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Abstract. In this paper we study anisotropic weighted (p, q)-equations with
a parametric right-hand side depending on the gradient of the solution. Under

very general assumptions on the data and by using a topological approach,
we prove existence and uniqueness results and study the asymptotic behavior

of the solutions when both the q(·)-Laplacian on the left-hand side and the

reaction term are modulated by a parameter. Moreover, we present some
properties of the solution sets with respect to the parameters.

1. Introduction

Let Ω ⊆ RN (N ≥ 2) be a bounded domain with smooth boundary ∂Ω. We
consider the following nonlinear Dirichlet problem with parameter dependence in
the leading term and with gradient and parameter dependence in the reaction term

−∆p(·)u− µ∆q(·)u = λf(x, u,∇u) in Ω,

u = 0 on ∂Ω,
(1.1)

where µ ≥ 0 and λ > 0 are the parameters to be specified, the exponents p, q ∈
C(Ω) are such that 1 < q(x) < p(x) for all x ∈ Ω and ∆r(·) denotes r(·)-Laplace
differential operator defined by

∆r(·)u = div
(
|∇u|r(·)−2∇u

)
for all u ∈W 1,r(·)

0 (Ω).

In the right-hand side of problem (1.1) we have a parametric reaction term in
form of a Carathéodory function f : Ω× R× RN → R which satisfies very general
structure conditions, see hypotheses (H2) and (H3) in Sections 2 and 3. Since the
reaction term f : Ω×R×RN → R also depends on the gradient ∇u of the solution
u (that phenomenon is called convection), problem (1.1) does not have a variational
structure and so we cannot apply tools from critical point theory. Instead we will
use a topological approach based on the surjectivity of pseudomonotone operators.

We will not only present existence results under very general structure conditions
but also sufficient conditions for the uniqueness of the solution of (1.1). Further, we
study the asymptotic behavior of the solutions of (1.1) and prove some properties
of the solution sets depending on the two parameters µ ≥ 0 and λ > 0 which
are controlling the q(·)-Laplacian on the left-hand side and the reaction on the
right-hand side. This leads to interesting results on certain ranges of µ and λ.
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The novelty in our paper is the fact that we have an anisotropic nonhomoge-
neous differential operator and a parametric convection term on the right-hand
side. If µ = 0 in (1.1), the operator becomes the anisotropic p-Laplacian and such
equations have been studied for λ = 1 in the recent paper of Wang-Hou-Ge [25].
For constant exponents there exist several works but without parameter on the
right-hand side. Precisely, constant exponent p-Laplace problems with convection
can be found in the papers of de Figueiredo-Girardi-Matzeu [4] for the Lapla-
cian, Fragnelli-Papageorgiou-Mugnai [11] and Ruiz [24] both for the p-Laplacian.
For (p, q)-equation with constant exponents, convection term and λ = 1, we re-
fer to the works of Averna-Motreanu-Tornatore [1] for weighted (p, q)-equations,
El Manouni-Marino-Winkert [6] for double phase problems depending on Robin
and Steklov eigenvalues for the p-Laplacian, Faria-Miyagaki-Motreanu [10] using
a comparison principle and an approximation process, Gasiński-Winkert [13] for
double phase problems, Liu-Papageorgiou [17] for resonant reaction terms using
the frozen variable method together with the Leray-Schauder alternative principle,
Marano-Winkert [18] with nonlinear boundary condition, Motreanu-Winkert [19]
via sub-supersolution approach, Papageorgiou-Vetro-Vetro [20] for right-hand sides
with a parametric singular term and a locally defined perturbation and [21] for
semilinear Neumann problems, see also the references therein.

