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Abstract. We study a nonlinear parametric elliptic equation (nonlinear eigen-

value problem) driven by a nonhomogeneous differential operator. Our setting
incorporates equations driven by the p-Laplacian, the (p, q)-Laplacian, and

the generalized p-mean curvature differential operator. Applying variational
methods we show that for λ > 0 (the parameter) sufficiently large the problem

has at least three nontrivial smooth solutions whereby one is positive, one is

negative and the last one has changing sign (nodal). In the particular case of
(p, 2)-equations, using Morse theory, we produce another nodal solution for a

total of four nontrivial smooth solutions.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω and let 1 < q ≤ p.
We study the following nonlinear nonhomogeneous eigenvalue problem

−div a(∇u) = λ|u|q−2u− f(x, u) in Ω,

u = 0 on ∂Ω,
(P )λ

where the mapping a : RN → RN is supposed to be continuous and strictly mono-
tone with (p − 1)-growth. The precise regularity conditions are presented in hy-
potheses H(a) (see Section 2). These conditions incorporate in our framework of
analysis some important differential operators, such as the p-Laplace differential op-
erator (1 < p <∞), the (p, q)-differential operator (1 < q < p), and the generalized
p-mean curvature differential operator (1 < p < ∞). Furthermore, λ > 0 is a pa-
rameter to be specified later and the perturbation f : Ω×R→ R is a Carathéodory
function (i.e., x 7→ f(x, s) is measurable for all s ∈ R and s 7→ f(x, s) is continuous
for a.a. x ∈ Ω) whereby it is assumed that f(x, ·) exhibits a (p − 1)-superlinear
growth near ±∞ for a.a. x ∈ Ω. We note that in case f(x, s) = f(s) = |s|r−2s,
q ≤ p < r < ∞, and −div a(∇(·)) = −∆p (the negative p-Laplacian), problem
(P )λ becomes the so-called p-logistic equation which is important in mathemati-
cal biology and describes the dynamics of biological populations whose mobility is
density-dependent. If q < p, then we have the subdiffusive case while the equid-
iffusive case occurs for q = p . Since the solution of these applications describes
population density, positive solutions are of concern (see Gurtin-MacCamy [24]).
Our aim is to prove a multiplicity theorem for problem (P )λ describing the number
of solutions as the parameter λ > 0 varies. Moreover, we provide sign information
for all the solutions produced.
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Problem (P )λ was first studied by Ambrosetti-Lupo [2], Ambrosetti-Mancini [3],
and Struwe [32], [33, p. 147]. In all these works the differential operator involved is
the Laplacian (i.e. a(ξ) = ξ for all ξ ∈ RN ) and the perturbation f is x-independent
satisfying either f ∈ C1(R) (see [2], [3], [32]) or f is Lipschitz continuous (see [33]).

Therein, it is proved that if λ > λ̃2, where λ̃2 denotes the second eigenvalue of
(−∆, H1

0 (Ω)), then the problem has at least three nontrivial solutions. However,
they do not provide sign information for these solutions. An extension to the study
of p-Laplacian equations (1 < p < ∞) was done by Averna-Motreanu-Marano [5],
respectively, by Papageorgiou-Papageorgiou [29]. In the present paper we prove
a similar three-solutions-theorem for problem (P )λ providing sign information for
all solutions obtained. Moreover, in the particular case of (p, 2)-equations (i.e.,
a(ξ) = ‖ξ‖p−2ξ + ξ for all ξ ∈ RN with 2 < p <∞ is the sum of a p-Laplacian and
a Laplacian), we obtain the existence of four nontrivial solutions with complete sign
information. In fact, as the results of Dancer [16] suggest (see also Struwe [33, p.
147]), one cannot expect more than four nontrivial solutions without any symmetry
condition on the perturbation, even for λ > 0 large.

Our approach is variational based on the critical point theory coupled with the
usage of suitable perturbation and truncation techniques and with comparison prin-
ciples. In the last section we also employ Morse theory (critical groups) dealing with
the special case of the (p, 2)-equation. The main mathematical tools which will be
used in this paper are recalled in the next section for the convenience of the reader.

2. Mathematical background and hypotheses

We start with some basic definitions and facts about critical point theory which
we will need in the sequel. Let X be a Banach space and X∗ its topological dual
while 〈·, ·〉 is taken for the duality brackets to the pair (X∗, X). We have the
following definition.

Definition 2.1. The functional ϕ ∈ C1(X) fulfills the Palais-Smale condition at
the level c ∈ R (the PSc-condition for short) if every sequence (un)n≥1 ⊆ X satis-
fying ϕ(un)→ c and ϕ′(un)→ 0 in X∗, admits a strongly convergent subsequence.
We say that ϕ satisfies the Palais-Smale condition (the PS-condition for short) if
it satisfies the PSc-condition for every c ∈ R.

Using this compactness-type condition, we can prove the following minimax the-
orem known in the literature as the Mountain Pass Theorem.

Theorem 2.2. If ϕ ∈ C1(X), u1, u2 ∈ X, ‖u2 − u1‖ > ρ > 0,

max{ϕ(u1), ϕ(u2)} < inf{ϕ(u) : ‖u− u1‖ = ρ} =: ηρ

and ϕ satisfies the PSc-condition where

c = inf
γ∈Γ

max
0≤t≤1

ϕ(γ(t))

with Γ = {γ ∈ C ([0, 1], X) : γ(0) = u1, γ(1) = u2}, then c ≥ ηρ and c is a critical
value of ϕ.

Given ϕ ∈ C1(X) and c ∈ R, we introduce the following sets

ϕc = {u ∈ X : ϕ(u) ≤ c} (the sublevel set of ϕ at c),

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ),

Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c} (the critical set of ϕ at the level c).
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Another result from critical point theory, which will be needed, is the so-called
Second Deformation Lemma (see, for example, Gasiński-Papageorgiou [23, p. 628]).

Lemma 2.3. If ϕ ∈ C1(X), a ∈ R, a < b ≤ +∞, ϕ satisfies the PSc-condition
for every c ∈ [a, b), ϕ has no critical values in (a, b) and ϕ−1(a) contains at most
a finite number of critical points of ϕ, then there exists a continuous map h :
[0, 1]×

(
ϕb \Kb

ϕ

)
→ ϕb such that

(a) h(0, u) = u for all u ∈ ϕb \Kb
ϕ;

(b) h
(
1, ϕb \Kb

ϕ

)
⊆ ϕa;

(c) h(t, u) = u for all (t, u) ∈ [0, 1]× ϕa;
(d) ϕ(h(t, u)) ≤ ϕ(h(s, u)) for all t, s ∈ [0, 1], s ≤ t, and all u ∈ ϕb \Kb

ϕ.

Remark 2.4. In particular, Lemma 2.3 implies that ϕa is a strong deformation
retract at ϕb \Kb

ϕ.

As usual, we denote by C1
0 (Ω) the ordered Banach space

C1
0 (Ω) =

{
u ∈ C1(Ω) : u

∣∣
∂Ω

= 0
}

with positive cone

C1
0 (Ω)+ =

{
u ∈ C1

0 (Ω) : u(x) ≥ 0 ∀x ∈ Ω
}
,

which has a nonempty interior given by

int
(
C1

0 (Ω)+

)
=

{
u ∈ C1

0 (Ω) : u(x) > 0 ∀x ∈ Ω and
∂u

∂n
(x) < 0 ∀x ∈ ∂Ω

}
,

where n = n(x) is the outer unit normal at x ∈ ∂Ω.
Let g, h ∈ L∞(Ω). We write g ≺ h if for every compact set K ⊆ Ω there exists

ε > 0 such that g(x) + ε ≤ h(x) for a.a. x ∈ K. Clearly, if g, h ∈ C(Ω) and
g(x) < h(x) for all x ∈ Ω, then g ≺ h.

In order to accommodate the extra linear term −∆u, an easy modification of the
proof of Lemma 3.7 in Filippakis-O’Regan-Papageorgiou [20] (see also Arcoya-Ruiz
[4, Proposition 2.6]) leads to the following strong comparison principle.

Proposition 2.5. Let ε ≥ 0, p ≤ r < ∞, and g, h ∈ L∞(Ω). If u, v ∈ C1
0 (Ω) are

solutions of

−∆pu−∆u+ ε|u|r−2u = g in Ω,

−∆pv −∆v + ε|v|r−2v = h in Ω,

and v ∈ int
(
C1

0 (Ω)+

)
, then v − u ∈ int

(
C1

0 (Ω)+

)
.

Now, we are ready to introduce the hypotheses on the map a(·). Let ϑ ∈
C1(0,+∞) be a function satisfying

0 < ĉ ≤ tϑ′(t)

ϑ(t)
≤ c0 and c1t

p−1 ≤ ϑ(t) ≤ c2
(
1 + tp−1

)
(2.1)

for all t > 0 and with some constants ĉ, c0, c1, c2 > 0.
Then the hypotheses on a(·) are the following.

H(a): a(ξ) = a0(‖ξ‖)ξ for all ξ ∈ RN with a0(t) > 0 for all t > 0 and
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(i) a0 ∈ C1(0,∞), t 7→ ta0(t) is strictly increasing, limt→0+ ta0(t) = 0,
and

lim
t→0+

ta′0(t)

a0(t)
> −1;

(ii) ‖∇a(ξ)‖ ≤ c3
ϑ (‖ξ‖)
‖ξ‖

for all ξ ∈ RN \ {0} and some c3 > 0;

(iii) (∇a(ξ)y, y)RN ≥
ϑ (‖ξ‖)
‖ξ‖

‖y‖2 for all ξ ∈ RN \ {0} and all y ∈ RN .

