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ABSTRACT. This article focuses on the study of the existence, multiplicity and concentration behavior of
ground states as well as the qualitative aspects of positive solutions for a (p, N)-Laplace Schrédinger equation
with logarithmic nonlinearity and critical exponential nonlinearity in the sense of Trudinger-Moser in the
whole Euclidean space RYY. Through the use of smooth variational methods, penalization techniques, and the
application of the Lusternik-Schnirelmann category theory, we establish a connection between the number of
positive solutions and the topological properties of a set in which the potential function achieves its minimum
values.

1. INTRODUCTION
In this article, we deal with the following singularly perturbed (p, V)-Laplace Schrédinger equation

Ly (u)+ Ly, (u) = lulN2ulog [ulN + f(u) in RY,

P:
/ V(@) ([ul? + |ul") de < 400, we WHP(RN)nWHY(RY), 7
RN

where
L (u) = —e'Apu+ V(z)|u|"?u for t € {p, N}

with N > 2. Further, we assume that 1 < p < N and ¢ is a very small positive parameter. The operator
Apu = div(|Vu|'~2Vu) with t € {p, N} is the standard t-Laplace operator and the scalar potential V: RY —
R is a continuous function. The nonlinearity f: R — R has critical exponential growth at infinity, i.e., it
behaves like exp(oz\u|%) when |u| — oo for some « > 0, which means that there exists a positive constant
ap such that the following condition holds:

lim | f(u)| exp(—alu|¥1) =

|u|—o00

0 if @ > ap,
+oo if a < ap.

Throughout the paper, we suppose the following assumptions on the scalar potential V: RV — R:
(V1) V € C(RY;R) and there exists a constant Vg > 0 such that inf,cgy V(z) > Vo.
(V2) There exists an open and bounded set A C RY such that

Vo = ;relf\V(x) < min V(z).

We define
M={zxecA:V(z)=Vy} and M;={xecR": dist(z, M) <}
for § > 0 small enough such that My C A. Moreover, the nonlinearity f: R — R is supposed to satisfy the
following conditions:
(f1) Let f € C*(R,R) be an odd function such that f(0) = 0, f(s) < 0 for all s < 0 and f(s) > 0 for all
s > 0. Further, there exists a constant ag € (0, «) with the property that for all 7 > 0, there exists

Kk, > 0 such that for all s € R, we have
N—

]

’ tI N
1f(s)] < 7ls|V 7 + ke ® <a0|s|N> with  ®(t) = exp(t) — Z i and N’ = N1

<
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(f2) There exists p > N such that

sf(s) —pF(s) >0 forall s € R, where F(s)= /S f()dt for all s € R.
0
f(s)

5]V 25
(f4) There exists a constant v > 0 such that f(s) > ys*~! for all s > 0.

(f3) The mapping s — is increasing for all s > 0 and decreasing for all s < 0.

Remark 1.1. A typical example of a function that satisfies (f1)—(f4) can be considered as
f(s)=1s|N"2s ®(|s|N")  for all s € R,
with ag > 1, where N > 2, N' = 2~ and @ is defined as in (f1).
In order to familiarize the reader with the special behaviors of the classical Sobolev spaces, it is worth
pointing out that the space W?(R™) can be distinguished in three different ways, namely:

(a) the Sobolev case: p < N, (b) the Sobolev limiting case: p = N, (c) the Morrey case: p > N.

The Sobolev embedding theorem says that for p < N, there holds WP(RY) — LY(RY) for any ¢ € [p, p*],
where p* = NN—_”p is the critical Sobolev exponent to p. In this scenario, to study variational problems, the
nonlinearity cannot exceed the polynomial of degree p*. In contrast to this, for the Sobolev limiting case
commonly known as the Trudinger-Moser case, one can notice that p* converges to oo as p converges to N
and thus,, we might except that W (R") is continuously embedded in L>(R¥). This is, however, wrong
for N > 1. In order to see this, let ¢ € C2°(RY [0, 1]) be such that ¢ = 1 in B;(0) and ¢ = 0 in B§(0), then
the function u(z) = ¢(x)log (log (1 + \71|)) belongs to W1HN(RY) but not to L>(RY). Moreover, in this
situation, every polynomial growth is allowed. To fill this gap, it is fairly natural to look for the maximal
growth of a function g: R — RT such that

g(u)
sup —de<+oo forall 0 < 8 < N,
uewbt N (®N) JRN ||

[lully1,~v <1

1
where |[ullyrnv = ([|[Vul|§ + |[u|§)™ and || - || is the usual norm of the Lebesgue space LY (RY). Tt is
noteworthy that many authors have independently proved that the maximum growth of such a function g
is of exponential type. In that context, we mention the works of Adimurthi-Yang [1] and Li-Ruf [55]. In

recent years, the existence and multiplicity of solutions to elliptic equations involving the N-Laplace operator
with subcritical and critical growth in the sense of Trudinger-Moser inequality have been extensively studied,
motivated by their applicability in many fields of modern mathematics. For a detailed study, we refer to
Beckner [15], Chang-Yang [25], Chen-Lu-Zhu [32], Lam-Lu [50], Zhang-Zhu [87] and the references therein.

It should be pointed out here that the Trudinger-Moser type inequalities and the Adams type inequalities
have been widely studied by many authors across diverse domains such as Euclidean spaces, Heisenberg
groups, Riemannian manifolds, and so on. In this context, we recommend that readers take a look at some
works by Chen-Wang-Zhu [33], Cohn-Lu [35], do O-Lu-Ponciano [11], Duy-Phi [12], Jiang-Xu-Zhang-Zhu
[47], Lam-Lu [19, 51], Li-Lu-Zhu [53], Wang [78], Xue-Zhang-Zhu [82] and the references cited therein.

In the last decade, great attention has been focused on the study of (p, q)-Laplace equations as well as
double phase problems in the whole Euclidean space RY due to the broad applications in biophysics, plasma
physics, solid state physics, and chemical reaction design, see, for example, the books of Aris [11], Fife [43]
and Murray [61] as well as the papers of Myers-Beaghton-Vvedensky [62] and Wilhelmsson [30] and the
references therein. On the other hand, concerning the Sobolev limiting case, that is, p < ¢ and ¢ = N, such
types of problems are often comparatively less looked upon. This is one of the main motivations for the study
in this article. More details on (p, N)-Laplace equations can be found in the papers of Carvalho-Figueiredo-
Furtado-Medeiros [22], Chen-Fiscella-Pucci-Tang [27], Fiscella-Pucci [14], Mahanta-Mukherjee-Sarkar [58]
and Mahanta-Winkert [59], as well as the references therein.

Moreover, we make a note that one of the hypotheses on the potential function V that appears in (V1)
says that the corresponding first-order weighted Sobolev spaces make sense and are well-behaved; see, for
instance, Lemma 2.2 and Lemma 2.3, respectively. To address the challenge posed by the lack of compactness,
Bartsch-Wang [14] were the first to place assumptions on the potential function V. Further, as an application,
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they studied the existence and multiplicity of solutions for a superlinear Schrédinger type equation in RY.
Afterwards, reducing the conditions on the potential and the nonlinearity, Tang [74] achieved some more
general results. Later on, Chen-Lu-Zhu [30, 29, 31, 32] developed and introduced some more generalized
form of assumptions on the potential function V', called degenerated and trapping types of potentials, to
establish the Trudinger-Moser type inequalities as well as the consequences of the Adams type inequalities,
and by employing such inequalities, they studied elliptic and subelliptic PDEs. In addition, we also mention
here that Chen-Lu-Zhu [28] showed the existence of extremals for Trudinger-Moser inequalities in R? in the
presence of trapping potential.

Nowadays, there is a great interest in the study of the time-dependent nonlinear logarithmic Schrodinger
equation of the form

ie0, U = —2 AV + (V(z) + E)¥ — Ulog |¥]?  for all (z,t) € RY x [0, +00), (NLS)

where ¥: RN x [0,400) — C, N > 2, E € R, ¢ is a positive parameter and V is a continuous function
satisfying certain hypotheses. It is worth noting that the standing wave solution of (NLS) is of the form
U(z,t) = exp (—iEt/e)u(x), where u is a solution of the equation

—e?Au+V(z)u =ulogu? in RV,
u € HYRY).

From the point of view of the application, such equations are the main tools for studying quantum physics,
quantum optics, effective quantum gravity, nuclear physics, transport and diffusion phenomena, theory of
superfluidity and Bose-Einstein condensation. For more information in this direction, we refer to Bialynicki-
Birula-Myecielski [19], Carles-Gallagher [21], Cazenave [23], Cazenave-Lions [24], Zloshchastiev [38] and the
references therein. In addition, in order to study (1.1), there have been several technical difficulties due to
the presence of logarithmic nonlinearity. For example, let u be a smooth function satisfying

N —1
x e
() = {(sc| Floglal) " if fo| > 3,

(1.1)

0 if |z < 2.

By direct computation, one has v € H'(RY) but f]RN u?logu?dx = —oco. So, the Euler-Lagrange functional
associated to (1.1) is not finite and is no longer C! on H'(R™). As a result, we cannot directly use the
classical critical point theory to study the behavior of solutions of (1.1). To overcome these difficulties,
several approaches have been developed in the mathematical literature so far. We will discuss some of them
below.

Initially, Cazenave [23] studied the following time-dependent logarithmic Schrédinger equation
iug + Au+ulogu®? =0 in R x RY (1.2)
by considering the N-function A and the function space W defined as
—1s?logs? ifo<s<e3
A(s) =< 2 -7 7 and W= eHlRN:/ Zlogu?| dz < 400 ¢,
(s) {352 +4e 35 —e 0 if s>e73, . {u (R RN [ log u| da >

endowed with the Luxemburg norm || - [lw = || - [| g1 @&~y + || - [|a, where

|lul|a = inf {/\ > 0: / AN Hul) dz < 1} .
RN
The author defined the associated functional L: W — R given by
1 1
L(u) = 7/ |Vu|* dz — 7/ u?logu?dz  for all u € W
2 RN 2 RN

and proved the existence of infinitely many critical points of L on the set {u € W: [,y [u[*dz = 1}. As a
result, he also provided a lot of information about the behavior of the solutions of equation (1.2).
Later, Squassina-Szulkin [69, 70] investigated the following logarithmic Schrédinger equation

{—Au +V(z)u = Q(x)ulogu® in RV,

u € HY(RY), (13)
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where V,Q € C(RY,R) are 1-periodic functions of the variables a1, s, - -,z satisfying the hypotheses

Iél]lRI]lV Q(z) >0 and (V+Q)(x) > 0.

min
zERN
Employing the standard nonsmooth critical point theory of lower semicontinuous functionals, which was
developed by Szulkin [71], the authors showed first the existence of positive ground state solutions by adopting
the deformation lemma. Then, by using the genus theory, they proved the existence of infinitely many
high-energy solutions, which are geometrically distinct under Z~-action. Moreover, several authors used
nonsmooth variational techniques to study the logarithmic Schrédinger equations, such as Alves-Ambrosio
[2], Alves-de Morais Filho [5], Alves-Ji [7, &], d’Avenia-Montefusco-Squassina [37], Deng-He-Pan-Zhong [38],
Ji-Szulkin [46], Li-Peng-Shuai [54] and Liu-Peng-Zou [56]. In contrast to this, Tanaka-Zhang [73] have also
studied (1.3) by considering V,Q as spatially 1-periodic functions of class C'. The authors showed the
existence of infinitely many multi-bump solutions for (1.3), which are distinct under Z"-action, by taking an
approach using spatially 2L-periodic problems with L > 1.

During the last decade, Wang-Zhang [79] introduced an advanced way of studying logarithmic equations,
which is known as the power approximation method. First, they considered the following semiclassical scalar
field equation with power-law nonlinearity

—Au+ A= [uP~2u  in RV,
lim wu(z) =0,

|z|— 00

where p € (2,2*%) with 2* = % if N > 3 and 2* = +o00 if N < 2. The authors showed that when p \, 2,

then the ground state solutions of (1.4) either blow up or vanish, and converge to the ground state solutions
of the logarithmic-scalar field equation

(1.4)

—Au = Mulog|u| in RV,
lim wu(z) =0.

|| =00
In addition, they also proved that the same result holds for bound-state solutions. Later, the authors studied
the concentration behavior of nodal solutions of (1.1) in [36] by employing the same idea discussed above.

On the other hand, concerning the penalization method and the Lusternik-Schnirelmann category theory,

which are generally used to study the multiplicity of the positive solutions of nonlinear PDEs and their
concentration phenomena, we recommend the readers to study the papers of Alves-Figueiredo [6], Ambrosio-
Repovs [10], Thin [75] and Zhang-Sun-Liang-Thin [85], see also the references therein. The most important
features and novelties of our problem are listed below:

(a) The appearance of the (p, N)-Laplace operator in our problem is nonhomogeneous, and thus, the
calculations are more complicated.

(b) Due to the lack of compactness caused by the unboundedness of the domain, the Palais-Smale se-
quences do not have the compactness property.

(¢) The reaction combines the multiple effects generated by the logarithmic term and a term with critical
growth with respect to the exponential nonlinearity, making our study more delicate and challenging.

(d) The concentration phenomena create a bridge between the global maximum point of the solution and
the global minimum of the potential function.

(e) The proofs combine refined techniques, including variational and topological tools.

To the best of our knowledge, this is the first time in the literature, in which two penalized functions are
used simultaneously, one corresponds to the logarithmic nonlinearity and the other one corresponds to the
exponential growth. Motivated by all the cited works, especially by the papers of Alves-da Silva [1], Alves-Ji
[7] and Squassina-Szulkin [69], we study the existence, multiplicity and concentration phenomena of solutions
for problem (P.).

Note that, by the change of variable x — ez, we can see that (P-) is equivalent to the problem

L, (u) + Ly (u) = [ulN"2ulog [ulN + f(u) in RN,

/ Viea)(Jul? + [ulN) dz < 400, ue WRY)nWIN(RN),
RN
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where
Ly (u) = —Ayu+ V(ex)u|'2u for t € {p,N}.
Definition 1.2. We say u € X, (see (2.1) for its definition) is a (weak) solution of (S.), if
lulN " 2uyp log [ulY € L (RY)

and

<u,1/)>pv + (u, ) 4 :/ \u|N*2uwlog|u|Ndx+/ f(u)y da
W Ve s Ve RN RN
is satisfied for all b € X, where <~, ~>t v. fort € {p, N} is defined as

<u,w>t v = / |Vul'"2Vu - Vip da —|—/ V(ex)|ul'"2upda  for all u,7p € X..
W VE RN

RN
Now, we state the main results of this article.

Theorem 1.3 (Concentration phenomena). Let hypotheses (V1)—(V2) and (f1)—(f4) be satisfied. Then
there exists g > 0 such that for any e € (0,eq), problem (P.) has a positive solution v.. Further, if ne is the
global mazimum point of v, then it holds

lim V(n:) = V.
e—0

Theorem 1.4 (Multiplicity of positive solutions). Let hypotheses (V1)—(V2) and (f1)—(f4) be satisfied
and let 6 > 0 be sufficiently small. Then there exists €1 > 0 such that for e € (0,e1), the following hold:

(a) problem (P.) has at least w positive solutions, whenever catyr, (M) is an even number;
(b) problem (P-) has at least

catmg (M)+1

2
The paper is organized as follows. In Section 2, we introduce the underlying function spaces, the main
tools of the variational framework and some preliminary results. Section 3 is devoted to the study of the
penalized problem by using the mountain pass geometry and some topological tools. In Section 4, the
properties of the Nehari manifold associated with the penalized problem and the concentration behavior of
the positive solutions for (P.) are studied. Finally, in Section 5, we prove Theorem 1.4 by invoking the

Lusternik-Schnirelmann category theory.

positive solutions, whenever catps, (M) is an odd number.

2. SOME PRELIMINARY RESULTS

This section is devoted to some basic results on Sobolev spaces, Orlicz spaces and related lemmas that
will be used to establish the main results of this article. To this end, for t € (1, +o0c), LY(RY) denotes the
standard Lebesgue space with the norm || - ||;. Further, if Q& C R™, then we define the norm of L!(Q) by
| - |t ()- For nonnegative measurable functions V: RY — R, the space LY, (RN) consists of all real-valued
measurable functions such that V (ex)|u|’ € L*(RY) and is equipped with the seminorm

1
lulle,v. = </N V(ex)|ul* dac) for all u € Li, (RY),
R

which turns into a norm due to hypothesis (V1). The space (Li, (RY), || - [|¢,v.) is a separable and uniform
convex Banach space (see Pucci-Xiang-Zhang [64]). Note that under the assumption (V1), the embedding
Li, (RN) < LY(RY) is continuous.
Next, we define
WHHRN) = {u € L'(RY): |[Vu| € LY(RM)},
endowed with the norm
1
lullwre = (IVully + full;) *-
It is well-known that the space (W'*(RY), ||-||y-1.¢) is a separable and uniformly convex Banach space. Note
that C>°(RY) is a dense subset of WL (RY). Moreover, the critical Sobolev exponent of ¢ is defined by
t* = I\J,Vf if t < N and t* = 400 otherwise. Further, we set

t
X = WHP(RYN) n WHN(RY)
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and endow it with the norm
[ullx = llullwie + [Jullwi~.

Then, the space (X, || - ||x) is a reflexive and separable Banach space.
The weighted Sobolev space W‘l/;t(IRN ) is defined by

Wy RY) = {u e WHY(RN): /

V(ex)|ul'dz < —i—oo} ,
RN

equipped with the norm

1
el = (IV7ulle + llulliy) * -

The space (W‘l,: (RM), || - ||W‘1/,z) is a separable and uniformly convex Banach space, see Proposition 2.1 in
Bartolo-Candela-Salvatore [13], thanks to (V1). Moreover, C°(RY) is a dense subset of W‘l/;t(RN ), see
Bartolo-Candela-Salvatore [13] and Chen-Chen [26]. From now on, our function space is given by
, N

X. =Wy (RY) nwy ™ (RY), (2.1)

which is endowed with the norm
ullx. = Hu||W‘1/:> + ||U||W\1/;N for all u € X,.

Because of assumptions (V1) and Proposition 2.1 in Bartolo-Candela-Salvatore [13], it is easy to see that
(Xe, | - [x.) is a reflexive and separable Banach space. In the entire paper, C,C1,Cs,Cs, ... denote some
fixed positive constants possibly different at different places. Moreover, for any Banach space (X, || - ||x),
we denote its continuous dual by (X*,] - ||x+) and o0,(1) denotes the real sequence such that o,(1) — 0 as

n — oo. By — we mean the weak convergence and — means the strong convergence, while u* = max {4u,0}
stand for the positive and negative part of a function u, respectively. Furthermore, B, (xg) is an open ball
centered at xp € RY with radius » > 0 and B, = B,.(0). Finally, for any set S C RY, we denote its Lebesgue
measure by |S| and its complement by S°.

Now, we shall discuss some basic properties of Orlicz spaces.

Definition 2.1. We say that a continuous function F: R — [0,+00) is a N-function if there hold
(a) F is an even function.
(b) F(s) =0 if and only if s =0 and F is convez.
(©) lim 212 7s) _

=0 and lim
s—0 S §—00 S

Further, we say that a N-function F satisfies the As-condition, which is denoted by F € Ay, if there exists
a constant ¢ > 0 such that

F(2s) < cF(s) forall s> 0.
The conjugate of the N-function F is denoted by F and defined as
F= m>aé<{ts — F(s)} forallt>0.