To the best of our knowledge, this is the first work dealing with an anisotropic
differential operator and a parametric convection term. Such equations provide
mathematical models of anisotropic materials. The parameter µ ≥ 0 modulates
the effect of the q(·)-Laplace operator, and hence controls the geometry of the
composite made of two different materials. In general, equations driven by the
sum of two differential operators of different nature arise often in mathematical
models of physical processes. We refer to the works of Bahrouni-Rădulescu-Repovš
[2] for transonic flow problems, Cherfils-Il’yasov [3] for reaction diffusion systems
and Zhikov [26] for elasticity problems.

Finally, we mention that there are several relevant differences when dealing
with anisotropic equations in contrast to constant exponent problems. We refer
to the books of Diening-Harjulehto-Hästö-Rŭz̆icka [5], Harjulehto-Hästö [14] and
Rădulescu-Repovš [23] for more information on the differences.

The paper is organized as follows. In Section 2 we collect some properties on
variable exponent Sobolev spaces as well as on the p(·)-Laplacian and we present
the hypotheses on the data of problem (1.1). Section 3 is devoted to the existence
and uniqueness results as well as the asymptotic behavior when the parameter µ
moves to 0 and +∞, respectively. We also show the boundedness of the set of
solutions to problem (1.1). In Section 4 we complete the characterization of the set
of solutions with respect to compactness and closedness.

2. Preliminaries and Hypotheses

In this section we give a brief overview about variable exponent Lebesgue and
Sobolev spaces, see the books of Diening-Harjulehto-Hästö-Růžička [5], Harjulehto-
Hästö [14] and the papers of Fan-Zhao [7], Kováčik-Rákosńık [16]. Moreover, we
recall some facts about pseudomonotone operators and we state the hypotheses on
the data of problem (1.1).
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To this end, let Ω be a bounded domain in RN (N ≥ 2) with smooth boundary
∂Ω. For r ∈ C+(Ω), where C+(Ω) is given by

C+(Ω) =
{
h ∈ C(Ω) : 1 < h(x) for all x ∈ Ω

}
,

we denote

r− := inf
x∈Ω

r(x) and r+ := sup
x∈Ω

r(x).

Moreover, denoting by M(Ω) the space of all measurable functions u : Ω→ R, the
variable exponent Lebesgue space Lr(·)(Ω) for a given r ∈ C+(Ω) is defined as

Lr(·)(Ω) =

{
u ∈M(Ω) :

∫
Ω

|u|r(x) dx <∞
}

equipped with the Luxemburg norm given by

‖u‖r(·) = inf

{
λ > 0 :

∫
Ω

∣∣∣u
λ

∣∣∣r(x)

dx ≤ 1

}
.

Here the corresponding modular ρr : Lr(·)(Ω)→ R is given by

ρr(u) =

∫
Ω

|u|r(x) dx for all u ∈ Lr(·)(Ω).

We know that (Lr(·)(Ω), ‖ · ‖r(·)) is a separable, reflexive and uniformly convex
Banach space.

The following proposition gives the relation between the norm ‖ · ‖r(·) and the
modular ρr(·).

Proposition 2.1. For all u ∈ Lr(·)(Ω) we have the following assertions:

(i) ‖u‖r(·) < 1 (resp. = 1, > 1) if and only if ρr(u) < 1 (resp. = 1, > 1);

(ii) if ‖u‖r(·) > 1, then ‖u‖r−r(·) ≤ ρr(u) ≤ ‖u‖r+r(·);
(iii) if ‖u‖r(·) < 1, then ‖u‖r+r(·) ≤ ρr(u) ≤ ‖u‖r−r(·).

Remark 2.2. A direct consequence of Proposition 2.1 is the following relation

‖u‖r
−

r(·) − 1 ≤ ρr(u) ≤ ‖u‖r
+

r(·) + 1 for all u ∈ Lr(·)(Ω). (2.1)

Let r′ ∈ C+(Ω) be the conjugate variable exponent to r, that is,

1

r(x)
+

1

r′(x)
= 1 for all x ∈ Ω.