Remark 2.6. From hypothesis H(a)(i) we see at once that a ∈ C1
(
RN \ {0},RN

)
∩

C
(
RN ,RN

)
implying that hypotheses H(a)(ii), (iii) make sense. Let G0(t) =∫ t

0
sa0(s)ds and consider the function G : RN → R defined by G(ξ) = G0(‖ξ‖)

for all ξ ∈ RN . Then

∇G(ξ) = G′0(‖ξ‖) ξ

‖ξ‖
= a0(‖ξ‖)ξ = a(ξ) for all ξ ∈ RN \ {0}.

Note that by virtue of hypothesis H(a)(i), we have ∇G(0) = 0 as well. Evidently
G(·) is convex and G(0) = 0,∇G(ξ) = a(ξ) for all ξ ∈ RN . Hence we have the
estimate

G(ξ) ≤ (a(ξ), ξ)RN for all ξ ∈ RN . (2.2)

The hypotheses H(a), (2.1) and the integral form of the mean value theorem lead
to the following lemma, which summarizes the main properties of the map a(·).
Lemma 2.7. Let the hypotheses H(a) be satisfied. Then, there hold

(a) ξ → a(ξ) is maximal monotone and strictly monotone;
(b) ‖a(ξ)‖ ≤ c4

(
1 + ‖ξ‖p−1

)
for all ξ ∈ RN and some c4 > 0;

(c) (a(ξ), ξ)RN ≥ c1
p−1‖ξ‖

p for all ξ ∈ RN .

As a direct consequence of Lemma 2.7 we obtain the following growth estimates
for the potential G(·).
Corollary 2.8. If hypotheses H(a) hold, then

c1
p(p− 1)

‖ξ‖p ≤ G(ξ) ≤ c5 (1 + ‖ξ‖p) for all ξ ∈ RN and some c5 > 0.

Example 2.9. The following maps satisfy hypotheses H(a):

(a) Let a(ξ) = ‖ξ‖p−2ξ with 1 < p <∞. This map corresponds to the p-Laplace
differential operator defined by

∆pu = div
(
‖∇u‖p−2∇u

)
for all u ∈W 1,p

0 (Ω).

The potential is G(ξ) = 1
p‖ξ‖

p for all ξ ∈ RN .

(b) The function a(ξ) = ‖ξ‖p−2ξ + µ‖ξ‖q−2ξ with 1 < q < p and µ > 0 compares

with the (p, q)-differential operator defined by ∆pu+µ∆qu for all u ∈W 1,p
0 (Ω).

The potential is G(ξ) = 1
p‖ξ‖

p + µ
q ‖ξ‖

q for all ξ ∈ RN . Equations driven

by a (p, q)-differential operator arise in mathematical physics such as quan-
tum physics (for existence of soliton solutions, see Benci-D’Avenia-Fortunato-
Pisani [6]) and in plasma physics and biophysics (see Cherfils-Il′yasov [11]).
Recently, there have been some existence and multiplicity results for such op-
erators. We refer to the works of Cingolani-Degiovanni [12], Medeiros-Perera
[27], Papageorgiou-Smyrlis [30], and Sun [34].
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(c) If a(ξ) =
(
1 + ‖ξ‖2

) p−2
2 ξ with 1 < p < ∞, then this map represents the

generalized p-mean curvature differential operator defined by

div
[
(1 + ‖∇u‖2)

p−2
2 ∇u

]
for all u ∈W 1,p

0 (Ω).

The potential is G(ξ) = 1
p

[
(1 + ‖ξ‖2)

p
2 − 1

]
for all ξ ∈ RN .

(d) Let a(ξ) = ‖ξ‖p−2ξ± ‖ξ‖
p−2ξ

1+‖ξ‖p with 2 ≤ p <∞. Then, the potential is given by

G(ξ) = 1
p‖ξ‖

p± 1
p ln(1+‖ξ‖p) for all ξ ∈ RN . It should be mentioned the work

of Clément-Garćıa-Huidobro-Manásevich-Schmitt [14] where the authors also
consider nonlinear nonhomogeneous equations using tools from the theory of
Orlicz spaces producing solutions of constant sign for a different nonlinearity
than ours.

Now, let f0 : Ω×R→ R be a Carathéodory function with subcritical growth in
the second argument, that is

|f0(x, s)| ≤ a(x) + c|s|r−1 for a.a. x ∈ Ω, for all s ∈ R,

with a ∈ L∞(Ω)+, c > 0, and 1 < r < p∗, where p∗ is the critical exponent of p
given by

p∗ =

{
Np
N−p if p < N,

+∞ if p ≥ N.

Let F0(x, s) =
∫ s

0
f0(x, t)dt and let ϕ0 : W 1,p

0 (Ω)→ R be the C1-functional defined
by

ϕ0(u) =

∫
Ω

G(∇u)dx−
∫

Ω

F0(x, u)dx for all u ∈W 1,p
0 (Ω).

The following result is essentially due to Motreanu-Papageorgiou [28] (see also
Brezis-Nirenberg [7], Garćıa Azorero-Peral Alonso-Manfredi [21] and Winkert [35]
for earlier results in this direction). The result is a consequence of the nonlinear
regularity theory (see [25], [26]).

Proposition 2.10. Let the assumptions in H(a) be satisfied. If u0 ∈W 1,p
0 (Ω) is a

local C1
0 (Ω)-minimizer of ϕ0, i.e., there exists ρ0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1
0 (Ω) with ‖h‖C1

0 (Ω) ≤ ρ0,

then u0 ∈ C1,β
0 (Ω) for some β ∈ (0, 1) and u0 is also a local W 1,p

0 (Ω)-minimizer of
ϕ0, i.e., there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈W 1,p
0 (Ω) with ‖h‖W 1,p

0 (Ω) ≤ ρ1.

Let 1
p + 1

p′ = 1 and let A : W 1,p
0 (Ω)→ W−1,p′(Ω) be the nonlinear map defined

by

〈A(u), v〉 =

∫
Ω

(a(∇u),∇v)RNdx for all u, v ∈W 1,p
0 (Ω). (2.3)

The following result summarizes the basic properties of A (see, for example,
Gasiński-
Papageorgiou [22, p. 562]).



6 N. S. PAPAGEORGIOU AND P. WINKERT

Proposition 2.11. If hypotheses H(a) hold, then A : W 1,p
0 (Ω) → W−1,p′(Ω) de-

fined by (2.3) is continuous, monotone (hence maximal monotone), and of type

(S)+, i.e., if un ⇀ u in W 1,p
0 (Ω) and lim supn→∞ 〈A(un), un − u〉 ≤ 0, then un → u

in W 1,p
0 (Ω).

By ∆r, 1 < r < ∞, we denote the special case of the map above corresponding
to the r-Laplacian, i.e.,

〈∆r(u), v〉 =

∫
Ω

‖∇u‖r−2(∇u,∇v)RNdx for all u, v ∈W 1,r
0 (Ω).

If r = 2, it reduces to the Laplacian and we write ∆2 = ∆ ∈ L
(
H1

0 (Ω), H−1(Ω)
)
.

Next let us recall some basic facts about the spectrum of the negative Dirichlet

r-Laplacian, i.e., of
(
−∆r,W

1,r
0 (Ω)

)
with 1 < r < ∞. We consider the following

nonlinear eigenvalue problem

−∆ru = λ̂|u|r−2u in Ω,

u = 0 on ∂Ω.
(2.4)

A number λ̂ ∈ R is an eigenvalue of
(
−∆r,W

1,r
0 (Ω)

)
if problem (2.4) admits a

nontrivial solution û ∈ W 1,p
0 (Ω) which is called an eigenfunction corresponding to

the eigenvalue λ̂. By σ̂(r) we denote the set of eigenvalues of
(
−∆r,W

1,r
0 (Ω)

)
. It

is known that the set σ̂(r) has a smallest element λ̂1(r), which has the following
properties:

• λ̂1(r) is positive;

• λ̂1(r) is isolated, that is, there exists ε > 0 such that
[
λ̂1(r), λ̂1(r) + ε

)
∩

σ̂(r) = λ̂1(r);

• λ̂1(r) is simple, that is, if u, v are two eigenfunctions corresponding to λ̂1(r),
then u = kv for some k ∈ R;
•

λ̂1(r) = inf

[
‖∇u‖rLr(Ω)

‖u‖rLr(Ω)

: u ∈W 1,r
0 (Ω), u 6= 0

]
. (2.5)

In (2.5) the infimum is realized on the corresponding one dimensional eigenspace.

Regarding (2.5) it is also clear that the eigenfunctions corresponding to λ̂1(r)

do not change sign. In fact it turns out that λ̂(r) is the only eigenvalue with
eigenfunctions of constant sign. All the other eigenvalues have eigenfunctions
which are nodal (i.e., sign changing). In what follows by û1(r) we denote the Lr-

normalized (i.e., ‖û1(r)‖Lr(Ω) = 1) positive eigenfunction corresponding to λ̂1(r).
The nonlinear regularity theory and the nonlinear maximum principle imply that
û1(r) ∈ int

(
C1

0 (Ω)+

)
(see [25], [26] and [23, pp. 737–738]). Furthermore, the set

σ̂(r) is closed and since λ̂1(r) is isolated the second eigenvalue λ̂2(r) is well-defined
by

λ̂2(r) = inf
[
λ̂ ∈ σ̂(r) : λ̂ > λ̂1(r)

]
.
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Now, let ∂BL
r

1 = {u ∈ Lr(Ω) : ‖u‖Lr(Ω) = 1} and Mr = W 1,r
0 (Ω)∩∂BLr1 . Then,

λ̂2(r) admits the following variational characterization (see Cuesta-de Figueiredo-
Gossez [15]).

