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Abstract. In the present paper, we introduce a family of the approximating problems

corresponding to an elliptic obstacle problem with a double phase phenomena and a mul-
tivalued reaction convection term. Denoting by S the solution set of the obstacle problem

and by Sn the solution sets of approximating problems, we prove the following convergence

relation

∅ 6= w- lim sup
n→∞

Sn = s- lim sup
n→∞

Sn ⊂ S,

where w-lim supn→∞ Sn and s-lim supn→∞ Sn denote the weak and the strong Kuratowski

upper limit of Sn, respectively.

1. Introduction

Recently, based on a surjectivity result for pseudomonotone operators obtained by Le [25],
the authors [44] have studied the nonemptyness, boundedness and closedness of the set of
weak solutions to the following double phase problem with a multivalued convection term
and obstacle effect

−div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
∈ f(x, u,∇u) in Ω,

u(x) ≤ Φ(x) in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω ⊆ RN is a bounded domain with Lipschitz boundary ∂Ω, 1 < p < q < N , µ : Ω →
[0,∞) is Lipschitz continuous, f : Ω× R× RN → 2R is a multivalued function depending on
the gradient of the solution and Φ: Ω→ R+ is a given function, see Section 3 for the precise
assumptions.

As the obstacle effect leads to various difficulties in obtaining the exact and numerical solu-
tions, it is reasonable to consider some appropriate approximating methods to overcome/avoid
the obstacle effect. In the present paper, we are going to propose a family of approximating
problems corresponding to (1.1) and deliver an important convergence theorem which indi-
cates that the solution set of the obstacle problem can be approximated by the solutions of
perturbation problems. More precisely, let {ρn} be a sequence of positive numbers such that
ρn → 0 as n→∞ and for each n ∈ N, we consider the following problem

−div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
+

1

ρn
(u(x)− Φ(x))

+ ∈ f(x, u,∇u) in Ω,

u = 0 on ∂Ω.
(1.2)

Denoting by S and Sn the sets of solutions to problems (1.1) and (1.2), respectively, we shall
establish the relations between the sets S, w-lim supn→∞ Sn (being the weak Kuratowski
upper limit of Sn) and s-lim supn→∞ Sn (being the strong Kuratowski upper limit of Sn), see
Definition 2.2.
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The introduction of so-called double phase operators goes back to Zhikov [46] who described
models of strongly anisotropic materials by studying the functional

u 7→
∫

(|∇u|p + µ(x)|∇u|q) dx. (1.3)

The integral functional (1.3) is characterized by the fact that the energy density changes its
ellipticity and growth properties according to the point in the domain. More precisely, its
behavior depends on the values of the weight function µ(·). Indeed, on the set {x ∈ Ω :
µ(x) = 0} it will be controlled by the gradient of order p and in the case {x ∈ Ω : µ(x) 6= 0}
it is the gradient of order q. This is the reason why it is called double phase.

Functionals of the expression (1.3) have been studied more intensively in the last five years.
Concerning regularity results, we refer, for example, to the works of Baroni-Colombo-Mingione
[4, 5, 6], Baroni-Kuusi-Mingione [7], Cupini-Marcellini-Mascolo [15], Colombo-Mingione [13],
[14], Marcellini [28, 29] and the references therein.

Double phase differential operators and corresponding energy functionals appear in sev-
eral physical applications. For example, in the elasticity theory, the modulating coefficient
µ(·) dictates the geometry of composites made of two different materials with distinct power
hardening exponents q and p, see Zhikov [47]. We also refer to other applications which can
be found in the works of Bahrouni-Rădulescu-Repovš [1] on transonic flows, Benci-D’Avenia-
Fortunato-Pisani [8] on quantum physics and Cherfils-Il′yasov [9] on reaction diffusion sys-
tems.

Existence and uniqueness results have been recently obtained by several authors. In the
case of single-valued equations with or without convection term, we refer to Colasuonno-
Squassina [12], Gasiński-Papageorgiou [16, 17], Gasiński-Winkert [19, 20, 21], Liu-Dai [27],
Perera-Squassina [39], Papageorgiou-Vetro-Vetro [35, 34] and the references therein.