We know that Lr(·)(Ω)∗ = Lr
′(·)(Ω) and Hölder’s inequality holds, that is,∫

Ω

|uv|dx ≤
[

1

r−
+

1

r′−

]
‖u‖r(·)‖v‖r′(·) ≤ 2‖u‖r(·)‖v‖r′(·)

for all u ∈ Lr(·)(Ω) and for all v ∈ Lr′(·)(Ω).
If r1, r2 ∈ C+(Ω) and r1(x) ≤ r2(x) for all x ∈ Ω, then we have the continuous

embedding

Lr2(·)(Ω) ↪→ Lr1(·)(Ω).

For r ∈ C+(Ω) we define the variable exponent Sobolev space W 1,r(·)(Ω) by

W 1,r(·)(Ω) =
{
u ∈ Lr(·)(Ω) : |∇u| ∈ Lr(·)(Ω)

}
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endowed with the norm

‖u‖1,r(·) = ‖u‖r(·) + ‖∇u‖r(·),
where ‖∇u‖r(·) = ‖ |∇u| ‖r(·). Furthermore, we define

W
1,r(·)
0 (Ω) = C∞0 (Ω)

‖·‖1,r(·)
.

The spaces W 1,r(·)(Ω) and W
1,r(·)
0 (Ω) are both separable and reflexive Banach

spaces, in fact uniformly convex Banach spaces. In the space W
1,r(·)
0 (Ω), we have

Poincaré’s inequality, that is,

‖u‖r(·) ≤ c‖∇u‖r(·) for all u ∈W 1,r(·)
0 (Ω)

with some c > 0. As a consequence, we consider on W
1,r(·)
0 (Ω) the equivalent norm

‖u‖ = ‖∇u‖r(·) for all u ∈W 1,r(·)
0 (Ω).

For r ∈ C+(Ω) we introduce the critical variable Sobolev exponent r∗ defined by

r∗(x) =

{
Nr(x)
N−r(x) if r(x) < N,

∞ if N ≤ r(x),
for all x ∈ Ω. (2.2)

The following proposition states the Sobolev embedding theorem for variable
exponent Sobolev spaces.

Proposition 2.3. If r ∈ C+(Ω), s ∈ C(Ω) and 1 ≤ s(x) < r∗(x) for all x ∈ Ω,
then there exists a compact embedding W 1,r(·)(Ω) ↪→ Ls(·)(Ω).

Let us now recall some definitions which are used in the sequel.

Definition 2.4. Let X be a reflexive Banach space, X∗ its dual space and denote
by 〈· , ·〉 its duality pairing. Let A : X → X∗, then A is called

(i) to satisfy the (S+)-property if un ⇀ u in X and lim supn→∞〈A(un), un −
u〉 ≤ 0 imply un → u in X;

(ii) pseudomonotone if un ⇀ u in X and lim supn→+∞〈A(un), un − u〉 ≤ 0
imply

lim inf
n→+∞

〈A(un), un − v〉 ≥ 〈A(u), u− v〉 for all v ∈ X;

(iii) coercive if

lim
‖u‖X→+∞

〈A(u), u〉
‖u‖X

= +∞.

Remark 2.5. We point out that if the operator A : X → X∗ is bounded, then the
definition of pseudomonotonicity in Definition 2.4 (ii) is equivalent to un ⇀ u in
X and lim supn→+∞〈A(un), un − u〉 ≤ 0 imply A(un) ⇀ A(u) and 〈A(un), un〉 →
〈A(u), u〉. In the following we are going to use this definition since our operators
involved are bounded.

Pseudomonotone operators exhibit remarkable surjectivity properties. In par-
ticular, we have the following result, see, for example, Papageorgiou-Winkert [22,
Theorem 6.1.57].