Proposition 2.12. There holds

λ̂2(r) = inf
γ̂∈Γ̂(r)

max
−1≤t≤1

‖∇γ̂(t)‖rLr(Ω) ,

where Γ̂(r) = {γ̂ ∈ C ([−1, 1],Mr) : γ̂(−1) = −û1(r), γ̂(1) = û1(r)}.

The Lusternik-Schnirelmann minimax scheme gives a whole strictly increasing

sequence
(
λ̂k(r)

)
k≥1

of eigenvalues, but it is not known if this sequence exhausts

the whole set σ̂(r). Indeed, this is true if N = 1 (ordinary differential equations)

or if r = 2 (linear eigenvalue problem). In the latter case by E
(
λ̂k(2)

)
, k ≥ 1, we

denote the eigenspace corresponding to the eigenvalue λ̂k(2), k ≥ 1.
Next, let us recall some basic facts about Morse theory. Let X be a Banach

space and let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X. For every

integer k ≥ 0, the term Hk(Y1, Y2) stands for the k
th
=-relative singular homology

group with integer coefficients. For k < 0, we have Hk(Y1, Y2) = 0. Let ϕ ∈ C1(X)
and let u ∈ X be an isolated critical point of ϕ with ϕ(u) = c (i.e., u ∈ Kc

ϕ). The
critical groups of ϕ at u ∈ Kc

ϕ are defined by

Ck(ϕ, u) = Hk(ϕc ∩ U,ϕc ∩ U \ {u}) for all k ≥ 0,

where U is a neighborhood of u such that Kϕ∩ϕc∩U = {u}. The excision property
of singular homology implies that this definition of critical groups is independent
of the particular choice of the neighborhood U .

Suppose that ϕ ∈ C1(X) satisfies the PS-condition and inf ϕ(Kϕ) > −∞. Let
c < inf ϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕc) for all k ≥ 0.

This definition is independent of the choice of the level c < inf ϕ(Kϕ) which is a
consequence of the Second Deformation Lemma stated in Lemma 2.3.

We assume that Kϕ is finite and introduce the following series in t ∈ R:

M(t, u) =
∑
k≥0

rankCk(ϕ, u)tk for all u ∈ Kϕ,

P (t,∞) =
∑
k≥0

rankCk(ϕ,∞)tk.

Then, the Morse relation reads as follows:∑
u∈Kϕ

M(t, u) = P (t,∞) + (1 + t)Q(t) for all t ∈ R, (2.6)

where Q(t) is a formal series in t ∈ R with nonnegative integer coefficients.
It is well-known that if a functional satisfies the PS-condition or the C-condition

and it is bounded below, then it is coercive (see Čaklović-Li-Willem [9] and Gasiński-
Papageorgiou [23, p. 614]). The converse is in general not true. However, in the
setting of this work the converse is true.
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More precisely, let f̂ : Ω× R→ R be a Carathéodory function such that∣∣∣f̂(x, s)
∣∣∣ ≤ a(x)

(
1 + |s|r−1

)
for a.a. x ∈ Ω, for all s ∈ R,

with a ∈ L∞(Ω)+, and p ≤ r < p∗. We set F̂ (x, s) =
∫ s

0
f̂(x, t)dt and consider the

C1-functional ϕ̂ : W 1,p
0 (Ω)→ R defined by

ϕ̂(u) =

∫
Ω

G(∇u)dx−
∫

Ω

F̂ (x, u)dx.

Proposition 2.13. If ϕ̂ is coercive, then it satisfies the PS-condition.

Proof. Suppose (un)n≥1 ⊆W 1,p
0 (Ω) is a PS-sequence, that is

|ϕ̂(un)| ≤ M̃ for some M̃ > 0, for all n ≥ 1, (2.7)

ϕ̂′(un)→ 0 in W−1,p′(Ω). (2.8)

The statement in (2.7) along with the coercivity of ϕ̂ implies that (un)n≥1 ⊆
W 1,p

0 (Ω) is bounded. Therefore, we may assume that

un ⇀ u in W 1,p
0 (Ω) and un → u in Lp(Ω). (2.9)

From (2.8) it follows∣∣∣∣〈A(un), v〉 −
∫

Ω

f̂(x, un)vdx

∣∣∣∣ ≤ εn‖v‖W 1,p
0 (Ω)

1 + ‖un‖W 1,p
0 (Ω)

,

for all v ∈ W 1,p
0 (Ω) with εn → 0+. Now, choosing v = un − u, passing to the limit

as n→∞, and using the convergence properties in (2.9) we obtain

lim
n→∞

〈A(un), un − u〉 = 0,

which by the (S)+-property of A (see Proposition 2.11) gives un → u in W 1,p
0 (Ω).

Hence, ϕ̂ fulfills the PS-condition. �

Finally we conclude this section by fixing our notation. Throughout this paper
we denote the norm of W 1,p

0 (Ω) through ‖ · ‖W 1,p
0 (Ω) and thanks to Poincare’s

inequality we have ‖u‖W 1,p
0 (Ω) = ‖∇u‖Lp(Ω) for all u ∈ W 1,p

0 (Ω). The norm of RN

is denoted by ‖·‖ and (·, ·)RN stands for the inner product in RN . For s ∈ R, we set

s± = max{±s, 0} and for u ∈ W 1,p
0 (Ω) we define u±(·) = u(·)±. It is well known

that

u± ∈W 1,p
0 (Ω), |u| = u+ + u−, u = u+ − u−.

The Lebesgue measure on RN is given by | · |N . Finally, for any Carathéodory
function h : Ω × R → R, we define the Nemytskij operator corresponding to the
function h by

Nh(u)(·) = h(·, u(·)) for all u ∈W 1,p
0 (Ω).
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3. Three solutions

This section is devoted to the study of problem (P )λ with λ > 0 appropriately
large. We prove the existence of at least three nontrivial smooth solutions including
complete sign information for these solutions. Precisely, it will be shown that the
first solution is positive, the second one is negative, and the last one has changing
sign (nodal).

Before we start with our results we state some stronger hypotheses on the map
a(·) as in H(a) which will be needed in our proofs.

H(a)’: a(ξ) = a0(‖ξ‖)ξ for all ξ ∈ RN with a0(t) > 0 for all t > 0, hypotheses
H(a)’(i)–(iii) are the same as the corresponding hypotheses H(a)(i)–(iii)
and

(iv) if G0(t) =
∫ t

0
sa0(s)ds for all t > 0, then t 7→ G0

(
t
1
q

)
is convex in

(0,+∞) and

lim sup
t→0+

G0(t)

tq
< +∞.

Remark 3.1. The examples presented in Section 2 still satisfy hypotheses H(a)’.
Note that hypothesis H(a)’(iv) implies

G(ξ) ≤ c6 (‖ξ‖q + ‖ξ‖p) for all ξ ∈ RN , (3.1)

with some c6 > 0.

The hypotheses on the perturbation f are the following:

H(f)1: f : Ω× R→ R is a Carathéodory function such that
(i) for every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that

|f(x, s)| ≤ aρ(x) for a.a. x ∈ Ω and for all |s| ≤ ρ;

(ii) lim
s→±∞

f(x, s)

|s|p−2s
= +∞ uniformly for a.a. x ∈ Ω;

(iii) lim
s→0

f(x, s)

|s|q−2s
= 0 uniformly for a.a. x ∈ Ω.

Remark 3.2. We point out that no growth restriction is imposed on f(x, ·). This
is in contrast to the considerations in [5] and [29], where it is required that f(x, ·)
has subcritical growth for a.a. x ∈ Ω.

Example 3.3. The following functions satisfy hypotheses H(f)1:

f1(x, s) = a(x)|s|r−2s and f2(x, s) = a(x)|s|p−2s ln(1 + |s|)

with a ∈ L∞(Ω) and p < r <∞.

Given any η > 0, by virtue of hypothesis H(f)1(ii), there exists M1 = M1(η) > 1
such that

f(x, s)s ≥ η|s|p for a.a. x ∈ Ω and for all |s| ≥M1. (3.2)

Let u ≡ ς ∈ [M1,+∞). Taking into account (3.2), q ≤ p, and M1 > 1, we conclude
for η = λ

0 ≥ λuq−1 − f(x, u) for a.a. x ∈ Ω. (3.3)
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Similarly, if v ≡ −ς, then

0 ≤ λ|v|q−2v − f(x, v) for a.a. x ∈ Ω.

Applying u and v, we introduce the following truncations of the reaction in problem
(P )λ:

h+
λ (x, s) =


0 if s < 0,

λsq−1 − f(x, s) if 0 ≤ s ≤ u,
λuq−1 − f(x, u) if u < s,

(3.4)

and

h−λ (x, s) =


λ|v|q−2v − f(x, v) if s < v,

λ|s|q−2s− f(x, s) if v ≤ s ≤ 0,

0 if 0 < s.

It is easy to verify that both mappings are Carathéodory functions. We setH±λ (x, s) =∫ s
0
h±λ (x, t)dt and consider the C1-functionals ϕ̂±λ : W 1,p

0 (Ω)→ R defined by

ϕ̂±λ (u) =

∫
Ω

G(∇u)dx−
∫

Ω

H±λ (x, u)dx.