Finally, papers or monographs dealing with certain types of double phase problems or
multivalued problems can be found in Bahrouni-Rădulescu-Repovš [1], Bahrouni-Rădulescu-
Winkert [2], [3], Carl-Le-Motreanu [10], Cencelj-Rădulescu-Repovš [11], Clarke [22], Gasiński-
Papageorgiou [18], Marino-Winkert [30], Papageorgiou-Rădulescu-Repovš [32, 33], Papageorgiou-
Vetro-Vetro [37] , Rădulescu [40], Vetro [41], Vetro-Vetro [42], Zhang-Rădulescu [45], Zeng-
Bai-Gasiński-Winkert [43] and the references therein.

The paper is organized as follows. In Section 2 we recall the definition of the Musielak-
Orlicz spaces LH(Ω) and its corresponding Sobolev spaces W 1,H(Ω) and we recall the defini-
tion of the Kuratowski lower and upper limit, respectively. In Section 3 we present the full
assumptions on the data of problem (1.2), give the definition of weak solutions for (1.1) as
well as (1.2) and state and prove our main result, see Theorem 3.4.

2. Preliminaries

Let Ω be a bounded domain in RN and let 1 ≤ r ≤ ∞. In what follows, we denote by
Lr(Ω) := Lr(Ω;R) and Lr(Ω;RN ) the usual Lebesgue spaces endowed with the norm ‖ · ‖r.
Moreover, W 1,r(Ω) and W 1,r

0 (Ω) stand for the Sobolev spaces endowed with the norms ‖ ·‖1,r
and ‖ · ‖1,r,0, respectively. For any 1 < r < ∞ we denote by r′ the conjugate of r, that is,
1
r + 1

r′ = 1.
For the weight function µ and powers p, q we will assume that:

H(µ): µ : Ω → R+ := [0,∞) is Lipschitz continuous and 1 < p < q < N are chosen such
that

q

p
< 1 +

1

N
.

We consider the function H : Ω× R+ → R+ defined by

H(x, t) = tp + µ(x)tq for all (x, t) ∈ Ω× R+.
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Based on the definition of H we are able to introduce the Musielak-Orlicz space LH(Ω) given
by

LH(Ω) =

{
u
∣∣∣ u : Ω→ R is measurable and ρH(u) :=

∫
Ω

H(x, |u|) dx < +∞
}
,

endowed with the Luxemburg norm

‖u‖H = inf
{
τ > 0

∣∣ ρH (u
τ

)
≤ 1
}
.

We know that LH(Ω) is uniformly convex and so a reflexive Banach space. In addition, we
introduce the seminormed function space

Lqµ(Ω) =

{
u
∣∣∣ u : Ω→ R is measurable and

∫
Ω

µ(x)|u|q dx < +∞
}
,

which is equipped with the seminorm ‖ · ‖q,µ given by

‖u‖q,µ =

(∫
Ω

µ(x)|u|q dx
) 1

q

.

It is known that the embeddings

Lq(Ω) ↪→ LH(Ω) ↪→ Lp(Ω) ∩ Lqµ(Ω)

are continuous, see Colasuonno-Squassina [12, Proposition 2.15 (i), (iv) and (v)]. Taking into
account these embeddings we have the inequalities

min {‖u‖pH, ‖u‖
q
H} ≤ ‖u‖

p
p + ‖u‖qq,µ ≤ max {‖u‖pH, ‖u‖

q
H} (2.1)

for all u ∈ LH(Ω).
By W 1,H(Ω) we denote the corresponding Sobolev space which is defined by

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
equipped with the norm

‖u‖1,H = ‖∇u‖H + ‖u‖H,

where ‖∇u‖H = ‖|∇u|‖H.

By W 1,H
0 (Ω) we denote the completion of C∞0 (Ω) in W 1,H(Ω), that is,

W 1,H
0 (Ω) = C∞0 (Ω)

W 1,H(Ω)
.

Besides, from condition H(µ) and Colasuonno-Squassina [12, Proposition 2.18] we can see
that

‖u‖1,H,0 = ‖∇u‖H for all u ∈W 1,H
0 (Ω)

is an equivalent norm on W 1,H
0 (Ω). Now we are able to adapt (2.1) in terms of W 1,H

0 (Ω)-norm
as follows

min
{
‖u‖p1,H,0, ‖u‖

q
1,H,0

}
≤ ‖∇u‖pp + ‖∇u‖qq,µ ≤ max

{
‖u‖p1,H,0, ‖u‖

q
1,H,0

}
(2.2)

for all u ∈ W 1,H
0 (Ω). Since both spaces W 1,H(Ω) and W 1,H

0 (Ω) are uniformly convex, we
know that they are reflexive Banach spaces.