Theorem 2.6. Let X be a real, reflexive Banach space, let A : X → X∗ be a
pseudomonotone, bounded, and coercive operator, and b ∈ X∗. Then, a solution of
the equation Au = b exists.
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Next, we introduce the nonlinear operator Ar(·) : W
1,r(·)
0 (Ω) → W−1,r′(·)(Ω) =

W
1,r(·)
0 (Ω)∗ defined by〈

Ar(·)(u), h
〉

=

∫
Ω

|∇u|r(x)−2∇u · ∇hdx for all u, h ∈W 1,r(·)
0 (Ω).

This operator has the following properties, see Fan-Zhang [9, Theorem 3.1].

Proposition 2.7. The operator Ar(·)(·) is bounded (that is, it maps bounded sets to
bounded sets), continuous, monotone (thus maximal monotone) and of type (S+).

Now we can formulate the hypotheses on the data of problem (1.1).

(H1) p, q ∈ C+(Ω) with q(x) < p(x) for all x ∈ Ω and there exists ξ0 ∈ RN \ {0}
such that for all x ∈ Ω the function px : Ωx → R defined by px(z) =
p(x+ zξ0) is monotone, where Ωx := {z ∈ R : x+ zξ0 ∈ Ω}.

Remark 2.8. Hypothesis (H1) implies that

λ̂ := inf
u∈W 1,p(·)

0 (Ω)\{0}

∫
Ω

|∇u|p(x) dx∫
Ω

|u|p(x) dx

> 0. (2.3)

This follows from the paper of Fan-Zhang-Zhao [8, Theorem 3.3].

(H2) f : Ω× R× RN → R is a Carathéodory function such that

(i) there exist σ ∈ Lα
′(·)(Ω) with 1 < α(x) < p∗(x) for all x ∈ Ω and

c > 0 such that

|f(x, s, ξ)| ≤ c
(
σ(x) + |s|α(x)−1 + |ξ|

p(x)

α′(x)

)
for a. a.x ∈ Ω, for all s ∈ R and for all ξ ∈ RN , where p∗ is the critical
exponent to p given in (2.2) for r = p;

(ii) there exist a0 ∈ L1(Ω) and b1, b2 > 0 such that

f(x, s, ξ)s ≤ a0(x) + b1|s|p(x) + b2|ξ|p(x)

for a. a.x ∈ Ω, for all s ∈ R and for all ξ ∈ RN .

Example 2.9. Let d1, d2 > 0 and consider the function defined by

f(x, s, ξ) = σ(x)− d1|s|p(x)−2s+ d2|ξ|p(x)−1

for a. a.x ∈ Ω, for all s ∈ R and for all ξ ∈ RN with 0 6= σ ∈ Lp′(·)(Ω). It is easy
to see that f fulfills hypotheses (H2).

Recall that u ∈W 1,p(·)
0 (Ω) is a weak solution to (1.1) if〈

Ap(·)(u), h
〉

+ µ
〈
Aq(·)(u), h

〉
= λ

∫
Ω

f(x, u,∇u)hdx (2.4)

is satisfied for all h ∈W 1,p(·)
0 (Ω).

We also recall the following result, see Gasiński-Papageorgiou [12, Lemma 2.2.27,
p. 141].

Lemma 2.10. If X,Y are two Banach spaces such that X ⊆ Y , the embedding
is continuous and X is dense in Y , then the embedding Y ∗ ⊆ X∗ is continuous.
Moreover, if X is reflexive, then Y ∗ is dense in X∗.
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3. Existence and uniqueness results and asymptotic behavior

Now we state and prove the following existence result for problem (1.1). In the
sequel we use the abbreviation

λ∗ :=
(
b1λ̂
−1 + b2

)−1

> 0.

Theorem 3.1. Let hypotheses (H1) and (H2) be satisfied. Then problem (1.1)
admits at least one weak solution u ∈ C0,β(Ω) for some β ∈]0, 1] for all µ ≥ 0 and
for all λ ∈ ]0, λ∗[.

