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ABSTRACT. This article concerns the existence and multiplicity of multi-bump type nodal solutions
for a class of fractional p-Laplacian Schrédinger equations involving logarithmic nonlinearity and
deepening potential well. We apply suitable variational arguments to show that the equation has at
least 2% — 1 multi-bump type nodal solutions as the parameter becomes large enough.

1. INTRODUCTION

This paper is devoted to the existence of multi-bump type nodal solutions for fractional p-Laplacian

logarithmic Schrodinger equations of the form
{ (=A), u+ AV (2)|ulP~?u = [ulP~?ulog [ulP  in RY, (1)
u € WP(RN), '

where s € (0,1), p € [2,00), N > sp and V: RY — R is a continuous potential satisfying the following
conditions:

(Vy) Ve C(RY,R) and V(z) > 0 for all z € RY;

(V2) Q :=int V~1(0) is a non-empty bounded open subset with smooth boundary and Q = V~1(0),

where int V' ~1(0) denotes the set of the interior points of V~1(0);
(V3) Q consists of k components

Q=Q U U---UQy
and Q; N Q; =0 for all i # j.

Here, (—A); is the fractional p-Laplacian operator which is defined for any u: RY — R belonging to
the Schwartz class by

AV ula) — 2 jufe) — u) P (ulx) —u(y)) e
(o) =2hm P dy (v eRY),

for any u € C§°(RY), where Bs(x) denotes the ball in RY centered at = with radius 6.

When the logarithmic nonlinearity is replaced by a power-type nonlinearity, problem (1.1) is of par-
ticular interest in fractional quantum mechanics for the study of particles on stochastic fields modeled
by Lévy processes, see, for example, Di Nezza-Palatucci-Valdinoci [14] for a physical background. We
also recall that the analysis of fractional and nonlocal operators is strongly motivated by the fact that
these operators play a fundamental role in describing various physical phenomena such as, among oth-
ers, phase transitions, crystal dislocations, anomalous diffusions, conservation laws, flame propagation
and chemical reactions of liquids. For more details and applications, we refer the interested reader to
the works by Applebaum [I1], Bahrouni-Rédulescu-Winkert [12], Di Nezza-Palatucci-Valdinoci [14],
Molica Bisci-Rédulescu-Servadei [18], see also the references therein.
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In these last years, many intriguing existence and multiplicity results have been established for
fractional p-Laplacian Schréodinger equations given by

(—A) u+ V(@) |uP?u= f(u) inRY,

see for instance Alves-Miyagaki [3], Ambrosio [7, 8], Ji [15], Qu-He [21] for the case p = 2 and
Alves-Ambrosio [1], Ambrosio-Figueiredo-Isernia [9], Ambrosio-Isernia [10], Pucci-Xiang-Zhang [19, 20]
whenever p € (1,00). In particular, Alves-Ambrosio [1] obtained an existence and concentration result
when f is a logarithmic nonlinearity and V verifies the following local conditions:

(V) V(x) € C(RY,R) and inf,cpn V(x) = Vo > —1;

(V%) There exists a bounded open set Q C RY such that

-1<W= nelgV(x) <rg}2nV and M={zeQ:V(z)=V} #0.

They employed the penalization method to demonstrate the existence of positive solutions, as well as
the concentration behavior under conditions (V}) and (V5).
Recently, the following time-dependent logarithmic Schrodinger equation given by

®
z'g%t = —?A® + W(x)® — log|®]?, N >3 (1.2)

where ®: [0, +00) x RY — C, has also obtained special attention due to its physical influence, such as
quantum mechanics, quantum optics, nuclear physics, effective quantum and Bose-Einstein condensa-
tion. Standing wave solutions for (1.2) have the form ®(t, z) = u(z)e~**/¢, where w € R, which leads
to a system of the shape

—&2Au+V(z)u = ulogu® in RV, (1.3)

where V(z) = W(x) —w. From the mathematical point of view, (1.3) is very interesting because many
difficulties arise when using variational methods to find solutions. Alves-de Morais Filho [2] considered
semiclassical state solutions for the logarithmic elliptic equation (1.3) when V satisfies the following
global condition

(Vgiobal) V € C(RN,R) and Vi = lim ;00 V() > Vi = infepn V(z) > —1.
They obtained the existence of solutions of (1.3) as well as the concentration behavior of solutions
as ¢ = 0. Alves-Ji [4] continued to study (1.3) where V satisfies the local conditions (V}) and
(V5). Moreover, Alves-Ji [5] studied the existence of multi-bump positive solutions for the following
Schrédinger equation with logarithmic nonlinearity and deepening potential well

—Au+ AV (z)u =ulogu? in RV, (1.4)

u € HY(RY). '
Then, Ji [16] was concerned with the existence and multiplicity of multi-bump type nodal solutions for
problem (1.4). We also refer to the works by Alves-Ambrosio [1], Alves-Ji [6], d’Avenia-Montefusco-

Squassina [13], Ji-Szulkin [17], Tanaka-Zhang [24] and the references therein.
Motivated by the above papers, in this work we obtain the existence of multi-bump type nodal
solutions for problem (1.1). More precisely, our main results are as follows.

Theorem 1.1. Suppose that V' satisfies (V1)—(V3). Then, for any non-empty subset T of {1,2,...,k},
there exists \* > 0 such that for all X > X\*, problem (1.1) has a nodal solution uy. Moreover, the
Jamily {ux} - has the following properties: for any sequence A, — 0o, we can extract a subsequence
An; such that_u)\ni converges strongly in W*P(RYN) to a function u which satisfies u(z) =0 for x ¢ Qr
and the restriction u|Qj s a nodal solution with least energy of

{ (=A); u = [ufP~ulog|ul? in Qr,

u=0 on 0Qr,

where Qr = e €.

From this result, we obtain the following direct consequence.
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Corollary 1.2. Under the assumptions of Theorem 1.1, there exists Ay > 0 such that for all X > A,
the problem (1.1) has at least 2% — 1 nodal solutions.

Corollary 1.2 can be directly obtained from Theorem 1.1. Our approach is mainly based on varia-
tional methods. First note that the associated energy functional of problem (1.1) may take the value
+00, since there is a function u € W*P(RY) such that [y |u[?log|u|P dz = —oo. Thus, the energy
functional is not well defined on W*P(R¥) and the classical variational methods cannot be applied
here. To find solutions of equation (1.1), we will perform a technical decomposition to obtain a func-
tional which is a sum of a lower semicontinuous convex functional and a C'-functional. Here, we have
made great use of the fact that the energy functional is of class C' in W*P(D), when D C RY is a
bounded domain. Based on this observation, for each R > 0 and A > 0 large enough, we find a nodal
solution uy r € Wy (Br(0)) by penalization arguments, and after taking the limit of R — o0, we
get a nodal solution for the original problem.

In fact, by the method presented in this paper, we can also demonstrate the existence of multi-bump
solutions that join positive, negative, and nodal least energy solutions. For this purpose, we need to
make some modifications. For example, if we want to get a positive solution w; on €; and a negative
solution wy on )y, we need to change wli and in by wy and ws, respectively. We also need to make
some modifications for the definition of by g and the set Af;’ R, which are defined in Section 4 and
5. In addition, we need to replace d; and ds with mountain pass levels ¢; and co associated with the
energy functionals Z; and Z, respectively. From this, we have the following theorem.