Furthermore, we have the following compact embedding

W 1,H
0 (Ω) ↪→ Lr(Ω) (2.3)

for each 1 < r < p∗, where p∗ is the critical exponent to p given by

p∗ :=
Np

N − p
, (2.4)

see Colasuonno-Squassina [12, Proposition 2.15].
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Let us now consider the eigenvalue problem for the negative r-Laplacian with homogeneous
Dirichlet boundary condition and 1 < r <∞ which is defined by

−∆ru = λ|u|r−2u in Ω,

u = 0 on ∂Ω.
(2.5)

From Lê [26] we know that the set σr being the set of all eigenvalues of
(
− ∆r,W

1,r
0 (Ω)

)
has a smallest element λ1,r which is positive, isolated, simple and it can be variationally
characterized through

λ1,r = inf

{
‖∇u‖rr
‖u‖rr

: u ∈W 1,r
0 (Ω), u 6= 0

}
.

Now, let A : W 1,H
0 (Ω)→W 1,H

0 (Ω)∗ be the operator defined by

〈A(u), v〉H :=

∫
Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇v dx, (2.6)

for u, v ∈ W 1,H
0 (Ω), where 〈·, ·〉H is the duality pairing between W 1,H

0 (Ω) and its dual space

W 1,H
0 (Ω)∗.

The properties of the operator A : W 1,H
0 (Ω) → W 1,H

0 (Ω)∗ can be summarized as follows,
see Liu-Dai [27].

Proposition 2.1. The operator A defined by (2.6) is bounded, continuous, monotone (hence
maximal monotone) and of type (S+).

Throughout the paper the symbols ”⇀” and ”→” stand for the weak and the strong
convergence, respectively. Let (V, ‖ · ‖V ) be a Banach space with its dual V ∗ and denote by
〈·, ·〉 the duality pairing between V ∗ and V . We end this section by recalling the following
definition, see, for example, Papageorgiou-Winkert [38, Definition 6.7.4].

Definition 2.2. Let (X, τ) be a Hausdorff topological space and let {An} ⊂ 2X be a sequence
of sets. We define the τ -Kuratowski lower limit of the sets An by

τ - lim inf
n→∞

An :=
{
x ∈ X | x = τ - lim

n→∞
xn, xn ∈ An for all n ≥ 1

}
,

and the τ -Kuratowski upper limit of the sets An

τ - lim sup
n→∞

An :=

{
x ∈ X | x = τ - lim

k→∞
xnk

, xnk
∈ Ank

, n1 < n2 < . . . < nk < . . .

}
.

If

A = τ - lim inf
n→∞

An = τ - lim sup
n→∞

An,

then A is called τ -Kuratowski limit of the sets An.

3. Main results

We assume the following hypotheses on the data of problem (1.2).

H(f): The multivalued convection mapping f : Ω × R × RN → 2R has nonempty, compact
and convex values such that

(i) the multivalued mapping x 7→ f(x, s, ξ) has a measurable selection for all (s, ξ) ∈
R× RN ;

(ii) the multivalued mapping (s, ξ) 7→ f(x, s, ξ) is upper semicontinuous for almost
all (a. a.) x ∈ Ω;

(iii) there exists α ∈ L
q1

q1−1 (Ω) and a1, a2 ≥ 0 such that

|η| ≤ a1|ξ|p
q1−1
q1 + a2|s|q1−1 + α(x)

for all η ∈ f(x, s, ξ), for a. a.x ∈ Ω, all s ∈ R and all ξ ∈ RN , where 1 < q1 < p∗

with the critical exponent p∗ given in (2.4);
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(iv) there exist w ∈ L1
+(Ω) and b1, b2 ≥ 0 such that

b1 + b2λ
−1
1,p < 1,

and

ηs ≤ b1|ξ|p + b2|s|p + w(x)

for all η ∈ f(x, s, ξ), for a. a.x ∈ Ω, all s ∈ R and all ξ ∈ RN , where λ1,p is the
first eigenvalue of the Dirichlet eigenvalue problem for the p-Laplacian, see (2.5).

H(Φ): Φ: Ω→ [0,∞) is such that Φ ∈ Lq′1(Ω).
H(0): {ρn} is a sequence with ρn > 0 for each n ∈ N such that ρn → 0 as n→∞.