Proof. Let N∗f : W
1,p(·)
0 (Ω) ⊂ Lα(·)(Ω) → Lα

′(·)(Ω) be the Nemytskij operator cor-
responding to the Carathéodory function f , that is,

N∗f (u)(·) = f (·, u(·),∇u(·)) for all u ∈W 1,p(·)
0 (Ω).

Hypothesis (H2)(i) implies that N∗f (·) is well-defined, bounded and continuous,

see Fan-Zhao [7] and Kováčik-Rákosńık [16]. By Lemma 2.10, the embedding

i∗ : Lα
′(·)(Ω) → W−1,p′(·)(Ω) is continuous and hence the operator Nf : W

1,p(·)
0 (Ω)

→W−1,p′(·)(Ω) defined by Nf = i∗◦N∗f is bounded and continuous. We fix µ ≥ 0 as

well as λ ∈ ]0, λ∗[ and consider the operator V : W
1,p(·)
0 (Ω)→ W−1,p′(·)(Ω) defined

by

V (u) = Ap(·)(u) + µAq(·)(u)− λNf (u) for all u ∈W 1,p(·)
0 (Ω).

Evidently V (·) is bounded and continuous. Next we show that V (·) is pseudomono-

tone in the sense of Remark 2.5. To this end, let {un}n∈N ⊆ W
1,p(·)
0 (Ω) be a

sequence such that

un ⇀ u in W
1,p(·)
0 (Ω) and lim sup

n→+∞
〈V (un), un − u〉 ≤ 0. (3.1)

Since {un}n∈N converges weakly in W
1,p(·)
0 (Ω), it is bounded in its norm and so

{N∗f (un)}n∈N is bounded. Using this fact along with Hölder’s inequality and the

compact embedding W
1,p(·)
0 (Ω) ↪→ Lα(·)(Ω) (see Proposition 2.3), we get∣∣∣∣∫

Ω

f (x, un,∇un) (un − u) dx

∣∣∣∣
≤ 2

∥∥N∗f (un)
∥∥
α(·)−1
α(·)

‖u− un‖α(·)

≤ 2 sup
n∈N

∥∥N∗f (un)
∥∥
α(·)−1
α(·)

‖u− un‖α(·) → 0 as n→∞.

(3.2)

Therefore, if we pass to the limit in the weak formulation in (2.4) replacing u by
un and h by un − u and using (3.2), it follows that

lim sup
n→+∞

[ 〈
Ap(·)(un), un − u

〉
+ µ

〈
Aq(·)(un), un − u

〉 ]
≤ 0.

Since Aq(·)(·) is monotone, this implies

lim sup
n→+∞

[ 〈
Ap(·)(un), un − u

〉
+ µ

〈
Aq(·)(u), un − u

〉 ]
≤ 0.

Therefore, by the weak convergence of {un}n∈N,

lim sup
n→+∞

〈
Ap(·)(un), un − u

〉
≤ 0.
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Taking the (S+)-property of Ap(·)(·) into account (see Proposition 2.7) along with

(3.1) gives un → u in W
1,p(·)
0 (Ω). From the strong convergence and the continuity

of V , we conclude that V (un)→ V (u) in W
1,p(·)
0 (Ω)∗. Therefore, V is pseudomono-

tone.
Let us now prove that V (·) is coercive. From (2.3) we have∫

Ω

|u|p(x) dx ≤ λ̂−1

∫
Ω

|∇u|p(x) dx for all u ∈W 1,p(·)
0 (Ω). (3.3)

Applying (H2)(ii) and (3.3) along with Proposition 2.1(ii), we obtain for u ∈
W

1,p(·)
0 (Ω) with ‖u‖ > 1

〈V (u), u〉

=

∫
Ω

|∇u|p(x) dx+ µ

∫
Ω

|∇u|q(x) dx− λ
∫

Ω

f(x, u,∇u)udx

≥
∫

Ω

|∇u|p(x) dx− λ
∫

Ω

|a0(x)|dx− b1λ
∫

Ω

|u|p(x) dx− b2λ
∫

Ω

|∇u|p(x) dx

≥ (1− λb2)

∫
Ω

|∇u|p(x) dx− λ‖a0‖1 − b1λλ̂−1

∫
Ω

|∇u|p(x) dx

≥
(
1− λ(λ∗)−1

)
‖∇u‖p

−

p(·) − λ‖a0‖1.