Now, we are ready to produce two nontrivial constant sign solutions of (P )λ for
suitable λ > 0 large enough. In what follows, we use the notation

[0, u] =
{
u ∈W 1,p

0 (Ω) : 0 ≤ u(x) ≤ u a.e. in Ω
}
,

[v, 0] =
{
u ∈W 1,p

0 (Ω) : v ≤ u(x) ≤ 0 a.e. in Ω
}
.

Proposition 3.4. Suppose that hypotheses H(a)’ and H(f)1 are fulfilled and assume
that

λ >

{
qc6λ̂1(q) if q < p,

2qc6λ̂1(q) if q = p

with the positive constant c6 of Remark 3.1. Then problem (P )λ has at least two
nontrivial constant sign solutions

u0 ∈ [0, u] ∩ int
(
C1

0 (Ω)+

)
and v0 ∈ [v, 0] ∩

(
− int

(
C1

0 (Ω)+

))
.

Proof. We start with the existence of the positive solution. Thanks to the trun-
cation in (3.4) and Corollary 2.8, it is obvious that ϕ̂+

λ is coercive and taking into

account the Sobolev embedding theorem we verify that ϕ̂+
λ is sequentially weakly

lower semicontinuous as well. Hence, by virtue of the Weierstrass theorem, we find
u0 ∈W 1,p

0 (Ω) such that

ϕ̂+
λ (u0) = inf

[
ϕ̂+
λ (u) : u ∈W 1,p

0 (Ω)
]

= m̂+
λ . (3.5)

Given ε > 0, from hypothesis H(f)(iii), we can find δ = δ(ε) ∈ (0, u) such that

F (x, s) ≤ ε

q
|s|q for a.a. x ∈ Ω and for all |s| ≤ δ. (3.6)
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Recalling û1(q) ∈ int
(
C1

0 (Ω)+

)
, we choose t ∈ (0, 1) such that tû1(q)(x) ∈ [0, δ] for

all x ∈ Ω. Then, due to (3.1), (3.4), (3.6) combined with ‖û1(q)‖Lq(Ω) = 1 and the
fact that δ < u, we obtain

ϕ̂+
λ (tû1(q)) =

∫
Ω

G(∇(tû1(q)))dx−
∫

Ω

H+
λ (x, tû1(q))dx

=

∫
Ω

G(∇(tû1(q)))dx− λtq

q
‖û1(q)‖qLq(Ω) +

∫
Ω

F (x, tû1(q))dx

≤ c6
(
tq‖∇(û1(q))‖qLq(Ω) + tp‖∇(û1(q))‖pLp(Ω)

)
− λtq

q
+
εtq

q

= c6

(
tqλ̂1(q) + tp‖∇(û1(q))‖pLp(Ω)

)
− λ− ε

q
tq

= tq

[
qc6λ̂1(q) + ε− λ

q

]
+ c6t

p‖∇(û1(q))‖pLp(Ω).

(3.7)

Now, we choose ε such that

0 < ε <

{
λ− qc6λ̂1(q) if q < p,

λ− 2qc6λ̂1(q) if q = p.

In both cases the right-hand side of (3.7) can be estimated above by zero. This
gives (see also (3.5))

ϕ̂+
λ (u0) = m̂+

λ < 0 = ϕ̂+
λ (0),

which means that u0 6= 0 is nontrivial. Since u0 is the global minimum of ϕ̂+
λ , we

have
(
ϕ̂+
λ

)′
(u0) = 0 which results in

A(u0) = Nh+
λ

(u0). (3.8)

Taking −u−0 ∈ W
1,p
0 (Ω) as test function in (3.8) and applying Lemma 2.7(c) and

(3.4), it follows

c1
p− 1

‖∇u−0 ‖
p
Lp(Ω) ≤ 0

ensuring that u0 ≥ 0. Next, we choose (u0 − u)+ ∈ W 1,p
0 (Ω) as test function in

(3.8). With the aid of (3.3) and (3.4), we get〈
A(u0), (u0 − u)+

〉
=

∫
Ω

h+
λ (x, u0)(u0 − u)+dx

=

∫
Ω

λuq−1(u0 − u)+dx−
∫

Ω

f(x, u)(u0 − u)+dx

≤ 0.

From this we see that ∫
{u0>u}

(a(∇u0),∇u0)RNdx ≤ 0

meaning that, in combination with Lemma 2.7(c),

c1
p− 1

∫
{u0>u}

‖∇u0‖pdx ≤ 0.
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We conclude that |{u0 > u}|N = 0, thus u0 ≤ u. Recalling that u0 ≥ 0 we get
u0 ∈ [0, u] with u0 6≡ 0. Then, thanks to the definition of the truncation function
in (3.4), relation (3.8) becomes

A(u0) = λuq−1
0 −Nf (u0)

which can equivalently be written as

−div a(∇u0) = λuq−1
0 − f(x, u0) in Ω,

u0 = 0 on ∂Ω.

Since u0 ∈ L∞(Ω) (see Ladyzhenskaya-Ural′tseva [25, p. 286]) we can apply the
regularity results of Lieberman [26, p. 320] to obtain that u0 ∈ C1

0 (Ω) \ {0}. Given
ε ∈ (0, λ), owing to hypotheses H(f)1(i),(iii), we find a constant cε > 0 such that

f(x, s) ≤ εsq−1 + cεs
p−1 for a.a. x ∈ Ω and for all 0 ≤ s ≤ u.

Hence, one has

div a(∇u0(x)) ≤ cεu0(x)p−1 a.e. in Ω. (3.9)

Then, the strong maximum principle of Pucci-Serrin [31, Theorem 2.5.1] yields
u0(x) > 0 for all x ∈ Ω. Applying the Boundary Point Lemma (see again Pucci-
Serrin [31, Theorem 5.5.1]) gives u0 ∈ int

(
C1

0 (Ω)+

)
.

Similarly, working with ϕ̂−λ instead of ϕ̂+
λ , we establish the existence of a non-

trivial negative solution v0 ∈ [v, 0] ∩
(
− int

(
C1

0 (Ω)+

))
. �

Our next proceeding is the proof of the existence of extremal solutions of (P )λ
with λ > 0 large enough as before. That means, we prove the existence of a smallest
positive solution and a greatest negative solution, both of them are nontrivial and
smooth.

To this end, let S+(λ) be the set containing all nontrivial positive solutions of
problem (P )λ. As shown in Filippakis-Kristály-Papageorgiou [19, p. 431], exploit-
ing the monotonicity of a(·) (see Lemma 2.7(a)), we have that S+(λ) is downward
directed, i.e., if u1, u2 ∈ S+(λ), then there is an element ũ ∈ S+(λ) such that
ũ ≤ u1, ũ ≤ u2. Therefore, without loss of generality, we can restrict our treatment
to the set

Ŝ+(λ) = S+(λ) ∩ [0, u].

Likewise, if S−(λ) is the set of all nontrivial negative solutions of problem (P )λ, we
can focus on the set

Ŝ−(λ) = S−(λ) ∩ [v, 0].

By means of Proposition 3.4, we know that both sets are nonempty, i.e., Ŝ+(λ) 6=
∅ and Ŝ−(λ) 6= ∅. Additionally, by truncating f(x, ·) at v (from below) and u (from
above), we may assume without loss of generality that

|f(x, s)| ≤ â(x) for a.a. x ∈ Ω and for all s ∈ R with â ∈ L∞(Ω)+

(see hypothesis H(f)1(i)). Using this observation and hypothesis H(f)1(iii), we see
that for a given ε > 0 and r ∈ (p, p∗), we can find c7 = c7(ε, r) > 0 such that

f(x, s)s ≤ ε|s|q + c7|s|r for a.a. x ∈ Ω and for all s ∈ R. (3.10)
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Let λ > 0 and ε ∈ (0, λ). We consider the following auxiliary Dirichlet problem

−div a(∇u) = (λ− ε)|u|q−2u− c7|u|r−2u in Ω,

u = 0 on ∂Ω.
(3.11)

Our next result is about the uniqueness of constant sign solutions of problem
(3.11).

Proposition 3.5. If hypotheses H(a)’ hold and if

λ >

{
qc6λ̂1(q) if q < p,

2qc6λ̂1(q) if q = p

is satisfied, then problem (3.11) has a unique nontrivial positive solution u∗ ∈
int
(
C1

0 (Ω)+

)
and by virtue of the oddness of (3.11), v∗ = −u∗ ∈ − int

(
C1

0 (Ω)+

)
is

the unique nontrivial negative solution.

Proof. First, we establish the existence of a nontrivial positive solution for problem
(3.11). To this end, we consider the C1-functional ψ+

λ : W 1,p
0 (Ω)→ R defined by

ψ+
λ (u) =

∫
Ω

G(∇u)dx− λ− ε
q
‖u+‖qLq(Ω) +

c7
r
‖u+‖rLr(Ω).

Since q ≤ p < r and due to Corollary 2.8, we easily see that ψ+
λ is coercive. In

addition, one verifies its property to be sequentially weakly lower semicontinuous.
Hence, its global minimizer exists, namely u∗ ∈W 1,p

0 (Ω) satisfies

ψ+
λ (u∗) = inf

[
ψ+
λ (u) : u ∈W 1,p

0 (Ω)
]
. (3.12)

As in the proof of Proposition 3.4, the choice of λ > 0 leads to

ψ+
λ (u∗) < 0 = ψ+

λ (0)

meaning that u∗ 6= 0. From (3.12) we obtain
(
ψ+
λ

)′
(u∗) = 0 which results in

A(u∗) = (λ− ε)
(
u+
∗
)q−1 − c7

(
u+
∗
)r−1

. (3.13)

Acting on (3.13) with −u−∗ ∈W
1,p
0 (Ω) and using Lemma 2.7, we check at once that

u∗ ≥ 0 and u∗ 6= 0. Then, (3.13) becomes

A(u∗) = (λ− ε)uq−1
∗ − c7ur−1

∗ .

