
MULTI-BUMP TYPE NODAL SOLUTIONS FOR A FRACTIONAL p-LAPLACIAN
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Abstract. This article concerns the existence and multiplicity of multi-bump type nodal solutions

for a class of fractional p-Laplacian Schrödinger equations involving logarithmic nonlinearity and

deepening potential well. We apply suitable variational arguments to show that the equation has at
least 2k − 1 multi-bump type nodal solutions as the parameter becomes large enough.

1. Introduction

This paper is devoted to the existence of multi-bump type nodal solutions for fractional p-Laplacian
logarithmic Schrödinger equations of the form{

(−∆)
s
p u+ λV (x)|u|p−2u = |u|p−2u log |u|p in RN ,

u ∈W s,p(RN ),
(1.1)

where s ∈ (0, 1), p ∈ [2,∞), N > sp and V : RN → R is a continuous potential satisfying the following
conditions:

(V1) V ∈ C
(
RN ,R

)
and V (x) ≥ 0 for all x ∈ RN ;

(V2) Ω := intV −1(0) is a non-empty bounded open subset with smooth boundary and Ω = V −1(0),
where int V −1(0) denotes the set of the interior points of V −1(0);

(V3) Ω consists of k components

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωk

and Ωi ∩ Ωj = ∅ for all i ̸= j.

Here, (−∆)
s
p is the fractional p-Laplacian operator which is defined for any u : RN → R belonging to

the Schwartz class by

(−∆)spu(x) = 2 lim
δ→0

∫
RN\Bδ(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
dy (x ∈ RN ),

for any u ∈ C∞
0 (RN ), where Bδ(x) denotes the ball in RN centered at x with radius δ.

When the logarithmic nonlinearity is replaced by a power-type nonlinearity, problem (1.1) is of par-
ticular interest in fractional quantum mechanics for the study of particles on stochastic fields modeled
by Lévy processes, see, for example, Di Nezza-Palatucci-Valdinoci [14] for a physical background. We
also recall that the analysis of fractional and nonlocal operators is strongly motivated by the fact that
these operators play a fundamental role in describing various physical phenomena such as, among oth-
ers, phase transitions, crystal dislocations, anomalous diffusions, conservation laws, flame propagation
and chemical reactions of liquids. For more details and applications, we refer the interested reader to
the works by Applebaum [11], Bahrouni-Rădulescu-Winkert [12], Di Nezza-Palatucci-Valdinoci [14],
Molica Bisci-Rădulescu-Servadei [18], see also the references therein.
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In these last years, many intriguing existence and multiplicity results have been established for
fractional p-Laplacian Schrödinger equations given by

(−∆)
s
p u+ V (x)|u|p−2u = f(u) in RN ,

see for instance Alves-Miyagaki [3], Ambrosio [7, 8], Ji [15], Qu-He [21] for the case p = 2 and
Alves-Ambrosio [1], Ambrosio-Figueiredo-Isernia [9], Ambrosio-Isernia [10], Pucci-Xiang-Zhang [19, 20]
whenever p ∈ (1,∞). In particular, Alves-Ambrosio [1] obtained an existence and concentration result
when f is a logarithmic nonlinearity and V verifies the following local conditions:

(V′
1) V (x) ∈ C(RN ,R) and infx∈RN V (x) = V0 > −1;

(V′
2) There exists a bounded open set Ω ⊂ RN such that

−1 < V0 = inf
x∈Ω

V (x) < min
∂Ω

V and M = {x ∈ Ω: V (x) = V0} ̸= ∅.

They employed the penalization method to demonstrate the existence of positive solutions, as well as
the concentration behavior under conditions (V′

1) and (V′
2).

Recently, the following time-dependent logarithmic Schrödinger equation given by

iε
∂Φ

∂t
= −ε2∆Φ+W (x)Φ− Φ log |Φ|2, N ≥ 3 (1.2)

where Φ: [0,+∞)×RN → C, has also obtained special attention due to its physical influence, such as
quantum mechanics, quantum optics, nuclear physics, effective quantum and Bose-Einstein condensa-
tion. Standing wave solutions for (1.2) have the form Φ(t, x) = u(x)e−iωt/ε, where ω ∈ R, which leads
to a system of the shape

−ε2∆u+ V (x)u = u log u2 in RN , (1.3)

where V (x) =W (x)−ω. From the mathematical point of view, (1.3) is very interesting because many
difficulties arise when using variational methods to find solutions. Alves-de Morais Filho [2] considered
semiclassical state solutions for the logarithmic elliptic equation (1.3) when V satisfies the following
global condition

(Vglobal) V ∈ C(RN ,R) and V∞ = lim|x|→∞ V (x) > V∗ = infx∈RN V (x) > −1.

They obtained the existence of solutions of (1.3) as well as the concentration behavior of solutions
as ε → 0. Alves-Ji [4] continued to study (1.3) where V satisfies the local conditions (V′

1) and
(V′

2). Moreover, Alves-Ji [5] studied the existence of multi-bump positive solutions for the following
Schrödinger equation with logarithmic nonlinearity and deepening potential well{

−∆u+ λV (x)u = u log u2 in RN ,
u ∈ H1(RN ).

(1.4)

Then, Ji [16] was concerned with the existence and multiplicity of multi-bump type nodal solutions for
problem (1.4). We also refer to the works by Alves-Ambrosio [1], Alves-Ji [6], d’Avenia-Montefusco-
Squassina [13], Ji-Szulkin [17], Tanaka-Zhang [24] and the references therein.

Motivated by the above papers, in this work we obtain the existence of multi-bump type nodal
solutions for problem (1.1). More precisely, our main results are as follows.

Theorem 1.1. Suppose that V satisfies (V1)–(V3). Then, for any non-empty subset Γ of {1, 2, . . . , k},
there exists λ∗ > 0 such that for all λ ≥ λ∗, problem (1.1) has a nodal solution uλ. Moreover, the
family {uλ}λ≥λ∗ has the following properties: for any sequence λn → ∞, we can extract a subsequence

λni
such that uλni

converges strongly in W s,p(RN ) to a function u which satisfies u(x) = 0 for x /∈ ΩΓ

and the restriction u
∣∣
Ωj

is a nodal solution with least energy of{
(−∆)

s
p u = |u|p−2u log |u|p in ΩΓ,

u = 0 on ∂ΩΓ,

where ΩΓ =
⋃

j∈Γ Ωj.

From this result, we obtain the following direct consequence.
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Corollary 1.2. Under the assumptions of Theorem 1.1, there exists λ∗ > 0 such that for all λ ≥ λ∗,
the problem (1.1) has at least 2k − 1 nodal solutions.

Corollary 1.2 can be directly obtained from Theorem 1.1. Our approach is mainly based on varia-
tional methods. First note that the associated energy functional of problem (1.1) may take the value
+∞, since there is a function u ∈ W s,p(RN ) such that

∫
RN |u|p log |u|p dx = −∞. Thus, the energy

functional is not well defined on W s,p(RN ) and the classical variational methods cannot be applied
here. To find solutions of equation (1.1), we will perform a technical decomposition to obtain a func-
tional which is a sum of a lower semicontinuous convex functional and a C1-functional. Here, we have
made great use of the fact that the energy functional is of class C1 in W s,p(D), when D ⊂ RN is a
bounded domain. Based on this observation, for each R > 0 and λ > 0 large enough, we find a nodal
solution uλ,R ∈ W s,p

0 (BR(0)) by penalization arguments, and after taking the limit of R → +∞, we
get a nodal solution for the original problem.

In fact, by the method presented in this paper, we can also demonstrate the existence of multi-bump
solutions that join positive, negative, and nodal least energy solutions. For this purpose, we need to
make some modifications. For example, if we want to get a positive solution ω1 on Ω1 and a negative
solution ω2 on Ω2, we need to change ω±

1 and ω±
2 by ω1 and ω2, respectively. We also need to make

some modifications for the definition of bλ,R,Γ and the set Aλ
µ,R, which are defined in Section 4 and

5. In addition, we need to replace d1 and d2 with mountain pass levels c1 and c2 associated with the
energy functionals I1 and I2, respectively. From this, we have the following theorem.

Theorem 1.3. Suppose that V satisfies (V1)–(V3). Then, for any non-empty subset Γ1, Γ2 and Γ3

of {1, 2, . . . , k} with Γi ∩ Γj = ∅, for i ̸= j, there is λ∗ > 0 such that, for all λ ≥ λ∗, problem (1.1)
has a nontrivial solution uλ. Moreover, the family {uλ}λ≥λ∗ has the following properties: for any

sequence λn → ∞, we can extract a subsequence λni such that uλni
converges strongly in W s,p

(
RN
)

to a function u which satisfies u(x) = 0 for x /∈ ΩΓ(= ∪j∈ΓΩj) where Γ = Γ1 ∪ Γ2 ∪ Γ3, and the
restriction u|Ωj

is a positive solution if j ∈ Γ1, a negative solution if j ∈ Γ2 and a nodal solution with

least energy of {
(−∆)

s
p u = |u|p−2u log |u|p in Ωj ,

u = 0 on ∂Ωj ,

where j ∈ Γ3.

The paper is organized as follows. In Section 2, we recall some lemmas which we will use in the
paper. In Section 3–5, we establish an auxiliary problem and prove the existence of multi-bump nodal
solutions for the auxiliary problem in the ball BR(0) for R > 0. In Section 6, we provide the proof of
Theorem 1.1.

2. Preliminaries

In this section, we present the main tools and notions that will occur in Sections 3–6. If A ⊂ RN ,
we denote by |u|Lq(A) the L

q(A)-norm of a function u : RN → R, and by |u|q its Lq(RN )-norm. With

Br(x0) we indicate the ball in RN centered at x0 ∈ RN with radius r > 0. When x0 = 0, we simply
write Br instead of Br(0).

Let s ∈ (0, 1), p ∈ (1,∞) and N > sp. We define Ds,p(RN ) as the completion of C∞
c (RN ) with

respect to

[u]ps,p =

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dx dy,

or equivalently

Ds,p(RN ) =
{
u ∈ Lp∗

s (RN ) : [u]s,p <∞
}
,
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where p∗s = Np
N−sp is the fractional critical Sobolev exponent. The fractional Sobolev space Ws,p(RN )

is given by

W s,p(RN ) =
{
u ∈ Lp(RN ) : [u]s,p <∞

}
,

endowed with the norm

∥u∥p
W s,p(RN )

= [u]ps,p + |u|pp.

We know that there exists a constant S∗ = S(N, s, p) > 0 such that S∗∥u∥pLp∗s (RN )
≤ [u]ps,p for all

u ∈ Ds,p(RN ). Now, we recall the following main embeddings for fractional Sobolev spaces, see Di
Nezza-Palatucci-Valdinoci [14].