Note that F is always an N-function and F=F , i.e., F and F are complementary to each other. Now, we
define the Orlicz space associated with the N-function F by

LT (RY) = {u e LL (RN): / F <|1;|) dz < +o0 for some A > 0} ,
RN

endowed with the Luxemburg norm

|u||;:inf{)\>0:/ f('“') dxg}.
e’ A

Clearly, the space (L7 (R™),|| - ||) is a Banach space. Consequently, the Young’s type and Hélder’s type
inequalities in Orlicz spaces are given by

st < F(s)+ F(t) foralls,t>0
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‘/ uvde
]RN

Moreover, if F, F € Ay, then the space L7 (RY) is reflexive and separable. Again, the As-condition implies
at once that

and

< 2l|ul#|lv]|# for all u € L7 (RY), v e Lj:'(RN).

L7 (RY) = {u € Li (RY): F(lu|)dz < +oo}

RN
and
u, —u in L7 (RY) if and only if / F(lup —u|)dz =0 asn — oco. (2.2)
RN

Now, we shall characterize an important property of the N-function. It states that if F is an N-function of
class C1 and F be its conjugate such that the following condition holds

F'(s)s
F(s)

1<i1< <m < +oo forall s#0, (2.3)
then F, F € A,.

Due to some mathematical difficulties in (S.), we cannot directly apply smooth variational techniques to
study the problem (S.). Indeed, if we set the energy functional I. associated with (S.), which is defined on
the space X, as

1
I.(u) = f||uHW1 v ||u||W1 N / H(u) dx 7/ F(u)dx for all u € X, (2.4)
]RN
where
H(s) = sl log || = ~[s]
N N ’

then the energy functional I, is not well-defined on X, since it may happen that there exists u € X, satisfying
Jan [ulV log|u|V dz = —oco and hence, I.(u) = +oo. Inspired by the works of [5, 7, (9], we can avoid this
difficulty by choosing

1
Ha(s) — Hi(s) = N|S|N log |s|V  for all s € R,

where #; is a nonnegative C'-function, which is also convex and Hs is also a nonnegative C'-function
satisfying some growth condition. Hence, one can easily obtain from (2.4) that

Ho(u)dz — /RN F(u)dz.

This technique guarantees that I, may be expressed as the combination of a C''-functional with a convex and
lower semicontinuous functional. Therefore, the critical point theory for lower semicontinuous functionals, as
established by Szulkin [71], can be used to examine solutions of (P.).

Another feature and novelty of (S.) is the fact that the corresponding energy functional defined in (2.4)
is not a C'-functional and hence, we shall not be able to find the multiplicity of solutions of (S.) by using
smooth variational methods together with the Lusternik-Schnirelmann category theory. To overcome this
difficulty, we shall work with a newly constructed Banach space, where the functional I. is C'. Inspired by

1 1 1
) = Sl + g + el + [ Hawde= [

the work of Shen-Squassina [(7], we fix § > 0 sufficiently small and define H; and Hy by

0, if s =0,

1 .
Ha(s) = 7N|5|Nlog|s|N, it 0 <|s| < (N —1)0,
N

L N N-1 ((N_ 1)5) :

—— 1 N -1 N+1 N - ifls|>(N -1
ot (g (v = 00) v 1) valsf = STt > (v - 1
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and
0, if |s| < (N —1)4,
Ha(s)=Q 1, |s|V N+1 (N =1)8)"
—s log<)4—]\[(531\’_1—<>5N—7 if |s| > (N —1)4,
so that )
Ha(s) — Hi(s) = N|5|Nlog |s|N for all s € R. (2.5)

The functions H; and Hs have the following properties, respectively.

(H1) (a) For 6 > 0 small enough, H; is convex, even and of class C!(R, R).
(b) Hi(s) > 0 and H)(s)s > 0 for all s € R.
(¢) For any ¢ > N, there exists constants C7, Cy > 0 such that

|H,(s)| < Cy]s]?t +Cy  for all s € R.
ere exists constants C1,Ce > 0 such that
d) Th i C1, C. 0 h th
|Hi(s)| < Cy|s|N + Cy  for all s € R.

(H2) (a) There hold H5(s) > 0 for all s > 0 and H5(s) > 0 for all s > (N — 1)6.
(b) H2 € C*(R,R) and for any ¢ > N, there exists a constant C' = C,; > 0 such that

|Hy(s)| < Ols|?7! and  |Ha(s)| < C|s|? for all s € R.

!/
(¢c) The map s+ HJ\QI(_SR is nondecreasing for s > 0 and strictly increasing for s > (N — 1)J.
s
/
(d) H4 is an odd function and there holds lim 10 = 00

; N-1
The following lemmas can be directly obtained frorri5 ?ﬁ: cfassical Sobolev embedding theorem.
Lemma 2.2. Let (V1) be satisfied. If q € [p,p*], then the following embeddings are continuous
Wy P (RY) — WHP(RY) — LY(RY)
with min{1, Vo }Hul[%, < [ull for all u € W‘l/;p(RN). Furthermore, the embedding W‘l/;p(RN) —
Lioe

Lemma 2.3. Let (V1) be satisfied. If s € [N,+00), then the following embeddings are continuous
Wy N (RYN) = WY (RY) — L*(RY)

p
WP
(RN is compact for any q € [1,p%).

with min{1, Vo}|ul[fx < ||u||%1N for all u € W‘l,;N(RN). Furthermore, the embedding W‘l/;N(RN) —
Ve

LS

loc

(RN) is compact for any s € [1,+00).
Corollary 2.4. Let (V1) be satisfied. Then, in view of Lemma 2.2 and Lemma 2.3, the embeddings
X, — WPRY) n WY (RY) — LY(RY)

are continuous for any ¥ € [p,p*] U [N,+00). Also, the embedding X. — LP (RYN) is compact for any
9 € [1,4+00).

Remark 2.5. Let (V1) be satisfied. Then, the following continuous embeddings hold:
X. = Wi (RY) = WHY(RY)  fort € {p,N}.
The next two results can be found in Shen-Squassina [67].

Lemma 2.6. The function Hq is an N-function and there holds 7—[177-71 € As. In particular, the Orlicz
space L (RN) is a reflexive and separable Banach space, where

2 @) = {u e Lho®): [ 3 (o < oo},
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equipped with the Luzemburg norm

ull, = inf{A > 0: / My ('“') dr < 1}.
RN A

Corollary 2.7. The functional ©: L1 (RY) — R given by u Hi(u)dz is of class C* (LM (RY),R)

RN
with
(O (u),v) = Hy(w)vdz  for all u,v € L™ (RY),
RN
where L1 (RY) denotes the Orlicz space associated with Hy endowed with the Luzemburg norm || - ||, -

Remark 2.8. Note that the condition (2.3) is satisfied by the N-function Hi withl € (1, N) and m = N.
We define now the spaces
Y =XnL™RY) and Y.=X.nL"(RY)
endowed with the norms
lully = llullx + ||ulln, forallueY and |u|y. = |lullx. + |u|lz, forallueY..

Thanks to Lemma 2.6, the spaces (Y, || - ||y) and (Y.,| - |lv.) are reflexive and separable Banach spaces.
Moreover, we have the continuous embeddings

Y.~ X. and Y.< L*™(RY).

Similarly, these continuous embeddings are also true, if we replace Y. by Y and X, by X, respectively. Next,
we denote by S, (or by S,) the best constant in the embedding from Y. (or Y) into some Lebesgue space
L"(RM).

Lemma 2.9. The embedding Y < LO(RN) is continuous for any 0 € [p,p*] U[N,4+o0). Consequently, the
embedding Y < L% (RN) is compact for any 0 € [1,+00). Moreover, under (V1), these embeddings also

loc

hold true if we replace Y by Y..
Now, we recall the following version of Lions’ compactness lemma, see Alves-Figueiredo [6, Proposition 4].

Lemma 2.10. Let {uytneny C Y be a bounded sequence in Y. and there holds

lim inf sup / [un | dz = 0
Br(y)

n—r oo yGRN
for some R > 0, then we have u, — 0 in LV(RY) as n — oo for any v € (N, +00).
The next lemma can be found in Alves-da Silva [4].

Lemma 2.11. In view of Remark 2.8, we have for any u € L*1 (RY) that

min { [[ully, , [lull, } < /RN Ha(Jul) do < max {|Jully,, [ull3, }-

From Yang [83], we have the following result.
N-2
Corollary 2.12. The function ®(t) = exp(t) — Z = is increasing and convez in [0,+00). Moreover, for
: J:
7=0
any © > 1, t > 0 real numbers and N > 2, it holds that
N-2 N-2 ;
7\ (pt)’
(eXp(t) -> ],) < exp(pt) — Y i
=0 i=

The inequality in the following lemma is known as the Trudinger-Moser inequality, which was first studied
by Adimurthi-Yang [1].
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<I>(a|u|N/)

Lemma 2.13. For alla >0, 0< 3 < N and u € WHNRN) with N > 2, we have W
T

€ LY(RY).

Furthermore, we have for all a < (1 — %)0&]\[ andy >0

®(alulN 1
sup / 7( | [L )d;v < 400, where ||u||W71,N = (HV’LLH% —I—’yHuH%) N
lellyya.v <t JRY Ed

a1
® is defined as in (f1) and ay = Nwy_}|, with wn_1 being the volume of the unit sphere SN=1. Also, the

above inequality is sharp for o > (1 — %)a;v, i.e., the supremum is infinity.

Remark 2.14. To study problem (P.), we are going to use Lemma 2.13 with 8 =0 and v = 1.

3. EXISTENCE OF SOLUTION FOR THE PENALIZED PROBLEM

In this section, we shall establish the existence of a solution for the penalized problem (S.) by using the
mountain pass theorem stated in Pucci-Serrin [63, p. 142].

Note that for the well-definedness of the functional I, defined in Section 2, we shall restrict I, to the space
Y., which will be denoted by E.(u) = I.(u) for all u € Y.. Hence, in view of the conditions on #H;, V' and
Lemma 2.13, the functional I, is a C'-functional on the space Y. and its Gateaux derivative is given by

(L. 0) = (0.0, + )y + [ Puvdo+ [ Hipda

— [ A de - / () de

RN
for all ¢ € Y., where (-, -) is the duality pairing between Y and Y..

/
Let ¢,¢' > 0 be small enough such that Vo +1 > 2(¢ + ¢') and take a > (N — 1)¢ such that H]%(_al) =/
a
Then, we define
~ Hy(s), if0<s<a
H, _ 2 ’ —= = U,
2(5) {ﬁsN_l, if s > a.

Further, let ¢; > (N — 1)§ be such that a € (t,t2) and h € C*([ty,t2]) satisfying the following properties:
(h1) h(s) < H,(s) for all s € [t1,ta).
(h2) h(tz) = Hé(tl) and h/(ti) = H/Q/(t,) for ¢ e {1,2}.

h(s
(h3) The map s+ N—1

Define another function

is nondecreasing on [t1, t2].

S JHA(s) if s ¢ [t
H2(s) - {h(i), if s € [tl,tg].

If xa denotes the characteristic function corresponding to the set A, then we introduce the first penalized
nonlinearity G%: RY x [0, +00) — R, which is defined by

Gh(x,s) = xa(z)Hy(s) + (1 — xa(z))Hp(s) for all (z,s) € RN x [0, +-00).
Note that H} is an odd function and hence, we can extend the definition of G4 to RY x R by setting
Gh(x,s) = —=Gh(x,—s) for all (x,s) € RN x (—o0,0].
The following properties can be proved by using the definition of G%:
(A) (a) There exists a constant C' = Cy > 0 and ¢ > N such that
|Gh(x, 5)| < s/~ 4+ Cls|77! for all (z,5) € RY x R.
(b) |G4(z, )| < |H4(s)| for all (z,s) € RY x R. Consequently, in view of (Hs2)(b), we have
|Go(z,5)] < C|s|? for all (x,5) € RY x R.
(c) |Gh(z,s)| < €]s|NV~! for all (x,5) € A° x R.
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1 1 1
(d) lelN + |Ha(s) — N”Hé(s)s + NGIQ(ZL‘7S)S — Go(x,8)| >0 for all (z,5) € RN x R.
G4 (z, s)

sN—1

(e) The map s +— is nondecreasing for all (x,s) € RV x (0, +00).

On the other hand, we set f(a) = {' and define

oN-1
= ) f(s), if0<s<a,
fls) = {é’sN_l, if s > a.

Now, we consider the function 1 such that n € C* ([tl, tg]) satisfying the following properties:

(n1) n(s) < f/{s) for all s € [tl,ég].
(n2) n(t;) = f(t:) and n'(t;) = f'(t;) for i € {1,2}.

n(s)
SN—l

Further, we define another function

(n3) The map s +— is nondecreasing on [t1, ta].

oy [T it s ¢ ),
1) {77(5), if s € [t1,19].

Next, we introduce the second penalized nonlinearity g: RY x [0, +00) — R, which is defined by
g(z,5) = xa (@) f(s) + (1 — xa(x))f(s) for all (z,s) € RN x [0, +00).
Observe that f is an odd function, therefore we can extend the definition of g to RY x R by setting
g(z,s) = —g(z,—s) forall (z,s) € RY x (—o0,0].
Moreover, we also define
A. = {z e RN:ex € A},

Gao(x,8) = / Gh(x,t)dt for all (z,5) € RN x R,
0

G(z,s) :/ g(x,t)dt for all (z,s) € RY x R.
0

By using the definition of g, one can prove the following properties:
(B) (a) g(x,s) <0 forall (z,5) € RN x (—00,0] and g(x,s) > 0 for all (z,s) € RN x [0, +00).
() |g(z,s)| < |f(s)] for all (z,s) € RN x R.
¢) pG(z,s) < sg(x,s) for all (x,s) € A x R.
(d) NG(x,s) < sg(x,s) < '|s|V for all (z,s) € A° x R.
)

g(z,s)
|S|N_28

(e) The map s +— is nondecreasing for all (z,s) € RV x (R\ {0}).

Since our goal is to study the positive solutions of (P.), we deal with the following penalized problem:

Ly, (u) + Ly, (u) + [ulV 2w = Gylew, u) — Hi(u) + g(ew,u) RN,

(Se)
/ V(ex)(Jul? + [u|) dz < +o0, u € Y..
RN

Note that if u. is a positive solution of (S.) with 0 < uc(z) < t; for all z € RN\ A, then Gh(ex, ue) = Hb(ue)

and g(ex,u.) = f(uc). Due to this fact, we conclude that v.(z) = u-(%) is a positive solution of (P.). Now,

we define the functional J.: Y. — R associated with (S.) by

1 L/ on N

Tow) = Sl + 7l v+ 1Y) + [ Hawao

(3.1)

- / Ga(ex,u)de — Glex,u)dz for all u € Y..
RN RN
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Clearly, J. is well-defined, of class C*(Y.,R) and the critical points of .J. are weak solutions of (S.). Note
that, from the assumptions (f1), (f2) and Corollary 2.12, one can easily verify that for any 7 > 0, ¢ > N,
there exists a constant x, > 0 and 0 < ag < « such that for all s € R, we have

)] < 7ls| V4 R ls]” @ (alsY),
|F(s)] < 7ls]N + &y ls|"@(als| V).

The following two lemmas show that the functional J. satisfies the mountain pass geometry.

(3.2)

Lemma 3.1 (Mountain Pass Geometry-I). There exist p € (0,1] very small enough and 3 > 0 such that
Je(u) > g for allu € Y. with |ully. =p -

Proof. From (B)(b) and (3.2), we have
IG(x,8)| < 7|s|N + & |s|”®(als|N')  for all (z,s) € RN x R. (3.3)

Let o € (0,1] be sufficiently small such that 0 < |lul|y, < o. Further, we choose r,r’ > 1 satisfying 1+ & =1,
then, by using Holder’s inequality, Corollary 2.12 and Lemma 2.9, we obtain from (3.3) that

1
vy

|, 10 lde < mSg¥ul, + 755l < [, ol @) dx> , (3.4)

where & = u/||ully.. Since |Ju|ly, is very small, we can choose ' > 1 close to 1 and a > «g close to «g
such that o]y < ay holds. Take v > 0 with v < Vp, then we have a2~ < oy <y, = 1.
€ ¥ Ve

Consequently, by using (3.4) and Lemma 2.13, there exists a constant C > 0 such that

[, 16 wlds < S Jul, + 70557 Jul. (35)
Note that ||ully. < 1, therefore it follows from (A)(b) and Lemma 2.9 that

|, [Gatawlde < o5l < 05l (3.6)

Hence, in view of Lemma 2.11, we obtain from (3.1), (3.5) and (3.6) that

1 _ _ ~ So—
Je(u) 2 = (Il + lullyy: v + llulls,) = CSlully, — mSRY lully, = F-CS57 ully,
3N —q -N N 9
2 N (qu +75y ) lully. — Collully,,
~ = 2
for all uw € Y, satisfying |ju|ly. < o, where Cy = nTCSgrﬁ. Choose CS; 7 + Sy = NN and define the
function
1
Y(t) tN — Cyt? forallt € [0,0].

T 3NHIN
By using elementary calculus, we infer that ¢ admits a positive maximum j in [0, 0] at a point p € (0, 0].
Moreover, for all u € Y. satisfying |luly. = p, we obtain
1
Je(u) > WPN — Cyp” = P(p) =35> 0.
This completes the proof. O

Lemma 3.2 (Mountain Pass Geometry-II). Let p € (0,1] be as in Lemma 3.1, then there exists a nonnegative
function e € Y. with |le|ly. > p satisfying J-(e) < 0.

Proof. Define
0. = {ueY.: [supp(ful) N A| >0}
and let u € O, \ {0} be such that u(x) > 0 a.e.in RV. Define
U(t) =t "G(z,tu) — G(z,u) forallz € Aandt>1.
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From (B)(c), we have
U'(t) =t " g(z, tu)tu — pG(z,tu)) > 0 for all z € A and for all t > 1.