Let K be a subset of W 1,H
0 (Ω) defined by

K :=
{
u ∈W 1,H

0 (Ω)
∣∣ u(x) ≤ Φ(x) for a. a.x ∈ Ω

}
. (3.1)

Remark 3.1.

(a) The set K is a nonempty, closed and convex subset of W 1,H
0 (Ω).

(b) From assumption H(Φ) we see that 0 ∈ K.

The weak solutions for problems (1.1) and (1.2) are understood in the following way.

Definition 3.2.

(a) We say that u ∈ K is a weak solution of problem (1.1) if there exists η ∈ L
q1

q1−1 (Ω)
such that η(x) ∈ f(x, u(x),∇u(x)) for a. a.x ∈ Ω and∫
Ω

(
|∇u|p−2∇u · ∇(v − u) + µ(x)|∇u|q−2∇u · ∇(v − u)

)
dx =

∫
Ω

η(x)(v − u) dx

for all v ∈ K, where K is given by (3.1).

(b) We say that u ∈ W 1,H
0 (Ω) is a weak solution of problem (1.2) if there exists η ∈

L
q1

q1−1 (Ω) such that η(x) ∈ f(x, u(x),∇u(x)) for a. a.x ∈ Ω and∫
Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇v dx+

1

ρn

∫
Ω

(u(x)− Φ(x))
+
v(x) dx

=

∫
Ω

η(x)v(x) dx

for all v ∈W 1,H
0 (Ω).

It is straightforward, to prove the following lemma.

Lemma 3.3. If hypothesis H(Φ) holds, then the function B : Lq1(Ω)→ Lq
′
1(Ω) given by

〈Bu, v〉q1 =

∫
Ω

(u(x)− Φ(x))
+
v(x) dx for all u, v ∈ Lq1(Ω), (3.2)

is bounded, demicontinuous and monotone, where 〈·, ·, 〉q1 denotes the duality pairing between

Lq1(Ω) and its dual space Lq
′
1(Ω).

Now, we can state the main result of this paper.

Theorem 3.4. If hypotheses H(µ), H(f), H(Φ), and H(0) hold, then

(i) for each n ∈ N, the set Sn of solutions to problem (1.2) is nonempty, bounded and
closed;

(ii) it holds

∅ 6= w- lim sup
n→∞

Sn = s- lim sup
n→∞

Sn ⊂ S;
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(iii) for each u ∈ s- lim sup
n→∞

Sn and any sequence {ũn} with

ũn ∈ T (Sn, u) for each n ∈ N,

there exists a subsequence of {ũn} converging strongly to u in W 1,H
0 (Ω), where the

set T (Sn, u) is defined by

T (Sn, u) :=
{
ũ ∈ Sn | ‖u− ũ‖1,H,0 ≤ ‖u− v‖1,H,0 for all v ∈ Sn

}
.

Proof. (i) Let i : W 1,H
0 (Ω) → Lq1(Ω) be the embedding operator from W 1,H

0 (Ω) to Lq1(Ω)

with its adjoint operator i∗ : Lq
′
1(Ω)→W 1,H

0 (Ω)∗. Since 1 < q1 < p∗ the embedding operator
i is compact and so i∗ as well. From hypotheses H(f)(i) and (iii), we see that the Nemytskij

operator Ñf : W 1,H
0 (Ω) ⊂ Lq1(Ω) → 2L

q′1 (Ω) associated to the multivalued mapping f given
by

Ñf (u) :=
{
η ∈ Lq

′
1(Ω)

∣∣ η(x) ∈ f(x, u(x),∇u(x)) for a. a.x ∈ Ω
}

for all u ∈ W 1,H
0 (Ω) is well-defined (see the proof of Proposition 3 in Papageorgiou-Vetro-

Vetro [36]). The convexity and closedness of the values of f ensure that Ñf has closed and
convex values as well. Moreover, by hypothesis H(f)(iv) we have

‖η‖q
′
1

q′1
=

∫
Ω

|η(x)|q
′
1 dx

≤
∫

Ω

(
a1|∇u(x)|

p

q′1 + a2|u(x)|q1−1 + α(x)
)q′1

dx

≤M0

∫
Ω

|∇u(x)|p + |u(x)|q1 + α(x)q
′
1 dx

= M0

(
‖∇u‖pp + ‖u‖q1q1 + ‖α‖q

′
1

q′1

)
.