Since λ ∈]0, λ∗[, we see that V (·) is coercive. Hence, the operator V : W
1,p(·)
0 (Ω)→

W−1,p′(·(Ω) is bounded, pseudomonotone and coercive. Then, Theorem 2.6 implies

the existence of a function u ∈ W 1,p(·)
0 (Ω) which turns out to be a weak solution

of problem (1.1). From Ho-Kim-Winkert-Zhang [15, Theorem 5.1] we know that
u ∈ C0,β(Ω) for some β ∈]0, 1]. �

Let us now consider equation (1.1) under stronger assumptions in order to prove
a uniqueness result. We suppose the additional assumptions.

(H3) (i) There exists a constant a1 > 0 such that

(f(x, s, ξ)− f(x, t, ξ))(s− t) ≤ a1|s− t|2

for a. a.x ∈ Ω, for all s, t ∈ R and for all ξ ∈ RN .
(ii) There exist a function ψ ∈ Lr′(·)(Ω) with r ∈ C+(Ω) such that r(x) <

p∗(x) for all x ∈ Ω and a constant a2 > 0 such that the function
ξ 7→ f(x, s, ξ)− ψ(x) is linear for a. a.x ∈ Ω, for all s ∈ R and

|f(x, s, ξ)− ψ(x)| ≤ a2|ξ|

for a. a.x ∈ Ω, for all s ∈ R and for all ξ ∈ RN .

Example 3.2. The following function satisfies hypotheses (H1)–(H3), where we
drop the s-dependence:

f(x, ξ) =

N∑
i=1

βiξi + ψ(x) for a. a.x ∈ Ω and for all ξ ∈ RN ,

with p− = 2 , 0 6= ψ ∈ L2(Ω) and β = (β1, . . . , βN ) ∈ RN .

Let

λ =
(
a1λ
−1
1 + a2λ

− 1
2

1

)−1

> 0,
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with λ1 > 0 being the first eigenvalue of the Laplacian with Dirichlet boundary
condition given by

λ1 := inf
u∈W 1,2

0 (Ω)\{0}

‖∇u‖22
‖u‖22

. (3.4)

Our uniqueness result reads as follows.

Theorem 3.3. Let hypotheses (H1)–(H3) be satisfied and let q(x) ≡ 2 for all x ∈ Ω.
Then problem (1.1) admits a unique weak solution u ∈ C0,β(Ω) for some β ∈]0, 1]
for all µ > 0 and for all λ ∈ ]0,min{λ∗, µλ}[.

Proof. The existence of a weak solution follows from Theorem 3.1. Let us assume

there are two weak solutions u, v ∈ W 1,p(·)
0 (Ω) of (1.1). We test the corresponding

weak formulations given in (2.4) with h = u−v and subtract these equations. This
leads to∫

Ω

(
|∇u|p(x)−2∇u− |∇v|p(x)−2∇u

)
· ∇(u− v) dx+ µ

∫
Ω

|∇(u− v)|2dx

= λ

∫
Ω

(f(x, u,∇u)− f(x, v,∇u))(u− v) dx

+ λ

∫
Ω

(f(x, v,∇u)− f(x, v,∇v))(u− v) dx.

(3.5)

First, it is easy to see that the left-hand side of (3.5) can be estimated via∫
Ω

(
|∇u|p(x)−2∇u− |∇v|p(x)−2∇u

)
· ∇(u− v) dx+ µ

∫
Ω

|∇(u− v)|2dx

≥ µ
∫

Ω

|∇(u− v)|2 dx.