Hence, u∗ is a nontrivial positive solution of (3.11). Moreover, as before (see the
proof of Proposition 3.4) using the nonlinear regularity theory (see [25], [26]) and
the nonlinear maximum principle (see [31]), it holds u∗ ∈ int

(
C1

0 (Ω)+

)
.

It remains to show the uniqueness of this solution u∗. For this purpose, we
consider the integral functional σ+ : L1(Ω)→ R = R ∪ {∞} defined by

σ+(u) =


∫

Ω

G
(
∇u

1
q

)
dx if u ≥ 0, u

1
q ∈W 1,p

0 (Ω),

+∞ otherwise.

Let u1, u2 ∈ domσ+ and let u = (tu1 + (1− t)u2)
1
q with t ∈ [0, 1]. From Dı́az-Saá

[17, Lemma 1] we have

‖∇u(x)‖ ≤
(
t
∥∥∥∇u1(x)

1
q

∥∥∥q + (1− t)
∥∥∥∇u2(x)

1
q

∥∥∥q) 1
q

a.e. in Ω,
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thus,

G0 (‖∇u(x)‖) ≤ G0

((
t
∥∥∥∇u1(x)

1
q

∥∥∥q + (1− t)
∥∥∥∇u2(x)

1
q

∥∥∥q) 1
q

)
≤ tG0

(∥∥∥∇u1(x)
1
q

∥∥∥)+ (1− t)G0

(∥∥∥∇u2(x)
1
q

∥∥∥) ,
thanks to hypothesis H(a)(iv) and the fact that G0 is increasing. Since G(ξ) =
G0(‖ξ‖) for all ξ ∈ RN , it follows that

G(∇u(x)) ≤ tG
(
∇u1(x)

1
q

)
+ (1− t)G

(
∇u2(x)

1
q

)
a.e. in Ω

proving that σ+ is convex. Using Fatou’s Lemma we infer that σ+ is lower semi-
continuous as well.

Let u, v ∈W 1,p
0 (Ω) be two nontrivial positive solutions of (3.11). As done in the

first part of the proof, we know that u, v ∈ int
(
C1

0 (Ω)+

)
, thus u, v ∈ domσ+. Let

h ∈ C1
0 (Ω). For t ∈ (0, 1) sufficiently small we have uq + th, vq + th ∈ int

(
C1

0 (Ω)+

)
which implies that σ+ is Gateaux differentiable at uq and vq in the direction h.
Moreover, via the chain rule, we obtain

σ′+ (uq) (h) =
1

q

∫
Ω

−div a(∇u)

uq−1
hdx, (3.14)

σ′+ (vq) (h) =
1

q

∫
Ω

−div a(∇v)

vq−1
hdx. (3.15)

Since σ+ is convex, it is clear that σ′+ is monotone. Therefore, using (3.14) and
(3.15), it holds

0 ≤
〈
σ′+ (uq)− σ′+ (vq) , uq − vq

〉
L1(Ω)

=
1

q

∫
Ω

(
−div a(∇u)

uq−1
+

div a(∇v)

vq−1

)
(uq − vq) dx

=
1

q

∫
Ω

(
(λ− ε)uq−1 − c7ur−1

uq−1
− (λ− ε)vq−1 − c7vr−1

vq−1

)
(uq − vq) dx

=
c7
q

∫
Ω

(
vr−q − ur−q

)
(uq − vq) dx.

Since s 7→ sr−q is strictly increasing in (0,∞), it follows that u = v, hence u∗ ∈
int
(
C1

0 (Ω)+

)
is the unique nontrivial positive solution of (3.11).

Evidently the oddness of (3.11) implies that v∗ = −u∗ ∈ − int
(
C1

0 (Ω)+

)
is the

unique nontrivial negative solution of (3.11). �

Now, these two solutions u∗ ∈ int
(
C1

0 (Ω)+

)
and v∗ = − int

(
C1

0 (Ω)+

)
of the

auxiliary problem (3.11) lead to the existence of extremal nontrivial constant sign
solutions for problem (P )λ when λ > 0 is sufficiently large. We obtain the following
result.

Proposition 3.6. Let hypotheses H(a)’ and H(f)1 hold and suppose

λ >

{
qc6λ̂1(q) if q < p,

2qc6λ̂1(q) if q = p.

Then problem (P )λ has a smallest nontrivial positive solution u+ ∈ int
(
C1

0 (Ω)+

)
and a greatest nontrivial negative solution v− ∈ − int

(
C1

0 (Ω)+

)
.
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Proof. As we already noted, it suffices to establish the existence of a smallest non-
trivial element in Ŝ+(λ) = S+(λ) ∩ [0, u] ⊆ int

(
C1

0 (Ω)+

)
and the existence of a

greatest nontrivial negative solution in Ŝ−(λ) = S−(λ) ∩ [v, 0] ⊆ − int
(
C1

0 (Ω)+

)
.

Claim: u∗ ≤ u for all u ∈ Ŝ+(λ).

Let ũ ∈ Ŝ∗(λ) and consider the Carathéodory function

γ+
λ (x, s) =


0 if s < 0,

(λ− ε)sq−1 − c7sr−1 if 0 ≤ s ≤ ũ(x),

(λ− ε)ũ(x)q−1 − c7ũ(x)r−1 if ũ(x) < s.

(3.16)

We set Γ+
λ (x, s) =

∫ s
0
γ+
λ (x, t)dt and consider the C1-functional ψ̂+

λ : W 1,p
0 (Ω)→ R

defined by

ψ̂+
λ (u) =

∫
Ω

G(∇u)dx−
∫

Ω

Γ+
λ (x, u)dx.

Thanks to (3.16) it is obvious that ψ̂+
λ is coercive and it is also sequentially weakly

lower semicontinuous. Thus, we find û∗ ∈W 1,p
0 (Ω) such that

ψ̂+
λ (û∗) = inf

[
ψ̂+
λ (u) : u ∈W 1,p

0 (Ω)
]
. (3.17)

As before (see the proof of Proposition 3.4 and recall the choice of λ > 0), we have

ψ̂+
λ (û∗) < 0 = ψ̂+

λ (0),

hence û∗ 6= 0. From (3.17) we have

A (û∗) = Nγ+
λ

(û∗) . (3.18)

Applying again −û−∗ ∈ W
1,p
0 (Ω) as test function to (3.18), it follows from Lemma

2.7(c) that û∗ ≥ 0, û∗ 6= 0. Furthermore, we act on (3.18) with (û∗ − ũ)
+ ∈

W 1,p
0 (Ω). Then, from (3.10), (3.16) and the fact that ũ ∈ Ŝ+(λ), it follows〈

A (û∗) , (û∗ − ũ)
+
〉

=

∫
Ω

γ+
λ (x, û∗) (û∗ − ũ)

+
dx

=

∫
Ω

(
(λ− ε)ũq−1 − c7ũr−1

)
(û∗ − ũ)

+
dx

≤
∫

Ω

(
λũq−1 − f (u, ũ)

)
(û∗ − ũ)

+
dx

=
〈
A (ũ) , (û∗ − ũ)

+
〉
.

We deduce ∫
{û∗>ũ}

(a (∇û∗)− a (∇ũ) ,∇û∗ −∇ũ)RN dx ≤ 0,

which implies that |{û∗ > ũ}|N = 0 due to Lemma 2.7(a). Hence

0 6= û∗ ∈ [0, ũ] =
{
u ∈W 1,p

0 (Ω) : 0 ≤ u(x) ≤ ũ(x) a.e. in Ω
}
.

By virtue of (3.16) and (3.18), we see that û∗ is a nontrivial positive solution of
(3.11), hence û∗ = u∗ ∈ int

(
C1

0 (Ω)+

)
(see Proposition 3.5). Therefore u∗ ≤ ũ and

since ũ ∈ Ŝ+(λ) is arbitrary, we have proved the claim.
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Let C ⊆ Ŝ+(λ) be a chain, i.e., a totally ordered subset of Ŝ+(λ). According to

Dunford-Schwartz [18, p. 336], there exists a sequence (un)n≥1 ⊆ Ŝ+(λ) such that

inf C = inf
n≥1

un.

We have

A(un) = λuq−1
n −Nf (un), u∗ ≤ un ≤ u for all n ≥ 1. (3.19)

Therefore, (un)n≥1 ⊆W 1,p
0 (Ω) is bounded and we may assume that

un ⇀ u in W 1,p
0 (Ω) and un → u in Lp(Ω). (3.20)

Acting on (3.19) with the test function un − u ∈W 1,p
0 (Ω) and passing to the limit

as n→∞ combined with (3.20), we obtain

lim
n→∞

〈A(un), un − u〉 = 0. (3.21)

By means of Proposition 2.11, we know that A fulfills the (S+)-property which in

view of (3.21) and the weak convergence in W 1,p
0 (Ω) gives un → u in W 1,p

0 (Ω).
Then, we directly obtain from (3.19) that

A(u) = λuq−1 −Nf (u), u∗ ≤ u ≤ u

meaning that u ∈ Ŝ+(λ) and u = inf C. Since C is an arbitrary chain in Ŝ+(λ), the

Kuratowski-Zorn Lemma implies that Ŝ+(λ) has a minimal element u+ ∈ Ŝ+(λ).