Theorem 1.3. Suppose that V satisfies (V1)—~(V3). Then, for any non-empty subset I'y, T's and I's
of {1,2,...,k} withT; NT; =0, for i # j, there is \* > 0 such that, for all X > \*, problem (1.1)
has a nontrivial solution uy. Moreover, the family {ux},~,. has the following properties: for any
sequence A, — 00, we can extract a subsequence Ay, such that uy,, converges strongly in WP (RN)
to a function w which satisfies u(xz) = 0 for x ¢ Qr(= Ujerf);) where I' = T'y UT9 UTs, and the
restriction u|Qj is a positive solution if j € I'1, a negative solution if j € I'y and a nodal solution with
least energy of
{ (=A))u = [ulP"uloglul?  in Qj,
u=0 on 09,

where j € I's.

The paper is organized as follows. In Section 2, we recall some lemmas which we will use in the
paper. In Section 3-5, we establish an auxiliary problem and prove the existence of multi-bump nodal
solutions for the auxiliary problem in the ball B(0) for R > 0. In Section 6, we provide the proof of
Theorem 1.1.

2. PRELIMINARIES

In this section, we present the main tools and notions that will occur in Sections 3-6. If A ¢ RY,
we denote by |u[rq(4) the L9(A)-norm of a function u: RY — R, and by |uly its L¢(RY)-norm. With
B, () we indicate the ball in R centered at 2o € RY with radius » > 0. When x¢ = 0, we simply
write B, instead of B,.(0).

Let s € (0,1), p € (1,00) and N > sp. We define D*P(RY) as the completion of C°(R") with

respect to
// )|p dz dy
11) R2N |{L‘ _ |N+sp ?

D?(®) = {ue 17 (®Y): [ul., < o0}

or equivalently
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where p* = Nj\i b >

is given by

is the fractional critical Sobolev exponent. The fractional Sobolev space Wi ,(RY)

WeP(RN) = {u € LP(RN): [us, < oo},
endowed with the norm
Full iy = [6l2, + 2
We know that there exists a constant S, = S(N,s,p) > 0 such that Si|lull! . &) S [u]f , for all

u € D*P(RN). Now, we recall the following main embeddings for fractional Sobolev spaces, see Di
Nezza-Palatucci-Valdinoci [14].

Lemma 2.1. Let s € (0,1), p € (1,00) and N > sp. Then W*P(RY) is continuously embedded in
LYRYN) for all g € [p,p:) and compactly in LL (RN) for all ¢ € [1,p}), and C*(RY) is dense in
WeP(RN).

We also recall the following vanishing Lions-type result for W*?(RY), see Ambrosio-Isernia [10].

Lemma 2.2. If {u,}, oy is a bounded sequence in W*P(RN) and if

lim sup / |u,|” dz = 0,
"7 yeRN J Br(y)
where R > 0, then u, — 0 in LY(RYN) for all g € (p, p).

From now on, we suppose p € [2,00) and we shall work on the following function space

Ey = {u € WHP(RN): V(z)|ulP dz < oo}

]RN
endowed with the norm

Jull = wlf, + [ (Vi) + 1) P da.

Obviously, F, is a uniformly convex Banach space, the duality pairing associated with the norm is
given by

W)P~2 (u(@) — u(y)) (v(z) — v(y)) p—2
(u,v) = //RQN dxdy—l—/ AV (z) + 1) |u|P™*uv dz.

|z —y[Nrep

Since V(x) > 0 for all x € RY, the embedding Ey — W*P(R") is continuous, and so the embedding
Ey — L%(R3) is also continuous for all g € [p, pZ].
For each R > 0, we define a norm || : H,\ r on W#P(Bg(0)) by

u(y)” /
dxdy + AV(z)+1) |uf? de,
/BR(O /BR (0) |J/‘—Z/|N+§p BR(O)( @)+ Dl

which is equivalent to the usual norm in that space for all A, R > 0. In what follows, we will denote
by E g the space E endowed with the norm || - |5 gr.
Note that a weak solution of (1.1) in W*P(R¥) is a critical point of the associated energy functional

1
Do) =l =5 [l log fup da. (21)

Definition 2.3. A solution of problem (1.1) is a function u € W*P(RN) such that |u|Plog|ulP €
LY(RY) and

[ et o) D) =00 g4, [ v

|z —y[ NP

—/ |ulP~%uv log |u|P da
RN

for all v € C(RY).
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Due to the lack of smoothness of Z,, we shall use the approach explored by Ji-Szulkin [17] and

Squassina-Szulkin [22, 23]. For this purpose, we decompose Z, into a sum of a C! functional plus a
convex lower semicontinuous functional, respectively. For § > 0, we define the functions
0, if ¢ =0,
L P i
Fi(s) = —];|<| log ] if 0 <[¢] <9,
1 1 2 1
~2ice (1o + 251 ) 4 oot - Zon, it 2
p p=1) p-1 P
and
0, if || < 4,
Fy(s) = <[P
N 2 _ p+1 1 .
gplog<> 4+ —— P | = =———[¢]P — =67, if |¢| > 4.
st 1og ( S ) + =307 i = SEsle = Son, it
Then,

1
F(¢) — Fi(s) = I;|c|plog Is|P for all ¢ € R,
and the functional Zy: E) — (—00, 4+00] may be rewritten as
In(u) = @a(u) + ¥(u), u € E,

where
1
@A@z—ww—/ Fy(u) da,
p RN
and

U(u) = /RN Fy(u)dz.

As proven in Ji-Szulkin [17] and Squassina-Szulkin [22, 23], Fy, Fy € CY(R,R). If § > 0 is small
enough, Fj is convex, even,

1
Fi(s)>0 and 0< Z;F{(g)g < Fi(s) < F{(c)s forall ¢ € R. (2.2)

For each fixed ¢ € (p,p%), there exists C' > 0 such that
|F5(s)| < Cls|?™! for all ¢ € R. (2.3)
Note that @5 € C* (W*P(RY),R), ¥ is convex and lower semicontinuous in W*?(RY), but ¥ is not
a C'-functional due to the unboundedness of RY.
3. THE AUXILIARY PROBLEM
For each j € {1,...,k}, we fix a bounded open subset {2 with smooth boundary such that
Q; c ),
and
ﬁgﬁﬁgz ¢ for all j #1.
From now on, we fix a non-empty subset I C {1,...,k} and R > 0 such that Q. C Br(0) and
o =J, o=
jer jer

To prove our main theorem, we modify problem (1.1) and then consider the existence of solutions
to the auxiliary problem.
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By a simple observation, it is easy to verify that 1:,%@ is nondecreasing for ¢ > 0 and 1:2@ is strictly

increasing for ¢ > 4,

lim —F =+
¢—+oo ¢P~

and

Fi()>0 for¢>0 and Fi(s)>0 forg>d.

Moreover, Z%Egl) is nonincreasing for ¢ < 0 and fg(fl) is strictly decreasing for ¢ < —9,
2 1(S
lim 2(5) = +o0,

¢——oo0 ¢P~1
and
Fj(s) <0 for¢<0 and Fi(s) <0 forg< —46.
Let ¢ > 0 be small and ag > 0 such that

mw{%ww.@v%>}:4

ap™t " (—ag)!

It is clear that ag > §. We define
!
Fy(—ap) 1

Cag)p—T if ¢ < —ao,
F3(<) = ¢ (<) if || < ao,
F/
21)(?(1))67_1 if ¢ > ayg,
&)

Fy(s) < F3(s) fors >0, F3(s) > Fy(s) fors<0
and

Gz, u) = xr(@) Fy(u) + (1= xr(z)) F3(u),

(z) 1, x€Q,
X)) =
xr 0, € Bp(0)\ QL.