It follows that ¥ is an increasing function on [1,+00). Hence, we obtain G(x,tu) > t*G(x,u) for all x € A
and ¢t > 1. Further, since g > N and u(z) > 0 a.e.in RY, we infer that G(z,tu) > tNG(x,u) for all z € A
and ¢ > 1. Similarly, by using (B)(d), we can prove that G(x,tu) > tVG(z,u) for all z € A® and ¢ > 1.
Consequently, we obtain

G(z,tu) > tNG(z,u) for all z € RY and for all t > 1. (3.7)
Notice that for each € R and ¢t > 0, we can write
Ha(tu) = xa. (@) Ha(tu) + (1= xa. () Ha(tw).
Now, by using the definition of Gy and (2.5), it follows that

/ (Hi(tu) — Ga(ew, tu)) dz
RN

1 N N
=—— XA, [tul” log |tu|™ do — —
N Jrw N Jitugty

+ / (1 — xa.) (Ha(tu) — Ho(tu)) dz.
{tu>t1}

(1 = xa)[tu|™ log [tul™ da (3.8)

By the definition of Hy and (H1)(d), we have
7'~[2(8) >0 and 0<Hi(s) < C1sN +Cy forall s > 0.
In addition, it follows from u € Y. that

/ [tu|V dz < KtV and  |[{tu >t} < KtV
{tu>t1}
where K = ||u||¥ and K; = Kt;". Consequently, from the above information, we can deduce that

/{ (=) (o) - T (tu)) de < CEV, (3.9)

where C'= C1 K 4+ C2 K7 > 0. Let ¢ > 1 be large enough, then by using (3.7), (3.8) and (3.9), we obtain from
(3.1) that

1 1
duten) < |3 (Bl 4 Tl + 1l = [ Genar) =5 [ v fulY log ul ds
— logt</ xa. |ulN da +/ (1- XAE)|uNdac) (3.10)
RN {tu<t1}
1
- = (1 — xa)|ulN log|uN dz 4 C|.
N Jipuseny
Due to the application of Lebesgue’s dominated convergence theorem, we obtain
/ (1—xa)|uNdz —0 ast— oo (3.11)
{tugtl}
Now, by using (2.5), (H2)(b), Lemma 2.9 and the fact that v € L**(RY), we have
1
- = (1 — xa)|u/N log [ulN dz| < / |7—L1(u)|dx+/ [Ho(u)|dz < +o00. (3.12)
N {tu<ti} RN RN

Sending t — oo in (3.10) and using (3.11) as well as (3.12), we deduce that J.(tu) — —oc0 as t — oo. Taking
e = tu with ¢ sufficiently large shows that assertion of the lemma. (]
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To use the mountain pass theorem, it is necessary to verify the Palais-Smale compactness condition at a
suitable level c. We say that a sequence {uy }neny C Ye is a (PS). sequence for J. at any suitable level ¢ € R
if

Je(up) = ¢ and sup  [(JL(un),p) = 0 asn — oco. (3.13)
llellyo=1

If this sequence has a convergent subsequence in Y, we say that J. satisfies (PS). condition at any suitable
level c € R.

Note that the following logarithmic inequality is useful to prove the boundedness of (PS). sequences for
Je.

Lemma 3.3. Let N > 2 with N < s and u € LN (A.) N L*(A.). Then, we have

|ul s lullzea.)
lul™ log ( dr < ——|Jullpv @) log | 77— |-
/AE llull L~ ALy s—N (A=) llull v A

Proof. By using the logarithmic interpolation inequality in Del Pino-Dolbeault [39, p.153] and applying a
similar procedure as in Alves-Ambrosio [2, Lemma 3.2], the lemma can be proved. g

Remark 3.4. To study quasilinear elliptic problems involving N -Laplace operator, generally one requires the
following condition
lim sup ||un||JV\{,/1N <N (3.14)
n—00 e%y]
to handle terms containing critical exponential growth. Such type of inequality originates by default from the
well-known Palais-Smale condition or Cerami condition at a suitable level c.

Whereas, in this article, due to the presence of logarithmic nonlinearity, by using the (PS). condition
it is difficult to directly prove the boundedness of the corresponding Palais-Smale sequence as well as we
can not obtain inequality of type (3.14). To show the boundedness of such type of sequence, we need the
inequality (3.14) along with some extra computational work. Moreover, one can see that the inequality (3.14)
can be assumed because of Lemma 2.3 due to the fact that the bounedness of ||un|lwi.v does not imply the
boundedness of ||Un||W‘l/,N in general.

Lemma 3.5. Let {un}tneny C Y be a (PS). sequence for J. satisfying limsup||un||%’1,N < W Then, the
o

n— 00
sequence {uy }nen is bounded in Y.

Proof. Let {up}nen C Ye be a (PS), sequence for Je and let limsup Hun||%/11v < ¥ be satisfied. Now, by
o

n—oo

using (3.13) and the properties of (B), there exists d > 0 such that, as n — oo, we have
¢+ dHunHYs + 0, (1)

> Js(un) - %(Jé(un)vun>
1 1

1 1
> (2 _ = p Lt el B
> (p N>||un||W‘1/;p +/RN (Hl(un) N’Hl(un)un + NGQ(ez,un)un Gg(sx,un)) dzx (3.15)

1 N _ 1 / 1 / _
N /]RN |un| dz + /]RN <H2(un) NHQ(un)un + NG2(5maun)un GQ(E%,UH)) dz
=T (un),
where we have used
_ 1, 1_, _ _ l N
/RN (Hl(un) NH1(Un)Un + N'Hz(un)un Hg(un)) dz = N Jow [wn | de.
Observe that
RY = (Ac U{[un| < t1}) U (AL {Jun| > t1}).



ON SINGULARLY LOGARITHMIC (p, N)-LAPLACE SCHRODINGER EQUATIONS 15

Consequently, by using (A4)(d), one can easily deduce that
1 1 1
T(un) > — w, |V da —l—/ (* un|N 4+ Ha(un) — < Ho(Un)un
(1) N A e Aen{lun|>t1} N| | N

1
+ ﬁGg(sx,un)un - Gg(eac,un)) dz (3.16)
> N N |, [N de.
Combining (3.15) and (3.16), we obtain
1
N/ [un |V dz < e+ dl|un|ly. +o0n(1) asn — oo. (3.17)
Ae

By using (H;)(d) and (3.17), we can find constants ¢ d > 0 such that

/ Hi(up) dz < &+ dl|un|ly. +on(l) asn — occ. (3.18)
Ac

On the other hand, by using Lemma 3.3 with D =

|t o az

€

and Lemma 2.9, we have

3.19
< (NluallZn s,y = DNlunllzxan)) log (lunllzaany) + DN [[unlly (a,) log ([unlloea.)) (3.19)

< (Nllun i (a,y + DN tnll v (a.)) | 108 (Junll v (a0) | + Dlunlly. | log (Dlunly.)

where the constant D > 0 is independent of . Recall that in view of Lemma 4.2 of Alves-da Silva [1], there
exists £ € (0,1) and a constant A > 0 such that

[tlogt| < A(1+t'T) for all t > 0. (3.20)
Due to the above inequality and (3.17), we obtain
A 1+¢€ ~
tog (Jumllzvian)| < 5 (1 (lanll B a ) 76) < A1+ Junli6) +00()  321)
as n — oco. Likewise, by using (3.20) and Lemma 2.9, we have
e\ o §
tog ([l (n) ] < A1+ (lunllan) ) < A1+ unl¥55),

tog (Dljunlly. )| < A(1+ (Dllunlly.) ™)) < A3 (1+ Jual i),

)

”un”gN(Aa)

lwnll 2w (a)
- (3.22)
Dllun|lvy.

where in the above estimates A; with i = 1,2, 3 are positive constants. Now, by using (3.21) and (3.22) in
(3.19), we deduce that there exists a constant A > 0 such that

/ |un|N10g |un|N dx < A(l + HunH;’:g) +o0,(1) asn— oco. (3.23)
Ae
In virtue of (B)(b), (f1) and Corollary 2.12, we can deduce that

G(x,5)| < 7|s|Y + kr|s|®(als|Y) for all (z,5) € RN x R. (3.24)

From the assumption, it follows that there exists my > 0 and ng € N sufficiently large such that

HunH{/\{,,lN <mg < Z—N for all n > nyg.
0

Take r > N with v/ = X5 > 1 and satisfying % + % = 1. Let 7’ close to 1 and o > «p close to ag such

that we still have r’ aHunH%/L ~ < mg < ay for all n > ng. Consequently, by applying Holder’s inequality,
Corollary 2.12 and Lemma 2.9, we obtain from (3.24) that

%\‘,_‘

/ 1G(ez, un)| dz < 7llun | + v il / & ('t | s [n[ V')
-~ - (3.25)

< 7llunl|§ + KOS unlly.
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for n large enough, where w, = Hu\lltﬁ Moreover, due to Lemma 2.13, we have
wllyt,

)

C= < sup / fI)(r'oz||un||{/VV/1,N|ﬂn|N,) dz) < +o00.
n>ng JRN

By using (2.5), (3.18), (3.23) and the growth |Gy (ex, s)| < £|s|V for all (x,s) € AS x R, we have, as n — oo,

that

/ (Hi1(un) — Ga(ez, uy)) dz
RN

> N Hl(un)dxfguun”%* N |un‘N10g|un|Ndx (3.26)

1
N
. A
> / Ha(un) do — (4 dllunllv.) = 5 (1+ lunll¥5) = Ellunll ¥ + 0n(1)-
In view of (3.25), (3.26) and the fact that {un}neN is a (PS). sequence for J., we obtain, as n — oo, that

1

ct+on(l) = Je(un) > *Hun” N

e =7 = Ollunll¥ = 57O unlly.

i (3.27)
[ Ao = @+ dlunlly.) = 3 (1 el ¥9),
RN
Since 7 > 0 is arbitrary and ¢ > 0 is small enough, we can choose 7 small enough such that 7 4 2¢ < %
Consequently, by using (3.27) and Lemma 2.11, there exists constants Cq,Co,C3 > 0 such that, as n — oo,
we have
1

1 .
C1 + Collunlly. + Callunll¥e + 0n(1) = N (Hunllﬁvép + [lunllys, N> +min {unly,, luallf, ) (3.28)

where 1 < | < N. For the rest of the proof, we fix £ € (0,1) such that 1 + ¢ < p < . If possible, let
llunllz, <1, then we obtain from (3.28) that

1
C1 -+ Callualy. + Callunlyt + 00 (1) 2 57 (lnllfys + [l Nan ) + lunllf, asm— o0 (3.29)
Ve

In this case, we have three possibilities as follows:
Case-1: Let ||un||W‘1/;p — o0 and ||un||W‘1/,EN — 00 as n — oo. It follows that ”u"”évv‘l/a’v > HunH’;V‘l/N >1forn

large enough. Consequently, we obtain from (3.29) that
1-p

2
C1 + Callunlly. + Csllunlly"® + 0n(1) > =

N Junllk. + unllfy, asn— oo.

1-p
Dividing [|u[[%_ on both sides and letting n — oo, we get 0 >

> 0, which is a contradiction.

Case-2: Let ||unHW‘1/p — 00 as n — 00 and |[u,||y1,~ is bounded. Dividing Hun||W\1/p on both the sides of
e Ve e

1
(3.29) and letting n — oo, we get 0 > N 0, which is again a contradiction.
Case-3: Let Hun||W1 N — 00 as n — oo and ||un|\W1 » is bounded. Similar to Case-2, we get a contradiction.

Suppose that ||un||H1 — 00 as n — 00, then we can assume that ||u, ||, > 1 for n large enough and hence,
we obtain from (3.28) that

1
Cy + Co||un ||y, + C3||un||1+5 on(1) > f(Huan 1t ||un||%1N> + HunHlHl as n — oo. (3.30)
N Wy. Ve

In this case, we have four possibilities as follows:

Case-1: If ||un||W1 » and ||un||W1 » are bounded, then dividing |[u,|},, on both sides of (3.30) and letting
n — 00, we get 0 > 1 > 0, which i is a contradiction.

Case-2: Let HunHW‘Zp — 00 and ||Un||W‘1/,EN — 00 as n — 0o. It follows that Hun”af/&g > HU”H;/‘ZN > 1 and

[un by, > llunllb,, > 1 for n large enough. Hence, we obtain from (3.30) that

1-p

3
C1 + Collunlly, + Callunll¥e + on(1) = =

~ ||Un|\1;(5 as n — 00.
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1-p

Dividing [|u, [y, on both sides and letting n — oo, we get 0 > > 0, which is again contradiction.
Case-3: Let ||un||W‘1/,p — 00 as n — oo and ||U7L||W‘1/;N is bounded. It follows that [Juy ||}, > [lun |, > 1 for

n large enough. Conssequently, from (3.30), we have
C e 217" P
1+ CQHUnHY + C3Hun|| + On(l) > T(”unnw‘l/f + ||Un||7-11) as n — oQ.
1-p
N

P
Dividing (HunHWm + ||Un||q.[1> on both sides and letting n — oo, we get 0 > > 0, which is a
Ve

contradiction.
Case-4: Let Hun||W1 N — 00 as n — oo and ||un|\W1 » is bounded. Similar to Case-3, we get a contradiction.

Hence, we conclude from the above seven cases that {tn}tnen C Y. must be bounded. This finishes the
proof. ]

The following lemma is devoted to the tightness of the Palais-Smale sequences for J.

Lemma 3.6. Let {up}tneny C Ye be a (PS). sequence for J. as stated in Lemma 3.5. Then, for all € > 0,
there exists R = R(§) > 0 such that

n—oo

limsup/c [(1Vunl? + V(er) unl?) + (Vunly + (V(ez) + D)un|V)] de < €.

Proof. For R > 0, let g € C(RY) be a such that 0 < ¢p <1 in RY, g =01in Bg, Yr =1in B, and

[Viyr| < %, where C' > 0 is a constant independent of R. Further, we choose R > 0 in such a way that
A. C Br. Due to Lemma 3.5, we infer that the sequence {u,¥g}nen is bounded in Y. and there holds

(JL(un), anm — 0 as n — oco. Consequently, by using (H1)(b), (A)(c) and (B)(d), we obtain
/N [(|[Vun [P 4+ V(ex)|un|P) + (|[Vun | + (V(ez) + D|un|¥)|bpde < I + I + 0,(1)  asn — oo, (3.31)
Whﬂjre
=+0) /RN lun|Nppdz and I, = ‘ /RN Un (| Ve [P72 + |V, |V 2V, - Vi da|.

In view of (V1) and the fact that Vo +1 > 2(¢ 4 ¢'), we get

Vo+1 1
B0 [ lerde <5 [ (V) + DlualVnds

2 RN 2 RN

1 (3.32)

<5 [ T0Vunl + Vieaun) + (Vual¥ + (Viez) + Dlun*)] e
RN
Moreover, due to the boundedness of {u, }nen in Y. and Holder’s inequality, we have
c _ 0 _C _ C
I < & (lunllpl Ven 571 + llun | I Vunlly ™) < 5 (S5 lunll%, + Sxllunlly.) < 2. (3.33)

where C' > 0 is a constant. Now, it follows from (3.31), (3.32) and (3.33) that

/RN [([Vun|P + V(ex) [un?) + ([Vun N + (V(ez) + 1)|un| V) |¢r dz < 2 +o,(1) asn— co.

R

Fix £ > 0 and take R > 0 sufficiently large such that 25 ¢ &. Passing to n — oo in the above inequality, we
obtain

2C
limsup/ [(Funl? + V(E)unl?) + (Fual™ + (V(ez) + Dl V)] de < 22 < €
This finishes the proof. O

Lemma 3.7. Let u € Y. and {un}nen be a (PS). sequence for J. satisfying lim sup ||un||%/1,N < oy If
n—00 Qo

Uy, — u in Y. as n — 0o, then we have Vu,, — Vu a.e.in RY as n — co. Consequently, we deduce that u
is a critical point for J., that is, J.(u) = 0.
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Proof. Note that by Lemma 3.5, we conclude that the sequence {uy, },en is bounded in Y.. By the hypothesis,
we have u,, — u in Y. as n — 0o. Due to Remark 2.5 and Lemma 2.9, we infer that

Up — U inW‘l/;t(RN) fort € {p, N}, u, —»u inL°(Bg), u,—u aecinRY asn—oco (3.34)

for any R > 0 and 0 € [1,+00). Consequently, there exists gr € L¥(Bpr) with ¢ > N such that |u,| < ggr
a.e.in Br. Fix R > 0 and ¢ € C(RY) such that 0 < ¢ < 1in RY, ¢y = 1 in Bg, ¢ = 0 in BS, and
[V#||oo < C for some constant C' > 0 independent of R. Note that J. € C*(Ye,R), u, — u in Y., and
J(un) = 0in Y as n — oo, thus we obtain

(JL(up) — JL(w), (up, — u)tb) = 0, (1) as n — oo. (3.35)
For any n € N and ¢t € {p, N}, we define
D! = (|Vu,|"*Vu, — |[Vu|"*Vu) - (Vu, — Vu) + V(ex) (|un| 2w, — v %) (u, — u).
Moreover, by convexity and (V1), we can see that
(IVun[**Vu, — [Vu[*?Vu) - (Vu, — Vu) >0 ae.in RY,
V(ex) (Junl"%up — Jul""2u) (uy, —u) >0 ae.in RY
for any n € N and ¢t € {p, N}. Due to Simon’s inequality (see [68]) with N > 2 and (3.35), there exists

cy > 0 such that as n — oo, we have

cg,l/ |Vu, — Vu|Y dz

Br

<cy {/ 'V, — Vu|Y dz +/ V(ex)|un — uNdx}
BR BR

N t t
<[ DYdz< Y <BRDndx>< > (/RNandx>

Br

te{p,N} te{p,N} (3.36)
=0,(1) — Z [/ (IVu, "2V, — |Vu['"?Vu) - Vi (u, — u) dx]
te{p.N}y L/BY
- / (|un|N72un - |u|N72u) (up, — u)pdo — / (H (un) — Hy(w)) (un — )i da
RN RN
+ [ (Ghlemun) = Gien,w)wn — wwde+ [ (gl un) — gl w) un, — wda.
RN RN
Using Holder’s inequality and (3.34), for t € {p, N}, we get
/ (IVun|"*Vu, — |Vu|"?Vu) - Vip(u,, — u) dz
RN
%
< IVl (9l + 190 ([ i = alfar) 0 asn o
Bar
It follows that for t € {p, N}, we have
lim (IVun " "*Vu, — [Vul*"*Vu) - Vip(u, — u)da = 0. (3.37)
n—oo ]RN
Likewise, we can also prove that
lim (Jun|N 2y — JulN2u) (u, — w)yp dz = 0. (3.38)

n—oo RN

In view of Holder’s inequality, (#H1)(c) and (3.34), we obtain

/RN (H' (un) — Hi(w) (un — w)t da

1
q
< Cr([lunlld™" + ullg™") </B [tn, — ul? d:r) + QCg/B |up, —uldz =0 asn — .
2R 2R
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This yields
li_>m (H (un) — Hi(w)) (up — w)p da = 0. (3.39)
n o0 RN

Similarly, by using Holder’s inequality, (A)(a) and (3.34), we have
‘ /RN (Gh(ex, upn) — Gh(ex,w)) (uy — u)ip da

< e(luall¥+ 1) (|

Bar

Ol + s ( /

1
~
[ty — u|Ndx)

q
[tin, —u|qu) —0 asn— 0.
2R

It follows that
lim (Gh(em,un) — Gh(em,u)) (uy, — u)ipdz = 0. (3.40)

n— oo RN

Due to Holder’s inequality and (3.34), we have

D= [l = ulde < 7 (el R (
2R

Bar

N

e, — uNdx) -0

as n — oo. From the hypothesis, it follows that there exists m; > 0 and ng € N sufficiently large such that

Hun||jv\{,/1N <my < G for all n > ng. Take r > 1 with r’ = X5 > 1 and satisfying 14 L =1. Letr close to

1 and a > ag close to ag such that we still have r’a||un||%,LN < mq < ay for all n > ng and u,, = Hunﬁﬁ

By using Hoélder’s inequality, Corollary 2.12 and (3.34), we obtain

Jy = HT/ (®(aofunl™') + B(aolulY')) un — ulde
Bar

A o)
Bar

/ <I>(7”oz0|u|N') dx]
RN

< HT(H(I)(O‘OlunlN,)

o+ | @(aolul™)