Lemma 2.1. Let s ∈ (0, 1), p ∈ (1,∞) and N > sp. Then W s,p(RN ) is continuously embedded in
Lq(RN ) for all q ∈ [p, p∗s) and compactly in Lq

loc(RN ) for all q ∈ [1, p∗s), and C∞
c (RN ) is dense in

W s,p(RN ).

We also recall the following vanishing Lions-type result for W s,p(RN ), see Ambrosio-Isernia [10].

Lemma 2.2. If {un}n∈N is a bounded sequence in W s,p(RN ) and if

lim
n→∞

sup
y∈RN

∫
BR(y)

|un|p dx = 0,

where R > 0, then un → 0 in Lq(RN ) for all q ∈ (p, p∗s).

From now on, we suppose p ∈ [2,∞) and we shall work on the following function space

Eλ :=

{
u ∈W s,p(RN ) :

∫
RN

V (x)|u|p dx <∞
}

endowed with the norm

∥u∥pλ := [u]ps,p +

∫
RN

(λV (x) + 1) |u|p dx.

Obviously, Eλ is a uniformly convex Banach space, the duality pairing associated with the norm is
given by

(u, v)λ =

∫∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+sp
dx dy +

∫
RN

(λV (x) + 1) |u|p−2uv dx.

Since V (x) ≥ 0 for all x ∈ RN , the embedding Eλ ↪→ W s,p(RN ) is continuous, and so the embedding
Eλ ↪→ Lq(R3) is also continuous for all q ∈ [p, p∗s].

For each R > 0, we define a norm ∥ · ∥λ,R on W s,p(BR(0)) by

∥u∥pλ,R :=

∫
BR(0)

∫
BR(0)

|u(x)− u(y)|p

|x− y|N+sp
dx dy +

∫
BR(0)

(λV (x) + 1) |u|p dx,

which is equivalent to the usual norm in that space for all λ, R > 0. In what follows, we will denote
by Eλ,R the space Eλ endowed with the norm ∥ · ∥λ,R.

Note that a weak solution of (1.1) inW s,p(RN ) is a critical point of the associated energy functional

Iλ(u) :=
1

p
∥u∥pλ − 1

p

∫
RN

|u|p log |u|p dx. (2.1)

Definition 2.3. A solution of problem (1.1) is a function u ∈ W s,p(RN ) such that |u|p log |u|p ∈
L1(RN ) and∫∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+sp
dx dy +

∫
RN

λV (x)|u|p−2uv dx

=

∫
RN

|u|p−2uv log |u|p dx

for all v ∈ C∞
c (RN ).
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Due to the lack of smoothness of Iλ, we shall use the approach explored by Ji-Szulkin [17] and
Squassina-Szulkin [22, 23]. For this purpose, we decompose Iλ into a sum of a C1 functional plus a
convex lower semicontinuous functional, respectively. For δ > 0, we define the functions

F1(ς) =



0, if ς = 0,

−1

p
|ς|p log |ς|p if 0 < |ς| < δ,

−1

p
|ς|p

(
log δp +

p+ 1

p− 1

)
+

2

p− 1
δp−1|ς| − 1

p
δp, if |ς| ≥ δ,

and

F2(ς) =


0, if |ς| < δ,

1

p
|ς|p log

(
|ς|p

δp

)
+

2

p− 1
δp−1|ς| − p+ 1

p(p− 1)
|ς|p − 1

p
δp, if |ς| ≥ δ.

Then,

F2(ς)− F1(ς) =
1

p
|ς|p log |ς|p for all ς ∈ R,

and the functional Iλ : Eλ → (−∞,+∞] may be rewritten as

Iλ(u) = Φλ(u) + Ψ(u), u ∈ Eλ,

where

Φλ(u) =
1

p
∥u∥pλ −

∫
RN

F2(u) dx,

and

Ψ(u) =

∫
RN

F1(u) dx.

As proven in Ji-Szulkin [17] and Squassina-Szulkin [22, 23], F1, F2 ∈ C1(R,R). If δ > 0 is small
enough, F1 is convex, even,

F1(ς) ≥ 0 and 0 ≤ 1

p
F ′
1(ς)ς ≤ F1(ς) ≤ F ′

1(ς)ς for all ς ∈ R. (2.2)

For each fixed q ∈ (p, p∗s), there exists C > 0 such that

|F ′
2(ς)| ≤ C|ς|q−1 for all ς ∈ R. (2.3)

Note that Φλ ∈ C1
(
W s,p(RN ),R

)
, Ψ is convex and lower semicontinuous in W s,p(RN ), but Ψ is not

a C1-functional due to the unboundedness of RN .

3. The auxiliary problem

For each j ∈ {1, . . . , k}, we fix a bounded open subset Ω′
j with smooth boundary such that

Ωj ⊂ Ω′
j ,

and

Ω′
j ∩ Ω′

l = ∅ for all j ̸= l.

From now on, we fix a non-empty subset Γ ⊂ {1, . . . , k} and R > 0 such that Ω′
Γ ⊂ BR(0) and

ΩΓ =
⋃
j∈Γ

Ωj , Ω′
Γ =

⋃
j∈Γ

Ω′
j .

To prove our main theorem, we modify problem (1.1) and then consider the existence of solutions
to the auxiliary problem.
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By a simple observation, it is easy to verify that
F ′

2(ς)
ςp−1 is nondecreasing for ς > 0 and

F ′
2(ς)

ςp−1 is strictly
increasing for ς > δ,

lim
ς→+∞

F ′
2(ς)

ςp−1
= +∞

and

F ′
2(ς) ≥ 0 for ς > 0 and F ′

2(ς) > 0 for ς > δ.

Moreover,
F ′

2(ς)
ςp−1 is nonincreasing for ς < 0 and

F ′
2(ς)

ςp−1 is strictly decreasing for ς < −δ,

lim
ς→−∞

F ′
2(ς)

ςp−1
= +∞,

and

F ′
2(ς) ≤ 0 for ς < 0 and F ′

2(ς) < 0 for ς < −δ.
Let ℓ > 0 be small and a0 > 0 such that

max

{
F ′
2(a0)

ap−1
0

,
F ′
2(−a0)

(−a0)p−1

}
= ℓ.

It is clear that a0 > δ. We define

F̃ ′
2(ς) =



F ′
2(−a0)

(−a0)p−1
ςp−1 if ς < −a0,

F ′
2(ς) if |ς| ≤ a0,

F ′
2(a0)

ap−1
0

ςp−1 if ς > a0,

F̃ ′
2(ς) ≤ F ′

2(ς) for ς ≥ 0, F̃ ′
2(ς) ≥ F ′

2(ς) for ς ≤ 0

and

G′
2(x, u) = χΓ(x)F

′
2(u) + (1− χΓ(x)) F̃

′
2(u),

where

χΓ(x) :=

{
1, x ∈ Ω′

Γ,

0, x ∈ BR(0) \ Ω′
Γ.

Then, we define the auxiliary problem given by{
(−∆)

s
p u+ (λV (x) + 1) |u|p−2u = G′

2 (x, u)− F ′
1(u), in BR(0),

u = 0 on ∂BR(0).
(3.1)

Remark 3.1. Note that, if uλ,R is a nodal solution of (3.1) satisfying |uλ,R| ≤ a0 for each x ∈
BR(0) \ Ω′

Γ, then G
′
2(x, uλ,R) = F ′

2(uλ,R) and consequently, uλ,R is also a nodal solution of{
(−∆)

s
p u+ λV (x)|u|p−2u = |u|p−2u log |u|p in BR(0),

u = 0 on ∂BR(0).
(3.2)

It is clear that weak solutions of (3.1) are nontrivial critical points of the following energy functional

Iλ,R(u) :=
1

p
∥u∥pλ,R +

∫
BR(0)

F1(u) dx−
∫
BR(0)

G2 (x, u) dx,

in the sub-differential sense, and G2(x, t) =
∫ t

0
G′

2 (x, ζ) dζ for all (x, t) ∈ BR(0)×R. It is standard to

verify that Iλ,R ∈ C1(Eλ,R,R).
The next lemma implies that Iλ,R possesses the Mountain Pass geometry.
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Lemma 3.2. For all λ > 0, the functional Iλ,R satisfies the following conditions:

(i) There exist α, ρ > 0 such that Iλ,R(u) ≥ ρ with ∥u∥λ,R = α;
(ii) There exists e ∈ Eλ,R such that ∥u∥λ,R > α and Iλ,R(e) < 0.

Proof. First, note that

Iλ,R(u) ≥
1

p
∥u∥pλ,R −

∫
BR(0)

F2 (u) dx,

which follows from (2.3) for q ∈ (2, 2∗s) such that

Iλ,R(u) ≥
1

p
∥u∥pλ,R − C1∥u∥qλ,R.

The claim follows if we choose ρ and ∥u∥λ,R = α small enough.
On the other hand, fixing φ ∈ C∞

0 (ΩΓ) \ {0}, by (2.2), we have

Iλ,R(τφ) =
τp

p
∥φ∥pλ,R − 1

p

∫
BR(0)

τpφp log(|τφ|p) dx

≤ τp

(
Iλ,R(φ)− log(τ)

∫
Ω′

Γ

φp dx

)
.

As τ → +∞, then

Iλ,R(τφ) → −∞,

and the proof of the lemma is complete. □

By Lemma 3.2 and Willem [25], there exists a (PS)-sequence {un}n∈N ⊂ Eλ,R of Iλ,R at the level
cλ,R > 0, where

cλ,R = inf
γ∈Γλ,R

max
t∈[0,1]

Iλ,R(γ(t)),

and Γλ,R :=
{
γ ∈ C1([0, 1], Eλ,R) : γ(0) = 0, Iλ,R(γ(1)) < 0

}
. Moreover, by Lemma 3.2, we have

cλ,R ≥ α > 0 for all λ > 0 and R > 0 large enough.

Now, we will prove some results that will be useful in the proof of Theorem 1.1.

Lemma 3.3. For any λ > 0, all (PS)-sequences of Iλ,R are bounded in Eλ,R.

Proof. Since {un}n∈N ⊂ Eλ,R is a (PS)cλ,R
-sequence, one gets

pIλ,R(un)− I ′
λ,R(un)un = pcλ,R + 1 + on(1) ∥un∥λ,R , (3.3)

for n large enough. Note that,∫
BR(0)

[(pF1(un)− F ′
1(un)un) + (F ′

2(un)un − pF2(un))] dx =

∫
BR(0)

|un|p dx.