Then, we define the auxiliary problem given by
(—=A), u+ AV (@) +1) [ulP~?u = G} (z,u) — Fi(u), in Br(0),
u=0 on 0Bg(0).

where

(3.1)

Remark 3.1. Note that, if ux r is a nodal solution of (3.1) satisfying |ua.r| < ag for each x €
Br(0)\ Q, then GL(z,ux r) = Fa(uxr) and consequently, ux g is also a nodal solution of
{(—A);u + AV (2)|u|P~2u = [ulP~2ulog |ul?  in Br(0),

u=0 on OBR(0). (3:2)

It is clear that weak solutions of (3.1) are nontrivial critical points of the following energy functional
1
Ton(wi=ulfpt [ R@de- [ Gaeu) d,
p Br(0) Br(0)

in the sub-differential sense, and Ga(x,t) = fg G4 (x,¢) d( for all (z,t) € Br(0) x R. It is standard to
verify that Zy p € CI(E)\,R, R).
The next lemma implies that 7 r possesses the Mountain Pass geometry.
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Lemma 3.2. For all A > 0, the functional Iy g satisfies the following conditions:
(i) There exist o, p > 0 such that Iy r(u) > p with ||u|lx,r = a;
(ii) There exists e € Ex g such that |u||x,r > a and Iy r(e) < 0.

Proof. First, note that

1
Iy r(u) > ~|ul
p

Z))\,R_/ FZ(u) dl‘,
Br(0)
which follows from (2.3) for ¢ € (2,2%) such that
1
Iy r(u) = ];”'LLH:[))\,R — Chlull§ &-

The claim follows if we choose p and ||u[[,r = a small enough.
On the other hand, fixing ¢ € C§°(Qr) \ {0}, by (2.2), we have

TP 1
Tor(re) = el n =3 [ gl do
p P JBg(0)

< 7P (IA,R(ap) — log(7) /Q, P dx) .

Iy r(Tp) — —00,

As 7 — 400, then

and the proof of the lemma is complete. O

By Lemma 3.2 and Willem [25], there exists a (PS)-sequence {u,}nen C Ex g of Z) r at the level
cx,r > 0, where

car= inf max T t)),
AR el n te]o1] Ae(Y(1))

and Ty g == {7y € C'([0,1], Ex r): 7(0) = 0,Z r(v(1)) < 0}. Moreover, by Lemma 3.2, we have
car>a>0 forall A>0and R > 0 large enough.
Now, we will prove some results that will be useful in the proof of Theorem 1.1.
Lemma 3.3. For any A > 0, all (PS)-sequences of I r are bounded in Ey g.
Proof. Since {un}nen C Ex g is a (PS)c,
Py Rr(un) — I g(un)un = pex.r + 14 0,(1) [[unlly g » (3.3)
for n large enough. Note that,

/ [wwm—ﬂwwmﬂﬂwmwmwme=/ fun ? d.
Bgr(0) Br(0)

-sequence, one gets

From this, one has

PIxr(tn) — I} p(tn)un,

— [P ) = F)un) + (Gl w9, un)] do
Br(0)
:/ |un|pdx—|—/ (pFi(tn) — Fy(un)un) da
BRr(0) Br(0)
4—]/ (G, 1t — PGl 1n)) d
Br(0)

).

| |P dz + / (lun|? + pFa(un) — Fo(un)uy,) dz
Br(0\QrN[|un|>a0]

/
r
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+/ (G (z, up)uyn, — pGa(z,uy)) da.
Br(0)\QpN[|un[>ao]

Using the fact
[tP + [pFa(t) — F3(t)t + Gh(x,t)t — pGa(z,t)] >0, te€C, z € RY,
one gets

Py r(un) —I;\’R(un)un > / [un|? dz.

Qr

So (3.3) implies that

pesr+ 1+ 0a(1) [lunlly o > / P dz. (3.4)
Q/

r
Let us employ the following logarithmic Sobolev inequality found in Alves-Ambrosio [1],
Tl N Rl B e
U u u
AT e (ar) Lr(9f) Lr(9f)

|ul?

b

=

for all u € LP(Q4) N LP= (Q). Now, using ||uy||;»: @ < (S71)

J

[unlly g» We find

(1) o1, s < ([~ K ol ) 108 (1

’
r

p p
+ K ||unHLP(Q{—‘> IOg (”unHLpP(sz/F))

log (nunu'zpm;)) ’

+C lunlly 108 (Clunlly )] + € + ltnlly
for all n € N and for some C' > 0. Observe that, for all » € (0,1), there exists A > 0 such that
[tlogt] < A(1+t)"t' for all t > 0. (3.5)

< Cun]|

P
Lr(Qr)

Then, employing (3.5)

(T | (T e (T |

A r+1
<2 (14 Jun P for all n € N,
<35 ( + [Ju ||LP(Q,F)> oralln €

HunHip(Q/F)

which combined with (3.4) leads to

r+1
p
log <||un||m(ﬂ,r)) ’ <C (1 n ||un||>\’R) for all n € N.

A similar argument shows that

r+1
08 (17, )| £ € (14l )™ orall e

||Un||1£p(gzr)

p
a1
and
r+1
ltnll e [log (C llunlly )| < € (14 Junlly ) forallneN,

for some generic constant C' > 0. The above analysis ensures that

r+1
/ ()" 0 ()" d < € (14 sl ) forall me N, (3.6)
Q, ’
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On the other hand,
1 1
exr+on(l) =1\ g (uy) > — ||un||§ R f/ (un)? log (u,)? dz —/ Gs (z,uy) dz,
p T PJeg Br(0)\2%

and recalling that
14
Ga(x,t) < —tP for all (z,t) € Br(0) \ O x R,
p

we deduce that

1
exr+0n(1) = In g (un) > Cllun |3 5 — ;/ (un)? log (u,)? dz.

Qr

This fact together with (3.6) yields

1

fuall < 5 [ ()0 (0n)" o+ .+ 0 (1)
' b Jay,
r+1
<C(1+lunllag)  +C+Clunlyz+on(D),
showing the boundedness of {uy}, oy in Ex g.
Our next lemma shows that Zy g verifies the (PS) condition.

Lemma 3.4. The functional Iy r verifies the (PS) condition on Ex g at any level ¢y g € R.

Proof. Let {u,} be a (PS)-sequence for 7y g at the level ¢y g, i.e.,

neN
Ty r(un) = cxr and T, p(up) = 0.

Since {uy}, ¢y is bounded in E) g, see Lemma 3.3, up to a subsequence, we may assume that

Up — U in Ey R,
Up —> U in L"(Bg(0)), for all r € [1,p¥)
un(z) = u(x) a.e.in Bgr(0).

For all 7 € R and fixed ¢ € (p,p}), there exists C > 0 such that
|Gy, )| < Ol7| + Clr]7,
and
[F{(7)] < C(A+|7]%).
Hence, by the Sobolev embeddings, one has

/ Gy(z, up)u, de — Gy (x,u)ude,
Br(0) Br(0)

/ F (2, up)u, do — F(x,u)udz,
Br(0) Br(0)

/ Go(z, up)wdz — G (z, u)w dz,
Br(0) Br(0)

/ Fl(x,up)wdz — F(z,u)wdz,
Br(0) Br(0)

for all w € Ey g.
Since T} g(un)un = I} g(un)u = on(1), we get

ltn — wlf p = / (G um) — Gl 0)) (tn — )
Br(0)

- / (F () — FL(2,)) (ttn — 1) Az + 0n(1) = 0, (1),
BRr(0)
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which shows the desired result.

O

3.1. The (PS)sx, r condition. In the sequel, for each R > 0, we study the behavior of a (PS)sc, r-

sequence for 7y g, i.e., a sequence {u, tnen C Wy (Bg(0)) satisfying
un € By, r and A\, — 00,

I)\n,R (un) — C, |

Lemma 3.5. Let {un},oy € WP (Br(0)) be a (PS)oo,r sequence. Then, for some subsequence, still

denoted by {un}, oy, there exists u € Wi*(Br(0)) such that
up, = u in Wy (Bgr(0)).
Moreover, the following hold:
(i) un converges to w in the strong sense, i.e.,
l[tn —ully, g = 0.
Hence,
up, = u in WP (Bg(0)).
(ii) w =0 in Br(0) \ Qr and u is a solution of
{(—A); u = |ulP~2ulog |ulP in Qr,
u =0 on 0Qr.