(3.3)

Notice that the embeddings W 1,H
0 (Ω) ⊂W 1,p

0 (Ω) ⊂ Lq1(Ω) are both continuous, so, Ñf (u) is

bounded in Lq
′
1(Ω) for each u ∈W 1,H

0 (Ω).

It is easy to see that u ∈ W 1,H
0 (Ω) is a weak solution of problem (1.2) (see Definition

3.2(b)), if and only if u solves the following inclusion:

Find u ∈W 1,H
0 (Ω) and η ∈ Ñf (u) such that

A(u) +
1

ρn
i∗B(u)− i∗Ñf (u) 3 0,

where A : W 1,H
0 (Ω) → W 1,H

0 (Ω)∗ and B : Lq1(Ω) → Lq
′
1(Ω) are given by (2.6) and (3.2),

respectively.
Then, using the same arguments as in the proof of Zeng-Gasiński-Winkert-Bai [44, The-

orem 3.3], we can conclude that for each n ∈ N, the set Sn of solutions to problem (1.2) is
nonempty, bounded and closed.

(ii) First, we prove that the set w- lim sup
n→∞

Sn is nonempty. Indeed, we have the following

claims.
Claim 1. The set

⋃
n∈N
Sn is uniformly bounded in W 1,H

0 (Ω).

Arguing by contradiction, suppose that
⋃
n∈N
Sn is unbounded. Without any loss of gen-

erality (passing to a subsequence if necessary), we may assume that there exists a sequence

{un} ⊂W 1,H
0 (Ω) with un ∈ Sn for each n ∈ N such that

‖un‖1,H,0 →∞ as n→∞.
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Hence, for each n ∈ N, we are able to find ηn ∈ Ñf (un) such that∫
Ω

(
|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇v dx+

1

ρn

∫
Ω

(un(x)− Φ(x))
+
v(x) dx

=

∫
Ω

ηn(x)v(x) dx

for all v ∈W 1,H
0 (Ω). Inserting v = un into the inequality above, we get∫
Ω

(
|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇un dx−

∫
Ω

ηn(x)un(x) dx

= − 1

ρn

∫
Ω

(un(x)− Φ(x))
+
un(x) dx.

By the nonnegativity of Φ and the monotonicity of the function s 7→ s+, we have∫
Ω

(
|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇un dx−

∫
Ω

ηn(x)un(x) dx

= − 1

ρn

∫
Ω

[
(un(x)− Φ(x))

+ − (0− Φ(x))
+
]
un(x) dx

≤ 0,

thus

‖∇un‖pp + ‖∇un‖qq,µ −
∫

Ω

ηn(x)un(x) dx ≤ 0. (3.4)

However, by hypothesis H(f)(iv), we have∫
Ω

ηn(x)un(x) dx ≤ b1‖∇un‖pp + b2‖un‖pp + ‖w‖1. (3.5)

Applying (3.5) in (3.4), using the continuity of the embedding W 1,H
0 (Ω) ⊆ W 1,p

0 (Ω) as well
as the estimate

‖u‖pp ≤ λ−1
1,p‖∇u‖pp for all u ∈W 1,p

0 (Ω),

we get

0 ≥ ‖∇un‖pp + ‖∇un‖qq,µ −
∫

Ω

ηn(x)un(x) dx

≥ ‖∇un‖pp + ‖∇un‖qq,µ − b1‖∇un‖pp − b2‖un‖pp − ‖w‖1
≥
(
1− b1 − b2λ−1

1,p

)
‖∇un‖pp + ‖∇un‖qq,µ − ‖w‖1

≥
(
1− b1 − b2λ−1

1,p

) (
‖∇un‖pp + ‖∇un‖qq,µ

)
− ‖w‖1

≥
(
1− b1 − b2λ−1

1,p

)
min

{
‖un‖p1,H,0, ‖un‖

q
1,H,0

}
− ‖w‖1,

where the last inequality is obtained by (2.2). Since 1 < p < q < N and b1 + b2λ
−1
1,p < 1, we

can take R0 > 0 large enough such that for all R ≥ R0 it holds(
1− b1 − b2λ−1

1,p

)
min {Rp, Rq} − ‖w‖1 > 0.

Therefore, we are able to find N0 > 0 large enough such that ‖un‖1,H,0 > R0 for all n ≥ N0

and

0 ≥
(
1− b1 − b2λ−1

1,p

)
min

{
‖un‖p1,H,0, ‖un‖

q
1,H,0

}
− ‖w‖1 > 0

for all n ≥ N0. This gives a contradiction, so Claim 1 is proved.