Q/ ®(r'alun iy [ V) da
]RN
|

< Ky
1
§6(/ unu|rdx> —0 asn — oo,
Bar

1
=

+

([ e

where

-x\‘ -

1
vy

a—nquup / @ (r'allun iy x [T ¥) dz |+
RN

n>ng

/ <I>(7'/ao|u|N/) dm]
RN

thanks Lemma 2.13. Consequently, by using (B)(b) and (f1), we obtain

/RN (9(ez, un) — g(em,w)) (up — u)p da

as n — oo. This shows that

><+oo,

< [ ()l + f@D) e — ul do <+ 02 =0
B2r

lim (9(ex,un) — g(ex, u)) (u, — w) dz = 0. (3.41)

n— oo RN

Passing n — oo in (3.36) and using (3.37), (3.38), (3.39), (3.40) and (3.41), we get Vu,, — Vu in [LV (Bg)]Y
as n — oo for all R > 0. Hence, up to a subsequence, still denoted by itself, Vu,, — Vu a.e.in RY as n — oo.
Now, fix v € C®(RY) and let R > 0 be large enough such that suppv C Bg. Using the bounded-

ness of {u,}nen in Ye, we deduce that {|Vu,|'"2Vu,}nen and {V(Em)%\unﬁdun}n@; are bounded in
[L7T (RM)]N and L7 (RY), respectively, for ¢ € {p, N}. Note that for ¢ € {p, N}, we have

|V, |2V, — |Vu|'"?Vu  and V(Ex)%|un|t_2un — V(Em)t%l|u|t_2u a.e.in RN asn — oo.
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Consequently, for t € {p, N}, we have
[V, "2V, — [Vul'"2Vu  in [L7T (RV)]V,
V(ex) T un|' 2wy — V(ex) T |ul* 2w in L¥T(RY)
as n — oo. Exploiting the density of C°(RY) in W‘l/;t(RN) for t € {p, N}, we obtain for t € {p, N} that
/ |V, |V, - Vodr — |Vu|""2Vu - Vodr asn — oo (3.42)
RN

RN
and

/ V(ex)|un|" " 2uyv de —>/ V(ex)|u/'2uvdr  asn — oo. (3.43)
RN RN
Similarly, we can also prove that
/ |t [N " 2upv de — / lulN"2uvdx  as n — oo. (3.44)
RN RN

On the other hand, by using Hélder’s inequality, (H1)(c), (A)(a) and (3.34), we get
M, (un)v] < (Chlun|T™! + o) |v] < (Cigh ' + Ca)|v| € LY (Bg)
and
|Gale, un)ol < (€ un™ !+ Clun|*) o] < (€ g5~ + Coy vl € L'(Br).
Due to Lebesgue’s dominated convergence theorem, we conclude that
H' (up)vde — Hi(u)vdz asn — oo (3.45)
RN RN
and

Gy(ex,up)vde — / Gy(ez,u)vdz asn — oo. (3.46)
RN RN

Taking into account the notations used on the previous page to handle the exponential nonlinearity, we obtain
by using (B)(b), (f1), Holder’s inequality, Corollary 2.12 and Lemma 2.9 that for all n > ng

~ G
(/ |v|Ndx> + (/ |v|’"dx)
RN RN

sup/ @(T’a||un||‘]yv,1,N|ﬁn|N/)dx] ,
RN

n>ngo

< 400, (3.47)

/ glex,up)vde < C
RN

where
1

C = TS;,(Nfl) sup Hun||¥:1 + Ky
neN

which is finite because of Lemma 2.13 and the fact that {uy}ney is uniformly bounded in Y.. It fol-
lows from (3.47) that {g(ez,un)v}n>n, is bounded L'(RY). Consequently, it is not difficult to verify that
{g(ex,un)v}n>n, is uniformly absolutely integrable and tight over RY. Since u, — u a.e.in RY as n — oo,
therefore we have g(ez,u,)v — g(ez,u)v a.e.in RV as n — oo. Now, by applying Vitali’s convergence
theorem, we obtain

/ glex,uy)vde — glex,u)vdr asn — . (3.48)

RN RN

Observe that (J.(un),v) = 0,(1) as n — oo, therefore using (3.42), (3.43), (3.44), (3.45), (3.46), (3.47) and
(3.48), we infer that (J.(u),v) = 0 for all v € C2°(RY). Exploiting the density of C2°(RY) in Y., we deduce
that w is a critical point for J, that is, J.(u) = 0. This completes the proof. O

Lemma 3.8. Under the assumptions of Lemma 3.5, Lemma 3.6 and Lemma 3.7, the functional J. satisfies
the (PS). condition at any level c € R.
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Proof. Let ¢ € R and {uy, }nen C Ye be a (PS),. sequence for J. at level ¢ € R. By Lemma 3.5, the sequence
{tn tnen is bounded in Y.. Then, without loss of generality, up to a subsequence, we have u, — u in Y, as
n — oo for some u € Y. By using Lemma 3.7, we have (J.(u),v) =0 for all v € Y.. In particular, we have
(JL(u),u) =0, that is,

D N ’ .
Il + Nl v + / Hilwuda = [

Note that (3.34) holds. In view of (V1) and Lemma 3.6, we obtain

lim sup / unPde < 5 and  limsup / i ¥ da <
B Vb B

n—oo n—oo

Gy(ez,u)udx + /

g(sx,u)udx—/ R (3.49)
RN

RN

S
Vo—‘rl.

It follows from u € L*(RY) for ¢t € {p, N} that there exists R > 0 large enough such that [, |[ul'dz < &
R
Now, using all these information and (3.34), we get

c c
R R

limsup ||ty — ul5 = limsup ([|u, — ull7op + llun — u||1£,,(3%))
n—o0 n—oo
= B flun = ullf gy +lHmsup fun — w7, ey = lmsup fun — |7, g

n—0o0 n—oo

Y 1§ ~ . ~
< op—1 (hmsup HunHip(B%) + ||u||1£p(31%)) < or 1(7 + f) = (C1¢ with some C; > 0.
n—00 0

Similarly, we can also prove that

lim su unfuN<2N71( §
msup s, — ul¥ =

Due to the arbitrariness of ¢ > 0, it follows that u, — u in L*(RY) for t € {p, N} as n — co. Applying the
boundedness of {u, }nen in Y, we obtain by using Lemma 2.9 and the interpolation inequality that

u, —u in LY(RN) for 0 € [p,p*) U[N, +o0) asn — oo. (3.50)

By using (3.34), (3.50) and Lebesgue’s dominated convergence theorem, it follows that

+ E) = 525 with 52 > 0.

: 3 . 0 _ *
ngnoo hern:Dlip ||“n||L0(B§%) =0 forany 0 € [p,p*) U[N,+00).
This implies that for all £ > 0, there exists R = R(£) large enough such that
limsup/ lun|® dz < ¢ for any 6 € [p,p*) U [N, +00). (3.51)
n—oo JBg

In view of (3.51) and (A)(a), we have

/ G (ex, up)uy, dz
B

c
R

lim sup
n—oo

< limsup/ (lun|N + Clu,|?) dz < (£ + O)E = Cs
n—oo JBg
with C3 > 0. Note that Gj(ez, u)u € L*(RYN), therefore choosing R > 0 large enough, we may assume that
Jpe Gh(ex,u)udzr < & Gathering all these information, we have

R

< CE,

limsup‘/ G'Q(sx,un)undxf/ Gy (e, u)udx
¢ B
R

n— oo c
R

for all £ > 0 and some suitable constant C > 0. By the arbitrariness of £ > 0, we conclude that

Gy (e, up)up, dz — Gy(ez,u)udr as n — oco. (3.52)
By B

On the other hand, from (A)(a) and (3.34), we get
|Gh (e, up)un| < £ |up|N 4+ Clun|? < € gi + Cglh € L' (Bg).
Consequently, by (3.34) and Lebesgue’s dominated convergent theorem, it follows that

Gy(ex, up)u, dz — Gh(er,u)udr asn — co. (3.53)
Br Br



22 D.K. MAHANTA, T. MUKHERJEE, AND P. WINKERT

Combining (3.52) and (3.53) together, we obtain

Gy(ex, up)u, dz — Gh(er,u)udr asn — co. (3.54)

RN RN
From the hypothesis, there exists ms > 0 and ng € N sufficiently large such that ||unH%I1N <mag < %; for
all n > ng. Choose 7 > 1 with " = -5 > 1 and satisfying % + % =1. Let 7’ close to 1 and a > ag close

to ag such that we still have r’a||un||%/1,N < mo < ay for all n > ng and u, = Hwﬁ% It follows from

(B)(b), (3.2), Holder’s inequality, Corollary 2.12 and (3.34) that for all n > ng, we have

1
/ gn dx + (/ gﬁﬁdx>
BR BR

1
C = max {T,%T|: sup / q)(T‘/aHUnHJV\{/Il,NlanlN,) dx] } < +o0,
RN

n>ng

/ glex,up)u, dx < C < o0, (3.55)
Br

where

due to Lemma 2.13. Then, from (3.55), we get that {g(ex, un)un }n>n, is bounded L'(Bgr). Consequently,
it is not difficult to verify that {g(ex,un )ty }n>n, is uniformly absolutely integrable and tight over Bgr. In
virtue of (3.34), we have u, — u a.e.in Br as n — oo and hence, g(ex, u,)u, — g(ex,u)u a.e.in By as
n — oo. Now, by applying Vitali’s convergence theorem, we obtain

/ g(ex, up)u, de — glez,u)udr asn — oco. (3.56)
Br Br

Similarly, by using (B)(b), (3.2), Holder’s inequality, Corollary 2.12 and (3.51), we have for all n > ng

’/ glex, up)u, da / |un|Ndx+(/ Jun | da
f B B

®
where C' is defined below (3.55). It follows that

1
T

<C <C(E+€7),

c
R

<CO(E+¢7).

n— oo

hmsup‘/ g(ex, up)u, dz
R

One can observe that g(ex,u)u € L'(R"). So, there exists R > 0 large enough such that [, g(ez,uv)udz < .
R
Consequently, we deduce that

limsup‘/ g(sx,un)undx—/ g(ex,u)ude <5(§+£%),
& Bf

n—oo

for some suitable constant C > 0. Now, letting & — 0% in the above inequality, we obtain

/ g(ex, up)u, dz — glez,u)udr asn — oo. (3.57)
B, BS,
Combining (3.56) and (3.57) together, we get
/ g(ex, up)u, de — glez,u)udr asn — oo. (3.58)
RN RN

Using the fact that (J.(un),un) = 0n(1) as n — oo, we have as n — oo

e g+ Nl + [ i) da
(3.59)

= G’z(ax,un)undx—l—/ g(ax,un)undx—/ [un | dz 4 0, (1).
RN RN RN

Therefore, by using (3.50), (3.54) and (3.58), we obtain from (3.49) and (3.59) that

p N l _ p N I
Jn g+ g+ [ i e = el + i+ [ Hiwuda +0,(01)
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as n — oco. From this, one has
[tnlljyre = llulljyre fort e {p,N} and / H (un)uy, do — Hi(uw)udz as n—oco.  (3.60)
Ve Ve RN RN
Consequently, by using (3.34) and Corollary A.2 of Autuori-Pucci [12], we obtain from (3.60) that u, — u
in W‘l,;t(RN) as n — oo for t € {p, N}. By Remark 2.8 and (2.3), one can notice that 0 < H;(s) < H/(s)s

for all s € R. Using this fact together with the generalized dominated convergence theorem of Lebesgue, see
Royden [65, Theorem 19] and (3.60), we conclude that

Hi(up)de — Hi(u)dz asn — oo.
RN RN
Recall that H; is a N-function, which satisfies the As-condition. Hence, by using a Brézis-Lieb type result
found in Alves-da Silva [3, Proposition 2.2], we can prove that

Hi(up —u)dz — 0 asn — oo.
RN
This shows that u,, — u in LHl(RN) as n — oo and hence, u,, — w in Y. as n — oo. This finishes the
proof. O

Now, we can give the main result in this section.

Theorem 3.9. For each e > 0, the functional J. has a nontrivial critical point u. € Y. such that J.(ue) = ce,
where c. denotes the mountain pass level associated with J.. Consequently, we deduce that u. is a solution

of (S.).

Proof. Due to Lemmas 3.1, 3.2 and 3.8, the functional J, fulfills the geometry of the mountain pass theorem,
see [63, p.142]. Consequently, for each £ > 0, there exists a nontrivial critical point u. € Y. of J. such that
Je(ue) = ce, where the mountain pass level ¢, is characterized as

= inf J-(y(t
ce = inf max =(v())

with
I.={y€C([0,1],Y:): v(0) = 0 and J.(v(1)) < 0}.

The proof is now complete. O

4. EXISTENCE OF POSITIVE SOLUTION TO THE MAIN PROBLEM VIA NEHARI MANIFOLD METHOD

This section is devoted to the study of the existence of a positive solution of (P.) by using the Nehari
manifold technique and the characterization of the mountain pass levels ¢, as ¢ — 07. To this end, we define
the Nehari manifold associated with the functional J., which is defined by

Ne={ueY\{0}: (J.(u),u) =0}.
A very nice introduction to this method has been done by Szulkin-Weth [72]. Tt is obvious that A contains
all nontrivial critical points of J.. Define

Ce = uienj\ffs Je(u).

Note that, if ¢, is achieved by some v, € N, then we say that v, is a critical point of J.. In addition, since

ce is the lowest level for J., therefore, v, is said to be a ground state solution of (S.). Furthermore, we define

o) = L)) = ) = (5=l =l = [ (Fpatemn - ) as
: (4.1)

_ [/RN [HQ(U) - %HIQ(U)U + %Gé(z—:x,u)u — Gg(sx,u)] dx],
It follows that
Ne = w1 ({0}).

Now, we prove some properties of N, which will be used in the sequel of this paper.
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Proposition 4.1. The set N is bounded away from the origin, that is, there exists a constant 8 > 0 such
that ||ully. > B > 0 for all u € N and for all e > 0.

Proof. By Lemma 2.3, one can easily see that

lullwn < (min{l,Vo})_WHuHW‘ZN < (min{l,VO})_WHuHYE. (4.2)

If ||ully. = (min{1,Vp}) ™, the conclusion is obvious. If |[u]y. < (min{1,V,})™, then one has |uly 1.~ <1,
thanks to (4.2). Choose 7,7’ > 1 satisfying % + % = 1. Further, suppose o > a close to ag and 7’ > 1 close
to 1 such that 7o < ay holds. Now, by using (B)(b), (3.2), Holder’s inequality, Corollary 2.12 and Lemma

2.9, we can deduce that
/RN lg(ex, uyul de < TSN |l + 7S5, Dljuly (4.3)

where, due to Lemma 2.13, we have

1
7

D= ( sup {/ (' alulN) dz: ||ully, < (min{LVb})}V}) C < +00,
RN

u€Y.

for 9 > N and for all uw € M, with ||u|ly. small enough. Suppose by contradiction that {u,}nen C N is a
sequence such that ||u,|y. — 0 as n — co. Consequently, we can see that (4.3) holds whenever u is replaced
by wy, for n large enough. From the definition of N, we have (J.(uy), u,) = 0 for each n € N. It follows at

once that
Jan Gy e+ ¥+ [ i wnunde = [ Ghlemununde+ [ glemun)unds. (40
Ve Ve RN R RN

Note that ||’U/n||W‘1/p and |luy|l%, are small enough for sufficiently large n. Consequently, by using the fact
that 0 < Hq(s) < Hj(s)s for all s € R and Lemma 2.11, we obtain for n large enough that

i g = g a0 [ e > a5, (45)

It follows from (A)(a) and Lemma 2.9 that

N

/RN |G (e, tn)un| do < LS |un ¥, + O uall% .- (4.6)

In view of (4.2), (4.3), (4.4), (4.5) and (4.6), we get for n large enough that
(T + OSF unll¥, + CSg Nunll¥y, +FrS5, Dllunl%, = 3 Nlual..

Due to the arbitrariness of 7 and the fact that ¢ is very small, we deduce from the above inequality that
there exist constants C7,Cs,C5 > 0 such that for n large enough there holds

Cillunly, + Collunlly. = Cslluall¥.

Dividing Huans on both sides of the above inequality and letting n — oo, we get 0 > C3 > 0, which is a
contradiction. It follows that there exists § > 0 such that |Jully, > 8> 0for allu € A, and for alle > 0. O

Lemma 4.2. For each u € O, = {u € Y.: |supp(Ju|) N Ac| > 0} \ {0}, there exists a unique t, > 0 such
that t,u € Nz. In particular, for v € Nz N O, we have J.(u) = maxy>o J:(tu). Consequently, if u € N,
then u € O,.

Proof. We define the function h(t) = J.(tu) for ¢ > 0 and u € O, \ {0}. From Lemmas 3.1 and 3.2, we
have h(0) = 0, h(t) > 0 for ¢t > 0 sufficiently small and h(t) < 0 for ¢ > 0 sufficiently large. It follows that
maxy~g h(t) is achieved at some point ¢ = ¢, such that h'(t,) = 0 and t,u € N.. Next, we claim that ¢, is
the unique critical point of h. Assume by contradiction that there exist ¢; and t5 with 0 < ¢; < t5 such that
R'(t1) = W' (t2) = 0. Consequently, we obtain for ¢ = 1,2 that

1 Hi(tiw)u Gh(ex, tiu)u glex, tiu)u
P N N DA Qg — 22 0 e — 2 dr = 0.
tﬁvfp HUHW‘l/Ep + HUHW‘I/EN + HUHN + /]RN tf\]71 €T /RN t£v71 € /]RN th,l €T
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Subtracting the equalities above gives
1 1 Gh(ex,tou)u  Ghex, tiu)u ex,tau)u ex,tiu)u
< N—p  N— >||U||€le +/ < 2 1\/712 o _ Gl 1\7711 ) dx+/ a N721 Ju_ ol N711 ) dw
ty P oty P Ve RN ty t RN ts t

:/ <7—l’1(t2u)u B H'l(tlu)u) dg = J 1
RN

N-1 N-1
t2 tl

Now, it follows from the definitions of G% and g together with (A)(e) as well as (B)(e) that the right-hand
side of the above equality is positive. On the other hand, we have

7o / (7—[’1 (taw)u  Hj (tw)u) dz
{zery: ju< sl Aty ! !

-|-/ (Hll(t2u)u _ Hi(tlu)u) dz
{wern: 08 oy D3 Y N1 (VT

+/ <7—[’1(t2u)u B H’l(tlu)u) de
{IGRNt |u\>w} tév_l tiv_l
N
t 1 1
= / lul™ log <1> dz +/ N(N —1)8|u/N 1 < — ) dz
{oern: juj< DI ] 2 {oerN: fu>E=03 ] t2

N
t N—-1)
+ 1o (s ) 1 (B ) e <o
{eern: 7(N;21>5<|u|<Lt‘1”5} (N —-1)6 t2

which is a contradiction and thus, ¢, must be unique. Next, we have to prove that if v € N, then u € O..
Indeed, if not, then for |supp(Jul) N A;] = 0 and u € N, we obtain by using (V1), Vo +1 > 2(¢ + ¢'),
Hi(u) < Hj(uw)u, (A)(c), (B)(d), and Lemma 2.11 that

. 1
ullfy 1+ [ully o + llell 3 +min {[full3, , el } < (f+4/)/ JulV do < 5/ (V(ex) + 1)[ul™ dz
Ve Ve RN RN
1 N N
< Syl + ).

This shows that
1 .
0< §(IIUII€V5; + IIUH%;N + lull§) + min {[lull,, w3, } <O.

The above inequality implies v = 0 in Y., which is a contradiction because u € N.. This finishes the
proof. O

Proposition 4.3. The set N is a C'-manifold for each € > 0 . Moreover, the critical points of J5|N are
critical points of J. in Y.