From this, one has

pIλ,R(un)− I ′
λ,R(un)un

=

∫
BR(0)

[(pF1(un)− F ′
1(un)un) + (G′

2(x, un)un − pG2(x, un))] dx

=

∫
BR(0)

|un|p dx+

∫
BR(0)

(pF2(un)− F ′
2(un)un) dx

+

∫
BR(0)

(G′
2(x, un)un − pG2(x, un)) dx

=

∫
Ω′

Γ

|un|p dx+

∫
BR(0)\Ω′

Γ∩[|un|>a0]

(|un|p + pF2(un)− F ′
2(un)un) dx
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+

∫
BR(0)\Ω′

Γ∩[|un|>a0]

(G′
2(x, un)un − pG2(x, un)) dx.

Using the fact

|t|p + [pF2(t)− F ′
2(t)t+G′

2(x, t)t− pG2(x, t)] ≥ 0, t ∈ C, x ∈ RN ,

one gets

pIλ,R(un)− I ′
λ,R(un)un ≥

∫
Ω′

Γ

|un|p dx.

So (3.3) implies that

pcλ,R + 1 + on(1) ∥un∥λ,R ≥
∫
Ω′

Γ

|un|p dx. (3.4)

Let us employ the following logarithmic Sobolev inequality found in Alves-Ambrosio [1],∫
Λ

|u|p

∥u∥p
Lp(Ω′

Γ)

log

 |u|p

∥u∥p
Lp(Ω′

Γ)

 dx ≤ K log

∥u∥p
Lp∗s (Ω′

Γ)

∥u∥p
Lp(Ω′

Γ)

 ,

for all u ∈ Lp(Ω′
Γ) ∩ Lp∗

s (Ω′
Γ). Now, using ∥un∥Lp∗s (Ω′

Γ)
≤
(
S−1
∗
) 1

p ∥un∥λ,R, we find∫
Ω′

Γ

(un)
p log(un)

p dx ≤
(
∥un∥pLp(Ω′

Γ)
−K ∥un∥pLp(Ω′

Γ)

)
log

(
∥un∥pLp(Ω′

Γ)

)
+K ∥un∥pLp(Ω′

Γ)
log

(
∥un∥p

L
pp(Ω′

Γ)

)
≤ C ∥un∥pLp(Ω′

Γ)

∣∣∣∣log(∥un∥pLp(Ω′
Γ)

)∣∣∣∣
+ C ∥un∥λ,R

∣∣∣log (C ∥un∥λ,R
)∣∣∣+ C + ∥un∥λ,R ,

for all n ∈ N and for some C > 0. Observe that, for all r ∈ (0, 1), there exists A > 0 such that

|t log t| ≤ A(1 + t)r+1 for all t ≥ 0. (3.5)

Then, employing (3.5)

∥un∥pLp(Ω′
Γ)

∣∣∣∣log(∥un∥pLp(Ω′
Γ)

)∣∣∣∣ = ∣∣∣∣∥un∥pLp(Ω′
Γ)

log

(
∥un∥pLp(Ω′

Γ)

)∣∣∣∣
≤ A

p

(
1 + ∥un∥pLp(Ω′

Γ)

)r+1

for all n ∈ N,

which combined with (3.4) leads to

∥un∥pLp(Ω′
Γ)

∣∣∣∣log(∥un∥pLp(Ω′
Γ)

)∣∣∣∣ ≤ C
(
1 + ∥un∥λ,R

)r+1

for all n ∈ N.

A similar argument shows that

∥un∥pLp(Ω′
Γ)

∣∣∣∣log(∥un∥pLp(Ω′
Γ)

)∣∣∣∣ ≤ C
(
1 + ∥un∥λ,R

)r+1

for all n ∈ N,

and

∥un∥λ,R
∣∣∣log (C ∥un∥λ,R

)∣∣∣ ≤ C
(
1 + ∥un∥λ,R

)r+1

for all n ∈ N,

for some generic constant C > 0. The above analysis ensures that∫
Ω′

Γ

(un)
p
log (un)

p
dx ≤ C

(
1 + ∥un∥λ,R

)r+1

for all n ∈ N. (3.6)
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On the other hand,

cλ,R + on(1) = Iλ,R (un) ≥
1

p
∥un∥pλ,R − 1

p

∫
Ω′

Γ

(un)
p
log (un)

p
dx−

∫
BR(0)\Ω′

Γ

G2 (x, un) dx,

and recalling that

G2(x, t) ≤
ℓ

p
tp for all (x, t) ∈ BR(0) \ Ω′

Γ × R,

we deduce that

cλ,R + on(1) = Iλ,R (un) ≥ C ∥un∥pλ,R − 1

p

∫
Ω′

Γ

(un)
p
log (un)

p
dx.

This fact together with (3.6) yields

∥un∥pλ,R ≤ 1

p

∫
Ω′

Γ

(un)
p
log (un)

p
dx+ cλ,R + on(1)

≤ C
(
1 + ∥un∥λ,R

)r+1

+ C + C ∥un∥λ,R + on(1),

showing the boundedness of {un}n∈N in Eλ,R. □

Our next lemma shows that Iλ,R verifies the (PS) condition.

Lemma 3.4. The functional Iλ,R verifies the (PS) condition on Eλ,R at any level cλ,R ∈ R.

Proof. Let {un}n∈N be a (PS)-sequence for Iλ,R at the level cλ,R, i.e.,

Iλ,R(un) → cλ,R and I ′
λ,R(un) → 0.

Since {un}n∈N is bounded in Eλ,R, see Lemma 3.3, up to a subsequence, we may assume that
un ⇀ u in Eλ,R,

un → u in Lr(BR(0)), for all r ∈ [1, p∗s)

un(x) → u(x) a.e. in BR(0).

For all τ ∈ R and fixed q ∈ (p, p∗s), there exists C > 0 such that

|G′
2(x, τ)| ≤ θ|τ |+ C|τ |q−1,

and

|F ′
1(τ)| ≤ C(1 + |τ |q).

Hence, by the Sobolev embeddings, one has∫
BR(0)

G′
2(x, un)un dx→

∫
BR(0)

G′
2(x, u)udx,∫

BR(0)

F ′
1(x, un)un dx→

∫
BR(0)

F ′
1(x, u)udx,∫

BR(0)

G′
2(x, un)ω dx→

∫
BR(0)

G′
2(x, u)ω dx,∫

BR(0)

F ′
1(x, un)ω dx→

∫
BR(0)

F ′
1(x, u)ω dx,

for all ω ∈ Eλ,R.
Since I ′

λ,R(un)un = I ′
λ,R(un)u = on(1), we get

∥un − u∥pλ,R =

∫
BR(0)

(G′
2(x, un)−G′

2(x, u)) (un − u) dx

−
∫
BR(0)

(F ′
1(x, un)− F ′

1(x, u)) (un − u) dx+ on(1) = on(1),
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which shows the desired result. □

3.1. The (PS)∞,R condition. In the sequel, for each R > 0, we study the behavior of a (PS)∞,R-
sequence for Iλ,R, i.e., a sequence {un}n∈N ⊂W s,p

0 (BR(0)) satisfying

un ∈ Eλn,R and λn → ∞,

Iλn,R (un) → c,
∥∥I ′

λn,R (un)
∥∥→ 0.

Lemma 3.5. Let {un}n∈N ⊂W s,p
0 (BR(0)) be a (PS)∞,R sequence. Then, for some subsequence, still

denoted by {un}n∈N, there exists u ∈W s,p
0 (BR(0)) such that

un ⇀ u in W s,p
0 (BR(0)) .

Moreover, the following hold:

(i) un converges to u in the strong sense, i.e.,

∥un − u∥λn,R
→ 0.

Hence,

un → u in W s,p
0 (BR(0)) .

(ii) u ≡ 0 in BR(0) \ ΩΓ and u is a solution of{
(−∆)

s
p u = |u|p−2u log |u|p in ΩΓ,

u = 0 on ∂ΩΓ.
(3.7)

(iii) un also satisfies

λn

∫
BR(0)

V (x) |un|p dx→ 0,

∥un∥pλn,BR(0)\ΩΓ
→ 0,

∥un∥pλn,Ω′
j
→
∫
Ωj

∫
Ωj

|u(x)− u(y)|p

|x− y|N+sp
dx dy +

∫
Ωj

|u|p dx for all j ∈ Γ.

Proof. By using Lemma 3.3, there exists K > 0 such that

∥un∥pλn,R
≤ K for all n ∈ N.

Thus {un}n∈N is bounded in W s,p
0 (BR(0)) and we can assume that for some u ∈W s,p

0 (BR(0)),

un ⇀ u weakly in W s,p
0 (BR(0)) ,

un(x) → u(x) a.e. in BR(0).

Fixing Cm =
{
x ∈ BR(0) : V (x) ≥ 1

m

}
, one has∫

Cm

|un|p dx ≤ m

λn

∫
BR(0)

λnV (x) |un|p dx,

that is, ∫
Cm

|un|p dx ≤ m

λn
∥un∥pλn,R

,

which yields from Fatou’s lemma that∫
Cm

|u|p dx = 0 for all m ∈ N.

Then u(x) = 0 on
⋃+∞

m=1 Cm = BR(0) \ Ω, and so, u
∣∣
Ωj

∈ W s,p
0 (Ωj) for j ∈ {1, . . . , k}. From this, we

will prove (i)–(iii).
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(i) Since u = 0 in BR(0)\Ω and I ′
λn,R

(un)un = I ′
λn,R

(un)u = on(1), similar to the proof of Lemma
3.4, it holds

∥un − u∥λn,R
→ 0,

which implies that un → u in W s,p
0 (BR(0)).

(ii) Since u ∈W s,p
0 (BR(0)) and u = 0 in BR(0) \Ω, we deduce u ∈W s,p

0 (Ω), or equivalently u
∣∣
Ωj

∈
W s,p

0 (Ωj) for j = 1, . . . , k. Moreover, un → u in W s,p
0 (BR(0)) combined with I ′

λn,R
(un)φ → 0 as

n→ +∞ for each φ ∈ C∞
0 (ΩΓ) implies that∫

ΩΓ

∫
ΩΓ

|u(x)− u(y)|p−2(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+sp
dx dy

+

∫
ΩΓ

|u|p−2uφ dx+

∫
ΩΓ

F ′
1(u)φ dx−

∫
ΩΓ

F ′
2 (u)φdx = 0,

from which it follows that u
∣∣
ΩΓ

is a solution for (3.7). On the other hand, for each j ∈ {1, 2, . . . , k}\Γ,
we have that∫

Ωj

∫
Ωj

|u(x)− u(y)|p

|x− y|N+sp
dx dy +

∫
Ωj

|u|p dx+

∫
Ωj

F ′
1(u)u dx−

∫
Ωj

F̃ ′
2 (u)udx = 0.