(iil) un also satisfies

)\n/ V(ZE) |un‘p dr — O7
Br(0)

lenllX, Bronor = 0

lu(z) = u(y)[” .
|Un||pn,Q, —>/ / |x—y|N+5P dzdy + N |uPdz  for all j €T.

J

Proof. By using Lemma 3.3, there exists K > 0 such that
lunll, g < K forallneN.

Thus {un}, oy is bounded in W"? (Br(0)) and we can assume that for some u € Wi'* (Br(0)),

un, — u  weakly in Wy (Bg(0)),
up(z) = u(z) a.e.in Bgr(0).
Fixing C, = {z € B(0): V(z) > L }, one has

/ [u, | dz < n AV (2) lun |’ dz,
Cafn An BR(O)

that is,

pd <7
|l e < 5

m

An, RO
which yields from Fatou’s lemma that

/ |ulPdez =0 for all m € N.

m

Then u(z) = 0 on U™, Cp, = Br(0) \ Q, and so, ul, € WgP () for j € {1,...,

will prove (i)—(iii).

k}. From this, we
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(i) Since u = 0 in Br(0)\Q and Z} rUn)up =1 g (un)u = on(l), similar to the proof of Lemma
3.4, it holds

[un = ully, r =0,
which implies that u, — u in Wy* (Bg(0)).
(ii) Since u € WP (Bg(0)) and u = 0 in Bg(0) \ ©, we deduce u € W;"P(Q), or equivalently u‘Qj €
Wy? (Q;) for j = 1,...,k. Moreover, u, — u in Wg*¥ (Br(0)) combined with Z} 5 (un)¢ — 0 as
n — 400 for each ¢ € CO Qp) 1mphes that

/ / IP~?(u(x) — uy))(p(@) — () dy

|z — gy NP

—|—/ |u|p_2ug0dx+/ F{(u)godx—/ F)(u) pdz =0,
Qr Qr Qr

from which it follows that u‘QF is a solution for (3.7). On the other hand, for each j € {1,2,...,k}\T,
we have that

)P ~
/ / N+6‘ dz dy+/ |u|pd1’+/ F{(u)udx—/ F (u)udz = 0.
|z —y|NHep Q; Q; Q

J J J

By the fact that Fy( )g > 0 and Fj(s)s < /s for all ¢ € R, we derive that

// ‘x_ |N+6| dxdy+/ |u|de§/ Fg(u)udxgef |u|P dz.

Since £ < 1, u=01in Q; for j € {1,2,...,k} \ T, which shows (ii).
(iii) Note that, from (i),

/ AV () |u, |’ do = / AV () |up —ul? de < C'ju, — u||§ B>
Br(0) Br(0) "

which shows that

/ AV (x) |up|” dz — 0 as n — +oo.
Br(0)

Moreover, from (i) and (ii), it is easy to check that

Hun HI;\H,BR(O)\QF =0,
and

uall, o %/ / = |N+5p' da dy+/ WP dz forall j €.

Q;

This completes the proof. O

With a few modifications to the arguments in the proof of Lemma 3.5 and using Lemma 3.3, we
also have the following result.

Lemma 3.6. Let {up}nen C Ex, R, be ¢ (PS)oo r, sequence with R, — +o0, i.e.,
Un € Ex, R, and X\, — 00, I, g, (un) —c, HIS\,I,RTL (Un)H — 0.
nens there exists u € WP (RY) such that

Uy —u in WOP(RY).

Then, for some subsequence, still denoted by {uy}

Moreover, the following hold:
(1) ||u7l - u”)\n’Rn — 0, O/nd S0,

Up —uin WOP(RY),
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(i) u=0in RN \ Qr and u is a solution of
(—A)‘;u = |u|P~2ulog|ulP  in Qr,
u=20 on 0Qr.

(iil) un also satisfies
)\n/ V(z) |up|” de — 0,
Br, (0)

JunllX,, Br, N\or — 0

llun|h 2/—>/ / |x—y|N+51’| dz dy—|—/Qj |ulPdz  for all j €T.
Proof. First of all, the boundedness of {Z), g, (un)},cy shows that there exists K > 0 such that
lunllX, g, <K forallneN.
Thus, {ty},,cy is bounded in W*P(RY) and we can assume that for some u € WP (R"Y),
U, —u in WSP(RY),

un(z) = u(z) ae.in RY,

and u(x) =0 on RV \ Q.
(i) For any ¢ > 0, there exists R = R(¢) > 0 such that

hmsup/ (/ 2 dy+ N\, V(z)+ 1) |u,|P | dz < (.
oo (L ™ o OV + D) o < €

n—oo
Let 0 < R< R, and ¢ = ¢ € C(RY) be a cut-off function such that ¢ =0 if z € Bg(O), Y =1if
x ¢ Br(0) with 0 < ¢(z) < 1, and ||V ()] oo (rry < €, where C is a constant independent of R. Since
{tn}nen is bounded, the sequence {¢u,}nen is also bounded. This shows that 7§ 5 (un)(Yun) =
on (1), namely,

|un () — un(y)|? )
//]1@1\/ ‘a? - |N+5P o= oty V(@) drdy + /]RN (A V(@) + 1) |up|P(z)d

R3

(% 7U p—2 —u ) —
//RZN n( ()| ( n(@) = un(y)) W) = VW), -y dy + on (1),

o =y

Take R > 0 such that Q. C Bz (0). Then, by (2.2) and the definitions of F3. we obtain
|un () — un(y)|”
J Oy vy s [ nv@)+ D)l te) da
_ -2 _ _
B Ty T O G RO I B B
RN R2N

|z — y|NFsp
+ 0, (1).
By Hélder’s inequality and the boundedness of {uy}, .y, We arrive at
[tn () = un()["72 (un(2) — un(y) (Y(z) = ¥ (y))

<//R“‘N |UT$ - y|N+(”’)| & dy) (//Rw |z — y|N+e2>|p |un (y)[” da dZ/);
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<Cmﬁ‘ @) =6l |, gy <
o |x— e =R

where we have used that

@) =@l
L e )l dedy
_ e ()P [4(z) — D) [4(z) — D@
_/R ‘ n(y)‘ </|xy|>R |'T_y|N+Sp d +/zy|<R |x_y|N+Sp d ) dy

N
<C P q c dr+R7P - d
=C /. [un (y)]” dy e T+ et

C
< .
S Lo
Now, fixing ¢ > 0 and passing to the limit in the last inequality, it follows that
. |un(z) = un(y)|” ¢
hmsup/ (/ — e+ (AV() + 1) [up P ) do < —— <, 3.8
oo U ey QaV (@) + 1) - (35)

n—oo

whenever R > 0 is sufficiently large.
Since G has a subcritical growth, the above estimate (3.8) ensures that

/RNG/Q(I,’LLn)de*) RNG’Q(x,u)wd:E for all w € C5°(RY),

/ G (z,up) up do — G (z,u) ude,
RN RN

Gs (z,uy) dz — Go (z,u) dz.
RN RN

Now, recalling that lim,, oo Z) g (us)w =0 for all w € CF° (RV) and [unllX, g, < K forallneN,
we deduce that

[ o) = o) ) =0 g1 [ up-rui
R2N RN

o — gV

+/ F{(u)wdxf/ Go(z,uw)wdz = 0,
RN RN

and so,

e / ’ / ! :
+ F. =0.
//]R?N E y|N+Sp dz dy o |ulP do - T(w)udz Gh(x, u)udr =0

RN
This together with the equahty lim,, 00 IS\n,Rn (un)u, =0, ie.,

|un un(y)[? P /
//RQN ‘x — |N+Sp dzdy + - AV (z) + 1) |up|P doz + o Fi (un)uy, dz

7/ GY(x, Uy )y dx + 0, (1),
RN

leads to

. |Un ( )| p /
ngrfoo (//RQN |x = le_Hp dzdy + o AV () + 1) |up|P do + - Fi (up)up dx

|u(@) — u(y) P / ) / /
F,
//sz |x — |N+Sp dz dy + lul? dz + o T (uw)ude,

from which it follows that for some subsequence,

Up —u  in WHP(RY), / V() Jup|? dz — 0,
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and
F(up)u, — Fj(u)u in L*(RY).
Since F} is convex, even and F'(0) = 0, we know that F{(7)7 > Fi(7) > 0 for all 7 € R. Thus, the last
limit together with Lebesgue’s dominated convergence theorem yields
Fi(up) — Fi(u) in LYRY).