Proof. To prove that A is a Cl-manifold, it is sufficient to show that (¥’ (u),u) # 0 for all u € N.. Now,
arguing by contradiction, we assume that there exists some u € N such that (V. (u),u) = 0. Consequently,
by using (J/(u),u) = 0, we obtain from (4.1) that

_ (1L P N _/ 1, > (N-1
0= p(p N) Hu“W‘l/;P /]RN lul™ dz o (Ng (ex,u)u ~ g(ex,u)u ) dz
— E U _ i " 2 . / i ” 2 E ,
/RN (( N )Hz(u)u N’H2 (uw)u® | dz - NG2 (ex,u)u ~ Gh(ex,u)u | de.
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Observe that g(ex,u) = f(u) and Gy(ex,u) = Hj(u) for all z € A.. Now, simplifying the above equality, we

e /A M < - /A C <|u|N + (NNl)ng)u - }VH;’w)uQ) dz
[ (Rt - () oter s
-/ (}Vf%u)zﬁ - (N];l)f(U)U) da
- /A (i{g’(sw,u)uQ - (N];l)g(gx,u)u) ds.

By the definition of Hs and using the assumption (f3), one can easily obtain

(4.7)

N -1 1
u| N + (N>’H’2(u)u - N'HIQ/(U)U2 >0 forae xeAl

and
%f’(u)u2 - ( ~ )f(u)u >0 fora.e. x €Al
Note that
An{u>0} =[AN{0<u <t} JUASN{t1 <u <ta}]UASN {u > ta}].
Due to (Hs2)(c) and (£3), one has
1 _, 9 N-—-1 , 1 / 9 ,
NGQ (ex,u)u” — (N>G2(€m,u)u = N(H2 (w)u? — (N — 1)Hh(u)u) >0

fora.a.z € AcN{0 <u <t} and
1, 2 N-1 / 2
Lo eru? — (o glew = L (e — (V- 1) f(pu) > 0
for a.a.x € AN {0 < u < #1}. Moreover, because of (h3) and (3), we infer that
1 N-—-1 1
NG’Q’(ex,u)UZ - (N)G’Q(sx, u)u = N(h’(u)u2 — (N = 1Dh(uu) >0
for a.a.x € ASN{t; <u <t} and

1 N-—-1
Ng’(ax,u)UQ - (

for a.a.z € ASN {t1 <u < ta}.
By using the definitions of H} and f, we have
1 N-—-1 1 N -1
NGIQ/(EJJ,U)UQ - (N)G’Q(ax,u)u = Ng’(sm,u)UQ - <N>g(6x,u)u =0

for a.a.z € AS N {u > ta}. Consequently, we deduce that

1 N-—-1
/A (o) (NGIQ/(ESC,U>U2 — (N>G'2(€x,u)u) dz >0 (4.8)
en{u>

1, 9 <N - 1) )
—d'(ex,u)u® — | —— |g(ex,u)u | dz > 0. 4.9
/Agm{u>0} <N ( N ) ( )

From the definitions of G4 and (4.8), we have

1 N -1
— G ez, u)u? — () L(ex,u u)dx
Loy (08t = (357 )Gater

_ /Agn{_m} (;[Gg(m_u)(—u)? _ (N];l)ag(m, —u)(—u))dx

and
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> 0.

Similarly, from the definition of g and (4.9), we have

1, 9 (N - 1)
—g' (ex,u)u” — | —— |g(ex,w)u |dx
/Agm{u<0} (N N

_ /Agn{_wo} (;fg'(sx, —u)(—w)? — (NN_1>g(m,—u)(—u)>dx

> 0.

Combining all these facts, we obtain from (4.7) that 0 < [, |u[Vdz < 0. This yields that u = 0 a.e.in A..
Moreover, since (J.(u),u) = 0, arguing similarly as in Lemma 4.2, we can obtain

1 N N : l N
0 <5 (lullfysn + lullype x + llully) +min {flulls,, llull, } < 0.

This ensures that w = 0 in Y., which is a contradiction because u € N. It follows that (UL (u),u) # 0 for
all u € M.

Now, let u € N be a critical point of J. constrained to .. Due to the application of Lagrange’s multiplier
rule, we infer that

JL(u) = AVL(u) in Y} for some \ € R.
Because of u € A, we obtain from the above relation that
0= (JZ(u),u) = M (u), u).
It follows that A = 0 and J.(u) = 0 in Y}, that is, u is a critical point of J. on Y.. This completes the

proof. O
The last proposition implies at once that a critical point of J€| . Is a point u € Y. such that
2l = i 2 () ~ A (u)| =0, (110)
c €
thanks to Proposition 5.12 of Willem [¢1]. Now, we recall that a (PS). sequence for J| . 18 a sequence
{tn tnen in Nz such that
Je(un) = ¢ and  |[J (uy)|ly: =0 asn — oo. (4.11)

We say that J| . satisfies the (PS) condition when each (PS). sequence for J.|,. has a convergent subse-

quence for any c € R.

Ne

’ «
Proposition 4.4. If {u,}nen C Nz is a (PS). sequence for J. satisfying limsup |[u, ||jj.v < =N then
n— o0 Qg

JE|N satisfies the (PS) condition.

Proof. Let {un}nen C N: be a (PS), sequence for J. satisfying lim sup ||un||%/1,N < i—N. Therefore, we infer

that (4.11) is satisfied. Further, in view of (4.10), there exists a Fe_a)ix;equence {/\n}%; C R such that
JL(un) = A VLl(uy) +0,(1) asn — oo.

Since u,, € N; for each n € N, we have J.(u,) — ¢ as n — oo and (J.(uy),u,) = 0. Repeating the same

arguments as in Lemma 3.5, one can see that {u,}nen is a bounded sequence. In addition to this, due to

Lemma 3.8, we only have proved that {u,}nen is a (PS). sequence for J.. To finish the proof, it is sufficient
to show that A, — 0 as n — co. It is obvious that the sequence {u, }nen satisfies the following relation:

0= (J(un),un) = M (VL(up), upn) + 0n(l) asn— oco. (4.12)

Due to Proposition 4.3, if (¥’ (uy,),u,) = 0,(1) as n — oo, then one has u,, — 0 in LY (A.) as n — co. From
the boundedness of {u, }nen in Y, we deduce from Lemma 2.9 and the interpolation inequality that

u, — 0 in LY(A,) for § € [N, +o0) asn — oo. (4.13)

From the hypothesis, it follows that there exist m > 0 and ng € N large enough such that ||u,, ||JV\",ll,N <m < G
for all n > ng. Take r > 1 with ' = -5 > 1 and satisfying % + % =1 . Let 7" be close to 1 and a > ag

r—1
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close to ag such that we still have r/a||un||%,1,,\, < m < ay for all n > ng and u, = W It follows
[y
from (B)(b), (3.2), Holder’s inequality, Corollary 2.12 and (4.13) that

ST/ unNdx—i—C'(/ |un|wdx) —0 asn — oo,

€ £

/ glex, up)u, do
Ae

where

1
o

C= ET[ sup / <I>(r’a||un||%/1,N|ﬂn|N/) dx} < 00,
nZno RN
due to Lemma 2.13. Consequently, we get
lim glex, up)u, dz = 0. (4.14)

n— oo A
€

Following similar arguments as in Lemma 4.2 and using the facts in (A)(a), (c) and (B)(d) as well as (4.12),
(4.13) and (4.14), one can easily obtain

1 .
0 < 5 (llunllfy.» + ||un||%‘1/zv + [l |3) + min {{unll3, , [[unll?y, } < 0n(1) asn— co.

P
WP
It follows that w,, — 0 in Y. as n — oo, which contradicts Proposition 4.3 (or Proposition 4.1) . Hence, we
must have \,, — 0 as n — oo. This finishes the proof. O

4.1. Existence and concentration phenomena of positive ground state solutions. In this part, we
first introduce the autonomous problem related to (S.) as follows:
Lp(u) + L () = [ul¥~2ulog [ul¥ + f(u) in RV, .
0
u€Y = WEPRN) nWLNRN) N L7 (RY),

where
Li(u) = =D+ Volul'"2u  fort € {p, N}.

The corresponding energy functional associated to (Py) will be denoted by Jy: Y — R and is defined by
1 1
o) = <l + 57 (g + ) + [ #aao— [ oo [ Fas
for all uw € Y. By adopting a similar strategy as in [2, 5, 7, 46, 69, 70], one sees that (Py) has a ground state
solution ug which fulfills

Jo(ug) = co = ulen/\f/o Jo(u) = uegl\f{o} meax Jo(tw),

where Nj is the Nehari set associated with Jy and defined by
No={ueY\{0}: (Jj(u),u) =0}.
Recall that || - ||W‘1/,t and || -|[y1.+ are two equivalent norms on the Banach space W1{(RY) for any ¢t € {p, N}.
In the next 1em(}na, we demonstrate that the mountain pass level ¢, is the ground state level of J., and we

establish an important relation between the two levels c¢. and cg.
Lemma 4.5. The following properties hold:

(a) cc > B >0 foralle >0,

(b) ¢ = i% Je(u) for all e > 0,

ueN

(¢) limsupe. < ¢p.
e—0
Proof. The assertion in (a) follows directly from the definition of ¢. (see Theorem 3.9) and Lemma 3.1. Now,
we prove (b). For this, observe that by Lemma 4.2, we have u € O, for each u € N.. Further, by Lemma
3.2, there exists tg > 0 such that J.(tou) < 0. Define the map v.: [0, 1] — Y. such that ~.(¢) = t(tou) for all
t € [0,1]. It is easy to see that 7. € I'.. Consequently, from the definition of ¢., we have
< J, t)) < Je(tu) = Je(u).
Ce = ren[g)i] c(1:(t) < r?;g( e(tu) =(u)

)
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Due to the arbitrariness of u € N and from the definition of the infimum, we obtain from the above inequality
that

ce < mf Je(u). (4.15)

uea

By Theorem 3.9, we have u. € Y. \ {0}, Jo(u:) = ¢ and J.(u.) = 0. It follows that u. € N and hence, we
have
uiénj\f/g Je(u) < Je(ue) = ce. (4.16)
Combining (4.15) and (4.16), we get ¢. = inf,en. J-(u) = J(u.). This completes the proof of (b).
Next, we aim to prove (c). To prove this, we assume that ug € Ny is a positive ground state solution of

(Po), that is, there hold
co = Jo(uo) = inf Jo(u) and J(ug) = 0.
ueNy

Choose ¢ € C®(RM) be such that 0 < ¢ <1, ¢ =1 in By, and ¢ = 0 in B§. For each R > 0, let Bog C A,
and define ¢r(-) = ¢(5). Next, we set ur(-) = u() and ug(z) = ¢r(x)uo(z). It follows that 0 < ur < uo,
ur = ug in Bg, and ug = 0 in BSy. Note that supp(ugr) C Bar C A. and hence, ug € O.. By applying
Lebesgue’s dominated convergence theorem, we can easily deduce that

up —up in WH(RYN) as R — oo for t € {p, N}. (4.17)

It follows that ur — ug a.e.in RY as R — co. Observe that #; is nondecreasing for all ¢ > 0. This implies at
once that H;(ur) < Hi(up) € L' (RY). Further, due to the continuity of H1, we infer that H; (ur) — Hi(uo)
a.e. RY as R — oco. Consequently, by Lebesgue’s dominated convergence theorem, we have

Hi(ug)dr — Hi(up)dx as R — oo.
RN RN
Employing similar ideas as in Lemma 3.8, we can deduce that up — ug in L*1(R") as R — oco. Consequently,
we obtain ugp — v in Y as R — oc.
Using the fact that ur € O., we obtain from Lemma 4.2 that there exists t. > 0 such that t.ugr € N,.
Now, arguing similarly as in (b), we have

ce < r{lzag( Je(tu) = Je(teug).

Next, we claim that for some €9 > 0, the family {t:}o<e<e, is bounded. Indeed, if not, assume that t. — oo
as € — 0. Now, using the fact that t.ur € N, we have

1
me p||UR||W1p+||UR|| 1N+HUR||%
H2 t uR uRd n ﬁé(tguR)uRd _ Hll(tEuR)uRd
V-1 . N1 z . V1 z (4.18)
/ f(teur)ur UR UR g / f(tsjviRzuR .
et

Without loss of generality, we can choose V(0) = V. Note that ug has compact support and V(ex) — Vj
as € — 0. Also observe that A, — RY as e — 0, see Alves-Ji [7, Lemma 3.7]. This yields that |[A¢| — 0 as
e — 0. Consequently, due to Lebesgue’s dominated convergence theorem, we have for each R > 0

/ (|Vug|" + V(ez)|ug|") dz — / (IVur|" + Volug|')dz ase— 0andt € {p,N}.
RN RN

Using again Lebesgue’s dominated convergence theorem leads to

H (toug)u f(teur)u
2(;77131”)Rdx—>0 and f(iv#dx—m ase — 0.
Ag te Ag te
Define
T f t UR UR / HQ t uR uR . 'H'l(tsuR)uR da
N B rY 2T '
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In view of (f4) and (2.5), we have

!
t
T. zwtg*N/ |uR|“dx+log(t5)N/N |uR|Ndx—/ 7”{22;%?)“3 dz + A,
R Ae

e €

where A =[5y [ug|™ (1 +log|ug|™)dz. From the definition of Hsz, we have the estimate

H (teug)u N(N —-1)5 _
72(1;\[71?) R _ |uR|N10g|t5uR|N — (log((N— 1)6)N +N)\uR|N + 7( " ) |uR|N L
€ g

This yields

HIQ (tsuR)uR

N(N
?dx < /AC lup|™N log |tour|™ dz +

— 1)
7)/ |uR|N—1 dx_’_B’
€ RN

Ac 2

where B = —(log((N —1)8)Y + N) [o~ |ur|" dz. Gathering all these information and the fact that t. — oo
as € — 0, we obtain by setting C'= A — B that

T2 9tt ™ [ funlt do + tog(t)™ [ funl¥ o -

lur|N log lug|™ dz + C + 0.(1) = 0o as € — 0.
Ae Ae Ac
It follows that 7. — co ase — 0. Letting e — 0in (4.18) and using the above estimates, we get a contradiction.
Hence, we conclude that {t.}o<c<e, is bounded. Choose tg > 0 such that Jy(tpugr) = max;> Jo(tug). It
follows that tpurp € Np.
Now, we claim that ¢t is bounded for R > 0 large enough. Indeed, if not, let tg — co as R — oco. In

virtue of (Ji(trur),trur) = 0, we have

1
~—llurlly 1, + lurlly s~ + lurlly
R . ° (4.19)
f(trur)ur Hy(trRug)ur Hy(trur)ur '
= v Aot |y dr— ) e—da
RN g RN th RN th

Due to (4.17), one sees that
t%_NHURlIﬁ,%p + ||UR||]VVV%N + Jurlly = ||u0||1VVV56N +luoll¥ as R — co.

Moreover, using (f4), (2.5) and (4.17), one has

t HE (¢ Hi(t
S Rjzfi%l)uRdx N 5( ﬁlf’f)uRdx B 1 f]”ilf)uR
RN tR RN tR RN tR

z'yt*éfN/ \uR|“dx+(log(tR)N+1)/ lup|Y dz
RN RN

dx

—|—/ lur|™ log lup|Y dz — 0o as R — oo.
RN

It follows that
H/l (tR’U,R)’U,R

i
%dx—i— %dx— ——xN—1 —dz =00 as R—oo.
RN tr RN th RN tr
We get a contradiction by using all of the above information and letting R — oo in (4.19). This shows the
claim. Hence, up to a subsequence still denoted by the same symbol, tg — #; (> 0) as R — co. Employing
the same ideas as in Proposition 4.1, one can prove that Nj is bounded away from the origin. This together
with trur € Ny implies that there exists some 8 > 0 such that |[tgur|y > B8 > 0. Now, sending R — oo
and using ur — up in Y as R — oo, we can see that ¢;||ug|ly > 8 > 0. From this, we conclude that ¢; # 0.
A direct computation implies that

P N
T (bun) — Jo(teun) = % /RN (V(e) — Vo) lunl? d + ' /RN (V(ez) = Vo) Jurl™ de
+ /A (Ha(teur) — Halteug)) dz + /A (F(teug) — F(toug)) da.

c c
€ €
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Using the fact that {t.}o<c<s, is bounded, ur has compact support, V(ex) — Vp ase — 0 and 0 < up < o,
we obtain from Lebesgue’s dominated convergence theorem that
9
é/ (V(ex) — Vo)lugl|®dz —0 ase—0 for pe {p,N}.
RN
In virtue of |AS] — 0 as e — 0, by using (H2)(b), (3.2) and Lemma 2.13, we obtain from Lebesgue’s dominated
convergence theorem that

/ (Hg(tE’U,R) — ﬁg(tauR)) dr — 0 and (F(tEuR) — ﬁ(tEuR)) dr -0 ase—0.
< Ag

Gathering all of the above information, we deduce that
Je(teur) — Jo(teur) = 0:(1) ase — 0.

Consequently, we have
limsup ¢, < limsup J.(teugr) < Jo(trug). (4.20)

e—0 e—0
Notice that H1(trugr) — Hi(tiug) and H) (tgur)trur — Hj(t1ug)tiug a.e.in RY as R — co. Now, using the
fact that {tr}r>0 is bounded for large R, 0 < ug < up and H; is nondecreasing for ¢ > 0, we infer that there
exists K > 0 such that tg < K and satisfying H1(trug) < H1(Kug) € L*(RY), thanks to ug € Nj. Further,
in light of Remark 2.8 and uy € Nj, we also have M} (tgrur)trur < NHi(trur) < NHi(Kug) € L*(RY).
Consequently, due to Lebesgue’s dominated convergence theorem, we obtain

Hi(trug)dz — Hi(tiup)dz and / H(trugr)trug dr — / Hi(t1ug)tiugdr  as R — oo.
RN RN RN RN
By using (Hz2)(b), (3.2) and Lemma 2.13, we obtain from Lebesgue’s dominated convergence theorem that

Hg(tRuR) dz — Hg(tluO / 7‘[2 tRuR)tRuR dz — / HQ tluo)tluo d.’L‘
RN RN

/ F(tR’LLR) dz —
RN RN

Combining the above information, we deduce that Jo(trur) — Jo(tiup) and 0 = (J)(trugr),trur) —
(Ji(t1uo), trup) as R — oo. Next, we claim that t; = 1. Indeed, if not, then either ¢; > 1 or t; < 1. To prove
the claim, we first observe that (J{(t1ug),t1uo) = 0 and hence, we have

F(tyug)dz and / f(tRuR)tRuRdw%/ f(tiug)tiugde as R — oo.
RN RN

1 H tluO)Uo
_p||U0||§V5p+Hu0||N1N +[luoll ¥ + tNildﬂ«“
(4.21)
Hy(truo)uo f(t1uo)uo
N—-1 dx + T N-1
RN tl RN tl
On the other hand, since ug € Ng, we have
Hu0||W1 » + ol 1+ lluoll N —|—/ M (up)up dz = Ho (up)up dz +/ f(uo)up da. (4.22)
RN RN RN
Subtracting (4.22) from (4.21), we get
1 Hl (tl'LLO)
(tN_p - 1) HUOHJEVW + /RN (1151\;_1 — H' (up) Juo dz
! ’ ! (4.23)

- /RN <Hi11(\ff0) H'z(ﬂo))uoda;Jr/RN (ft(tluo) ~ ))uodx.