By the fact that F ′
1(ς)ς ≥ 0 and F̃ ′

2(ς)ς ≤ ℓ|ς|p for all ς ∈ R, we derive that∫
Ωj

∫
Ωj

|u(x)− u(y)|p

|x− y|N+sp
dx dy +

∫
Ωj

|u|p dx ≤
∫
Ωj

F̃ ′
2 (u)udx ≤ θ

∫
Ωj

|u|p dx.

Since ℓ < 1, u = 0 in Ωj for j ∈ {1, 2, . . . , k} \ Γ, which shows (ii).
(iii) Note that, from (i),∫

BR(0)

λnV (x) |un|p dx =

∫
BR(0)

λnV (x) |un − u|p dx ≤ C ∥un − u∥pλn,R
,

which shows that ∫
BR(0)

λnV (x) |un|p dx→ 0 as n→ +∞.

Moreover, from (i) and (ii), it is easy to check that

∥un∥pλn,BR(0)\ΩΓ
→ 0,

and

∥un∥pλn,Ω′
j
→
∫
Ωj

∫
Ωj

|u(x)− u(y)|p

|x− y|N+sp
dx dy +

∫
Ωj

|u|p dx for all j ∈ Γ.

This completes the proof. □

With a few modifications to the arguments in the proof of Lemma 3.5 and using Lemma 3.3, we
also have the following result.

Lemma 3.6. Let {un}n∈N ⊂ Eλn,Rn
be a (PS)∞,Rn

sequence with Rn → +∞, i.e.,

un ∈ Eλn,Rn
and λn → ∞, Iλn,Rn

(un) → c,
∥∥I ′

λn,Rn
(un)

∥∥→ 0.

Then, for some subsequence, still denoted by {un}n∈N, there exists u ∈W s,p(RN ) such that

un ⇀ u in W s,p(RN ).

Moreover, the following hold:

(i) ∥un − u∥λn,Rn
→ 0, and so,

un → u in W s,p(RN ).



12 L. LI, H. TAO, AND P. WINKERT

(ii) u ≡ 0 in RN \ ΩΓ and u is a solution of{
(−∆)

s
p u = |u|p−2u log |u|p in ΩΓ,

u = 0 on ∂ΩΓ.

(iii) un also satisfies

λn

∫
BRn (0)

V (x) |un|p dx→ 0,

∥un∥pλn,BRn (0)\ΩΓ
→ 0,

∥un∥pλn,Ω′
j
→
∫
Ωj

∫
Ωj

|u(x)− u(y)|p

|x− y|N+sp
dx dy +

∫
Ωj

|u|p dx for all j ∈ Γ.

Proof. First of all, the boundedness of {Iλn,Rn (un)}n∈N shows that there exists K > 0 such that

∥un∥pλn,Rn
≤ K for all n ∈ N.

Thus, {un}n∈N is bounded in W s,p(RN ) and we can assume that for some u ∈W s,p(RN ),

un ⇀ u in W s,p(RN ),

un(x) → u(x) a.e. in RN ,

and u(x) = 0 on RN \ Ω.
(i) For any ζ > 0, there exists R = R(ζ) > 0 such that

lim sup
n→∞

∫
RN\BR

(∫
RN

|un(x)− un(y)|p

|x− y|N+sp
dy + (λnV (x) + 1) |un|p

)
dx < ζ.

Let 0 < R < Rn and ψ = ψR ∈ C∞
0 (RN ) be a cut-off function such that ψ ≡ 0 if x ∈ BR

2
(0), ψ ≡ 1 if

x /∈ BR(0) with 0 ≤ ψ(x) ≤ 1, and ∥∇ψ(x)∥L∞(RN ) ≤ C
R , where C is a constant independent of R. Since

{un}n∈N is bounded, the sequence {ψun}n∈N is also bounded. This shows that I ′
λn,Rn

(un)(ψun) =

on(1), namely,∫∫
R2N

|un(x)− un(y)|p

|x− y|N+sp
ψ(x) dxdy +

∫
RN

(λnV (x) + 1) |un|pψ(x) dx

=

∫
Ω′

Γ

F ′
2(un)unψ(x) dx+

∫
R3\Ω′

Γ

F̃ ′
2(un)unψ(x) dx−

∫
R3

F ′
1(un)unψ(x) dx

−
∫∫

R2N

|un(x)− un(y)|p−2 (un(x)− un(y)) (ψ(x)− ψ(y))

|x− y|N+sp
un(y) dx dy + on(1).

Take R > 0 such that Ω′
Γ ⊂ BR

2
(0). Then, by (2.2) and the definitions of F̃ ′

2, we obtain∫∫
R2N

|un(x)− un(y)|p

|x− y|N+sp
ψ(x) dxdy +

∫
RN

(λnV (x) + 1) |un|pψ(x) dx

≤ ℓ

∫
RN

|un|pψ(x) dx−
∫∫

R2N

|un(x)− un(y)|p−2 (un(x)− un(y)) (ψ(x)− ψ(y))

|x− y|N+sp
un(y) dx dy

+ on(1).

By Hölder’s inequality and the boundedness of {un}n∈N, we arrive at∣∣∣∣∫∫
R2N

|un(x)− un(y)|p−2 (un(x)− un(y)) (ψ(x)− ψ(y))

|x− y|N+sp
un(y) dxdy

∣∣∣∣
≤
(∫∫

R2N

|un(x)− un(y)|p

|x− y|N+sp
dx dy

) p−1
p
(∫∫

R2N

|ψ(x)− ψ(y)|p

|x− y|N+sp
|un(y)|p dx dy

) 1
p
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≤ C

(∫∫
R2N

|ψ(x)− ψ(y)|p

|x− y|N+sp
|un(y)|p dx dy

) 1
p

≤ C

Rs
,

where we have used that∫∫
R2N

|ψ(x)− ψ(y)|p

|x− y|N+sp
|un(y)|p dx dy

=

∫
RN

|un(y)|p
(∫

|x−y|>R

|ψ(x)− ψ(y)|p

|x− y|N+sp
dx+

∫
|x−y|≤R

|ψ(x)− ψ(y)|p

|x− y|N+sp
dx

)
dy

≤ C

∫
RN

|un(y)|p dy

(∫ ∞

R

1

rsp+1
dr +R−p

∫ R

0

1

rsp−p+1
dr

)

≤ C

Rsp
.

Now, fixing ζ > 0 and passing to the limit in the last inequality, it follows that

lim sup
n→∞

∫
RN\BR

(∫
RN

|un(x)− un(y)|p

|x− y|N+sp
dy + (λnV (x) + 1) |un|p

)
dx ≤ C

Rs
< ζ, (3.8)

whenever R > 0 is sufficiently large.
Since G′

2 has a subcritical growth, the above estimate (3.8) ensures that∫
RN

G′
2 (x, un)w dx→

∫
RN

G′
2 (x, u)w dx for all w ∈ C∞

0 (RN ),∫
RN

G′
2 (x, un)un dx→

∫
RN

G′
2 (x, u)u dx,∫

RN

G2 (x, un) dx→
∫
RN

G2 (x, u) dx.

Now, recalling that limn→∞ I ′
λn,Rn

(un)w = 0 for all w ∈ C∞
0

(
RN
)
and ∥un∥pλn,Rn

≤ K for all n ∈ N,
we deduce that∫∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))(w(x)− w(y))

|x− y|N+sp
dx dy +

∫
RN

|u|p−2uw dx

+

∫
RN

F ′
1(u)w dx−

∫
RN

G′
2(x, u)w dx = 0,

and so, ∫∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dx dy +

∫
RN

|u|p dx+

∫
RN

F ′
1(u)u dx−

∫
RN

G′
2(x, u)udx = 0.

This together with the equality limn→∞ I ′
λn,Rn

(un)un = 0, i.e.,∫∫
R2N

|un(x)− un(y)|p

|x− y|N+sp
dx dy +

∫
RN

(λnV (x) + 1) |un|p dx+

∫
RN

F ′
1(un)un dx

=

∫
RN

G′
2(x, un)un dx+ on(1),

leads to

lim
n→+∞

(∫∫
R2N

|un(x)− un(y)|p

|x− y|N+sp
dx dy +

∫
RN

(λnV (x) + 1) |un|p dx+

∫
RN

F ′
1(un)un dx

)
=

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dx dy +

∫
RN

|u|p dx+

∫
RN

F ′
1(u)u dx,

from which it follows that for some subsequence,

un → u in W s,p(RN ), λn

∫
RN

V (x) |un|p dx→ 0,
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and

F ′
1(un)un → F ′

1(u)u in L1(RN ).

Since F1 is convex, even and F (0) = 0, we know that F ′
1(τ)τ ≥ F1(τ) ≥ 0 for all τ ∈ R. Thus, the last

limit together with Lebesgue’s dominated convergence theorem yields

F1(un) → F1(u) in L1(RN ).

Since

∥un − u∥pλn,Rn
=

∫∫
R2N

|(un(x)− u(x))− (un(y)− u(y))|p

|x− y|N+sp
dx dy +

∫
RN

(λnV (x) + 1) |un − u|p dx,

it follows that

∥un − u∥pλn,Rn
→ 0,

which implies (i). The proofs of (ii) and (iii) are similar to that of Lemma 3.5 and so we omit it. □

3.2. The L∞-boundedness of solutions to (3.1). Next, we investigate the boundedness outside
Ω′

Γ for the solutions of (3.1). The following lemma is crucial to show that the solutions of the auxiliary
problem (3.1) are the solutions of the original problem (1.1). Furthermore, we define

|u|q,R =

(∫
BR(0)

uq dx

) 1
q

.

Lemma 3.7. Let {uλ,R} be a family of nodal solutions of (3.1) such that {Iλ,R(uλ,R)} is bounded in
R for any λ > 0 and R > 0 large enough. Then, there exists K > 0 that does not depend on λ > 0 and
R∗ > 0 such that

|uλ,R|∞,R ≤ K for all λ > 0 and R ≥ R∗.

Proof. For each L > 0, let u+L := min{u+λ,R, L} and define the function

E(uλ,R) := EL,σ(uλ,R) = uλ,R(u
+
L)

p(σ−1),

with σ > 1 to be determined later. Note that E is increasing, thus we have

(a− b)(E(a)− E(b)) ≥ 0 for any a, b ∈ R.
Consider the functions

Q(t) :=
|t|p

p
and L(t) :=

∫ t

0

(E ′(τ))
1
p dτ,

and note that

L(uλ,R) ≥
C

σ
uλ,R(u

+
L)

σ−1.