Since

||un _ u”])j\mRn _ /[RzN |(Un($) - U(ZU)) — (un(y) - U(y))|p dﬁCdy T /RN ()\nV(I) + 1) |Un _ u|P dl‘,

|z —y|NHep

it follows that
l|wn — uHin,Rn — 0,
which implies (i). The proofs of (ii) and (iii) are similar to that of Lemma 3.5 and so we omit it. O

3.2. The L*-boundedness of solutions to (3.1). Next, we investigate the boundedness outside
Qf for the solutions of (3.1). The following lemma is crucial to show that the solutions of the auxiliary

problem (3.1) are the solutions of the original problem (1.1). Furthermore, we define
1

lulg.r = / uwlde | .
Br(0)

Lemma 3.7. Let {ux r} be a family of nodal solutions of (3.1) such that {Zx r(uxr)} is bounded in
R for any A\ > 0 and R > 0 large enough. Then, there exists K > 0 that does not depend on A > 0 and
R* > 0 such that

lux rloor < K forall\>0 and R > R*.

Proof. For each L > 0, let u} := min{u;R, L} and define the function

E(UX,R) = 5L,U(UA7R) = u)\,R(UZ)p(Jil)

with 0 > 1 to be determined later. Note that £ is increasing, thus we have
(a—b)(E(a) —E(D)) >0 for any a,b e R.

)

Consider the functions
|t

Q(t) =" and L(t):= /O (&' ()7 dr,

and note that

Hence, from Lemma 2.1, we obtain

[L(ur,r)]" > S. |L(uxr) )71

1
I S*; lux,r(uy,

PR = pi R (3.9)

In addition, for any a,b € R, it holds
Q(a—0b)(E(a) = £(b)) > [L(a) — LD)|".

In fact, suppose that a > b, it follows from Jensen’s inequality that

Q'(a = D(E(@) ~ £(1) = (a = b)(El0) = £0) = (a =) | "e/(r)dr
— (a—b) /ba(y(f))f’ dr > (/b £(r) dT)p — (L(a) - L))
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A similar argument holds if a < b. Thus, we infer that
|L(uxr) (@) — L(ux,r)(y)["

15

< Jun r(x) — un g ()P (un r(2) — uxr(y)) (uA,R(x)(uZ)p("‘”(w) - U,\,R(y)(uf)p("_l)(y)) -

Using £(ua,r) as test function in (3.1), in view of the above inequality, we get that

[5(UA,R)]”+/ AV (@) + 1)} p(uf)Po Y d$+/ F(ux r)ux r(uf)P " do
Br(0) Br(0)

< // lux,r(z) — UA,R(y)lp_2 (ux,r(x) — ux r(Y))

~ JJBr(0)xBr(0) |z — y|NFsp

x (un,n (@) (f P70 (@) = wr nly) (wf )V (y)) dardy

+ / AV (2) + 1)l p(uf ) da + / F{(uxr)uxr(uf)P " da
Br(0) ’ Br(0)

§/ Gy(z,u)ux g (u ) =1 dg.
Br(0)

By the definition of G5, for fixed g € (p, p%), there exists C' > 0 such that
0 < Ghy(x,7) <O +C79" Y for (x,7) € Br(0) x [0,00).

The above estimates and (3.9) provide

P
juf p(ud)7 M g < 0787 [l )] < Cov /B o R @Y da
R

Since
(uf p) (uf)P7™ D = (uf )P (uf g (uf)7 1P,

we can use (3.10) and Holder’s inequality to deduce that

+ (t ut (ut)1
|“,\,R(“L) p RS C‘71p|“,\ R‘ R Uy, r(uz)’ Z;,R’
where
. Pps .
g = ———~ € (pap ).
*opi—(a—-p) °
Since {ux g} is bounded, we conclude that
+ +\o—1 +\o—1
|“>\ rUz) 5 RS C‘Tp|“>\ r(ur) a* R
Note that, if uy g € L7 (Bg(0)), using the fact that u} < uj r» then
+ —
|u,\,R(uL) p;,R < CUpIuA,R|aa:,R < 00,
which together with Faton’s lemma implies
|u)\ R|o’p RS CUp|UA R|Ua JR>
as L — oco. Now, taking o = p%/a’ > 0, we have
‘“A R‘o’p R > pt, R
and replacing o by ¢/, j € N, in the above inequality, we obtain that
. A
|“,\,R Z(pr RS C(UJ) |“A Rlp
Then, by an argument of induction, we may verify that
1+ L4t b+t
|43, v TS () D e,

(3.10)

(3.11)
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for every j € N. Note that

— 1 1 — i o
ZUJ o1 ™ ZJJ (0 —1)2
Jj=1 j=1
Since o > 1, passing to the limit as j — oo in (3.11), we may infer that u € L>°(Bg(0)) and

lut < G ToD? (pO) 7T |yt
UA,R|oo,R >0 (pC) |u>\,R Pt R
Using |uj\”’R p:,r < M, fixing any sequences A\, — +00 and R,, — +00, it is easy to see there exists a

constant K7 > 0 such that

‘“L,RJOO < K; foralneN.
A similar argument can be used to prove that
luy, g, looc <Kz forallmeN
for a suitable constant Ks. The proof is complete. O

Lemma 3.8. Let {uy r} be a family of nodal solutions of (3.1) such that {Zx r(uxr)} is bounded in
R for any A > 0 and R > 0 large enough. Then, there exist X' > 0 and R’ > 0 such that

[ux.Rloo,BrONQ. < a0 for all A\ > X and R > R'.
In particular, ux g solves the original problem (3.2) for A > X and R > R'.

Proof. Choose Ry > 0 large such that Qf, C Bg,(0). Since 9Q} is a compact set, we fix a neighborhood
of B of 9O such that

BC BRO(O) \QF
The Moser iteration technique implies that there exists C' > 0, which is independent of A, such that

) SC‘UI’R‘ for all R > Ry.