Since Ŝ+(λ) is downward directed, we conclude that u+ is the smallest nontrivial
positive solution of (P )λ.

Similarly, working with the set Ŝ−(λ) and using again the Kuratowski-Zorn
Lemma, we obtain that v− ∈ − int

(
C1

0 (Ω)+

)
is the greatest nontrivial negative

solution of (P )λ. �

Finally, we will prove the existence of a sign-changing solution y0 of (P )λ lying
between these two extremal nontrivial constant sign solutions obtained in the last
proposition.

Proposition 3.7. If hypotheses H(a)’ and H(f)1 hold and if

λ >

{
qc6λ̂2(q) if q < p,

2qc6λ̂2(q) if q = p,

is satisfied, then problem (P )λ has a nodal solution y0 ∈ C1
0

(
Ω
)
.

Proof. Let u+ ∈ int
(
C1

0 (Ω)+

)
and v− ∈ − int

(
C1

0 (Ω)+

)
be the two extremal non-

trivial constant sign solutions of (P )λ produced in Proposition 3.6. We introduce
the following truncation function of the reaction of problem (P )λ

hλ(x, s) =


λ |v−(x)|q−2

v−(x)− f (x, v−(x)) if s < v−(x),

λ |s|q−2
s− f (x, s) if v−(x) ≤ s ≤ u+(x),

λu+(x)q−1 − f (x, u+(x)) if u+(x) < s.

(3.22)

Of course, h : Ω × R → R is a Carathéodory function. In addition, we need
the positive and negative truncations of hλ(x, ·), namely the Carathéodory func-
tions h±λ (x, s) = hλ (x,±s±). Let Hλ (x, s) =

∫ s
0
hλ (x, t) dt and H±λ (x, s) =
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0
h±λ (x, t) dt. We consider the C1-functionals βλ, β

±
λ : W 1,p

0 (Ω) → R defined
by

βλ(u) =

∫
Ω

G (∇u) dx−
∫

Ω

Hλ(x, u)dx,

β±λ (u) =

∫
Ω

G(∇u)dx−
∫

Ω

H±λ (x, u)dx.

Claim 1:

Kβλ ⊆ [v−, u+] =
{
u ∈W 1,p

0 (Ω) : v−(x) ≤ u(x) ≤ u+(x) a.e. in Ω
}
,

Kβ+
λ

= {0, u+} , Kβ−λ
= {v−, 0} .

Let u ∈ Kβλ . Then

A(u) = Nhλ(u). (3.23)

Taking (u− u+)
+ ∈W 1,p

0 (Ω) as test function in (3.23) we derive thanks to (3.22)〈
A(u), (u− u+)

+
〉

=

∫
Ω

hλ(x, u) (u− u+)
+
dx

=

∫
Ω

[
λuq−1

+ − f(x, u+)
]

(u− u+)
+
dx

=
〈
A (u+) , (u− u+)

+
〉
,

hence, ∫
{u>u+}

(a(∇u)− a(∇u+),∇u−∇u+)RN dx = 0.

This gives |{u > u+}|N = 0 (see Lemma 2.7(a)), thus u ≤ u+.

Similarly, acting on (3.23) with (v− − u)+ ∈W 1,p
0 (Ω) we obtain v− ≤ u. Hence

Kβλ ⊆ [v−, u+].

In the same way, we show that

Kβ+
λ
⊆ [0, u+] =

{
u ∈W 1,p

0 (Ω) : 0 ≤ u(x) ≤ u+(x) a.e. in Ω
}
,

Kβ−λ
⊆ [v−, 0] =

{
u ∈W 1,p

0 (Ω) : v−(x) ≤ u(x) ≤ 0 a.e. in Ω
}
.

Since u+ and v− are the extremal constant sign solutions of (P )λ and due to the
fact that the positive and negative solutions of (P )λ are exactly the critical points
of β+

λ and β−λ , respectively, we infer that

Kβ+
λ

= {0, u+} and Kβ−λ
= {v−, 0}.

This proves Claim 1.
Claim 2: u+ ∈ int

(
C1

0 (Ω)+

)
and v− ∈ − int

(
C1

0 (Ω)+

)
are local minimizers of

βλ.
Clearly, the functional β+

λ is coercive and sequentially weakly lower semicontin-

uous. Then we find û ∈W 1,p
0 (Ω) such that

β+
λ (û) = inf

{
β+
λ (u) : u ∈W 1,p

0 (Ω)
}
.

As in the proof of Proposition 3.4, we can show that β+
λ (û) < 0 = β+

λ (0), hence

û 6= 0. Therefore û = u+ ∈ int
(
C1

0 (Ω)+

)
(see Claim 1). Note that βλ

∣∣
C1

0 (Ω)+
=
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β+
λ

∣∣
C1

0 (Ω)+
. Then, u+ ∈ int

(
C1

0 (Ω)+

)
is a local C1

0 (Ω)-minimizer of βλ and by

virtue of Proposition 2.10 u+ is a local W 1,p
0 (Ω)-minimizer of βλ. Similarly, using

β−λ instead of β+
λ , we obtain the assertion for v− ∈ − int

(
C1

0 (Ω)+

)
. This proves

Claim 2.
Without loss of generality, we may assume that βλ(v−) ≤ βλ(u+) (the analysis is

similar if the opposite inequality holds). Furthermore, we may assume that u+ is an
isolated element of Kβλ (otherwise we have a whole sequence of distinct nontrivial
solutions of (P )λ). Then, there exists ρ ∈ (0, 1) such that ‖v− − u+‖W 1,p

0 (Ω) > ρ

and

βλ (v−) ≤ βλ (u+) < inf
[
βλ(u) : ‖u− u+‖W 1,p

0 (Ω) = ρ
]

= ηλρ (3.24)

(see, for example, Aizicovici-Papageorgiou-Staicu [1, Proof of Proposition 29]).
Since βλ is coercive it satisfies the PS-condition (see Proposition 2.13). This fact
and (3.24) permit the application of the Mountain Pass Theorem (Theorem 2.2),

which ensures the existence of an element y0 ∈W 1,p
0 (Ω) such that

y0 ∈ Kβλ ⊆ [v−, u+] (see Claim 1) and ηλρ ≤ βλ(y0). (3.25)

From (3.25) it follows that y0 is a solution of (P )λ (see (3.22)) and y0 6∈ {v−, u+}
(see also (3.25)). The nonlinear regularity theory implies that y0 ∈ C1

0 (Ω). Since
y0 ∈ [v−, u+] \ {v−, u+}, the extremality of v− and u+ implies that y0 is nodal
provided y0 6= 0.

Thanks to Theorem 2.2 we also have that

βλ(y0) = inf
γ∈Γ

max
0≤t≤1

βλ(γ(t)), (3.26)

where Γ =
{
γ ∈ C

(
[0, 1],W 1,p

0 (Ω)
)

: γ(0) = v−, γ(1) = u+

}
. In order to show the

nontriviality of y0 it suffices to produce a path γ∗ ∈ Γ such that βλ(γ∗(t)) 6= 0 for
all t ∈ [0, 1] (see (3.26)).

By means of hypothesis H(f)1(iii), given ε > 0, we find δ = δ(ε) > 0 such that

|f(x, s)| ≤ ε|s|q−1 for a.a. x ∈ Ω and for all |s| ≤ δ,
which implies that

F (x, s) ≤ ε

q
|s|q for a.a. x ∈ Ω and for all |s| ≤ δ. (3.27)

Recall (see Section 2) that ∂BL
q

1 =
{
u ∈ Lq(Ω) : ‖u‖Lq(Ω) = 1

}
andMq = W 1,q

0 (Ω)∩
∂BL

q

1 . Defining M c
q = Mq ∩ C1

0 (Ω), we endow Mq with the relative W 1,p
0 (Ω)-

topology and M c
q with the relative C1

0 (Ω)-topology. Evidently, M c
q is dense in Mq

which implies that C
(
[−1, 1],M c

q

)
is dense in C ([−1, 1],Mq) as well. We consider

the following two sets of continuous paths

Γ̂(q) = {γ̂ ∈ C ([−1, 1],Mq) : γ̂(−1) = −û1(q), γ̂(1) = û1(q)} , (cf. Section 2),

Γ̂c(q) =
{
γ̂ ∈ C

(
[−1, 1],M c

q

)
: γ̂(−1) = −û1(q), γ̂(1) = û1(q)

}
.

Note that Γ̂c(q) is dense in Γ̂(q). Taking into account the variational characteriza-

tion of the second eigenvalue λ̂2(q) (see Proposition 2.12), we find γ̂ ∈ Γ̂(q) such
that

max
−1≤t≤1

‖∇γ̂(t)‖qLq(Ω) < λ̂2(q) +
δ

2
. (3.28)
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The density of Γ̂c(q) in Γ̂(q) implies that for a given ε > 0 there exists γ̂0 ∈ Γ̂c(q)
such that

max
−1≤t≤1

‖γ̂(t)− γ̂0(t)‖W 1,q
0 (Ω) < ε,

from which we derive that

max
−1≤t≤1

‖∇γ̂(t)−∇γ̂0(t)‖Lq(Ω) < ε. (3.29)

Combining (3.28) and (3.29), there holds, for every t ∈ [−1, 1],

‖∇γ̂0(t)‖Lq(Ω) ≤ ‖∇γ̂0(t)−∇γ̂(t)‖Lq(Ω) + ‖∇γ̂(t)‖Lq(Ω)

< ε+

(
λ̂2(q) +

δ

2

) 1
q

.