Hence, from Lemma 2.1, we obtain

[L(uλ,R)]p ≥ S∗ |L(uλ,R)|pp∗
s ,R

≥ S∗
1

σp
|uλ,R(u+L)

σ−1|pp∗
s ,R

. (3.9)

In addition, for any a, b ∈ R, it holds
Q′(a− b)(E(a)− E(b)) ≥ |L(a)− L(b)|p.

In fact, suppose that a > b, it follows from Jensen’s inequality that

Q′(a− b)(E(a)− E(b)) = (a− b)(E(a)− E(b)) = (a− b)

∫ a

b

E ′(τ) dτ

= (a− b)

∫ a

b

(L′(τ))p dτ ≥
(∫ a

b

L′(τ) dτ

)p

= (L(a)− L(b))p.
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A similar argument holds if a ≤ b. Thus, we infer that

|L(uλ,R)(x)− L(uλ,R)(y)|p

≤ |uλ,R(x)− uλ,R(y)|p−2
(uλ,R(x)− uλ,R(y))

(
uλ,R(x)(u

+
L)

p(σ−1)(x)− uλ,R(y)(u
+
L)

p(σ−1)(y)
)
.

Using E(uλ,R) as test function in (3.1), in view of the above inequality, we get that

[L(uλ,R)]p +
∫
BR(0)

(λV (x) + 1)upλ,R(u
+
L)

p(σ−1) dx+

∫
BR(0)

F ′
1(uλ,R)uλ,R(u

+
L)

p(σ−1) dx

≤
∫∫

BR(0)×BR(0)

|uλ,R(x)− uλ,R(y)|p−2
(uλ,R(x)− uλ,R(y))

|x− y|N+sp

×
(
uλ,R(x)(u

+
L)

p(σ−1)(x)− uλ,R(y)(u
+
L)

p(σ−1)(y)
)
dx dy

+

∫
BR(0)

(λV (x) + 1)upλ,R(u
+
L)

p(σ−1) dx+

∫
BR(0)

F ′
1(uλ,R)uλ,R(u

+
L)

p(σ−1) dx

≤
∫
BR(0)

G′
2(x, u)uλ,R(u

+
L)

p(σ−1) dx.

By the definition of G′
2, for fixed q ∈ (p, p∗s), there exists C > 0 such that

0 ≤ G′
2(x, τ) ≤ θτ + Cτ q−1 for (x, τ) ∈ BR(0)× [0,∞).

The above estimates and (3.9) provide

|u+λ,R(u
+
L)

σ−1|pp∗
s ,R

≤ σpS−1
∗

[
L(u+λ,R)

]p
≤ Cσp

∫
BR(0)

(u+λ,R)
q(u+L)

p(σ−1) dx. (3.10)

Since

(u+λ,R)
q(u+L)

p(σ−1) = (u+λ,R)
q−p(u+λ,R(u

+
L)

σ−1)p,

we can use (3.10) and Hölder’s inequality to deduce that

|u+λ,R(u
+
L)

σ−1|pp∗
s ,R

≤ Cσp|u+λ,R|
q−p
p∗
s ,R

|u+λ,R(u
+
L)

σ−1|pα∗
s ,R

,

where

α∗
s =

pp∗s
p∗s − (q − p)

∈ (p, p∗s).

Since {uλ,R} is bounded, we conclude that

|u+λ,R(u
+
L)

σ−1|pp∗
s ,R

≤ Cσp|u+λ,R(u
+
L)

σ−1|pα∗
s ,R

.

Note that, if uλ,R ∈ Lσα∗
s (BR(0)), using the fact that u+L ≤ u+λ,R, then

|u+λ,R(u
+
L)

σ−1|pp∗
s ,R

≤ Cσp|u+λ,R|
pσ
σα∗

s ,R
<∞,

which together with Faton’s lemma implies

|u+λ,R|
pσ
σp∗

s ,R
≤ Cσp|u+λ,R|

pσ
σα∗

s ,R
,

as L→ ∞. Now, taking σ = p∗s/α
∗
s > 0, we have

|u+λ,R|
pσ
σp∗

s ,R
≤ Cσp|u+λ,R|

pσ
p∗
s ,R

,

and replacing σ by σj , j ∈ N, in the above inequality, we obtain that

|u+λ,R|
pσj

σjp∗
s ,R

≤ C(σj)p|u+λ,R|
pσj

p∗
s ,R

.

Then, by an argument of induction, we may verify that

|u+λ,R|p∗
sσ

j ,R ≤ σ
1
σ+ 2

σ2 +···+ j

σj (pC)
1
p (

1
σ+ 1

σp +···+ 1

σj )|u+λ,R|p∗
s ,R

, (3.11)
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for every j ∈ N. Note that
∞∑
j=1

1

σj
=

1

σ − 1
and

∞∑
j=1

i

σj
=

σ

(σ − 1)2
.

Since σ > 1, passing to the limit as j → ∞ in (3.11), we may infer that u ∈ L∞(BR(0)) and

|u+λ,R|∞,R ≤ σ
σ

(σ−1)2 (pC)
1

σ−1 |u+λ,R|p∗
s ,R

.

Using |u+λ,R|p∗
s ,R

≤ M , fixing any sequences λn → +∞ and Rn → +∞, it is easy to see there exists a
constant K1 > 0 such that

|u+λn,Rn
|∞ ≤ K1 for all n ∈ N.

A similar argument can be used to prove that

|u−λn,Rn
|∞ ≤ K2 for all n ∈ N

for a suitable constant K2. The proof is complete. □

Lemma 3.8. Let {uλ,R} be a family of nodal solutions of (3.1) such that {Iλ,R(uλ,R)} is bounded in
R for any λ > 0 and R > 0 large enough. Then, there exist λ′ > 0 and R′ > 0 such that

|uλ,R|∞,BR(0)\Ω′
Γ
≤ a0 for all λ ≥ λ′ and R ≥ R′.

In particular, uλ,R solves the original problem (3.2) for λ ≥ λ′ and R ≥ R′.

Proof. Choose R0 > 0 large such that Ω′
Γ ⊂ BR0

(0). Since ∂Ω′
Γ is a compact set, we fix a neighborhood

of B of ∂Ω′
Γ such that

B ⊂ BR0
(0) \ ΩΓ.

The Moser iteration technique implies that there exists C > 0, which is independent of λ, such that∣∣∣u+λ,R∣∣∣
L∞(∂Ω′

Γ)
≤ C

∣∣∣u+λ,R∣∣∣
Lp∗s (B)

for all R ≥ R0.

Fixing two sequences λn → +∞ and Rn → +∞, by Lemma 3.6 we have that for some subsequence
uλn,Rn → 0 in W s,p (BRn(0) \ ΩΓ), then uλn,Rn → 0 in W s,p (BR0(0) \ ΩΓ), and so,∣∣∣u+λn,Rn

∣∣∣
Lp∗s (B)

→ 0 as n→ ∞.

Hence, there is n0 ∈ N such that∣∣∣u+λn,Rn

∣∣∣
L∞(∂Ω′

Γ)
≤ a0 for all n ≥ n0.

Now, for n ≥ n0, we set ũ+λn,Rn
: BRn

(0) \ Ω′
Γ → R given by

ũ+λn,Rn
(x) =

(
u+λn,Rn

− a0

)+
(x) .

Then, ũ+λn,Rn
∈ W s,p

0 (BRn(0) \ Ω′
Γ). Our goal is to show that ũ+λn,Rn

(x) = 0 in BRn(0) \ Ω′
Γ, because

this will ensure that ∣∣∣u+λn,Rn

∣∣∣
∞,BRn (0)\Ω′

Γ

≤ a0.

Indeed, extending ũ+λn,Rn
(x) = 0 in Ω′

Γ and taking ũ+λ,R as a test function, we have∫
BRn (0)\Ω′

Γ

|uλn,Rn(x)− uλn,Rn(y)|p−1(uλn,Rn(x)− uλn,Rn(y))(ũ
+
λn,Rn

(x)− ũ+λn,Rn
(y))

|x− y|N+sp
dx dy

+

∫
BRn (0)\Ω′

Γ

(λnV (x) + 1) |uλn,Rn |p−2uλn,Rn ũ
+
λn,Rn

dx
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≤
∫
BRn (0)\Ω′

Γ

F̃ ′
2(uλn,Rn)ũ

+
λn,Rn

dx.

Since∫
BRn (0)\Ω′

Γ

|uλn,Rn(x)− uλn,Rn(y)|p−1(uλn,Rn(x)− uλn,Rn(y))(ũ
+
λn,Rn

(x)− ũ+λn,Rn
(y))

|x− y|N+sp
dx dy

=

∫
BRn (0)\Ω′

Γ

|ũ+λn,Rn
(x)− ũ+λn,Rn

(y)|p

|x− y|N+sp
dx dy,

we have ∫
BRn (0)\Ω′

Γ

(λnV (x) + 1) |uλn,Rn
|p−2uλn,Rn

ũ+λn,Rn
dx

=

∫
(BRn (0)\Ω′

Γ)+

(λnV (x) + 1) |ũ+λn,Rn
+ a0|p−2

(
ũ+λn,Rn

+ a0

)
ũ+λn,Rn

dx,

and ∫
BRn (0)\Ω′

Γ

F̃ ′
2 (uλn,Rn

) ũ+λn,Rn
dx

=

∫
(BRn (0)\Ω′

Γ)+

F̃ ′
2 (uλn,Rn

)

|uλn,Rn |p−2uλn,Rn

|ũ+λn,Rn
+ a0|p−2

(
ũ+λn,Rn

+ a0

)
ũ+λn,Rn

dx,

where

(BRn(0) \ Ω′
Γ)+ = {x ∈ BRn(0) \ Ω′

Γ : uλn,Rn(x) > a0} .
From the above equalities, we have∫

BRn (0)\Ω′
Γ

|ũ+λn,Rn
(x)− ũ+λn,Rn

(y)|p

|x− y|N+sp
dx dy

+

∫
(BRn (0)\Ω′

Γ)+

(
(λnV (x) + 1)− F̃ ′

2 (uλn,Rn
)

|uλn,Rn |p−2uλn,Rn

)
×
(
|ũ+λn,Rn

+ a0|p−2
(
ũ+λn,Rn

+ a0

))
ũ+λn,Rn

dx = 0.

By the definition of F̃ ′
2, we obtain

(λnV (x) + 1)− F̃ ′
2 (uλn,Rn

)

|uλn,Rn |p−2uλn,Rn

≥ 1− ℓ > 0 in (BRn(0) \ Ω′
Γ)+ .