‘ LPs
u R

L= (09
Fixing two sequences A\, — +oo and R,, — 400, by Lemma 3.6 we have that for some subsequence
UN,, ,Rpn — 0 in W*P (BRn (0) \ QF), then U, , R, — 0 in W*P (BRO (O) \ Qp), and SO,

ny

+
U — 0 asn— oo.
‘ AnyBon | [ px (B)
Hence, there is ng € N such that
+
U <ag forall n>ng.
‘ A B poo (9027,

Now, for n > ng, we set 17;\:’3”: Br, (0)\ QF — R given by

+
i, (@)= (w0, —00) (@),

Then, @} p € Wy (Bg,(0)\ Q). Our goal is to show that @ , («) =0 in Bg,(0) \ Qf, because
this will ensure that

’uj\r R < ao.
w o loo, B, 00\

Indeed, extending a;ﬂ R, (x) =0 in QF and taking ﬁ;\rR as a test function, we have

/ un, r, (€) = ux, &, W)~ (un, R, () —ur, R, W)@ g () — 0% g (y))
Br,, (0)\Qf,

|z —y[ NP drdy

+/ AV (@) + 1) [ur, ro P 2un, m, 0L, g o
Br, (0)\Q
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< / Fy(u, n,)if. p, dz.
Br, (0)\Q}

Since
/ [un, . (€) = un, r, )P (un, R, () = un, R, W)@, g (2) =G5 g (y)) dedy
Br, (0\2} |z — y|NFep
WIL,RH (z) - ﬂIL,Rn W)I”
= Nts dz dy,
Br,, (0)\2% |z — y|N+sp
we have
/ V(@) + 1) [ur, i, [P, i, 5, 2
Br,, (0)\Qf, e
— / / AV (@) + 1) |af 5 +aol’™? (a;ﬁRn + ao) g d,
(Br, 0\24),
and
[ Bl g, b
Br,, (0\Qr
Fy(ua,r)) ot p2 (=t -
N /(BR (0\24) lux, R, [P~2ux, R [, . F ol (uAmRn +a0) Uy,.r, 47,
" T+ n,Rn n,Rn
where

(Br, (0)\ ), = {2 € B, (0)\ : ur, g, (x) > ao}.

From the above equalities, we have

@y g (x) =0 o (y)|P
Nts dz dy
Br,, (0)\Q% |z — y|N+sp

E!
+/ ()\nV(.'L') + 1) — 2 (uAle,Rn)
(Br, (0\2f) lux, .r, |P~2ux, R,
X <|ﬂ;“Rn +aolP? (ﬂj{mRn + ao)) iy p dz=0.
By the definition of F}, we obtain

3 (u, .r,)

MV(z)+1)—
n¥ (@) +1) [ux, R, [P2Ux, R,

>1—£>0 in (Bg,(0)\Qp), .

Thus, ﬂijn = 0 in (Bg,(0) \ Qp), and QL’RH = 01in Bg,(0) \ Qp. From the above argument we
conclude that there are A’ > 0 and R’ > 0 such that

‘u}\LR’ <aqay forall A>X and R> R'.
B o, Br(0)\2

A similar argument can be used to prove that

‘U;R‘ <ag forall \> )X and R> R/,
P oo, Br(0)\O%

if necessary, A’ and R’ can be increased. Thus,

UN.R , <ag forallA> )X and R> R'.
) o0 BR(O)\QF

This finished the proof. O



18 L. LI, H. TAO, AND P. WINKERT

4. A SPECIAL MINIMAX LEVEL

In the section, for any A > 0 and j € T', let us denote by Z;: W (Q;) — R and Z, j: W*P(Q)) — R

the functionals given by

1 1
T = Sl + [ Jupde— [ juPloglur as
j 3
Lo P 1 P P
In; = —[ulg, + AV (z)+1) |ufPdx — = |ul? log |ul? d,
p J Q) p Q;

where

|u(z) —u(y)P ded
YxY |$—y\N+Sp v

which are the energy functionals associated with the following logarithmic systems:
{(A);u = |u|P"2ulog|uP  in €,
u=20 on 0§,
and
{( A)>u+ AV () ulP~?u = [u[PPulog [uP in Q,

S
p
du _ () on 0.
on 77

(4.1)

(4.2)

respectively. It is obvious that Z; and Z ; satisfy the Mountain Pass geometry, since €2; and Qg are
bounded, and Z; and Z) ; satisfy the (PS) condition. Using the same arguments as in Section 3, there

exist two nontrivial functions w; € W*P(Q;) and wy ; € W*P(Q}) satisfying
Zij(wj) = ¢j, Ihjlwag) =cny and Tj(wj) =T, j(wx;) =0,
where

¢j = min Zj(u), exg = min Ty;(u),

and
N = {ue W5P(Q,): j:;é()andI’- ui)ui:O},
My = {ue W=P(Q)): i#OandIﬁ\ (ui)ui:()}.

In what follows, without loss of any generality, we consider I' = {1,2, ..., 1} withl < k, cp = Zl

j=1Ci
and T > 0 is a constant large enough, which does not depend on R > 0 large enough, such that
1 Z; (w;) ,
0<Z; (T jﬂ) o L (Twf) < =7 forall jeT. (4.3)

We define
!
Yo (S1,--3S0,T1, .- -,7) (T) = Zngwj(I) + ZTijj_(a:)

for all (¢1,...,5,71,...,7) € [1/T2,1]2l
P)\’R = {’y S C([l/T{l]zz,E)\’R) Ly

@ #0forall j eI, v=n Ona([l/T271}2l)}7
and

b = inf max T S T)),
AR, I e AR(V(SIT))

where (S,7) = (S15-.-+5,71,--.,7). Note that v9 € T g, so I'x g # 0 and by g is well defined.



FRACTIONAL p-LAPLACIAN LOGARITHMIC SCHRODINGER EQUATION 19

Lemma 4.1. For each v € 'y g, there exists (G, 7:) € [1/T2, 1]2l such that
7, (v (5, 7) (F (5, 7)) =0 forallj € {1,...,1}.
Proof. Given v € I'y g, we consider the map H: [1/T%,1]* — R? defined as
HEGT) = (T (M) - () T (07) - (0 T 7)) - (7)o B () - (7))
where
Ty () - () =78, (F(E7) - (v5(6.7) foralljeT.
For (§,7) € 0 ([1/T2, 1]2l), since

where

Ho(S,7) = (13,1 () (o) iy (70) - () Tha (70) - () v Iag () - (m))
and by the properties of F3, deg (HO7 (1/T2 )2l 0) = 1. Therefore, using topological degree prop-
erties, we derive that deg (H, (1/72,1)° ,o) — 1. This shows that there is (I, 72) € [1/T2,1]* such
that H (5, 7)) = (0, ...,0), which proves the lemma. O

Lemma 4.2. The following assertions hold:

(a) For any A > 0 and R > 0 large enough, 22:1 exg <baxrr <cr;
(b) bx rr — cr, when A — +oo uniformly for R > 0 large.

Proof. (a) Since vy € I'y r, we have

baxrr < max  Zy.r (70(S7))
(&7)e/r2,1)%
— max ZI ngw max le (Tij;)
(§1,~.‘,§z)€[T2, (ﬁ,~~-,‘n)€[ﬁ,1]

From the definition of w;, we have
IilaX }I (ijw;E) =7 (w]i) for all j €T, (4.4)
s€[Fz.1

and thus

!
byxrr < E cj = cr.
j=1

Taking (s1,72) € [1/T2,1] ! as given in Lemma 4.1, this shows that
Iy (v (&, 7)) > ey forall jeT.

On the other hand, it is easy to verify that Zy p,oy\ap(u) > 0 for all w € W*? (Bg(0) \ Qp). Thus,
we obtain that
1

IA,R C*,T* Z g*,T* ) .

Then
l

max Z ¢, T)) > T v (Se, 7))
(@7)el/T21]” 22067 2 Dal Z
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From the definition of by g, we can obtain

!
bx,rT > E Cx,js
j=1

which completes the proof of (a).
(b) Let A, be an arbitrary sequence with X\, — +oco0 and assume wy, ; € WP (Q;) to be least
energy nodal solutions of problem (4.2), with A = A,,, that is

Iy, j (wxr, ;) =cx,; and Ié\n,j (wa,;) =0 foralljel.

Using the same arguments as in the proof of Lemma 3.5, for each j € I and for a subsequence {w A it
there exists wp ; such that

, o 5,0 ()
Wx,,,j — Wo,j 1n w (QJ) as ng — 00.