Now, we consider the case when ¢; > 1. Recall that by Lemma 4.2, for any 0 < t; < to, we have

!/ /
/ (”1%2?“ - ”1531?“) dr < 0.
RN t, t]

Replacing t; = 1, to = ¢ and u = uyg, respectively in the above inequality, we infer that the left-hand side of
(4.23) is negative. On the other hand, by using (H2)(c) and (f3), one sees that the right-hand side of (4.23)
is nonnegative. This shows at once that ¢; > 1 is impossible. Similarly, when t; < 1, we can easily arrive at
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a contradiction. It follows that ¢t; = 1 and hence, we obtain Jo(tgur) — Jo(up) as R — oo. Consequently,
we deduce from (4.20) that
limsupe. < lim Jo(trur) = Jo(ug) = ¢o.
e—=0 R—o0

The proof is now complete. O

Finally, we shall be able to prove the following result.

Proposition 4.6. The problem (S.) has a positive ground state solution.

Proof. Let u. be a solution to (S.) as in Theorem 3.9 and hence, J.(u:) = c. and J.(u:) = 0. Set u. = ut —u_ .
It follows that J.(u.) = Je(ul) + J-(uZ ). Moreover, we claim that either uX = 0 or uz = 0. Indeed, if not,
then 0 = (J.(ue),ut) = (JL(u),ut). Tt follows that uX € N.. Similarly, we can also prove that uZ € M.
Because of Lemma 4.5(b), one sees that ¢. = J.(u:) = Jo(ul)+J-(uz) > 2¢., which is a contradiction. Using
that G% and g are odd functions, we can assume that u. is a nonnegative solution of (‘SNL) Employing a slight
variant of a Moser iteration argument explored in Lemma 4.10, it follows that u. € L>(R™) N C’loo’f‘ (RM)

for some 0 < v < 1, and therefore, from Harnack’s inequality (see Trudinger [77]), we obtain u.(x) > 0 for
a.e.x € RY. This finishes the proof. O

Hereafter, unless otherwise noted, the solution of (S.) provided in the previous proposition is denoted by
the notation u.. The following corollary is a consequence of the Lions’ compactness result that appears in
Lemma 2.10.

Corollary 4.7. Let {u,}nen C Ye be a bounded sequence in Y. verifying lim sup ||Un||1{/\]’//1N < If there
n— o0 (%))

exists R > 0 such that

liminf sup / lu, |V dz = 0, (4.24)
"o yeRN JBr(y)
then the following holds:
(a) / glex,up)uydr — 0 and G(ex,up)dr — 0 as n — oo;
RN RN
(b) Gh(ex,up)updz — 0 and Gao(ex,up)dx — 0 as n — co.
RN RN

Proof. Given {u,}nen C Y. to be bounded in Y, and limsup ||un||‘]/VV/1N < 2N 1t follows from (4.24) and

n— 00 &%)

Lemma 2.10 that u,, — 0 in LY(R") as n — oo for any v € (N, 4+00).
Now, by the hypothesis, there exist m > 0 and ng € N large enough such that HunH%IIN <m < 2X for

o

all n > ng. Take r > 1 with ' = Tﬁl > 1 and satisfying %—i— % =1. Let 7’ close to 1 and a > ag close to aq

such that we still have r’a||un||%/1)N <m < ay for all n > ng and w,, = Huﬁﬁ It follows from (B)(b),
Iy

(3.2), Holder’s inequality, Corollary 2.12 and Lemma 2.9 that for n large enough, we have

| stz de| < 7SVl +Clu

where
1
=

C= ET[ sup / <I>(r’a||un||%/l,N|ﬂn|N/) dx} < 400,
nZno RN

thanks to Lemma 2.13. Consequently, due to the boundedness of the sequence {uy,}nen in Y and w,, — 0

in LV"(RN) as n — oo, there exists a constant C; > 0 such that

lim sup < TS;,NC&.

n—roo

/ g(ex, up)u, dz
RN

Letting 7 — 0, we obtain from the above inequality that

/ glex,up)updr — 0 asn — oo.
RN
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Further, by using (3.3) and employing similar arguments explored as above, one has

Glex,uy)der — 0 asn — oo.
RN
On the other hand, by using (#)(b), (A)(b) and the fact that u, — 0 in LY(RY) as n — oo for any
v € (N,+00), we can easily deduce that (b) holds. This completes the proof. O

Now, we are ready to prove the following important compactness result.

Lemma 4.8. Let ¢, — 0 as n — 00 and {uptnen = {Ue, }nen C Y, be a nonnegative sequence such

. . . ’ « .
that Je, (un) = ce,, J. (uy) = 0 and satisfying imsup ||u, ||y < N Then, there exists a sequence
" n—00 &%)

{Unnen C RY such that the translated sequence

has a convergent subsequence in Y. Furthermore, up to a subsequence, Y, = €nln — Yo as N — 00 for some
yo € A and V(yo) = V.

Proof. Following the ideas in the proof of Lemma 3.5, one sees that {u, },en is bounded in Y . Consequently,
due to (V1), we conclude that {u, }nen is bounded in Y. Now, we claim that there exist R > 0, a > 0 and
a sequence {J, }nen C RY such that there holds

n— oo

liminf/ lun |V dz > a > 0. (4.25)
Br(Un)

Indeed, if (4.25) does not hold, it means that (4.24) holds. In virtue of Lemma 2.10, we obtain that u, — 0
in LV(RY) as n — oo for any v € (N, +00). In addition, one can notice that the results of Corollary 4.7 also
hold whenever ¢ is replaced by €,. By the hypothesis, we have (J! (un),un) = 0. This fact together with
Corollary 4.7 implies that

Jun s+ anllg v+ ¥+ [ 5 C)n d = 00(1) a5 .
V. Ven RN

€n

Now, employing similar arguments explored in Lemma 4.2, one has

0 < flunllfyss + IIUn||%¢.N + [l |1+ min {un 5, lunllf, } < 0n(1) asn — .

It follows at once that u, — 0 in Y., as n — oo. Consequently, due to (2.2) and Corollary 4.7, we infer that
Je, (up) = ce,, — 0 as n — oo, which is a contradiction because of Lemma 4.5(a). This shows that (4.25)
holds. Set wy(z) = Up(x) = un(z + ¥p), then using the fact that || - ||y is invariant under translation, we
deduce that {wy, }ren is bounded in Y. Thus, up to a subsequence not relabeled, we may assume that there
exists w € Y such that

w, =w inY, w,—>w inLl°(Bgr) and w, —w a.e.in RY  asn — oo, (4.26)

and also there exists g € L*(Bg) such that |w,| < g a.e.in RY for s € [1,4+0oc) and for all R > 0, thanks to
Lemma 2.9. In view of (4.26), we obtain from (4.25) that

/ lw¥ dz > a > 0.
Br(0)

This infers that w # 0. Define y,, = £,¥,. Now, our aim is to show that {y, }nren is a bounded sequence in
RY. For this, we prove the following claim.

Claim I: There holds lim,,_,, dist(y,, A) = 0.

If the claim does not hold, then there exists § > 0 and a subsequence of {y, }nen, not relabeled, such that
dist(yn, A) > 6 for allm € N.

It follows that there exists some r > 0 such that B,(y,) C A€ for all n € N. Next, let ¢ € C(RY) be

such that 0 < ¢ <1, ¢ = 1 in By, and ¢ = 0 in BS. For each j € N, define ¢,(-) = ¢(5) Further, set

¥;(+) = ¥(5) and ¥;(z) = ¢;(x)w(z). It follows that 0 < ¢; < w, ¢; = w in Bj, and 4; = 0 in Bj;. Observe

that supp(#;) C Bg;. By using similar arguments explored in Lemma 4.5, we can obtain

;= w inY as j— oo. (4.27)
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Now, by fixing j > 0 and using 1; as a test function along with the change of variable z — x + y,, and the
invariance by translation, we can see that

Z [/RN (IVw, " 2Vw, - Vib; + V(enz + yn)wh ;) da

te{p,N}

+/ wiv‘leda:+/ Hy (wn)t; da (4.28)
RN RN

- . Go(en® + Yn, wp)9j do + /RN G(En® + Yn, wy ) da.

From the definitions of G4 together with (A)(c), we can see that

/RN Gy(en® + Yn, wy)Yj da = /B Gy(en® + Yn, wy); da + . Gy(en® + Yn, wy ) dz

En

<O wy T de+ Hy(wn)1h; dz
B_r_ Be,.

En En

Sﬂ/ w1 da + Hy (wy,)1; d.
RN By

€n

Similarly, by using the definition of g and (B)(d), one has
/ g(Ent + Yn, wp)h; de < / wh "1 da + / fwn)yj da.
RN RN Be,

Observe that limsup,, , .. ||wn||{,v[,/1N < 2% holds. In virtue of |BS (0)| — 0 as n — oo, (H2)(b), (1) and
Lemma 2.13, we obtain from Lebesgue’s dominated convergence theorem or Vitali’s theorem that

Hoy(wy)pjde — 0 and fwp)p;jdz — 0 as n — oo.
B¢ B

En En

Using that ; has compact support, (4.26) and (#1)(c), due to Lebesgue’s dominated convergence theorem,
we have

/ H (wy)p; de — / Hi(w);dz as n — oo. (4.29)
RN RN

Note that {w, }nen is bounded in Y. Now, arguing similarly as in Lemma 3.7, we can easily prove that
Vw, = Vw a.e.in RY as n — oo and for any ¢t € {p, N} there hold

/ \Vw, " 2Vw, - Vib; — / |Vw|' " 2Vw - Vip; dr  as n — oo,
RN R (4.30)

/]RN wﬁlfle dz — o wt711/)j dz asn — oo.

Combining all the above information with (V1) and Vo +1 > 2(¢+¢'), we obtain by sending n — oo in (4.28)

that

/ ([Vw[P~2Vw - Vi, +VOwP*1¢j)dz+/ (IVwN 2V - Vip; + nuw™N 1) dz
RN RN

(4.31)

+ Hi(w)jdz <0,
RN

where n = Y& Tt follows immediately from (4.27) that ¢; — w in L*(RY) and Vip; — Vw in [L}(RN)]V as
j — oo for t € {p, N}. Moreover, one has |Vw|'~2Vw € [Lﬁ(RN)]N and w'~1 € Lﬁ(]RN) for t € {p, N}.
This shows that

/ |Vw|"2Vw - Vip; — / |Vw|'dr and / w' e, do — widr as j — oo.
RN RN RN RN
Due to Lebesgue’s dominated convergence theorem, we also have

» Hi(w)y; dz — - Hy(w)wdx as j — oo.
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Letting j — oo in (4.31) and gathering all these information, we get
0< / (|Vw|? + Vow?) dx+/ (V| + nuw') dx—i—/ Hi(w)wdz <0.
RN RN RN

Following similar ideas explored in Lemma 4.2, we deduce from the above inequality that

: l
0 < flwllsp + ]|z +min {wl, [lwlF, } < 0.
0

It follows that w = 0 in Y is a contradiction. This completes the proof of the claim. Hence, up to a
subsequence, still denoted by itself, we have y,, — 19 € A as n — oc.

Claim ITI: g, € A.

Choose 0 € [N, +00) and R > 0, then the sequence X, (z) = xa(£,2 +¥,) is bounded in LY(Bg). Due to the
reflexivity of the space L?(Bgr), there exists xg € L?(Bg) such that y,, — xg in LY(Bg) as n — oo. Suppose
0 < Ry < Ry, then the functions xg, and x g, are obtained in the same way of x g satisfying xr, = XRr,| Br, -

Hence, we conclude there exists a measurable function x € LY (RY) with 0 < x < 1 such that we have

Xn — x in LY(Bg) asn — oo for all § € [N, 400) and for all R > 0. (4.32)

Fix ¢ € C®(RY) and R > 0 large enough with supp(¢)) C Bg. Following similar arguments as in Claim I,
we can see that when ¢; is replaced by 1 in (4.28), then (4.28) is also true for any ¢ € C°(RY). Similarly,
we can also see that (4.29) and (4.30) also hold by replacing v; by 1. Further, since ¢ has compact support
and V € C(RY R), therefore by (4.26) and Lebesgue’s dominated convergence theorem, one has

/ V(enz + yn)wh tp dz — / V(yo)w' 'ypdx asn— oo fort € {p,N}.
RN RN

Note that C2°(RY) is a dense subset of L®(RY) for any p € [1,+00). Therefore, by using (4.26) and the
growth assumptions on H5 and Hj, we obtain from Lebesgue’s dominated convergence theorem that

H (wp) — Hy(w)y  and  Hy(wy) — Hy(w)yy in LTT(Bg) asn — oo for all ¢ > N.
This together with (4.32) implies that

Go(en® + Yp, wp )Y dz — Gh(z,wypdz  asn — oo,
RN RN

where
Gy(x,5) = x(x)Hy(s) + (1 — x(z))Hb(s) for all (z,5) € RN x [0,400),
Gh(z,s) = —Gh(x,—s) for all (z,s) € RN x (—o0,0].
Recall that limsup,,_, ||wn||{/vv/1,N < X holds. Now, by using (4.26), the growth assumptions on f and f as
well as Lemma 2.13, we obtain from Vitali’s convergence theorem that
Flw)y = f(w) and  flwp) — f(w)p in LT (BR) asn — oo for all ¢ > N.
Consequently, from (4.32), we infer that

/ g(en® + Yn, wp )Y dr — g(z,w)pdr asn — oo,
RN RN

where
g, 5) = x(2)f(5) + (1 = x(2))f(s) for all (z,5) € RV x [0, +00),
g(x,s) = —g(x,—s) forall (x,s) € RY x (—o00,0].

Now, replacing ¢ in place of ¢; in (4.28) and using the above convergence results, we obtain by letting n — oo
in (4.28) that

(IVwlP=2Vw - Vi + V (yo)w’ ) do

RN

+ / (IVw|N2Vw - VY + (V(yo) + 1)w™ 1) dz + H(w)y dz (4.33)
RN RN

z/ éé(w,w)lbdx—i—/ g(x,w) dz.
RN RN
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Note that for ¢ > N, we have
Gz, s)| < ls|N"1+Cls|9" and  [G(z, s)| < |f(s)| for all (z,s) € RY x R.

In addition, the maps ¢ GSA(,ff and t — 555\, s) are nondecreasing on (0,+00). Applying the density of

C*(RN) in Y, we infer from (4.33) that w is a critical point for J, that is, J'(w) = 0, where J: Y — R is
defined by

T 1 N N
T = Skt + 5 (el + 1)+ [ Hawas

V(yo)

— Ga(z,u)dx — G(z,u)dz forallu ey,
RN RN

where
Gy(z, s) :/ Gy(z,t)dt and G(z,s) :/ gz, t)dt for all (z,s) € RY x R.
0 0

We define Jy(y): Y — R by

Tl = Sy + 55 (e + 1)+ [ e
/ Ho(u / u)de forallueY.

Nv(yo) = {u € Y \{0}: (J{ () (), u) = 0},

Vi) = B Tvan () = b mac Ty e (fu).

Further, let

Denote Qg = {u € Y.: |supp(|u|) Nsupp x| > 0}. Now, using the growth assumptions on G% and § and
employing similar arguments explored in Lemma 3.2, we can deduce that for fixed u € Op \ {0} with u >0
a.e.in RN, J(tu) — —o0o as t — oo. In virtue of w # 0 and J'(w) = 0, it follows that w € Oy. Consequently,
we have

J(w) = max J(tw) > max Ty (yo) (tW) > ey (y)-

Following similarly ideas as in Lemma 3.5 and using the change of variable z — x + ¥, together with (A)(d)
and NG(z,s) < sg(z,s) for all (z,s) € RV x [0, 4+00), we get

1
Ce,, = an (Un) - N<Jén (un)aun>

- (; - ;) L, (Vb +Viesa+ 7)o
+/ (ig(snx—kyn Wp )Wy, — G(EnT + Yn, W )) dz
ry \INV B " me
—|—/ (l|w |N—|—7-l2(w)—i7-[’(w Jw -I—iG/(E T+ Yn, Wp)w, — Ga(enx + w))dx
]RNN” n) g T2\ Wn)Wn T R aaiEn ny Wn )Wn 2(En Yn, Wn
> (; - ]1/') /BR (IVwn|? + V(ena + yn)|w,|?) dz

1
+/ —g(enT + Yn, Wn )Wy, — G(EnT + Y, wy) | dx
BR(N ( ) ( ))

1 1 1
+/ —wn |V + Ha(wy) — —=H,(wn)wy + —Gh(en® + Yn, Wy )Wy — Go(Ent + Yn, wy) ) da
(el + Halwn) = 5w + TG Jiwn = Ga )

for all R > 0. Now, from (4.26) and the growth assumptions on H} and ﬁ’z together with Lebesgue’s
dominated convergence implies that

Hy (wn)w, — Hy(w)w and  Hy(w,)w, — Hy(w)w in La G (BR) as n — oo for all ¢ > N.
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The above result together with (4.32) gives

Go(en® + Yp, wp)w, dz — éé(m, w)wdz as n — oo.
Br Br

Likewise, we can prove that

/ Ga(en® + yn, wy) de — ég(x,w) dz asn — oo.

BR BR

Further, using limsup,, , ., HwnH]V\(//lN < S, (4.26), the growth assumptions on f and f, and Lemma 2.13,
we deduce from Vitali’s convergence theorem that

flwp)w, = f(w)w and  flw,)w, — f(w)w in LQTH(BR) as n — oo for all ¢ > N.
Now, it follows from (4.32) that

/ g(EnT + Yn, Wy )wdr — gz, w)wdr asn — oco.
Br Br

Similarly, we can prove that

G(enT + yYn, wy) dz — G(z,w)dz asn — oo.
BR BR,

In a similar fashion, we obtain from Lebesgue’s dominated convergence theorem that

Ho(wy) do — Ho(w)dz and Hoy (wp,)wy, dz — Hy(w)wdz asn — oo.
Br Br Br Br

Gathering all the above information, we obtain by using Fatou’s lemma and Lemma 4.5(c) that

1 1

co > (p - N) /BR (IVw]?” + V (yo)|w|?) dz + /BR (%E(x,w)w - é(m,w)) dz

1 1 1 ~ ~
+ /BR (N|w|N + Ha(w) — NH'Q(w)w + NG’Q(%w)w - Gg(:mw)) dz.
Letting R — oo in the above inequality, we get

w (3-5) [ (v e vilor) ot [ (§te o - Gew) ds

LR 1 1~ _~
+/RN (N|w| Ha(w) NHQ(w)w+ NG2(wi)w G2($7UJ)) dz

= J(w) — %(](w%w) = J(w) > cy(y)-

It follows from the above inequality and the definitions of ¢y and cy(y,) that V(yo) < Vo = infpen V().
Consequently, by (V2), we have V(yo) = Vp and yo € A. This finishes the proof of the claim.