Thus, ũ+λn,Rn
= 0 in (BRn(0) \ Ω′

Γ)+ and ũ+λn,Rn
= 0 in BRn(0) \ Ω′

Γ. From the above argument we

conclude that there are λ′ > 0 and R′ > 0 such that∣∣∣u+λ,R∣∣∣∞,BR(0)\Ω′
Γ

≤ a0 for all λ ≥ λ′ and R ≥ R′.

A similar argument can be used to prove that∣∣∣u−λ,R∣∣∣∞,BR(0)\Ω′
Γ

≤ a0 for all λ ≥ λ′ and R ≥ R′,

if necessary, λ′ and R′ can be increased. Thus,

|uλ,R|∞,BR(0)\Ω′
Γ
≤ a0 for all λ ≥ λ′ and R ≥ R′.

This finished the proof. □
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4. A special minimax level

In the section, for any λ > 0 and j ∈ Γ, let us denote by Ij : W s,p
0 (Ωj) → R and Iλ,j : W s,p(Ω′

j) → R
the functionals given by

Ij(u) =
1

p
[u]pΩj

+

∫
Ωj

|u|p dx− 1

p

∫
Ωj

|u|p log |u|p dx,

Iλ,j =
1

p
[u]pΩ′

j
+

∫
Ω′

j

(λV (x) + 1) |u|p dx− 1

p

∫
Ω′

j

|u|p log |u|p dx,

where

[u]pY =

∫∫
Y×Y

|u(x)− u(y)|p

|x− y|N+sp
dx dy,

which are the energy functionals associated with the following logarithmic systems:{
(−∆)

s
p u = |u|p−2u log |u|p in Ωj ,

u = 0 on ∂Ωj ,
(4.1)

and {
(−∆)

s
p u+ λV (x)|u|p−2u = |u|p−2u log |u|p in Ω′

j ,
∂u
∂η = 0 on ∂Ω′

j ,
(4.2)

respectively. It is obvious that Ij and Iλ,j satisfy the Mountain Pass geometry, since Ωj and Ω′
j are

bounded, and Ij and Iλ,j satisfy the (PS) condition. Using the same arguments as in Section 3, there
exist two nontrivial functions ωj ∈W s,p(Ωj) and ωλ,j ∈W s,p(Ω′

j) satisfying

Ij(ωj) = cj , Iλ,j(ωλ,j) = cλ,j and I ′
j(ωj) = I ′

λ,j(ωλ,j) = 0,

where

cj = min
u∈Nj

Ij(u), cλ,j = min
u∈Nλ,j

Iλ,j(u),

and

Nj =
{
u ∈W s,p

0 (Ωj) : u
± ̸= 0 and I ′

j(u
±)u± = 0

}
,

Nλ,j =
{
u ∈W s,p(Ω′

j) : u
± ̸= 0 and I ′

λ,j(u
±)u± = 0

}
.

In what follows, without loss of any generality, we consider Γ = {1, 2, . . . , l} with l ≤ k, cΓ =
∑l

j=1 cj
and T > 0 is a constant large enough, which does not depend on R > 0 large enough, such that

0 < Ij
(
1

T
ω±
j

)
, Ij

(
Tω±

j

)
<

Ij
(
ω±
j

)
2

for all j ∈ Γ. (4.3)

We define

γ0 (ς1, . . . , ςl, τ1, . . . , τl) (x) =

l∑
j=1

ςjTω
+
j (x) +

l∑
j=1

τjTω
−
j (x)

for all (ς1, . . . , ςl, τ1, . . . , τl) ∈
[
1/T 2, 1

]2l
,

Γλ,R =
{
γ ∈ C

([
1/T 2, 1

]2l
, Eλ,R

)
: γ±

∣∣
Ω′

j

̸= 0 for all j ∈ Γ, γ = γ0 on ∂
([

1/T 2, 1
]2l)}

,

and

bλ,R,Γ = inf
γ∈Γλ,R

max
(ς⃗,τ⃗)∈[1/T 2,1]2l

Iλ,R(γ(ς⃗ , τ⃗)),

where (ς⃗ , τ⃗) = (ς1, . . . , ςl, τ1, . . . , τl). Note that γ0 ∈ Γλ,R, so Γλ,R ̸= ∅ and bλ,R,Γ is well defined.



FRACTIONAL p-LAPLACIAN LOGARITHMIC SCHRÖDINGER EQUATION 19

Lemma 4.1. For each γ ∈ Γλ,R, there exists (ς⃗∗, τ⃗∗) ∈
[
1/T 2, 1

]2l
such that

I ′
λ,j

(
γ± (ς⃗∗, τ⃗∗)

) (
γ± (ς⃗∗, τ⃗∗)

)
= 0 for all j ∈ {1, . . . , l}.

Proof. Given γ ∈ Γλ,R, we consider the map H̃ :
[
1/T 2, 1

]2l → R2l defined as

H̃(ς⃗ , τ⃗) =
(
I ′
λ,1

(
γ+
)
·
(
γ+
)
, . . . , I ′

λ,l

(
γ+
)
·
(
γ+
)
, I ′

λ,1

(
γ−
)
·
(
γ−
)
, . . . , I ′

λ,l

(
γ−
)
·
(
γ−
))
,

where

I ′
λ,j

(
γ±
)
·
(
γ±
)
= I ′

λ,j

(
γ±(ς⃗ , τ⃗)

)
·
(
γ±(ς⃗ , τ⃗)

)
for all j ∈ Γ.

For (ς⃗ , τ⃗) ∈ ∂
([

1/T 2, 1
]2l)

, since

H̃(ς⃗ , τ⃗) = H0(ς⃗ , τ⃗),

where

H0(ς⃗ , τ⃗) =
(
I ′
λ,1

(
γ+0
)
·
(
γ+0
)
, . . . , I ′

λ,l

(
γ+0
)
·
(
γ+0
)
, I ′

λ,1

(
γ−0
)
·
(
γ−0
)
, . . . , I ′

λ,l

(
γ−n
)
·
(
γ−n
))

and by the properties of F ′
2, deg

(
H0,

(
1/T 2, 1

)2l
, 0
)
= 1. Therefore, using topological degree prop-

erties, we derive that deg
(
H̃,
(
1/T 2, 1

)2l
, 0
)
= 1. This shows that there is (ς⃗∗, τ⃗∗) ∈

[
1/T 2, 1

]2l
such

that H̃ ((ς⃗∗, τ⃗∗)) = (0, . . . , 0), which proves the lemma. □

Lemma 4.2. The following assertions hold:

(a) For any λ > 0 and R > 0 large enough,
∑l

j=1 cλ,j ≤ bλ,R,Γ ≤ cΓ;

(b) bλ,R,Γ → cΓ, when λ→ +∞ uniformly for R > 0 large.

Proof. (a) Since γ0 ∈ Γλ,R, we have

bλ,R,Γ ≤ max
(ς⃗,τ⃗)∈[1/T 2,1]2l

Iλ,R (γ0(ς⃗ , τ⃗))

= max
(ς1,...,ςl)∈[ 1

T2 ,1]
l

l∑
j=1

Ij
(
ςjTw

+
j

)
+ max

(τ1,...,τl)∈[ 1
T2 ,1]

l

l∑
j=1

Ij
(
τjTw

−
j

)
.

From the definition of wj , we have

max
ς∈[ 1

R2 ,1]
Ij
(
ςjRw

±
j

)
= Ij

(
w±

j

)
for all j ∈ Γ, (4.4)

and thus

bλ,R,Γ ≤
l∑

j=1

cj = cΓ.

Taking (ς⃗∗, τ⃗∗) ∈
[
1/T 2, 1

]2l
as given in Lemma 4.1, this shows that

Iλ,j (γ (ς⃗∗, τ⃗∗)) ≥ cλ,j for all j ∈ Γ.

On the other hand, it is easy to verify that Iλ,BR(0)\Ω′
Γ
(u) ≥ 0 for all u ∈ W s,p (BR(0) \ Ω′

Γ). Thus,
we obtain that

Iλ,R (γ (ς⃗∗, τ⃗∗)) ≥
l∑

j=1

Iλ,j (γ (ς⃗∗, τ⃗∗)) .

Then

max
(ς⃗,τ⃗)∈[1/T 2,1]2l

Iλ,R(γ(ς⃗ , τ⃗)) ≥ Iλ,R (γ (ς⃗∗, τ⃗∗)) ≥
l∑

j=1

cλ,j .
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From the definition of bλ,R,Γ, we can obtain

bλ,R,Γ ≥
l∑

j=1

cλ,j ,

which completes the proof of (a).
(b) Let λn be an arbitrary sequence with λn → +∞ and assume ωλn,j ∈ W s,p

(
Ω′

j

)
to be least

energy nodal solutions of problem (4.2), with λ = λn, that is

Iλn,j (ωλn,j) = cλn,j and I ′
λn,j (ωλn,j) = 0 for all j ∈ Γ.

Using the same arguments as in the proof of Lemma 3.5, for each j ∈ Γ and for a subsequence {ωλnk
,j},

there exists ω0,j such that

ωλnk
,j → ω0,j in W s,p

(
Ω′

j

)
as nk → ∞.

Moreover, ω0,j ∈W s,p
0 (Ωj) is a nodal solution of problem (4.1). Thus,

lim
k→∞

Iλnk
,j

(
ωλnk

,j

)
= Ij (ω0,j) ≥ cj .

Since cλ,j ≤ cj ,we conclude that cλ,j → cj as λ→ ∞, from where it follows that

l∑
j=1

cλ,j → cΓ as λ→ ∞.

The last limit together with (a) implies that (b) holds. □

5. Uniform estimates

In the following, let us denote

Fλ(Ω
′
Γ) :=

{
u ∈W s,p(Ω′

Γ) :

∫
Ω′

Γ

V (x)|u|p dx <∞

}
,

endowed with the norm

∥u∥pλ,Ω′
Γ
:=

∫
Ω′

Γ

∫
Ω′

Γ

|u(x)− u(y)|p

|x− y|N+sp
dx dy +

∫
Ω′

Γ

(λV (x) + 1) |u|p dx.

Moreover, F+
λ,j and F

−
λ,j denote the cone of nonnegative and nonpositive functions belonging to Fλ(Ω

′
j),

respectively, that is

F+
λ =

{
u ∈ Fλ(Ω

′
Γ) : u(x) ≥ 0 a.e. in Ω′

j

}
,

F−
λ =

{
u ∈ Fλ(Ω

′
Γ) : u(x) ≤ 0 a.e. in Ω′

j

}
.