Moreover, wg ; € Wi (€;) is a nodal solution of problem (4.1). Thus,

lim 7, ; (wxnku) =T (wo,5) = ¢

k— o0
Since ¢y ; < ¢j,we conclude that ¢y ; — ¢; as A — oo, from where it follows that
!
ZC)\J' —cr as A — o0.
j=1
The last limit together with (a) implies that (b) holds. O
5. UNIFORM ESTIMATES

In the following, let us denote

F(Qp) := {u € WP (Qp): /
endowed with the norm
u(y)[?
[[ul§. Y / / |x = |N+Sp dzdy + ) AV (z) + 1) |ul? dz.

Moreover, Fy x; and Fy . denote the cone of nonnegative and nonpositive functions belonging to F: ,\(Q ),
respectively, that is

’
r

V(z)|ulP dz < oo} )

FY ={ue F\(Qp): u(z) >0 aein Q)},
Fy ={ue F\(Qp): u(z) <0ae.in Q)}.
From the definition of g, there are positive constants v and A* > 0 such that
disty (70(5, F),ijj) > v, forall €7) € [1/T%1]%,j €T and A > X",

where disty ; (K, F') denotes the distance between sets of F (QS) Taking the number v obtained in
the last inequality, we define

T = {UGE)\R disty ; (u|Q, ) > v for all 5 EI‘}
Moreover, for any constants d, p > 0 and 0 < k < v/2, we consider the sets
IV g ={u€ Exr: I\ r(u) < cr},
A# R= {U € You: Iy Br(opap(u) >
where T, for » > 0 denotes the set
T, ={u€ E)g: dist(u,T) <r}.

nar < s |Zy,;(u) — ba,r,r| < p for all j € 1"} ,
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Notice that for each p > 0, there exists A* = A*(u) > 0 such that w = 22:1 wj € A) g forall X > A*.

Because w € T, Ty r(w) = cr and by g — cr, when A — 400 uniformly for R large. Thus, A;\L’R £
for A sufficiently large.
In what follows, for M > 0, let us consider

BM+1 = {u S E)\}R:

where M is a constant large enough independent of A and R satisfying

M oL 21
7S A g < - for all (¢,7) € [1/T2,1]

and
i M
dowil| <5
=t xR
Now let us set p* as
Ti(wh)+ M
M*min{W’jer}' (5.1)

Next, we will establish uniform estimates of ||Z} g (u)|| in the set (A2u R \.Af;,R) N Bu1 NI .

Lemma 5.1. For each p € (0, u*), there are \* > 0, R* > 0 large enough and o9 > 0 independent of
A and R > 0 large enough such that

|Z3 r(W)|| = 00 for A\> X" R>R* and u € (A3, g \ A} g) N Baryr N5,

Proof. Arguing by contradiction, assume that there are \,, R, — oo and u, € (A;; R, \AﬁfRn) N
B N If\z R, such that

|Zx, &, (un)|| = 0.

Since u, € AQu r,» We have that {||un||/\ R } . and {Zy, r, (un)}, oy are both bounded. Then,
nsy n ne

up to a subsequence if necessary, assume that {Zy, g, (un)},cy 18 a convergent sequence. Hence, by
Lemma 3.6, there exists u € W*P(Qr) such that u is a solution for (4.1) and

Up —u  in WHP(RY), ||un||§\n7BRn(0)\QF —0 and Zx, g, (un) = Ir(u) € (—oo,cr).
Note that {un},y C Tox, we derive that ||u,jf||/\9, — 0 for all j € T, from where it follows that
||ui||Qj # 0 for all j € T'. Thus u is a nodal solution of (4.1) for all j € I' and

1 1
§ § U|Q ) <er,
j=1 j=1

which shows that Z;(ulq ) = ¢; for all j € I'. Hence Zy,,r, (un) = Zr(u) as n — 4o0c. On the other

hand, since by rr — cr, when A — 400 uniformly for R large, we derive that AA "R, QI)C\F R, for large
n, which is a contradiction. O

Lemma 5.2. Assume p € (0, 1), A* > 0 and R* > 0 sufficiently large as given in Lemma 5.1. Then,
the functional Iy r has a critical point ux g satisfying uy € Af;’R ﬂIi’FR N Bary1 for each X > A* and
R > R*.

Proof. Assume by contradiction that there are p € (0,p*) and a sequence A\, — oo such that the
functional 7, g, (u) has no critical points in A;’):‘Rn NI g, N Bayi. Since Iy, g, satisfies the (PS)
condition, there exists a constant dy, g, > 0 such that

|Z4, &, (W)]|| = dx,.r, forallue A;;lR” NZT 5 NBargr.
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By Lemma 5.1, we have that

HIS\ann (u)H >o09 foralluée (AQ;R” \AﬁfRn) ﬂIif“Rn N Burit,

where oy > 0 is independent of A\, and R,, for n large enough. Now, we define a continuous functional
®,: Ey, g, — Rsuch that

@, (u) =1 for u e A3 o NN Bar,
®,(u) =0 for u ¢ Ayn o N Tow N Barya,

0<®,(u) <1, forw € Ey, Rr,,
and Hy,: I3V — Ex, (Br,(0)) is a function given by
_ Y (u) An
Holw) = | "I v € Agr, 0 Bar,
0, U¢A2£7anBM+17
where Y,, is a pseudo-gradient vector field for Zy, r, on Ky, = {u € By, g, I}, g, (u) # O}. It is

obvious that H,, is well defined, since Z} p (u) # 0 for u € Aéﬁ r, NI p . Hereafter, we denote by
mg the real number given by

my = {I,\H,Rn(u): u € Yo ([1/T2, 1% \Ai\t,an N BM>}
which verifies limsup,,_, ., mg < cr. Moreover, let us define K, > 0 satisfying

Zx,..5(w) = Ix, ;(v) < [lu=vl[x,,0; forall u,v € By and j € L.

Note that
[Hn(w)]| <1 forallneNandueIy g,
SO
d
sz\mRn (nn(T> u)) < _(I)n(nn(Ta u)) HIS\",R,L (7771<7_7 u))“ <0,
dn,
= n\TIn é ]-7
|| =1y
and

Mp(T,u) =u forall7>0 and u%Agﬁ’RnﬂBMH,

where the deformation flow 7, : [0, 00) x If\i R, — If\i R, 18 defined by

/LY d (0,u) = u eI

3 = n(mn) and 7,(0,u) =u € R,
Claim: There exists T,, = T (A, R,) > 0 and * > 0 independent of n such that

lim sup max Ix, Ry M (Tny70(S, 7)) | < er —e™. (5.2)
n—oo [(&7)€1/T2,1]%
Indeed, assume u = (<, 7), J/\n,Rn =min{dx, r,,00}, T = O’Q/.L/2d~>\mRn and 7, (1) = nu(ryu). If
u ¢ A;\Lan N By N Y, by the definition of m{, we have

Iy, .r, (Mn(T,w)) <Iy, g, (u) <mg forall T>0.