To finish the proof, we only have to prove w,, — w in Y as n — oo. For this, we have the following claim.
Claim III: w, —» win Y as n — co.
Notice that

RY = (A, U{w, <t1}) U (AS N {w, > t}),
where A, = 2=¥2 From the definitions of G5 and H, along with (B)(d), one has

En

1
NG’Q(Enac + Yn, W )Wy — Go(En® + Yp,wpn) >0 on AS N {w, > t1},

1
Ng(gnx + yny wn)wn - g(gnx + ynawn) Z O on A% N {wn > tl})

and

(v -1)8)"
N

It follows from w, — w a.e.in RY, Vw, — Vw a.e.in RY, y, — yo and XA, — 1 ae.in RN as n — oo that

1 1
N|wn|N + Ho(wy) — N"H;(wn)wn > >0 for w, > t.
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(i)
(i)
(iii)

|[Vw, [P+ V(epz + yn)\wn|p)XAcm{wn>tl} — 0 ae.in RY as n — oo,
ﬁG’Q(enx + Yn, Wp )Wy, — Ga(enx + yn,wn)>x/\;m{wn>t1} —0ae.in RY as n — oo,

Hlwn [N+ Ha(wy) — —HQ(wn)wn)XAm{wn>tl} — 0 a.e.in RY as n — oo,

e N e

(iv) (ﬁg(en:c + Yn, Wp )Wy, — G(Enx + yn,wn)>XA;m{w,,L>t1} — 0 ae.in RN asn — .

In virtue of Gy(x,s) < H'(s), G4(x,s) < f(s) for all (z,s) € RY x [0,400) and V(yo) = Vi, we obtain from
(J'(w),w) = 0 that (J\(w),w) < 0. Define &: (0,+00) — R by &£(t) = (Jj(tw), tw). Tt follows immediately
that (1) < 0. Choose 0 < ¢ < 1, then by using (H1)(b), (Hz2)(b), (3.2) with ¥ = ¢ > N and Corollary 2.12,
we get

6602 ¢ (0l + iy e + (1= Dul) — 0 (Clollg+ & [ wl(alul*) )
0

Due to the arbitrariness of 7 > 0, we can choose 7 > 0 small enough such that Vo +1 —7 =: ¢ > 0.
Consequently, we have

&) =t (ol oy + el N aw ) = ¢4 ( Cllwllg + 7 | wl*®(afw]™)do ).
Wy W q .
This shows that there exist constants C7,Cs > 0 such that
E(t) > CitY — Oyt >0 for t € (0,1) sufficiently small.

Due to the continuity of £, we infer that there exists to € (0, 1] such that £(¢o) = 0, that is, t{ow € Ny. Now,
combining all the above information, we obtain from the change of variable, Lemma 4.5(c), Fatou’s Lemma
and (f3) that

n— oo n—roo n—roo N

1
cp > limsup ¢, = limsup J;, (uy,) = limsup {an (Un) — = (JL, (un),unﬁ

1 1

n—oo
o
RN

(
/RN (Ng EnT + Yn, Wn)Wpn — G(enw +yn,wn))dx
(

o,
RN

> lim inf [( — 1)/ |an|p T V(enz + yn)|wp|? )XAndw

+ /]RN (Nf(wn)wn — F(wn))XAndx

1
+ / N|wn|NXAn dx

1
w| N + Ha(w,) — N?—l’g(wn)wn) dz

_|_

1
NG 5nx+ynawn) n_GQ(Enx+yn7wn))dx:|

(4.34)

1
(5= 5) L (70l Vet gl Xaspn o
R

1
(ol Hatwn) = #5000 )Xz, 4o
RN

J

+ / 5nx + Yn, wn)wn - g(ffnx + Yn, wn))XA%ﬁ{wn>t1}dx:|
RN

+

( 2(en® + Yn, wn)wp — Ga(enT + Yn, wn)> XAgn{w, >t} AT

z
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> (5-5) [, (vur s vlup) ot / ul¥des [ (= Fw)da
> (1= 3 )8 [ vur s viop) e+ [ i e
+/RN (%f(tow)tow - F(tow)) da

1
= Jo(tow) — Nw()(towatow) = Jo(tow) > co.

It follows that ¢ty = 1. Moreover, due to the simple change of variable, we obtain the following convergences
/ (IVwn|" + V(en® + yn)|wy|") dz — / (|Vw|* + Volw|") dz  as n — oo for t € {p, N}
RN RN
and

H (wp)w, doz — Hi(w)wdx as n — oco.
RN RN
Consequently, it is not difficult to show that

/ |wn|tdz—>/ |lw|*dz  asn — oo for t € {p, N}.
RN

This implies that ||wnHW1 ¢ — ||w||W1 ¢ as n — oo for t € {p, N}. Now, arguing similarly as in Lemma 3.8,

we can deduce that w, —>0w inY as n — 00. This completes the proof. O
Remark 4.9. In view of (4.34), we deduce that there holds lim._,o c. = co.

To study the behavior of the maximum points of the solutions, the following lemma is quite important.
The proof relies on the appropriate Moser iteration argument found in Moser [60] and the notions discussed
in Ambrosio [9].

Lemma 4.10. Let {w, }nen be a sequence that appears in Lemma 4.8. Then, {wy, }neny C L (RY) and there
is a constant K > 0 such that
|wn | oo vy < K for allm € N.

In addition, we have

lim sup |wy,(z)] = 0. (4.35)

|z| =00 neN

Proof. For all L > 0 and 8 > 1, we define v(w,) = wnwi\i(Lﬁ_l) and up,;, = wnwﬁle, where wy, [ =
min{w,, L}. Note that the function ~ is an increasing function, so we have (a — b)(y(a) — (b)) > 0 for all
a,b € R. Define

4

A =1 ana r(t)z/ot(fy/(s))fv ds.

Invoking Lemma 29 of Zhang-Sun-Liang-Thin [85], one sees that
A (a —b)(y(a) — (b)) > |T(a) = T(b)|N for all a,b € R.
Consequently, there holds
1
Bwnwgf < T(wyp) < wnwgf.

Let n > 0 be specified later and S be the best Sobolev constant of the embedding WV (RN) < LN (RY)
for any N* > N. Using the fact that || - ||W7},N is an equivalent norm for W1V (RY), the last inequality yields

||wn N < C’lﬁN[/N wN(ﬁ 2 \an|Ndx+n/ wiw,, B 2 dx] (4.36)
R
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where C; = C1(N, 8,5) > 0 is a constant. Due to w,, 1 < L, we have H} (w,)y(w,) < LNE=DH (w,)w, €
L'(RY). By direct calculation, one has

/ |Vw, [P~ 2Vw, - V(y(w,)) dr = / wiv(Lﬂfl)|an|p dz + N(B — 1)/ in(Lﬁfl)|an|p dz >0,
RN RN 7 {wp.<L}

/ |an|N’2an-V(fy(wn))dx:/ wW D1Vw,|N dz + N(8 — )/ w7 |V, [V da
RN RN

{wn<L}
2/ wi V|V, | N de,
RN
and

/ Dz + V4 wﬁfwflv(ffl) dx
RN '

/ B l)d

(A

Combining all the above information and using (#1)(b), (A)(a), (B)(b) and (3.2), we obtain by taking v (w.,)
as test function in the weak formulation of the problem solved by w, that

/ N(B 1)|an\Ndw+77/ wNin(LB D e

<C, / wi S(Lﬁ Udm—i—ﬁr/ wgwg(f—l)@(awg/)d%
RN '

/ V(en® + yn) (Wl +w) 1) y(w,) dz > Vo
RN

(4.37)

where we have used that 7 € (0, '] to be small enough and n = Vo+1—(¢+¢') > 0, thanks to Vo+1 > 2(¢+¢').
Consequently, we obtain from (4.36) and (4.37) that

||wn N <y [CQ/R w%wfj(f 2 dx—l—ET/R wnwiv(LB 1)<I>( N da|. (4.38)

By the hypothesis, we have limsup,,_, . ||wn||le v < . Following similar arguments as in Fiscella-Pucci
[14, Theorem 1.1], up to a subsequence, not relabeled, we may suppose that

aN

sup ||lwy [[fan < — (4.39)
neN

Set min{¥, ¢} > 2N and take p, ', 0 > 1 such that i + i = 1. Tt is easy to see that u'(¢ — N) > N and
o(¥ — N) > N. Further, we select ¢t > 1 such that % + % + i = 1. In view of (4.39), we can find m > 0 such
that HwnH%/lN <m < ¢ for all n € N. Let ¢ > 1 be close to 1 and o > ap be close to ap such that we
= m Using that {wy, }nen is bounded in Y,
it follows from the generalized Holder inequality, Corollary 2.12 and Lemma 2.9 that

C/ wi nL Yz + &, / wa,’f(Lﬂ )@(awflvl)dx
RN

:C’q/ wi—N Nde—|—1<aT/ w? =N fqu)(osz)dx
RN

still have atHwnH{/\{,’LN <m < ay for all n € N and w,, =

(4.40)

N ’ —~ ! ?
< [Callwnll Gy + Frllwnll 55 N)( / N@(at||wn||%l,w|wn|fv)dx) [l 2 1,
~ ~ B—1 A N
< Cllun, ¥ = Cllwnwy 11N, < Cllwnll N3,

where the last inequality is obtained by using w,, ; < w, and C is defined as

’ - ’ t
C=c, sup||wn||q,(q Ny Tt Rr sup||wn||a(19 N)<sup/N<I>(at||wn||€,VV1,Nwn|N)dx) < 400,
R

thanks to Lemma 2.13. In virtue of (4.38) and (4.40), we deduce that there exists a constant C' > 0 such
that

-1
||wnw2,L || < CBNHU}”HN['};L
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By applying Fatou’s lemma as L — co, we obtain from the above inequality by setting Ny = N** < N* that
11
lwnlln+p < CFFB7 [[wp || nep. (4.41)

Define g = > 1, then one has N**3%2 = N*3. Replacing 3 with 32 in (4.41), we get

N**

1 2 1 2
[wn [ n+g2 < OV BE |wn | neep2 = OV S5 |[wn| n+p

< o ﬁ2)5ﬁ+ﬁ2 l|wn || 3+ -
Using the fact that ||w,||n+<g < Cs for all n € N, where Cy > 0 is a constant and iterating the formula (4.41),
we get

2i:l i Ei:l i Ei:l B Zi:17
lwn || N+gm < C NP B B [lwn || N < C2C Np B8 B for all n,m € N.

By d’Alembert’s ratio test, the series 52, N7!37% and X5°,i~" are convergent. Therefore, by letting
m — oo in the above inequality, we obtam

[wn || oo vy < K for all n € N (4.42)
for some constant K > 0. Now, employing the standard regularity theory for quasilinear elliptic equations
(see the works in [10, 45, 48, 52, 66, 76]), we conclude that w, € CL%(RN) for some 0 < a < 1 and for

each n € N. Moreover, due to the embedding Y — X, Corollary 2.4 and (4.42), we deduce that {wy, },en is
bounded in X, ||wy,|s < C for all n € N and 6 € [p,p*] U [N, +oc]. Moreover, w, — w in L*(RY), w,, — w
a.e.in RN as n — oo and there exists g € L(R"Y) such that |w,| < g a.e.in RY for all 6 € [p,p*] U [N, +00).
It is easy to see that w,, solves (in a weak sense)

[—Apwy, + VowE ™ + [~ Anw, + nwl ™1 < Cpuwi™t + ET’wZ*l(I)(aw,]y/) in RY. (4.43)
Define the operator T: X — X* by

(T(u),v) = / (IVulP7>Vu - Vo + VoluP~*uv) dz + / (IVulN2Vu - Vo + gluN "?w) da
RN RN

for all u,v € X. By direct computation, we can deduce that T is coercive. Further, employing a slight variant
argument explored by Liu-Zheng [57, Lemmas 3.1 and 3.2], it follows that T is monotone. Next, we prove
that T is hemicontinuous, that is, the function [0,1] 3 ¢t — (T'(u + tv), w) is continuous for all u,v,w € X.
For this purpose, let {¢,}nen C [0, 1] be such that ¢, — t as n — oo. By the discrete Holder inequality, for
any « € (0,1) and a, b, c,d > 0, there holds

a%c 1— a+bad1 a<(a+b) (C—l—d)l_a.
This together with Holder’s inequality implies that for any ¢ € {u,v} and k > 0, we have

/ (V= HVw| + k| wl) do < max{1, B[l fwllwr < +oo, (4.44)
RN

where ¢t € {p, N}. In virtue of (4.44), for any ¢t € {p, N} and k > 0, we have
[V (u+ )| 72V (1 + t0) - Vo + klu + t,o]* 72 (u + tav)w]
< Cl(IVu" V| + klu*"Hw]) + (Vo] V| + kv~ w])] € L' (RY)
for some constant C' > 0. Hence, by Lebesgue’s dominated convergence theorem, we ensure that
(T(u+ tyv),w) = (T(u+tv),w) asmn — oco.

Tt follows that T is hemicontinuous. Consequently, by the Browder-Minty theorem (see, for example, Zeidler
[84, Theorem 26.A]), the operator T is surjective, that is, for all v € X* there exists u € X such that
T(u) =v.

Note that > N for any r € {q,9}. Therefore, by ublng Holder’s inequality, (4.39), Corollary 2.12
and Lemma 2.137 one has Cywi™! 4+ Z,w! '®(awd) e L™ (RM) € X*, thanks to the boundedness of
{wn }nen in X. Consequently, there exists v, € X such that it solves (in a weak sense)

[~ Apvn 4 Volva P20, + [~ ANV, + n]va N "2, = Couwi™t + Frw? '@ (aw)')  in RV, (4.45)

(7" 1)N
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Putting v, = v;7 — v, and testing (4.45) by v,,, we obtain by using w,, > 0 that
- ||UE||€V¢6P = llvn [l
= /]RN [(IV0n P72V, - Vo, + Voloa [P 2v,0;, ) + (Ve N 2V, - Vo, + v, Y "2v,0,)] da

= _/ (Cowd™" + T{ng_ltl)(awév/))vn dz > 0.
{vnSO}

This shows that ||/U;||W‘l/,p = HU;”W}W =0, that is, ||v;||x = 0. It follows that v;, = 0 a.e.in RY, that is,
0 7]

vn > 0 a.e.in RY. Inspired by the comparison principle as used in Brasco-Prinari-Zagati [20, Theorem 4.1]

and in Corréa-Corréa-Figueiredo [36, Lemma 2.2], we get from (4.43) and (4.45) that 0 < w, < v, a.e.in

RY. Once more, by testing (4.45) with v,,, we have
||vn||;/é,p + ”””H]v\(/,}w = /}RN (Cqui™! +k’7wg—1q>(aw7zj/))vn dz. (4.46)
0

Due to the Young’s inequality with ¢ € (0, ﬁ), that is, ab < Ca®¥ + C’gb% for all a,b > 0, we obtain
from (4.46), Corollary 2.12 and by setting £ = n — ((C, + K-) > 0 that

(9—1)N

(¢—1)N ~ / ~
oy + lonllpw < CaC [ Junf 8 do o [ ™ @(W'aull)do < €
Vo S RN RN

for some constant C' > 0, thanks to Holder’s inequality, (4.39), Corollary 2.12, Lemma 2.13 and the bound-
edness of {wy, }nen in X. This shows that there exists a constant C' > 0 such that ||v,||x < C for all n € N.
It follows, up to subsequence not relabeled, that there exists v € X such that we obtain from Corollary 2.4
that

v, v X and v, —v in LYRY) forall 9 € [p,p*] U[N, +o0) asn — oco.
Observe that v solves (in a weak sense)

[—Apv + Volv[P~20] + [~ Anv + nlv| ¥ 20] = Cpuw?™t + 7w’ ' ®(aw™’)  in RV,

In particular, we have

||v||€v‘1/,,, + HU||‘]/VV$,N = /]RN (Cqui™" + ETwﬂ_lfb(awN/))vdx. (4.47)
0
Claim I: / wi v, de — witvdr  as n — oco.

RN RN

By using the fact that wi~! € L%(RN) and v, — v in LV (RY) as n — oo, we have

/ wi (v, —v)dzr — 0 asn — co.

RN
On the other hand, we have
g~ — wq71|N' < gN'-1 (g(qq)N’ 4 |w|(q71)N') e LY(RM).
In virtue of Lebesgue’s dominated convergence theorem, we have
/ lwi™t —w? ' N dz -0 as n— .
RN

Using this and Hélder’s inequality gives

1
N7
< Un||N(/ lwd =t — =N dx) —0 asn— oo.
RN

/ (Wit — w? Mo, dz
RN

It follows that

/ (Wit —w? M, dr — 0 asn — oco.
RN

The proof of Claim I now follows directly from the above convergences.

Claim II:/ wg_lfb(awfy/)vn —>/ wﬂ_1q>(awN/)vdx as n — 0.
RN RN
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Due to Lemma 2.13, one has w?~1®(aw™') € L%(RN). Now, it follows from v, — v in L™ (RY) as n — oo
that

/ (vn — V)’ ' ®(aw™N ) dz — 0 asn — oco.

RN

Further, by Holder’s inequality, (4.39), Corollary 2.12 and Lemma 2.13, it is not difficult to see that
|wZ71<I)(ozw£LV/) - w1971<1>(04wN/)|N, < oN'-1 (gw*l)lel)(N’ozwiy,) + \w|(1971)N/<I>(N'awN/)) e L'(RM).

Invoking Lebesgue’s dominated convergence theorem, we get
/ |w2_1<I>(aw,]lV/) — wﬂ_l@(awN/)’N dr —0 asn — co.
RN

Consequently, by Holder’s inequality, we infer that for n — oo, there holds

/ (wg_lfb(awN/) - wﬂ_lé(awN/))vn dx
RN

n

1
N7

< I’Un”N(/ |w2_1<1>(awflv/) - wﬂ_l@(awN/)’N, dx) — 0.
RN
This yields

n

/ (wZ‘“D(awN/) — wﬂ_l‘b(awN,))vn dr—=0 asn— oc.
]RN

Now, the proof of Claim II follows immediately by using these convergences.
In view of Claim I and Claim II, we obtain from (4.46) and (4.47) that

IIUnH’V’V%p +[lvnllyav = Hvllﬁvéép +llvllyan +on(1) asn— oo,

This shows that

IIUnHI;V%p - IIvII’V’V%p and |[|vn [ 1n = [0l as n— oo,
Repeating the same procedure as in Lemma 3.8, we get v,, — v in X as n — oo and hence, v,, — v in L (R"Y)
as n — oo for all 6 € [p,p*] U [N, +00). This shows that the first assumption of Lemma 2.1 in Ambrosio [9]
is satisfied.
On the other hand, by using the fact that C,wi ! + &, w? 1@ (awl') < Cpi~t + K02 1®(awl") and

n
testing (4.45) by vnvi\f 5:6 -b , we obtain by performing a similar Moser iteration as before that

lvnllLoemyy < K for all n € N. (4.48)

This together with the interior regularity result for quasilinear elliptic equations mentioned above implies the
existence of a fixed 2o € RY such that {v,}nen C CO’Q(B% (z0)) for some o € (0,1) depending on p, N and
independent on n € N and xg. Further, there also holds

|Un ([L‘) — Un (y)|
[onlco.a By o)) = sup — e

o <C, (4.49)
2.y€B ) (z0).ay |z — yl

where the constant C' = C(p, N) > 0 is independent on x¢. Now, we claim that [v,]co.a@y) < C, where
C > 0 is a constant. For this, we first fix 2,35 € RV. Note that when |z — y| > 1, then using (4.48), one has

[n(2) = vn(Y)| < 2[on||p@r) < 2K <2K[z —y|*.