From the definition of γ0, there are positive constants ν and λ∗ > 0 such that

distλ,j

(
γ0(ς⃗ , τ⃗), F

±
λ,j

)
> ν, for all (ς⃗ , τ⃗) ∈

[
1/T 2, 1

]2l
, j ∈ Γ and λ ≥ λ∗,

where distλ,j(K,F ) denotes the distance between sets of Fλ

(
Ω′

j

)
. Taking the number ν obtained in

the last inequality, we define

Υ =
{
u ∈ Eλ,R : distλ,j

(
u|Ω′

j
, F±

λ,j

)
≥ ν for all j ∈ Γ

}
.

Moreover, for any constants d, µ > 0 and 0 < κ < ν/2, we consider the sets

IcΓ
λ,R = {u ∈ Eλ,R : Iλ,R(u) ≤ cΓ} ,

Aλ
µ,R =

{
u ∈ Υ2κ : Iλ,BR(0)\Ω′

Γ
(u) ≥ 0, ∥u∥pλ,BR(0)\ΩΓ

≤ µ, |Iλ,j(u)− bλ,R,Γ| ≤ µ for all j ∈ Γ
}
,

where Υr for r > 0 denotes the set

Υr = {u ∈ Eλ,R : dist(u,Υ) ≤ r} .
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Notice that for each µ > 0, there exists Λ∗ = Λ∗(µ) > 0 such that w =
∑l

j=1 wj ∈ Aλ
µ,R for all λ ≥ Λ∗.

Because ω ∈ Υ, Iλ,R(ω) = cΓ and bλ,R,Γ → cΓ, when λ→ +∞ uniformly for R large. Thus, Aλ
µ,R ̸= ∅

for λ sufficiently large.
In what follows, for M > 0, let us consider

BM+1 = {u ∈ Eλ,R : ∥u∥λ,R ≤M + 1} ,
where M is a constant large enough independent of λ and R satisfying

∥γ(ς⃗ , τ⃗)∥λ,R ≤ M

2
for all (ς⃗ , τ⃗) ∈

[
1/T 2, 1

]2l
,

and ∥∥∥∥∥∥
k∑

j=1

wj

∥∥∥∥∥∥
λ,R

≤ M

2
.

Now let us set µ∗ as

µ∗ = min

{
Ij(ω±) +M + κ

4
, j ∈ Γ

}
. (5.1)

Next, we will establish uniform estimates of ∥I ′
λ,R(u)∥ in the set

(
Aλ

2µ,R \ Aλ
µ,R

)
∩ BM+1 ∩ IcΓ

λ,R.

Lemma 5.1. For each µ ∈ (0, µ∗), there are λ∗ > 0, R∗ > 0 large enough and σ0 > 0 independent of
λ and R > 0 large enough such that∥∥I ′

λ,R(u)
∥∥ ≥ σ0 for λ ≥ λ∗, R ≥ R∗ and u ∈

(
Aλ

2µ,R \ Aλ
µ,R

)
∩ BM+1 ∩ IcΓ

λ,R.

Proof. Arguing by contradiction, assume that there are λn, Rn → ∞ and un ∈
(
Aλn

2µ,Rn
\ Aλn

µ,Rn

)
∩

BM+1 ∩ IcΓ
λn,Rn

such that ∥∥I ′
λn,Rn

(un)
∥∥→ 0.

Since un ∈ Aλn

2µ,Rn
, we have that

{
∥un∥λn,Rn

}
n∈N

and {Iλn,Rn
(un)}n∈N are both bounded. Then,

up to a subsequence if necessary, assume that {Iλn,Rn
(un)}n∈N is a convergent sequence. Hence, by

Lemma 3.6, there exists u ∈W s,p(ΩΓ) such that u is a solution for (4.1) and

un → u in W s,p(RN ), ∥un∥pλn,BRn (0)\ΩΓ
→ 0 and Iλn,Rn (un) → IΓ(u) ∈ (−∞, cΓ] .

Note that {un}n∈N ⊂ Υ2κ, we derive that ∥u±n ∥λn,Ω′
j
↛ 0 for all j ∈ Γ, from where it follows that

∥u±∥Ωj
̸= 0 for all j ∈ Γ. Thus u is a nodal solution of (4.1) for all j ∈ Γ and

l∑
j=1

cj ≤
l∑

j=1

Ij(u|Ωj
) ≤ cΓ,

which shows that Ij(u|Ωj
) = cj for all j ∈ Γ. Hence Iλn,Rn

(un) → IΓ(u) as n → +∞. On the other

hand, since bλ,R,Γ → cΓ, when λ→ +∞ uniformly for R large, we derive that Aλn

µ,Rn
∩IcΓ

λn,Rn
for large

n, which is a contradiction. □

Lemma 5.2. Assume µ ∈ (0, µ∗), λ∗ > 0 and R∗ > 0 sufficiently large as given in Lemma 5.1. Then,
the functional Iλ,R has a critical point uλ,R satisfying uλ ∈ Aλ

µ,R ∩ IcΓ
λ,R ∩ BM+1 for each λ ≥ λ∗ and

R ≥ R∗.

Proof. Assume by contradiction that there are µ ∈ (0, µ∗) and a sequence λn → ∞ such that the

functional Iλn,Rn
(u) has no critical points in Aλn

µ,Rn
∩ IcΓ

λn,Rn
∩ BM+1. Since Iλn,Rn satisfies the (PS)

condition, there exists a constant dλn,Rn
> 0 such that∥∥I ′

λn,Rn
(u)
∥∥ ≥ dλn,Rn for all u ∈ Aλn

µ,Rn
∩ IcΓ

λn,Rn
∩ BM+1.
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By Lemma 5.1, we have that∥∥I ′
λn,Rn

(u)
∥∥ ≥ σ0 for all u ∈

(
Aλn

2µ,Rn
\ Aλn

µ,Rn

)
∩ IcΓ

λn,Rn
∩ BM+1,

where σ0 > 0 is independent of λn and Rn for n large enough. Now, we define a continuous functional
Φn : Eλn,Rn

→ R such that
Φn(u) = 1 for u ∈ Aλn

3µ/2,Rn
∩Υκ ∩ BM ,

Φn(u) = 0 for u /∈ Aλn

2µ,Rn
∩Υ2κ ∩ BM+1,

0 ≤ Φn(u) ≤ 1, for u ∈ Eλn,Rn ,

and Hn : IcΓ
λn,Rn

→ Eλn
(BRn

(0)) is a function given by

Hn(u) :=

{
−Φn(u)

Yn(u)
∥Yn(u)∥ , u ∈ Aλn

2µ,Rn
∩ BM+1,

0, u /∈ Aλn

2µ,Rn
∩ BM+1,

where Yn is a pseudo-gradient vector field for Iλn,Rn
on Kλn

=
{
u ∈ Eλn,Rn

: I ′
λn,Rn

(u) ̸= 0
}
. It is

obvious that Hn is well defined, since I ′
λn,Rn

(u) ̸= 0 for u ∈ Aλn

2µ,Rn
∩ IcΓ

λn,Rn
. Hereafter, we denote by

mn
0 the real number given by

mn
0 =

{
Iλn,Rn

(u) : u ∈ γ0

(
[1/T 2, 1]2l \ Aλn

µ,Rn
∩ BM

)}
which verifies lim supn→∞mn

0 < cΓ. Moreover, let us define Kn > 0 satisfying

|Iλn,j(u)− Iλn,j(v) ≤ ∥u− v∥λn,Ω′
j

for all u, v ∈ BM+1 and j ∈ Γ.

Note that

∥Hn(u)∥ ≤ 1 for all n ∈ N and u ∈ IcΓ
λn,Rn

,

so
d

dτ
Iλn,Rn(ηn(τ, u)) ≤ −Φn(ηn(τ, u))

∥∥I ′
λn,Rn

(ηn(τ, u))
∥∥ ≤ 0,∥∥∥∥ dηn

dτ

∥∥∥∥
λ

= ∥Hn(ηn)∥λ ≤ 1,

and

ηn(τ, u) = u for all τ ≥ 0 and u /∈ Aλn

2µ,Rn
∩ BM+1,

where the deformation flow ηn : [0,∞)× IcΓ
λn,Rn

→ IcΓ
λn,Rn

is defined by

dηn
dτ

= Hn(ηn) and ηn(0, u) = u ∈ IcΓ
λn,Rn

.

Claim: There exists Tn = T (λn, Rn) > 0 and ε∗ > 0 independent of n such that

lim sup
n→∞

[
max

(ς⃗,τ⃗)∈[1/T 2,1]2l
Iλn,Rn

(ηn (Tn, γ0(ς⃗ , τ⃗)))

]
< cΓ − ε∗. (5.2)

Indeed, assume u = γ0(ς⃗ , τ⃗), d̃λn,Rn = min {dλn,Rn , σ0}, Tn = σ0µ/2d̃λn,Rn and η̃n(τ) = ηn(τ, u). If

u /∈ Aλn

µ,Rn
∩ BM ∩Υκ, by the definition of mn

0 , we have

Iλn,Rn
(ηn(τ, u)) ≤ Iλn,Rn

(u) ≤ mn
0 for all τ ≥ 0.

On the other hand, if u ∈ Aλn

µ,Rn
∩ BM ∩Υκ, we need to consider two cases:

Case 1: η̃n(τ) ∈ Aλn

3µ/2,Rn
∩ BM ∩Υκ for all τ ∈ [0, Tn].

This case shows that there is ε∗ > 0 independent of n such that

Iλn,Rn (η̃n (Tn)) ≤ cΓ − ε∗.
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Case 2: η̃n (τ0) /∈ Aλn

3µ/2,Rn
∩ BM ∩Υκ for some τ0 ∈ [0, Tn].

Related to this case, we have the following situations:

(i) There exists τ2 ∈ [0, Tn] such that η̃n (τ2) /∈ Υκ, and thus for τ1 = 0, it holds

∥η̃n (τ2)− η̃n (τ1)∥λn,Rn
≥ δ > µ,

since η̃n (τ1) = u ∈ Υ.
(ii) There exists τ2 ∈ [0, Tn] such that η̃n (τ2) /∈ BM , so that for τ1 = 0, we have

∥η̃n (τ2)− η̃n (τ1)∥λn,Rn
≥ M

2
> µ,

since η̃n (τ1) = u ∈ BM/2.

(iii) η̃n(τ) /∈ Υκ ∩BM , and there exist 0 ≤ τ1 < τ2 ≤ Tn such that η̃n(τ) ∈ Aλn

3µ/2,Rn
\Aλn

µ,Rn
for all

τ ∈ [τ1, τ2] with

|Iλn,Rn (η̃n (τ1))− bλ,R,Γ| = µ and |Iλn,Rn (η̃n (τ2))− bλ,R,Γ| =
3µ

2
.