Let {un} ⊂ W 1,H
0 (Ω) with un ∈ Sn for each n ∈ N be an arbitrary sequence. Claim 1

indicates that {un} is bounded in W 1,H
0 (Ω). Then, we may assume that along a relabeled

subsequence we have

un ⇀ u as n→∞ (3.6)
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for some u ∈W 1,H
0 (Ω). This guarantees that the set w- lim sup

n→∞
Sn is nonempty.

Next, we are going to demonstrate that w- lim sup
n→∞

Sn is a subset of S. Let u ∈ w- lim sup
n→∞

Sn
be arbitrary. Without loss of generality, we may suppose that there exists a subsequence

{un} ⊂ W 1,H
0 (Ω) with un ∈ Sn for all n ∈ N, satisfying (3.6). Our goal is to prove that

u ∈ S.
Claim 2. u(x) ≤ Φ(x) for a.a. x ∈ Ω.
For every n ∈ N, we have

1

ρn

∫
Ω

(un(x)− Φ(x))
+
v(x) dx = 〈Aun,−v〉H +

∫
Ω

ηn(x)v(x) dx. (3.7)

It follows from Hölder’s inequality and (3.3) that∫
Ω

ηn(x)v(x) dx ≤M
1
q′1

0

(
‖∇un‖pp + ‖un‖q1q1 + ‖α‖q

′
1

q′1

) 1
q′1 ‖v‖q1 . (3.8)

Putting (3.8) into (3.7), employing the boundedness of A (see Proposition 2.1), the conver-
gence (3.6), and the embedding (2.3), we have

1

ρn

∫
Ω

(un(x)− Φ(x))
+
v(x) dx

≤ ‖Aun‖1,H,0‖v‖1,H,0 +M
1
q′1

0

(
‖∇un‖pp + ‖un‖q1q1 + ‖α‖q

′
1

q′1

) 1
q′1 ‖v‖q1

≤M1‖v‖1,H,0
for some M1 > 0, where M1 > 0 is independent of n, that is∫

Ω

(un(x)− Φ(x))
+
v(x) dx ≤ ρnM1‖v‖1,H,0

for all v ∈W 1,H
0 (Ω). Passing to the limit in the inequality above, using convergence (3.6), the

compact embedding (2.3), and the Lebesgue Dominated Convergence Theorem, we conclude
that ∫

Ω

(u(x)− Φ(x))
+
v(x) dx =

∫
Ω

lim
n→∞

(un(x)− Φ(x))
+
v(x) dx

= lim
n→∞

∫
Ω

(un(x)− Φ(x))
+
v(x) dx

≤ lim
n→∞

ρnM1‖v‖1,H,0
= 0

for all v ∈W 1,H
0 (Ω). Therefore, we have (u(x)− Φ(x))

+
= 0 for a.a. x ∈ Ω, thus, u(x) ≤ Φ(x)

for a.a. x ∈ Ω.
Claim 3. u ∈ S.
For each n ∈ N, we have

〈Aun, un − v〉H =
1

ρn

∫
Ω

(un(x)− Φ(x))
+

(v(x)− un(x)) dx+

∫
Ω

ηn(x)(un(x)− v(x)) dx

for all v ∈W 1,H
0 (Ω). The latter combined with the monotonicity of s 7→ s+ gives

〈Aun, un − v〉H ≤
1

ρn

∫
Ω

(v(x)− Φ(x))
+

(v(x)− un(x)) dx+

∫
Ω

ηn(x)(un(x)− v(x)) dx

for all v ∈W 1,H
0 (Ω). Hence,

〈Aun, un − v〉H −
∫

Ω

ηn(x)(un(x)− v(x)) dx ≤ 0 (3.9)

for all v ∈ K, where K is defined in (3.1).
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Claim 2 indicates that u ∈ K, so, we put v = u in (3.9) to obtain

〈Aun, un − u〉H −
∫

Ω

ηn(x)(un(x)− u(x)) dx ≤ 0,

that is,

lim sup
n→∞

〈Aun − i∗ηn, un − u〉H ≤ 0.

It follows from the proof of Theorem 3.3 in Zeng-Gasiński-Winkert-Bai [44] that the multi-

valued mapping A = A− i∗Ñf is pseudomonotone. So, for each v ∈ K, there exists u∗ ∈ Au
such that

lim inf
n→∞

〈Aun − i∗ηn, un − v〉H ≥ 〈u∗(v), un − v〉.