Choosing 0 < ε <
(
λ̂2(q) + δ

) 1
q −

(
λ̂2(q) + δ

2

) 1
q

, we obtain

‖∇γ̂0(t)‖Lq(Ω) <
(
λ̂2(q) + δ

) 1
q

for all t ∈ [−1, 1],

meaning that

max
−1≤t≤1

‖∇γ̂0(t)‖qLq(Ω) < λ̂2(q) + δ. (3.30)

Since γ̂0 ([−1, 1]) ⊆ C1
0 (Ω) is compact and due to u+ ∈ int

(
C1

0 (Ω)+

)
, v− ∈ − int

(
C1

0 (Ω)+

)
,

we can find η ∈ (0, 1) such that

|ηu(x)| ≤ δ (3.31)

for all x ∈ Ω, all u ∈ γ̂0 ([−1, 1]), and ηu ∈ [v−, u+] for all u ∈ γ̂0 ([−1, 1]).
First let us suppose that q < p. Then, thanks to Corollary 2.8, ‖u‖Lq(Ω) = 1,

(3.27), (3.30), (3.31), and u ∈ γ̂0 ([−1, 1]), it follows

βλ(ηu) =

∫
Ω

G(∇(ηu))dx−
∫

Ω

Hλ(x, ηu)dx

≤ c5
(
ηq‖∇u‖qLq(Ω) + ηp‖∇u‖pLp(Ω)

)
− ληq

q
+

∫
Ω

F (x, ηu)dx

≤ c5
(
ηq‖∇u‖qLq(Ω) + ηp‖∇u‖pLp(Ω)

)
− ληq

q
+
ε

q
ηq

≤ ηq
[
c5

(
λ̂2(q) + δ

)
− λ− ε

q

]
+ c5η

p‖∇u‖pLp(Ω).

(3.32)

Since γ̂0([−1, 1]) ⊆ C1
0 (Ω) is compact, there exists ε∗ > 0 such that

‖∇u‖pLp(Ω) ≤ ε
∗ for all u ∈ γ̂0([−1, 1]).

We choose ε > 0 and δ ∈ (0, ε) such that qc5δ + ε < λ − qc5λ̂2(q). Then, due to
(3.32), it holds

βλ(ηu) ≤ −ηq ε̂∗ + ηpε∗ for some ε̂∗ > 0.

Because q < p, by choosing η ∈ (0, 1) even smaller if necessary, we get

βλ(ηu) < 0 for all u ∈ γ̂0([−1, 1]).

If q = p, the above argument works for λ > 2qc5λ̂2(q).
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Setting γ0 = ηγ̂0, we see that γ0 is a continuous path inW 1,p
0 (Ω)

(
since γ0([−1, 1]) ⊆ C1

0 (Ω)
)
,

which connects −ηû1(q) and ηû1(q) satisfying

βλ
∣∣
γ0
< 0. (3.33)

Recalling that Kβ+
λ

= {0, u+} (see Claim 1), we have

β+
λ (u+) = inf

u∈W 1,p
0 (Ω)

β+
λ (u) < 0 = β+

λ (0) (3.34)

(cf. the proof of Claim 2). Invoking the Second Deformation Lemma (see Lemma
2.3) with a = β+

λ (u+) < 0 = β+
λ (0) = b, we find a homotopy h : [0, 1] ×((

β+
λ

)0 \ {0})→ (
β+
λ

)0
such that

h
(

1,
(
β+
λ

)0 \ {0}) = {u+} (3.35)

(see (3.34) and Claim 1) and

β+
λ (h(t, u)) ≤ β+

λ (u) for all t ∈ [0, 1] and all u ∈
(
β+
λ

)0 \ {0}. (3.36)

We set γ+(t) = (h(t, ηû1(q)))
+

for all t ∈ [0, 1] (see (3.33)). Obviously, γ+ is a

continuous path in W 1,p
0 (Ω) and we have

γ+(0) = (h(0, ηû1(q)))
+

= ηû1(q)

γ+(1) = (h(1, ηû1(q))
+

= u+,

due to (3.35). Furthermore, (3.36) and (3.33) imply that

β+
λ (γ+(t)) ≤ β+

λ (ηû1(q)) < 0 for all t ∈ [0, 1].

Hence, β+
λ

∣∣
γ+

< 0. If W p
+ = {u ∈W 1,p

0 (Ω) : u(x) ≥ 0 a.e. in Ω}, then

βλ
∣∣
Wp

+

= β+
λ

∣∣
Wp

+

and im γ+ ⊆W p
+,

which yields

βλ
∣∣
γ+

< 0. (3.37)

In a similar fashion, we produce another continuous path γ− in W 1,p
0 (Ω) which

connects −ηû1(q) and v−. Furthermore, we have again

βλ
∣∣
γ−

< 0. (3.38)

We concatenate γ−, γ0, and γ+ to obtain a continuous path γ∗ ∈ Γ such that

βλ
∣∣
γ∗
< 0,

due to (3.33), (3.37), and (3.38). This implies that y0 6= 0, so y0 ∈ C1
0 (Ω) is a nodal

solution of (P )λ. �

Now, we can state the following multiplicity result for problem (P )λ.

Theorem 3.8. If hypotheses H(a)1 and H(f)1 hold and assume

λ >

{
qc6λ̂2(q) if q < p,

2qc6λ̂2(q) if q = p,

then problem (P )λ has at least three nontrivial solutions, namely u0 ∈ int
(
C1

0 (Ω)+

)
, v0 ∈

− int
(
C1

0 (Ω)+

)
and a nodal solution y0 ∈ [v0, u0] ∩ C1

0 (Ω). Furthermore, (P )λ has
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a smallest nontrivial positive solution u+ ∈ int
(
C1

0 (Ω)+

)
and a greatest nontrivial

negative solution v− ∈ − int
(
C1

0 (Ω)+

)
.

Remark 3.9. Note that if q = p and a(ξ) = ‖ξ‖p−2ξ for all ξ ∈ RN , then c6 = 1
2q

and consequently 2qc6λ̂2(q) = λ̂2(q). Therefore, Theorem 3.8 recovers the multi-
plicity results of [2], [3], [33], [34] (where p = 2) and [5], [8], [29] (where p > 1). In
fact, even in this special case, our result is more general than those in the afore-
mentioned works. Indeed, in the semilinear works (i.e., p = 2), the perturbation
f(x, s) = f(s) is either C1 (see [2], [3], [33]) or Lipschitz continuous (see [34]). In
the quasilinear works (i.e., p > 1, see [5], [29]), the perturbation f(x, s) is assumed
to have strictly subcritical growth in the variable s ∈ R. In contrast here no growth
restriction is imposed on f(x, ·) (see hypothesis H(f)1(i)).

4. The (p, 2)-equation

In this section we consider the special case a(ξ) = ‖ξ‖p−2ξ + ξ for all ξ ∈ RN
with 2 < p <∞ and q = 2. Then, problem (P )λ becomes

−∆pu−∆u = λu− f(x, u) in Ω,

u = 0 on ∂Ω.
(Q)λ

Applying Morse theory (critical groups), we are going to show that for all λ > 0
sufficiently large not being in the spectrum of (−∆, H1

0 (Ω)), problem (Q)λ has at
least four nontrivial smooth solutions whereby two of them have constant sign and
the other ones have changing sign. To do so, we need to strengthen our hypotheses
on the perturbation f : Ω× R→ R in the following way.

H(f)2: f : Ω × R → R is a measurable function such that f(x, ·) ∈ C1(R) for a.a.
x ∈ Ω and
(i) |f ′s(x, s)| ≤ c|s|r−2 for a.a. x ∈ Ω, for all s ∈ R, with c > 0, and

p < r < p∗;

(ii) lim
s→±∞

f(x, s)

|s|p−2s
= +∞ uniformly for a.a. x ∈ Ω;

(iii) f ′s(x, 0) = lim
s→0

f(x, s)

s
= 0 uniformly for a.a. x ∈ Ω.

Remark 4.1. These hypotheses are similar to those in H(f)1. However, we now
require that f(x, ·) is differentiable for a.a. x ∈ Ω and exhibits strictly subcritical
growth. Note that we can find ε∗ > 0 such that s 7→ λs − f(x, s) + ε∗|s|r−2s is
nondecreasing on R for a.a. x ∈ Ω.

We have the following multiplicity theorem for problem (Q)λ.

Theorem 4.2. Let hypotheses H(f)2 be satisfied and let λ > λ̂2(2), λ 6∈ σ̂(2),
then problem (Q)λ has at least four nontrivial solutions whereby two of them have
constant sign, namely u0 ∈ int

(
C1

0 (Ω)+

)
, v0 ∈ − int

(
C1

0 (Ω)+

)
, and two of them

have changing sign, namely y0, ŷ ∈ C1
0 (Ω).

Proof. Taking into account Theorem 3.8 we already know the existence of three
nontrivial solutions

u0 ∈ int
(
C1

0 (Ω)+

)
, v0 ∈ − int

(
C1

0 (Ω)+

)
, and y0 ∈ [v0, u0]∩ ∈ C1

0 (Ω).
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Moreover, we may assume that u0, v0 are extremal constant sign solutions. In the
present case we have a(ξ) = ‖ξ‖p−2ξ + ξ for all ξ ∈ RN . Hence,

∇a(ξ) = ‖ξ‖p−2

(
I + (p− 2)

ξ ⊗ ξ
‖ξ‖2

)
+ I for all ξ ∈ RN \ {0}.