According to the definition of Kn, we have

∥η̃n (τ2)− η̃n(τ1)∥λ,R ≥ 1

Kn
|Iλn,Rn (η̃n (τ2))− Iλn,Rn (η̃n (τ1))|

≥ 1

Kn
(|Iλn,Rn

(η̃n (τ2))− bλ,R,Γ| − |Iλn,Rn
(η̃n (τ1))− bλ,R,Γ|)

≥ 1

2Kn
µ.

The estimates in (i)–(iii) show that τ2 − τ1 ≥ 1
2Kn

µ. From the mean value theorem, it follows that

Iλn,Rn
(η̃n (Tn)) = Iλn,Rn

(u) +

∫ Tn

0

d

dζ
Iλn,Rn

(η̃n(ζ)) dζ

≤ Iλn,Rn
(u)−

∫ Tn

0

Φ(η̃n(ζ))
∥∥I ′

λn,Rn
(η̃n(ζ))

∥∥ dζ

≤ cΓ −
∫ τ2

τ1

σ0 dζ

= cΓ − σ0 (τ2 − τ1)

≤ cΓ − σ0µ

2Kn
,

which proves (5.2) and shows the Claim.
Now, we prove that (ς⃗ , τ⃗) → µn(Tn, γ0(ς⃗ , τ⃗)) belongs to Γλn,Rn

for n large. First, it is easy to prove

that ηn (γ0(ς⃗ , τ⃗)) is a continuous function in
[
1/T 2, 1

]2l
. Hence, we have to show that

ηn (Tn, γ0(ς⃗ , τ⃗)) = γ0(ς⃗ , τ⃗) for all (ς⃗ , τ⃗) ∈ ∂
([

1/T 2, 1
]2l)

,

and

(ηn (Tn, γ0(ς⃗ , τ⃗)))
± ∈W s,p

(
Ω′

j

)
\ {0},

for all j ∈ Γ and for all (ς⃗ , τ⃗) ∈
[
1/T 2, 1

]2l
.

From µ ∈ (0, µ∗), (4.3), (4.4) and (5.1) we obtain

|Iλn,Rn
(γ0(ς⃗ , τ⃗))− cΓ| ≥ 2µ∗ for all (ς⃗ , τ⃗) ∈ ∂

([
1/T 2, 1

]2l)
and n ∈ N.

Hence, using again the fact that bλ,R,Γ → cΓ, when λ → +∞ uniformly for R large, there is n0 > 0
such that

|Iλn,Rn
(γ0(ς⃗ , τ⃗))− sλn,Rn,Γ| > 2µ for all (ς⃗ , τ⃗) ∈ ∂

([
1/T 2, 1

]2l)
and n ≥ n0,
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which shows that γ0(ς⃗ , τ⃗) /∈ Aλn

2µ,Rn
for all (ς⃗ , τ⃗) ∈ ∂

([
1/T 2, 1

]2l)
and n ≥ n0. From this,

ηn (Tn, γ0(ς⃗ , τ⃗)) = γ0(ς⃗ , τ⃗) for all (ς⃗ , τ⃗) ∈ ∂
([

1/T 2, 1
]2l)

and n ≥ n0.

On the other hand, since ηn (Tn, γ0(ς⃗ , τ⃗)) ∈ Υ2κ for all n, we have

distλn,j

(
ηn (Tn, γ0(ς⃗ , τ⃗)) , F

±
λn,j

)
≥ ν − 2κ > 0.

Then, (ηn (Tn, γ0(ς⃗ , τ⃗)))
±
∣∣∣
Ωj

̸= 0 for all j ∈ Γ, and we can get ηn (Tn, γ0(ς⃗ , τ⃗)) ∈ Γλn,Rn
for n large

enough. Combining the definition of bλ,R,Γ with the Claim and the fact that ηn (Tn, γ0(ς⃗ , τ⃗)) ∈ Γλn,Rn

for n large enough, we have the following inequality

lim sup
n→∞

bλn,Rn,Γ < cΓ − ε∗,

which is a contradiction. Thus, the lemma holds. □

From the last lemma, we have the following corollary.

Corollary 5.3. For each µ ∈ (0, µ∗), there exist λ∗ > 0 and R∗ > 0 large enough as given in the
previous lemma. Then, problem (3.2) has a nodal solution uλ,R ∈ Aλ

µ,R for all λ ≥ λ∗ and R ≥ R∗.

Proof. From Lemma 5.2, there exists a nodal solution uλ,R ∈ Aλ
µ,R ∩ IcΓ

λ,R ∩ BM+1 to problem (3.1).

Then, by Remark 3.1 and Lemma 3.8, the solution uλ,R is also a nodal solution of problem (3.2). □

6. The proof of Theorem 1.1

By Corollary 5.3, for any µ ∈ (0, µ∗), there exist λ∗ > 0 and R∗ > 0, such that we can find a nodal
solution uλ,R ∈ Aλ

µ,R ∩ IcΓ
λ,R ∩ BM+1 of problem (3.2) for all λ ≥ λ∗ and R ≥ R∗.

Fixing λ ≥ λ∗ and taking a sequence Rn → +∞, there exists a solution uλ,n = uλ,Rn
for the

problem (3.2) with

uλ,n ∈ Aλ
µ,Rn

∩ IcΓ
λ,Rn

∩ BM+1 for all n ∈ N.

Since {uλ,n} is bounded in W s,p(RN ), we can assume that for some uλ ∈W s,p(RN ),
Iλ,Rn (uλ,n) → c ≤ cΓ,

uλ,n → uλ in W s,p(RN ),

uλ,n → uλ in Lq
loc(RN ) for any q ∈ [1, p∗s) ,

uλ,n(x) → uλ(x) a.e.x ∈ RN .

Recalling Lemma 3.8, we obtain

|uλ,n(x)| ≤ a0 for all x ∈ RN \ ΩΓ,

then,

|uλ(x)| ≤ a0 for all x ∈ RN \ ΩΓ.

The next two lemmas play a fundamental role in the proof of Theorem 1.1. Their proofs follow from
similar arguments as in the proof of Lemma 3.6, so we omit them.

Lemma 6.1. For any fixed ζ > 0, there is an R > 0 satisfying

lim sup
n→∞

∫
RN\BR(0)

(∫
RN

|uλ,n(x)− uλ,n(y)|p

|x− y|N+sp
dy + (λV (x) + 1) |uλ,n|p

)
dx < ζ.

Lemma 6.2. uλ,n → uλ in W s,p(RN ). In addition,

F1(uλ,n) → F1(uλ) and F ′
1(uλ,n)uλ,n → F ′

1(uλ)uλ in L1(RN ).
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As a consequence, we consider the energy functional Iλ, which is defined in (2.1). It is easy to see
that uλ is a critical point of Iλ satisfying

uλ ∈ Aλ
µ =

{
u ∈ (Υ∞)2κ : Iλ,RN\Ω′

Γ
(u) ≥ 0, ∥u∥pRN\ΩΓ

≤ µ, |Iλ,R(u)− bλ,R,Γ| ≤ µ, for all j ∈ Γ
}
,

where

Υ∞ =
{
u ∈ Eλ : distλ,j

(
u, F±

λ,j

)
≥ ν,∀j ∈ Γ

}
,

(Υ∞)r =

{
u ∈ Eλ : inf

v∈Υ∞
∥u− v∥λ,Ω′

j
≤ r, ∀j ∈ Γ

}
.

Here, by a critical point we understand that uλ satisfies the inequality∫∫
R2N

|uλ(x)− uλ(y)|p−2(uλ(x)− uλ(y))((v(x)− uλ(x))− (v(y)− uλ(y)))

|x− y|N+sp
dx dy

+

∫
RN

(λV (x) + 1)|uλ|p−2uλ(v − uλ) dx+

∫
RN

F1(v) dx−
∫
RN

F1(uλ) dx

≥
∫
RN

F ′
2(uλ)(v − uλ) dx

for all v ∈ Eλ. Hence, uλ satisfies the equality∫∫
R2N

|uλ(x)− uλ(y)|p−2(uλ(x)− uλ(y))(v(x)− v(y))

|x− y|N+sp
dx dy +

∫
RN

λV (x)|uλ|p−2uλv dx

=

∫
RN

|uλ|p−2uλv log |uλ|p dx,

for all v ∈ C∞
0 (RN )

Now, we are ready to conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. Letting λn → +∞ and µn ∈ (0, µ∗) with µn → 0, we can find a solution
un ∈ Aλn

µn
of problem (1.1) with λ = λn. Hence, {un}n∈N is bounded in W s,p(RN ) such that

(a)
∥∥I ′

λn
(uλn

)
∥∥ = 0 for all n ∈ N;

(b) ∥uλn
∥λn,RN\ΩΓ

→ 0;

(c) Iλn
(un) → c ≤ cΓ,

where

∥I ′
λ(u)∥ = sup

{
⟨I ′

λ(u), z⟩ : z ∈W s,p
c (RN ) and ∥z∥λ ≤ 1

}
.

Arguing as in Lemma 3.6, there is a u ∈ W s,p(RN ) satisfying uλn
→ u in W s,p(RN ), and u ≡ 0 in

RN \ ΩΓ and u is a nontrivial solution of{
(−∆)

s
p u = |u|p−2u log |u|p in ΩΓ,

u = 0 on ∂ΩΓ,
(6.1)

and so,

IΓ(u) ≥ cΓ.

Moreover, since {uλn
} verifies

dist λ,j

(
uλn , F

±
λ,j

)
≥ ν − 2κ > 0 for all j ∈ Γ,

we derive that
∥∥u±λn

∥∥
λn,Ω′

j

→ 0 for all j ∈ Γ. Hence, from the definition of G′
2, it follows that there

exists ν∗ > 0 such that ∫
Ω′

j

∣∣u±λn

∣∣q+1
dx ≥ ν∗ for all n ∈ N and for all j ∈ Γ.
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Therefore ∫
Ω′

j

∣∣u±∣∣q+1
dx ≥ ν∗ for all j ∈ Γ.

Thus, u changes its sign on Ωj for all j ∈ Γ, and

Ij(u) ≥ cj for all j ∈ Γ.

Note that

Iλn
(uλn

) → IΓ(u),
which shows that

IΓ(u) = c and c ≥ cΓ.

Due to c ≤ cΓ, it follows that IΓ(u) = cΓ, which implies that u|Ωj
is a least energy nodal solution of

problem (6.1). This concludes the proof of the theorem. □
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