This means that for each v ∈ K, there is an element η(v) ∈ Ñf (u) satisfying

u∗(v) = Au− i∗η(v).

For each v ∈ K, passing to the lower limit as n→∞ in inequality (3.9), we are able to find

an element η(v) ∈ Ñf (u) such that

〈Au, v − u〉H −
∫

Ω

η(v)(x)(v(x)− u(x)) dx ≥ 0. (3.10)

We shall prove that u ∈ K is a weak solution to problem (1.1), namely, there exists an

element η∗ ∈ Ñf (u), which is independent of v, such that

〈Au, v − u〉H −
∫

Ω

η∗(x)(v(x)− u(x)) dx ≥ 0 (3.11)

for all v ∈ K. Arguing by contradiction, suppose that for each η ∈ Ñf (u), there is v ∈ K
such that

〈Au, v − u〉H −
∫

Ω

η(x)(v(x)− u(x)) dx < 0.

For any v ∈ K, let us consider the set Rv ⊂ Ñf (u) defined by

Rv :=

{
η ∈ Ñf (u) | 〈Au, v − u〉H −

∫
Ω

η(x)(v(x)− u(x)) dx < 0

}
for all v ∈ K. We now assert that for each v ∈ K, the set Rv is weakly open. Let {ηn} ⊂ Rcv
be such that ηn ⇀ η for some η ∈ Lq′1(Ω) as n → ∞, where Rcv denotes the complement of
Rv. Hence,

〈Au, v − u〉H −
∫

Ω

ηn(x)(v(x)− u(x)) dx ≥ 0

for all n ∈ N. Passing to the limit in the inequality above, we obtain that η ∈ Rcv. Therefore,

for every v ∈ K, the set Rv is weakly open in Lq
′
1(Ω). Besides, we observe that {Rv}v∈K is an

open covering of Ñf (u). The latter coupled with the facts that Lq1(Ω) is reflexive and Ñf (u)

is weakly compact and convex in Lq
′
1(Ω), ensures that {Rv}v∈K has a finite sub-covering of

Ñf (u) , let us say {Rv1 , Rv2 , . . . , Rvn} for some points {v1, v2, . . . , vn} ⊆ K. Let κ1, κ2, . . . , κn
be a partition of unity for Ñf (u), where for each i = 1, 2, . . . , n, κi : Ñf (u) → [0, 1] is a

weakly continuous function such that
n∑
i=1

κi(η) = 1 for all η ∈ Ñf (u), see, for example,

Granas-Dugundji [23, Lemma 7.3].

Also, we introduce a function M : Ñf (u)→W 1,H
0 (Ω) defined by

M(η) =

n∑
i=1

κi(η)vi for all η ∈ Ñf (u).
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Obviously, the function M is also weakly continuous due to the weak continuity of κi for

i = 1, 2, . . . , n. For any η ∈ Ñf (u), we have

〈Au− i∗η,M(η)− u〉H =
〈
Au− i∗η,

n∑
i=1

κi(η)vi − u
〉
H

=

n∑
i=1

κi(η)〈Au− i∗η, vi − u〉H

< 0

(3.12)

for all η ∈ Ñf (u), where the last inequality is obtained by the use of Lemma 7.3(ii) of
Granas-Dugundji [23].

Let us define two multivalued functions Λ: K → 2Ñf (u) and Ψ: Ñf (u)→ 2Ñf (u) by

Λ(v) :=

{
η ∈ Ñf (u) | 〈Au, v − u〉H −

∫
Ω

η(x)(v(x)− u(x)) dx ≥ 0

}
for all v ∈ K, and

Ψ(η) := Λ(M(η)) for all η ∈ Ñf (u).