It follows that

(∇a(ξ)y, y)RN ≥ ‖y‖
2 for all ξ, y ∈ RN .

Invoking the tangency principle of Pucci-Serrin [31, Theorem 2.5.2], we have

v0(x) < y0(x) < u0(x) for all x ∈ Ω. (4.1)

As already observed in Remark 4.1, there exists ε∗ > 0 such that

s 7→ λs− f(x, s) + ε∗|s|r−2s is nondecreasing on R for a.a. x ∈ Ω. (4.2)

Applying (4.1) and (4.2) we derive

−∆pu0(x)−∆u0(x) + ε∗u0(x)r−1 = λu0(x)− f(x, u0(x)) + ε∗u0(x)r−1

≥ λy0(x)− f(x, y0(x)) + ε∗|y0(x)|r−2y0(x)

= −∆py0(x)−∆y0(x) + ε∗|y0(x)|r−2y0(x)

almost everywhere in Ω. Since y0, u0 ∈ C1
0 (Ω) and (4.1) holds, we infer from

Proposition 2.5 that

y0 ∈ int
C1

0 (Ω)
[v0, u0]. (4.3)

The energy functional of problem (Q)λ, namely ϕλ : W 1,p
0 (Ω)→ R, is defined by

ϕλ(u) =
1

p
‖∇u‖pLp(Ω) +

1

2
‖∇u‖2L2(Ω) −

λ

2
‖u‖2L2(Ω) +

∫
Ω

F (x, u)dx.

Evidently, ϕλ ∈ C2(W 1,p
0 (Ω)). Let βλ : W 1,p

0 (Ω) → R be the functional obtained
by truncating the reaction of (Q)λ at {v0(x), u0(x)} as in the proof of Proposition

3.7. We have βλ ∈ C2−0(W 1,p
0 (Ω)) and

βλ
∣∣
[v0,u0]

= ϕλ
∣∣
[v0,u0]

(see (3.22)). Both functionals are coercive, consequently they satisfy the PS-
condition (see Proposition 2.13). We consider the homotopy

h(t, u) = tβλ(u) + (1− t)ϕλ(u) for all t ∈ [0, 1] and all u ∈W 1,p
0 (Ω).

Suppose that we can find (tn)n≥1 ⊆ [0, 1] and (un)n≥1 ⊆W 1,p
0 (Ω) such that

tn → t, un → y0 in W 1,p
0 (Ω) and h′u(tn, un) = 0 for all n ≥ 1. (4.4)

Then, we have

∆pun + ∆un = tnNhλ(un) + (1− t)Nf (un)

meaning that

−∆pun −∆un = tnhλ(x, un) + (1− t)f(x, un) in Ω,

un = 0 on ∂Ω,
(4.5)

for all n ≥ 1. From Ladyzhenskaya-Ural′tseva [25, p. 286] we know that the
solutions of (4.5) are essentially bounded, i.e., there exists M2 > 0 such that

‖un‖L∞(Ω) ≤M2 for all n ≥ 1.
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Then, the regularity results of Lieberman [26, p. 320] imply the existence of γ ∈
(0, 1) and M3 > 0 such that

un ∈ C1,γ
0 (Ω) and ‖un‖C1,γ

0 (Ω) ≤M3 for all n ≥ 1.

Since C1,γ
0 (Ω) is compactly embedded in C1

0 (Ω), it follows from (4.4) that

un → y0 in C1
0 (Ω).

Due to (4.3) we conclude that

un ∈ [v0, u0] \ {0} for all n ≥ n0.

Hence, the sequence (un)n≥n0 contains only nodal solutions of (Q)λ and from there
we are done.

Accordingly, we may assume that there exists ρ ∈ (0, 1) small such that

Bρ(y0) ∩Kh(t,0) = {y0} for all t ∈ [0, 1]

with

Bρ(y0) =
{
u ∈W 1,p

0 (Ω) : ‖u− y0‖ ≤ ρ
}
.

Invoking the homotopy invariance property of critical groups, we have

Ck(ϕλ, y0) = Ck(βλ, y0) for all k ≥ 0. (4.6)

Owing to the proof of Proposition 3.7 we know that y0 is a critical point of βλ (i.e.,
y0 ∈ Kβλ) of mountain pass type. Therefore, due to Chang [10],

C1(βλ, y0) 6= 0

which combined with (4.6) yields

C1(ϕλ, y0) 6= 0. (4.7)

Since ϕλ ∈ C2(W 1,p
0 (Ω)), from (4.7) and Papageorgiou-Smyrlis [30], we have

Ck(ϕλ, y0) = δk,1Z for all k ≥ 0

which thanks to (4.6) gives

Ck(βλ, y0) = δk,1Z for all k ≥ 0. (4.8)

Because of hypothesis λ > λ̂2(2), λ 6∈ σ̂(2), there is a number m ≥ 2 such that

λ ∈
(
λ̂m(2), λ̂m+1(2)

)
. Let ε

(
0, λ̂m(2)

)
. By virtue of hypothesis H(f)2(iii), we

find δ = δ(ε) > 0 such that

|f(x, s)| ≤ ε|s| for a.a. x ∈ Ω and for all |s| ≤ δ.
It follows that

F (x, s) ≤ ε

2
s2 for a.a. x ∈ Ω and for all |s| ≤ δ. (4.9)

Let Θλ : W 1,p
0 (Ω)→ R be the C2-functional defined by

Θλ(u) =
1

p
‖∇u‖pLp(Ω) +

1

2
‖∇u‖2L2(Ω) −

λ

2
‖u‖2L2(Ω).

Apparently, Θ is coercive, hence, it satisfies the PS-condition. Then, from (4.9)
and Chang [10, Corollary 5.1.25 (p. 336)], we verify that

Ck(ϕλ, 0) = Ck (Θλ, 0) for all k ≥ 0,
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which implies (see (4.6)) that

Ck(βλ, 0) = Ck (Θλ, 0) for all k ≥ 0. (4.10)

By reason of λ ∈
(
λ̂m(2), λ̂m+1(2)

)
and due to Cingolani-Vannella [13, Theorem

1.1] one has

Ck (Θλ, 0) = δk,dmZ for all k ≥ 0,

where dm = dim
⊕m

i=1E
(
λ̂i(2)

)
≥ 2. Owing to (4.10) we derive that

Ck(βλ, 0) = δk,dmZ for all k ≥ 0. (4.11)

From the proof of Proposition 3.7 (see Claim 2), we know that u0, v0 are both local
minimizers of βλ. Hence

Ck(βλ, u0) = Ck(βλ, v0) = δk,0Z for all k ≥ 0. (4.12)

Recalling that βλ is coercive, it follows that

Ck (βλ,∞) = δk,0Z for all k ≥ 0. (4.13)

Suppose that Kβλ = {0, u0, v0, y0}. Then, from (4.8), (4.11), (4.12), (4.13) and the
Morse relation (2.6) with t = −1, we have

2(−1)0 + (−1)1 + (−1)dm = (−1)0,

which gives (−1)dm = 0, a contradiction. Therefore, we can find ŷ ∈ Kβλ , ŷ 6∈
{0, u0, v0, y0}. Since Kβλ ⊆ [v0, u0] (see the proof of Claim 1 in the proof of Propo-
sition 3.7), one gets ŷ ∈ [v0, u0] \ {0}. The extremal property of u0 and v0 implies
that ŷ has changing sign. The nonlinear regularity theory (see [25], [26]) yields
ŷ ∈ C1

0 (Ω). That finishes the proof.
�
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[9] L. Čaklović, S. J. Li, and M. Willem, A note on Palais-Smale condition and coercivity,

Differential Integral Equations 3 (1990), no. 4, 799–800.

[10] K.-C. Chang, “Methods in Nonlinear Analysis”, Springer-Verlag, Berlin, 2005.
[11] L. Cherfils and Y. Il′yasov, On the stationary solutions of generalized reaction diffusion

equations with p&q-Laplacian, Commun. Pure Appl. Anal. 4 (2005), no. 1, 9–22.

[12] S. Cingolani and M. Degiovanni, Nontrivial solutions for p-Laplace equations with right-hand
side having p-linear growth at infinity, Comm. Partial Differential Equations 30 (2005), no.

7-9, 1191–1203.

[13] S. Cingolani and G. Vannella, Critical groups computations on a class of Sobolev Banach
spaces via Morse index, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), no. 2, 271–292.
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[32] M. Struwe, A note on a result of Ambrosetti and Mancini, Ann. Mat. Pura Appl. (4) 131
(1982), 107–115.

[33] M. Struwe, “Variational Methods”, Springer-Verlag, Berlin, 2008.
[34] M. Sun, Multiplicity of solutions for a class of the quasilinear elliptic equations at resonance,

J. Math. Anal. Appl. 386 (2012), no. 2, 661–668.

[35] P. Winkert, Local C1(Ω)-minimizers versus local W 1,p(Ω)-minimizers of nonsmooth func-
tionals, Nonlinear Anal. 72 (2010), no. 11, 4298–4303.



26 N. S. PAPAGEORGIOU AND P. WINKERT

(N. S. Papageorgiou) National Technical University, Department of Mathematics, Zo-

grafou Campus, Athens 15780, Greece

E-mail address: npapg@math.ntua.gr

(P. Winkert) Technische Universität Berlin, Institut für Mathematik, Straße des 17.

Juni 136, 10623 Berlin, Germany
E-mail address: winkert@math.tu-berlin.de


	1. Introduction
	2. Mathematical background and hypotheses
	3. Three solutions
	4. The (p,2)-equation
	Acknowledgement
	References