On the other hand, if u € A;\LfRn N By NY,, we need to consider two cases:
Case 1: 7,(7) € Ag;/an NBy NTY, for all 7 € [0,T,].
This case shows that there is €* > 0 independent of n such that

Ir, R, (M (Th)) < cp — €™,
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Case 2: 7, (10) ¢ A3“/2 r, N Ba NY, for some 7o € [0, T,,].
Related to this case, we have the following situations:
(i) There exists T € [0,T},] such that 7, (72) ¢ T, and thus for 7y = 0, it holds

7 (T2) = 7n (7—1)H>\n,Rn >0 >,
since 7, (11) =u € Y.
(ii) There exists 72 € [0,T,,] such that 7, (12) ¢ Bas, so that for 71 = 0, we have
~ ~ M
77 (72) = T (T, R, = 5 > 1
since 7, (11) = u € Byy/a.
(iii) 7, (7) € Y, N By, and there exist 0 < 7 < 72 < T, such that 7, (1) € AB;L/Q R, \A:\L:an for all
T € |11, 2] with

1 ~ 3
|I)\n,Rn (7771 (7’1)) - b>\7R7I‘| =pu and |I>\n,Rn (nn (7'2)) — b/\,R,Fl = 7‘“

According to the definition of K,,, we have
_ ~ 1 _ _
170 (72) = (1) R 2 77 \IAn,Rn (1 (72)) = I, Ry, (1 (11))]

> ?(\IA R, (M (12)) =bx.rr| = |Tx, R, (0 (1)) — bA R T|)

o1
= oK, M

The estimates in (i)—(iii) show that 7o — 7 > —,u From the mean value theorem, it follows that

Ty d
o, i (n (Tn)) = T, () + / d—gAn,Rn<ﬁn<c>>d<

Ty
< Ty, m, (u) - / (7 (0)) |4, n, (O] A

T2
s@—/ o0 dC
T1

=cr —og(r2—71)
Ol
2K,’

> Cr —

which proves (5.2) and shows the Claim.
Now, we prove that (S, 7) = pn(Th,70(S, 7)) belongs to I'y | g, for n large. First, it is easy to prove

that 7, (0(<, 7)) is a continuous function in [1/72,1] o Hence, we have to show that

M (T 20(5, 7)) = 00(E7) for all (&7) € 0 ([1/7%,1]"),
and
(0 (T, 70(S 7)) ™ € WP () \ {0},

for all j € T and for all (¢,7) € [1/72,1]*
From p € (0, u*), (4.3), (4.4) and (5.1) we obtain

|Zx, R, (70($7T)) —cr| > 2u*  forall (¢,7) €d ([1/T2, 1]2l) and n € N.

Hence, using again the fact that by gr — cr, when A — +oo uniformly for R large, there is ng > 0
such that

1Z.,.r, (70(S5 7)) = xR, v > 21 forall (S7) €0 ([1/T27 1] 2l) and n > ng,
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which shows that vo($, 7) ¢ Aé\/:,Rn for all (¢,7) € ([I/Tz, 1]21) and n > ng. From this,

M (Tny70(S, 7)) = 70(87)  for all ($7) € 0 ([1/T27 1]21) and n > ng.
On the other hand, since 0, (T,,v0(<, 7)) € Yo, for all n, we have

disty,, (nn (T, 70($, 7)) ,F/tJ) >v—2k>0.

Then, (9, (Th, (S, F)))i’Q # 0 for all j € T', and we can get 1, (T),70(S, 7)) € I'x, g, for n large

J
enough. Combining the definition of by r r with the Claim and the fact that 0, (T, 70(S, 7)) € Ta, R,
for n large enough, we have the following inequality

. *
limsupby, g, r <cr—¢,
n— o0

which is a contradiction. Thus, the lemma holds. O
From the last lemma, we have the following corollary.

Corollary 5.3. For each p € (0,u*), there exist \* > 0 and R* > 0 large enough as given in the
previous lemma. Then, problem (3.2) has a nodal solution uy g € A;\L,R for all X > \* and R > R*.

Proof. From Lemma 5.2, there exists a nodal solution uy p € AAR NI, N By41 to problem (3.1).
Then, by Remark 3.1 and Lemma 3.8, the solution uy g is also a nodal solution of problem (3.2). O

6. THE PROOF OF THEOREM 1.1

By Corollary 5.3, for any p € (0, u*), there exist A* > 0 and R* > 0, such that we can find a nodal
solution uy g € Az,R ﬂIf\,FR N Bpry1 of problem (3.2) for all A > A* and R > R*.

Fixing A > A* and taking a sequence R,, — 400, there exists a solution uy, = uy g, for the
problem (3.2) with

Urn € ‘Aﬁ,Rn NI{R, NBuir forallneN.

Since {uy,} is bounded in W*P?(RY), we can assume that for some uy € W*?(RY),
I\ R, (uxn) = ¢ <er,
Unn — uy  in WHP(RY),

(RN) for any ¢ € [1,p%),

urn(T) = ur(r) ae.x € RV,

Uny — uy in L
Recalling Lemma 3.8, we obtain

lunn(2)] < ag for all z € RV \ Qp,
then,

lux(z)| < ag  for all z € RN \ Qr.

The next two lemmas play a fundamental role in the proof of Theorem 1.1. Their proofs follow from
similar arguments as in the proof of Lemma 3.6, so we omit them.

Lemma 6.1. For any fized { > 0, there is an R > 0 satisfying

_ P
limsup/ (/ [urn (@) = urn(y)] dy + (A\V(z) +1) |u>\,np> dz < (.
RN\Br(0) \JRN

n— 00 |l’ - y|N+Sp

Lemma 6.2. uy, — uy in WSP(RY). In addition,

Fi(uxn) — Fi(uy) and  F{(usn)uxn — Fi(uy)uy in L*(RY).
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As a consequence, we consider the energy functional Zy, which is defined in (2.1). It is easy to see
that wu) is a critical point of Z) satisfying

€ Ay = {ue (Tl Tammiap (w) 2 0, [ullfn g, < 01T r(w) = b rrl < g, forall j €T},
where

Yo = {u € By: disty, (uFfj) > V) e r} :

(Too), = {u € Ey: vérllrfoo llu — UHA,Q; <rVje F} .

Here, by a critical point we understand that u) satisfies the inequality

// (@) = ur )P (ua (@) — ur @) (0(2) —ua(@)) = ©H) ~ur®) 4 4
R2N

|z — y [N

+ [ OVE) Dl st =)+ [

RN

Fl(U)d.Tf/RN Fl(UA)dIII
Z/RN F(uy)(v —uy) dz

for all v € E. Hence, u) satisfies the equality

[ o) =) r ) 00D gy [ i

|z — y|N e

= / lux [P~ 2upvlog |uy|P dz,
RN
for all v € C§°(RY)
Now, we are ready to conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. Letting A\, — 400 and p, € (0,u*) with p, — 0, we can find a solution
Up € AA" of problem (1.1) with A = A,,. Hence, {uy}, ¢y is bounded in W*?(RY) such that

HI’ Uy, H =0 for allm e N;
( ) s, AN\ 7 05
(C) I)\n (un) —c<cr,
where

IZ3 ()| = sup {(Z3(w), 2) : 2 € WIP(RY) and [[2]|x < 1}.
Arguing as in Lemma 3.6, there is a u € W*P(RY) satisfying uy, — u in WSP(RY), and u = 0 in
RY \ Qr and u is a nontrivial solution of
(—A)u = [ulr~2uloglulP  in O, 6
u=0 on I,
and so,
Ip(u) > cr.

Moreover, since {uy, } verifies
dist » ; (u,\n,ijj) >v—2k>0 forall jeTl,

we derive that Hu)\ H)\ @ — 0 for all j € T'. Hence, from the definition of G%, it follows that there
exists v, > 0 such that

dx > v, foralln € Nand for all j €.
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Therefore

/ |ui|qul dx > v, forall jel.
Q

/,
J

Thus, u changes its sign on ; for all j € I', and

Zij(u) >¢; foralljel.

Note that

I)\n (U)\n) — IF(U),

which shows that

Ir(u) =c and c¢ > cr.

Due to ¢ < ¢r, it follows that Zr(u) = c¢r, which implies that u|Qj is a least energy nodal solution of
problem (6.1). This concludes the proof of the theorem. O
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