Conversely, when |z — y| < 1, then one sees that ‘37 — %ﬂ’ = ’y — ITJ”" = lz—yl o % Hence, by using (4.49),

2
vn () — v (‘“;’) ony) — vn< ;Ly>

for some constant C' > 0. This proves the claim. Consequently, we deduce that

we obtain

8

_|_

[vn(2) = vn(y)] < < Clz —y|*

an”CO,a(RN) = anHLoo(RN) + ['Un]co,a(RN) <(Cp forallneN
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for some constant C7 > 0. Take € > 0 and choose § = (2%1)&, then for all x,y € RY with |z — y| < § implies
that
|on(2) — v, (y)| < Chlz —y|* <e forallneN.

It follows that {v, }nen is uniformly equicontinuous in RY. Therefore, by applying Lemma 2.1 of Ambrosio

[9], we get
lim sup |v,(x)] = 0.
|| =00 neN
Due to 0 < w,, < v, in RY for all n € N, it follows that (4.35) holds. This finishes the proof. O

Finally, we end this section by proving the concentration phenomena of positive solutions of (P.).

Proof of Theorem 1.3. Let gy be small enough. Note that if u. is a positive solution of (S.), which is
obtained by Proposition 4.6, then there must hold

uc(r) <t; forallz € RN\ A and € € (0,¢). (4.50)

In fact, if (4.50) does not hold, let {e, }nen and a solution w,, = u., of (S.) such that £, — 0 as n — oo and
there hold J;, (un) =cc,, J. (up) =0 and

Un(z) >t forallz e RV \ A_ . (4.51)

In view of Lemma 4.8, we can find a sequence {9, }nen € RY such that w,(-) = u,(- + ¥n) — w in Y and
Enln — Yo as n — oo for some yo € A and V(yo) = Vp. Using that yo € A, there exists some r > 0 such that
Bi(enyn) C A, that is, B+ (yn) C A, for all n sufficiently large. Consequently, we obtain for these values
of n that h

RY\ A, C B () (4.52)

Further, since w, — w in Y as n — oo, by invoking Lemma 4.10, one sees that (4.35) holds. Hence, we can
find R > 0 such that

wp(z) <t; forall || > R and n € N.
In particular, the last inequality together with a simple change of variable yields
unp(x) <ty forall x € Bg(y,) and n € N.
Consequently, there exists ng € N such that for any n > ng and - > R, we deduce from (4.52) that
RY\ A, C BiLn (Yn) C Bi(yn) for all n > ng.

It follows immediately that u,(x) < t; for all z € RV \ A, and n > ng, which contradicts (4.51) and thus,
(4.50) holds. Now, by setting v (z) = u.(£), we can conclude that v, is a positive solution of (7.).
Finally, we study the behavior of maximum points of v.(x) as € — 0. For this, we assume that , — 0

as n — oo and {up tnen = {te, bnen C Y., is a nonnegative sequence of solution for (S.). In virtue of the
definition of G2 and g, we can find p € (0,¢1) such that

Gh(ex,s)s < sV and g(ex,s)s < s for all (x,s) € RY x [0, p]. (4.53)
Employing a similar argument as done above, we can find R > 0 such that
|unllLo=(Bs,@,)) <t1 forallneN. (4.54)
Note that, up to a subsequence not relabeled, we can assume that
|unll Lo (Br(,)) =t1 for alln € N. (4.55)

In fact, if (4.55) does not hold, then we have ||uy,[| @~y < t1 for all n € N. Consequently, by using (4.53),
J. (un) =0, and arguing similarly as in Lemma 4.2, we deduce that

0 < iy, + HunH%;N + nl[N + min {[lun 3, lunll3, } < 0.

Letting n — oo in the above inequality, we ensure that w, — 0 in Y. as n — co. Hence, we get J;, (u,) =
¢ce, — 0 as n — oo, which is a contradiction because of Lemma 4.5(a). It follows that (4.55) holds.
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Taking (4.54) and (4.55) into account, we conclude that the global maximum points p,, € RY of u,, belong
to Br(yn). It follows that p, = 7, + ¥n, where r,, € Br. Note that the solution of (P.) is of the type
vn(x) = un(i) and thus, a maximum point 7., of v, () is of the form n., = e,r, +&,Yn. By using r, € Bg,
enln — Yo and V(yo) = Vo, we deduce from the continuity of V' that

lim V(n.,) =V(y) = Vo.
n—oo
Hence, the proof is completed. O

5. MUTIPLICITY OF SOLUTIONS TO THE MAIN PROBLEM VIA CATEGORY THEORY

This section is focused on the study of the multiplicity of positive solutions to (P.) using the Lusternik-
Schnirelmann category theory. This theory is a variational technique which helps us to find critical points of
a functional on a manifold, in connection with the topological properties of that manifold. For more details
on this theory, we refer to the papers of Benci-Cerami [16, 17], Benci-Cerami-Passaseo [18], Cingolani-Lazzo
[34] and the monograph of Willem [31].

Now, we recall some basic definitions that will be needed in the sequel.

Definition 5.1. A closed subset A is contractible in a topological space X, if there exists a homotopy H €
C([O, 1] x A,X) such that for any u,v € A, there holds H(0,u) =u and H(1,u) = H(1,v).

Definition 5.2. Let A be a closed subset of a topological space X . Then, the Lusternik-Schnirelmann category
of A in X is denoted by catx(A), which is the least number of closed and contractible sets in X that cover
A.

Let X be a Banach space and ¥: X — R be of class C'(X,R). We define a C*-manifold V of the form
V = ¥U~1({0}), where 0 is the regular value of ¥. Now, for any functional Z: X — R, we define the following
level set
T ={ueV: I(u) < d}.

Recall the following result for critical points involving the Lusternik-Schnirelmann category, see Theorem
5.20 by Willem [31].

Corollary 5.3. Suppose T: X — R is of class C1(X,R). Further, if I|v is bounded from below and T
satisfies the (PS). condition for c € [ian’V, d], then I|v has at least catza(Z?) critical points in T9.

To implement Corollary 5.3, the following corollary, found in Cingolani-Lazzo [34, Lemma 2.2], plays a
significant role in relating the topology of some sublevel of a functional to the topology of some subset of the
space RN,

Corollary 5.4. Let ), Q1 and Q5 be closed sets with Qy C Qa, and let 5: Q — Qa, ¥: Q1 — Q be continuous
maps such that B o1 is homotopically equivalent to the embedding j: Q1 — Qa. Then catq(2) > catg, (7).

Let ¢ > 0 be fixed and ug be a positive ground state solution of (Py), that is, Jo(ug) = co and J{(ug) = 0.
Next, we consider a nondecreasing function € C*°([0, +00), [0, 1]) satisfying n = 1 in [0, 3], n = 0in [, +00)
and |n'| < C for some C > 0. For any y € M, we define

(@) = n(lez — yl)uo (”E‘ y).

Moreover, let t. be the unique positive number such that ¢.&. , € N.. Note that, if |supp |¢. ,| N A > 0,
then t. satisfies

Je (tsgs,y) = t>a[§( Je (tgs,y)'

We define ®.: M — N. by ®.(y) = t.£. ,. By the above construction, we see that ®. has compact support
for any y € M.
Inspired by Ambrosio-Repovs [10, Lemma 6.1] and by Thin [75, Lemma 13], we have the following lemma.

Lemma 5.5. There holds
lim J.(®c(y)) = co  uniformly iny € M.

e—0
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Proof. Let us assume by contradiction, there exist o > 0, {yn }nen C M and €, — 0 as n — oo such that
| Tz, (@c,, (yn)) — o] = 0. (5.1)
Invoking Lebesgue’s dominated convergence theorem, we have

€ palliyae = lluollyys and &,y It = lluolli asn — oo for t € {p, N}. (5.2)
0

Setting t, = t., > 0 and using that (J! (tn&:,.y,)stnée,.y,) = 0, we obtain by that change of variable
z = == n that

N N
el + 006l

= /RN (G/Q (enz, tngen,yn) - H/l (tnfsn,yn) +g(en, tngen,yn))ﬁnfemyn dz

(5.3)
= [ (Gblenz + s tuntlenDuo(2) - Hitan(eazuo(2)
+ g(enz + yns tan(lenz)uo(=)) Jtun(len=luo(z) dz,
where we have used |- [V, x = |- [[.,n + |- [N Now, we claim that {t,},en is bounded. Indeed, if not,
Vi, 41 v

let t,, — 0o as n — oo. TakezEBiJhgnanz—i—yn € Bs(yn) € Ms C A. By using G5 = H, and g = f on
A together with (2.5) and (f4), we obtain from (5.3) that

1
- p N
T]y_p Hgsn,yn HW‘I/,p ||€5nayn||‘17‘1/;1::+1

En

zlog(tﬁf)/B ‘77(|5n2|)U0(Z)|N dz+/B fan(lenz])uo(2))n(lenz])uo(z) dz

-1

5
en en

+ /B n(lenzl)uo(2)]™ log ((enzuo(2)|Y) + 1] dz

En

> log(t,]y) / |u0(z)|N dz + ’ytﬁfN / |ug(2)|* dz + Dy,

B s B s
Ten Zen

where

D, :/ n(lenz])uo(2)| Y log (In(|enzl)uo(2)Y) + 1] dz.
B

En

Using the fact that ug € Y is a positive solution of (Py), xp ; — 1 and xp — 1aein RY as n — oo,

s
2en

we obtain by using Lemma 2.9 and Lebesgue’s dominated con{?ergence theorem that

/ lup(2)]"dz — / |uo(2)|" dz and D,, — / luo (2) [N [log(Juo(2)|Y) + 1] dz (< +o0) (5.5)
B 5 RN RN

2en

as n — 0o, where we have used r € {u, N} and |s|™[log(|s|™V) + 1] = H,(s)s — H}(s)s. In view of (5.2) and
(5.5), we have a contradiction by letting n — oo in (5.4). This shows that {¢, },en is bounded and thus, up
to a subsequence, we can assume that t, — to > 0 as n — oco. Now, we prove that 3 # 0. In fact, if not,
suppose tg = 0, that is, t,, — 0 as n — oo. Since {t, }nen is bounded, we can find C' > 0 such that |¢,| < C.
Moreover, by using Corollary 2.12 and (3.2), one sees that

[ (tnn(lenz])uo(2))tnn(|enz])uo(2)]
< 7Y In(lenzl)uo(2)|N + Frthln(lenz])uo(2)]"@(CN aln(lenz])uo(2)[V).

It follows immediately from the above inequality and (5.4) that

”fsn,yn ||€V1-,p + tnN_p”gen,yan/lvN < tnN_p (log(tg) + T) / |’7(|5nz‘)u0(2)|N dz + D,
Ven Vep +1 B

5
En
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+E7tﬁ’p/ [n(lenz])uo (2)]"®(CN aln(lenz uo(2)[N) dz.
B

Again by Lebesgue’s dominated convergence theorem together with Holder’s inequality, Corollary 2.12 and
Lemma 2.13, we get

2Nug(2)|N dz uo(2)|Y dz
LG MCCE

€n

and

[ lleazhuoa) "2 aln(ensliun(2)™ ) dz = [ Juo()P(C™ afun ) ¥ ds < +oc

B s RN

as n — oo. Letting n — oo in the above inequality and using the above convergences together with (5.2)

and (5.5), we get ||u0||€V1)p = 0, that is, ug = 0 a.e.in RY, which is a contradiction. This shows that to # 0.
Vo

Repeating the same arguments used in Lemma 4.5(c) with simple modifications and using that {¢,}nen is
bounded, we can deduce from Lebesgue’s dominated convergence theorem that

Hi(tnn(lenz|)uo(z))dz — / Hi(touop(2)) dz,
Bs RN

€n

/ Ho(tan(lenzuo(2)) dz — | Haltouo(2)) dz,
B% RN

/ F(ton(lenz|)uo(z)) dz — F(toup(z))dz as n — oo.
B RN

En

Similarly, we also have

/ H (tai(en])uo(2) ) tan(lenz o (2) dz — / H) (totuo(2))toto (=) dz,
B s RN

En

/ My (ton(len =0 () tnm(len = o (2) d — / M (touo (=) Youo (2) d,
B RN

En

ftnn(lenzl)uo(2))tnn(lenz|)uo(z) dz = / f(touo(2))touo(2) dz  as n — oo.
B s RN

En

Combining all the above information and sending n — oo in (5.3), we get
1 7‘[/ (tQUO)UQ H/ (tQUO)UQ
p N N 1 _ 2
téV*P ||’u0||W‘1/,Op + HUOHW%N + ||U0||N + /RN t¥71 dx = . té\’*l dz +

But ug € Ny, therefore we get

ol 1, + l1uoll5y,, v + [luolIN +/ Hy(uo)uodz = | Hjy(uo)uo d +/ fuo)ug da.
v v RN RN RN

f(touo)uo

dx.
t !

RN

Subtracting these equalities, we have

1 H' (touo)
p 1 !
<th — 1) H’U/OHW‘%;, + /RN ( tév71 Hl(uo) Uuop dx

0

- /RN (7-%2\?0?@ _Hé(w)))uo dx+/RN (fgvouf) _ f(u()))uo de.

Employing similar arguments as done before in Lemma 4.5(c), from the above equation, we conclude that
to = 1. Consequently, we obtain from the above convergences that

lim JEn (¢5n (yn)) = JO(U’O> = Co,
n—r oo

which contradicts (5.1). This finishes the proof. O
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We define by ./\N/'E a subset of A given by
Ne={u €Nzt Jo(u) < co + h(e)},

where h: RT — R* is defined by h(e) = sup,ecps |J-(u) — co|. From the above lemma, we have h(e) — 0 as
£ — 0. Moreover, we know that ®.(y) € N. for all y € M and £ > 0. It follows that A. # 0. Let for any
§ > 0 with p = p(8) > 0 be such that Ms C B,. Let x: RY — RY be defined by

z if |z < p,

X@ =00 s,
||

Now, we define the barycenter map S.: N. — RN by
| X (ul? + ) do
RN

Be(u) =
[l + ) da
RN

Lemma 5.6. There holds
lim 5. (®-(y)) =y uniformly iny € M.
e—0

Proof. Let us assume by contradiction there exist dg > 0, {yn}neny € M and €, — 0 as n — oo such that

|Be.. (@<, (yn)) = yn| = do. (5.6)
Note that for z € Bs , one has €,z + y, € Bs(yn) C Ms C B,. Therefore, from the definitions of ®., 5.,

En

and 7 as well as the change of variable z = =7~ we have

/RN enz(In(lenzuo(2)” + In(lenzl)uo()|™) dz

/RN (In(lenzuo(2) P + [n(lenzluo(2)[Y) dz
This together with Lebesgue’s dominated convergence theorem implies that

’/Ban ((bfn (yn)) - yn‘ = On(l) as n — oo,
which contradicts (5.6). This completes the proof. 0

ﬂsn ((pen (yn)) =Yn +

The following compactness principle is crucial in order to find multiplicity of solutions for our problem.

Lemma 5.7. Let e, — 0 as n — o0 and {uy }neny C N, be a sequence such that J., (un) — co as n — oo
and satisfying (3.14). Then, there exists a sequence {Untnen C RN such that w,(x) = u,(x + ¥n) has a
convergent subsequence in Y. Moreover, there holds vy, = €,Yn — Yo as n — 0o for some yg € M.

Proof. By applying the same idea as in Alves-da Silva [4, Lemma 6.5], the lemma can be proved. 0

Now, we shall discuss the multiplicity of solutions to (S.) by using the Lusternik-Schnirelmann category
theory.

Proposition 5.8. Assume that (V1)—(V2) hold and let 6 > 0 be small enough. Then, the problem (S.) has
at least catpr, (M) solutions for e small enough such that € € (0,&1) for some & > 0.

Proof. Choose &1 > 0 be sufficiently small and fix ¢ € (0,€1). Let usset T = J., V =N, d = co + h(e)
and Z¢ = J¢ = N.. In view of Proposition 4.4, one sees that JE‘N satisfies the (PS) condition and thus, by

Corollary 5.3, it implies that J | N has at least cat (/\75) critical points in /\75. Consequently, by Proposition

4.3, we deduce that J. has at least catg (M) critical points. This shows that (S.) has at least cat 7. (Ne)

critical points. To complete the proof, we only have to show that cat I (N:) > catbpr(M). One can notice
that ®.(M) C /\75 for € small enough, thanks to Lemma 5.5. Moreover, the following diagram

M 2 N 25 g



ON SINGULARLY LOGARITHMIC (p, N)-LAPLACE SCHRODINGER EQUATIONS 49

is well-defined for € small enough. It follows that the map B.0®.: M — My is well-defined for £ small enough.
Define the map H: [0,1]xM — Mg by H(t,y) = (1—t)y+t8:(P.(y)) for all (¢,y) € [0, 1] x M. This shows that
H(0,y) =y and H(1,y) = Bc(P(y)). Therefore, we infer that the map 5. o ®. is homotopically equivalent

to the embedding j: M — Ms and thus, by Corollary 5.4 implies that catg (Nz) > catas, (M). O

Proposition 5.9. Let V satisfies (V1)—=(V2) and let § > 0 sufficiently small, then there exists €5 > 0 such
that for € € (0,£3), we have the following assertions:

(a) problem (S.) has at least M positive solutions, whenever catpr, (M) is an even number;

(b) problem (3;) has at least w positive solutions, whenever catys, (M) is an odd number.

Proof. Let €5 > 0 be small enough and fix € € (0,£3). Further, assume that w, is a critical point of J; and
Je(we) < ¢o + h(e) holds. Then either w} = 0 or w; = 0. Indeed, if not, then repeating a similar procedure

as in Proposition 4.6, one has wl, wo € M. Consequently, we deduce that

co+hie) > Jo(we) = Jo(wl) + Jo(wD) > 2ce..

Letting ¢ — 0 in the above inequality and using Remark 4.9, we get a contradiction. Once more by similar
arguments as in Proposition 4.6, we infer that either w. > 0 or w. < 0. Denote ¢ = catps(M). Let o be
an even number and w1, --- ,w, be the solutions of (S.) as in Proposition 5.8. If at least £ of the solutions
wi,- -+ , W, are positive, then (a) is proved. In fact, if not, suppose that at least % of the solutions wy, - -+, w,

are negative and denote these negative solutions by v1,---,ve. Observe that G5(z,-) + g(x,-) — H/(-) is an

odd function, therefore —vy,- -+, —vg are positive solutions of (S.). The assertion in (a) follows. In a similar
way, one can prove the statement (b). O

Now, we shall be able to prove Theorem 1.4.

Proof of Theorem 1.4. Suppose w, is a critical point of J. satisfying J.(w:) < ¢o + h(e). In order to
complete the proof, it is sufficient to show that there exists €; > 0 small enough with ¢ € (0,¢1) such that

0<w.(r) <t forallzecRY\ A, (5.7)

holds, where each solution w, of (S.) is given in (a) and (b) of Proposition 5.9. Let us assume by contradiction
that there exists a sequence {e, }nen such that €, — 0 as n — oo, {wy, }nen = {we, }nen be a sequence of
solution for (S.,) and (3.14) holds but (5.7) is not satisfied. It is easy to see that {wy, }nen satisfies the
assumptions of Lemma 5.7 and thus, (4.35) holds. Now, using a similar procedure as in the proof of Theorem
1.3, we get a contradiction. It follows that (5.7) holds true. Consequently, we deduce that (S.) satisfies (a)

and (b) of Theorem 1.4. Hence, the result follows immediately by using a simple change of variable. This
completes the proof. O
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