5.1)

Furthermore, due to Lemma 4.1, we have

S L (tw) = I (tu) ) = LI (tu) )

1 1A%
= (t?”VUHg + tq/ u(x) <log(e + t|Vu|) + ( Vel
Q

g(e+t|Vul|)
—/f(:c,tzﬁ)tudx)
Q

u E T [ u u T — X u+ udaxr
(tpnv 2+ 0 <1+q>/gu( ) log(e + /Vu]) [ Vul? d /Qf( Sttt d)

(4

/ o tu tudx)
(<1+ ’;) <qI+(tu) /Q qF(x,mﬁ)dx) - /Q f(x,tuﬂtudx)
<<1 + Z) qly (tu) +/Q (q (1 + :) F(z,tut) — f(a;,tuﬂtu) d:17>

=M mrim + [ (s P - n ) )

where in the last line we used that fact that f(z,0) = 0 for a.a « € Q. Consequently, using (1.11) in
(Hz)(ii), we get

) |Vul? dz

IN
&~ | = w\»—

(mwnmq / u(w)log(e+tVU)IWI"d£)
Q

_1
=7
1
t

d 1
ST (1) < 5 (g + )T (1) + )
We conclude that
if Iy (tu) < _dY —1p, then iI (tu) <0 (5.2)
+ i+r 05 QT . .

Now let v be a positive number such that —v < min{—wvy, infy g4 I.}. From (5.1) we know that for

all u € OB, there exists a number ¢, > 1 such that I, (t,u) = —v. Property (5.2) implies that ¢, is
unique. Thus, the function n: 9B — R given by n(u) = t, is well defined and satisfies I (n(u)u) = —v
for all u € 5‘Bi" . Moreover, the implicit function theorem implies that 7 is continuous.

Let Bt = {tu: t > 1,u € OB }. We may extend 1 to E* by setting

1 u
i) = oo (7 )
[l \ [full
Clearly, no € C(E™). Furthermore,

u u
I (no(u)u) =14 <77 (”u“) |u||> =—v forallue ET.
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u

Moreover, if I (u) = —v, then n(m) = |lu|| and thus no(u) = 1 by using (5.2). Consequently, if we
define h: [0,1] x Et — E* by h(t,u) = (1 — t)u + tno(u)u, we get
h(0,u) =u, h(l,u)=mno(w)uelf forallue E"
and
h(t,-)

, =id
Iy

I
¥
Thus, I¥ is a strong deformation retract of E*. Using the radial retraction, we obtain that 6Bfr is

a deformation retract of ET, and thus I¥ and dB; are homotopically equivalent. Due to Corollary
6.1.24 by Papageorgiou-Radulescu—Repovs [35, p468], we conclude that

H, (Wol’”“g(sz), I;) — H, (Wg”*l"g(m, an) for all k € No.
Since I/VO1 rHiog (Q) is infinite dimensional, we know that OB is contractible in itself. Thus, by Granas—
Dugundji [23, p.389], we know that

H, (W(}”log(a),an) —0 forall k € No.
Hence, if |v| is large enough, we get

Cill,,00) = Hy, (W&’H“’g(Q), 11) =0 forall k € No.

Proposition 5.2. Let hypotheses (Hy) and (Hs) be satisfied. Then we have
Cr(I,up) = Cx(Iy,ug) for all k € Np.

Proof. Let M > |lug|| L (q), see Theorem 3.1 and consider the following truncation of f(x,-):

flz,—M) ifs<—M,

M (x,8) =< f(z,s) if —M<s<M

f(z, M) if s > M.

Let the positive truncation of f () be the function
ff[(x,s) = fM(x7s+).

We set FM(z,s) = [ fM(x,t)dt and FM (z,s) = [ fM(x,t)dt and consider the C''-functionals I~
and I7" defined by

1 1
I (u) = ];||Vu||§ + 6/ w(x)|Vul?log(e + |Vul) dax — / FM (2, u)de,
Q Q

1 1
IV (u) = ];||Vu||g + 6/ w(x)|Vu|?log(e + |Vul) de — / Fﬂ/](:mu) dz.
Q Q

Since F satisfies (1.14) in hypothesis (Hs) (v), we know that there exists a global constant C' > 0 such
that

|[FM(z,s) — FM(2,t)| < Cls —t| and |F}(z,s) — FM(x,t)| < Cls —t| (5.3)
for all s,¢ € R. Using (5.3) and the embedding Wg’Hl"g(Q) — L1(2), we have
[T (u) = I ()]

g/ |EM (2, u) — FM (2, u)|dz
Q

S/ |FM(x,u)—FM(x,u0)|dx+/ |FM(2,u0) — F} (2, u)| da
Q Q
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— / |FM(gc,u) — FM(x,uo)|dx +/ \F_ﬁ/[(x,uo) - F_f_w(x,u)\ do
Q Q