Then, Ψ has nonempty, weakly compact and convex values (by (3.10) and because Ñf (u)

is bounded closed and convex in Lq
′
1(Ω)) and Λ is upper semicontinuous from the normal

topology of K to weak topology of Lq
′
1(Ω). From Migórski-Ochal-Sofonea [31, Proposition

3.8], it is enough to verify that for each weakly closed set D in Lq
′
1(Ω), the set

Λ−(D) := {v ∈ K | Λ(v) ∩D 6= ∅}

is closed in W 1,H
0 (Ω). Let {vn} ⊂ Λ−(D) be a sequence such that vn → v as n→∞. Then,

for each n ∈ N, we are able to find ηn ∈ Ñf (u) satisfying

〈Au, vn − u〉H −
∫

Ω

ηn(x)(vn(x)− u(x)) dx ≥ 0. (3.13)

From the weak compactness of Ñf (u), without any loss of generality, we may suppose that

ηn ⇀ η in Lq
′
1(Ω), as n→∞, for some η ∈ Ñf (u). Passing to the upper limit as n→∞ for

(3.13), we have

〈Au, v − u〉H −
∫

Ω

η(x)(v(x)− u(x)) dx ≥ 0,

that is, η ∈ Λ(v). But, the weak closedness of D implies that η ∈ D. Therefore, η ∈ Λ(v)∩D
and so v ∈ Λ−(D). Applying Migórski-Ochal-Sofonea [31, Proposition 3.8] derives that
Λ is strongly-weakly upper semicontinuous. On the other hand, the continuity of M and
Theorem 1.2.8 of Kamenskii-Obukhovskii-Zecca [24] imply that Ψ is also strongly-weakly
upper semicontinuous.

We are now in a position to employ Tychonov fixed point principle, (see, for example,

Granas-Dugundji [23, Theorem 8.6]) for function Ψ, to conclude that there exists η ∈ Ñf (u)
such that

〈Au,M(η)− u〉H −
∫

Ω

η(x)(M(η)(x)− u(x)) dx ≥ 0.

This leads to a contraction with (3.12). Consequently, we infer that u ∈ K solves problem

(1.1) as well, that means, there exists η ∈ Ñf (u), which is independent of v, such that (3.11)
holds.

Consequently, we conclude that ∅ 6= w- lim sup
n→∞

Sn ⊂ S.

Claim 4. It holds w- lim sup
n→∞

Sn = s- lim sup
n→∞

Sn.
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Since s- lim sup
n→∞

Sn ⊂ w- lim sup
n→∞

Sn, it is enough to verify the condition w- lim sup
n→∞

Sn ⊂
s- lim sup

n→∞
Sn. Let u ∈ w- lim sup

n→∞
Sn be arbitrary. Without any loss of generality, there exists

a sequence, still denoted by {un} with un ∈ Sn such that un ⇀ u as n→∞. We claim that
un → u as n→∞. For each n ∈ N, it holds

〈Aun, un − v〉H = −
∫

Ω

(un(x)− Φ(x))+(un(x)− v(x)) dx+

∫
Ω

ηn(x)(un(x)− v(x)) dx

for some ηn ∈ Ñf (un) and for all v ∈ W 1,H
0 (Ω). Inserting v = u into the above inequality

and passing to the upper limit as n→∞ for the resulting inequality, we can use the compact
embedding (2.3) to get

lim sup
n→∞

〈Aun, un − u〉H ≤ 0.

The latter combined with the convergence un ⇀ u as n → ∞ and the fact that A is of type
(S+) (see Proposition 2.1) implies that un → u as n→∞. This means that u ∈ s- lim sup

n→∞
Sn.

Therefore s- lim sup
n→∞

Sn = w- lim sup
n→∞

Sn.

(iii) Let u ∈ s- lim sup
n→∞

Sn be arbitrary. Since Sn is nonempty, bounded and closed, so, the

set T (Sn, u) is nonempty. Let {ũn} be any sequence such that

ũn ∈ T (Sn, u) for each n ∈ N.

It follows from Claim 1 that the sequence {ũn} is bounded. So, passing to a subsequence, we
may assume, that

ũn ⇀ ũ as n→∞

for some ũ ∈W 1,H
0 (Ω). Thus, using the same argument as the proof of Claim 2, we get that

ũ ∈ K. Then, for each n ∈ N, we have

〈Aũn, ũn − v〉H =
1

ρn

∫
Ω

(ũn(x)− Φ(x))
+

(v(x)− ũn(x)) dx+

∫
Ω

ηn(x)(ũn(x)− v(x)) dx

for all v ∈W 1,H
0 (Ω). Proceeding in the same way as in the proof of Claim 3, we conclude that

ũ is a solution to problem (1.1) as well. Consequently, the desired conclusion is proved. �
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[2] A. Bahrouni, V. D. Rădulescu, P. Winkert, A critical point theorem for perturbed functionals and low

perturbations of differential and nonlocal systems, Adv. Nonlinear Stud.20 (2020), no. 3, 663–674.
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