< 2C/ |u — up| de
Q
< Cllu = uol,

with C > 0.
On the other hand, since f satisfies (1.15), we know that f and f} also satisfy (1.15) with a

global constant C'. Thus, using Hélder’s inequality and the embeddings WO1 Hios (Q) — L (Q) as well
as VVOLH“’g (Q) — L7 (Q) (see Proposition 2.1 (ii), (iii)), we get for h € W&’H“’g(Q) that
(@) (w) = (I7) (), b))

< / M () — £ (2, )| |B] dz
Q

< / M () — FM (2, o) | B] da + / M (a2 up) — F ()| 1] da
Q Q
20 —ugl?|hld

< /Q\u ||| dz

< 2C [[u = uolly- 1Al

p*
p*—8

< Cllu = uol” |2,

because pf—iﬁ < p*, since 5 < p* — 1. Consequently, given € > 0, it is possible to find § > 0 such that

Y = I o1 (B (o)) < &

Using the C'-continuity property of critical groups, see Gasiriski-Papageorgiou [22, Theorem 5.126],
we have

Ck(INM,’U,o) = Ck(I:M,’U,O) for all £ € Np.
Thus, we may let M — oo and use Granas-Dugundji [23, Theorem D.6, p.615] to conclude that
Ck(I,UO) :Ck(_[+,u0) for all &k € Ny.

Proposition 5.3. Let hypotheses (H1) and (Hy) be satisfied. Then we have
Cr(I4,ug) = 0k 1Z  for all k € Ny.

Proof. Assume that K, = {0,up}. Otherwise we would have already had a third solution. From
Proposition 4.3 and (4.7), we can find p4 > 0 such that

m = inf {14 (u): ]l = pi} > 0.
Let v_ and v; be constants such that
vo <0 <vp <my < Ii(ug).
We have
I vt c wytheE() = X.
Let i be the embedding of the map I i’ into If, and consider the corresponding long exact sequence of

singular homology groups, see, for example, Papageorgiou—Radulescu—Repovs [35, Proposition 6.1.23
p.466],

e (X, T) 5 H(X, 1) 25 Hy (T, 1) — - (5.4)
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where ¢* is the group homomorphism related to the embedding i and 9, is the boundary homomor-
phism, see Papageorgiou-Radulescu-Repovs [35] for more details. Since K;, = {0,uo} and using
Proposition 5.1, we get

Hy, (X,I7) = Cy(I4,00) =0 for all k € Ny.
On the other hand, since
v <0=1,(0) <vy <my < Ii(up),
it follows that
Hyp(X,I77) = Cy(I4,up) for all k € Ny, (5.5)
and (see Papageorgiou—Radulescu—Repovs [35, Proposition 6.2.16, p. 486])
Hy (I, 1) = Ch 1 (I4,0) = 0k_10Z = 5,17 for all k € Np. (5.6)

In the last sequence of equalities we used the fact that d;_1,0%Z is the k—1-th critical group of I at zero
whenever zero is a local minimum, see Papageorgiou—Radulescu—Repovs [35, Proposition 6.2.3, p. 477].
Furthermore, we know that ug is a critical point of mountain-pass type, and thus (see Papageorgiou—
Radulescu—Repovs [35, Theorem 6.5.8, p. 527])

C1(L+,uo) # 0.
From this and (5.5), we conclude that

Hy(X, 1) #0.
However, using the exactness of the sequence (5.4), leads to

rank Hq (X, I_”ﬁ) rank ker 0, + rank im 0,

=rank imi, + rankimd, <1,
because Hy(X, I} ) =0. Thus imi, = {0} and because Ho(I;", I} ) = Z, see (5.6). We thus obtain
Ci(I4,u0) = Hi(X,I7") = Z.
On the other hand, for £ > 1, we know that
Hy(I',I7)=0 and Hi(X,I7)=0.
Consequently, the exactness of the sequence yields
Hy(X, I =0.
We have thus shown that Cj (X, Ii*) = 01,1Z. This proves the result. O
We have analogously results for the functional I_ and wvy.
Proposition 5.4. Let hypotheses (Hy) and (Hy) be satisfied. Then we have
Cr(I,v9) = Cx(I-,vg) for all k € Ny,
and
Cr(I-,v9) = 6k1Z for all k € Ny.
Proof. The proof is similar to the proofs of Propositions 5.2 and 5.3. O

Proposition 5.5. Let hypotheses (Hy) and (Hz) be satisfied. Then, problem (1.7) has three nontrivial
bounded weak solutions vg,yo and ug such that vg <0 < ug.
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Proof. From Proposition 4.5, we know that vy and wuy are bounded nontrivial weak solutions of (1.7)
such that vg < 0 < wg. Suppose that K; = {0,vg, ug}. Since zero is a local minimum, we know that

Cr(I1,0) = 6k, 0Z.
From Proposition 5.1, we also know that
Ci(I,00) =0.
Moreover, Propositions 5.2, 5.3 and 5.4 yield that
Cr(I,u0) = 6x1Z = Ci(I, vp).
Then, from the Morse relation stated in (2.4), we conclude that
(-1)" +2(-1)" =0,

which is a contradiction. Hence, there exists yo € K such that yo & {0,ug,vo}. This proves the
result. O

Theorem 1.3 follows now from Propositions 4.5 and 5.5.
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