(3.6)

Now we apply the conditions in (H3) along with Hölder’s inequality and (3.4) to
the right-hand side of (3.5) in order to obtain

λ

∫
Ω

(f(x, u,∇u)− f(x, v,∇u))(u− v) dx

+ λ

∫
Ω

(f(x, v,∇u)− f(x, v,∇v))(u− v) dx

≤ λa1‖u− v‖22 + λ

∫
Ω

(
f

(
x, v,∇

(
1

2
(u− v)2

))
− ψ(x)

)
dx

≤ λa1‖u− v‖22 + λa2

∫
Ω

|u− v||∇(u− v)|dx

≤ λ(λ)−1‖∇(u− v)‖22.

(3.7)

From (3.5), (3.6) and (3.7) we conclude that(
µ− λ(λ)−1

)
‖∇(u− v)‖22 ≤ 0. (3.8)

Since λ < µλ, from (3.8) it follows u = v. �

Now, we study the asymptotic behavior of problem (1.1) as the parameters µ
and λ vary in an appropriate range. We introduce the following two sets

Sµ(λ) =
{
u : u is a solution of problem (1.1) for fixed µ ≥ 0 and λ ∈ ]0, λ∗[

}
,
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S(λ) =
⋃
µ≥0

Sµ(λ) =
{

set of solutions of problem (1.1) for fixed λ ∈ ]0, λ∗[
}
.

First, we show the boundedness of Sµ(λ) and S(λ) in W
1,p(·)
0 (Ω).

Proposition 3.4. Let hypotheses (H1) and (H2) be satisfied. Then Sµ(λ) is

bounded in W
1,p(·)
0 (Ω) for all µ ≥ 0 and for all λ ∈ ]0, λ∗[.

Proof. Let µ ≥ 0, λ ∈ ]0, λ∗[ be fixed and let u ∈W 1,p(·)
0 (Ω) be a solution of problem

(1.1). Taking h = u in the weak formulation in (2.4) and applying (H2)(ii) as well
as (3.3), we have∫

Ω

|∇u|p(x) dx ≤
〈
Ap(·)(u), u

〉
+ µ

〈
Aq(·)(u), u

〉
= λ

∫
Ω

f(x, u,∇u)udx

≤ λ
∫

Ω

(
a0(x) + b1|u|p(x) + b2|∇u|p(x)

)
dx

≤ λ‖a0‖L1(Ω) + λ
(
b1λ̂
−1 + b2

)∫
Ω

|∇u|p(x) dx.

This implies by (2.1) that

‖∇u‖p
−

p(·) ≤
‖a0‖1

1− λ(λ∗)−1
λ+ 1. (3.9)

It follows that Sµ(λ) is bounded in W
1,p(·)
0 (Ω). �

Remark 3.5. Since the right hand side in (3.9) does not dependent on µ, we derive

that S(λ) = ∪µ≥0Sµ(λ) is bounded in W
1,p(·)
0 (Ω) for all λ ∈ ]0, λ∗[.

For a subset Λ ⊂ ]0, λ∗[ we associate the following two sets

Sµ(Λ) =
⋃
λ∈Λ

Sµ(λ) for fixed µ ≥ 0,

S(Λ) =
⋃
µ≥0

Sµ(Λ).

Remark 3.6. From (3.9) we deduce that Sµ(Λ) is bounded in W
1,p(·)
0 (Ω) for all

µ ≥ 0 whenever sup Λ < λ∗. We also obtain that S(Λ) is bounded in W
1,p(·)
0 (Ω)

whenever sup Λ < λ∗. In particular, if Λ ⊂ ]0, λ∗[ is a closed subset of R, then

Sµ(Λ) and S(Λ) are bounded in W
1,p(·)
0 (Ω).

Now, we consider the limit case of (1.1) as µ→ 0+.

Proposition 3.7. Let hypotheses (H1) and (H2) be satisfied. Further, let {λn}n∈N
⊂ ]0, λ∗[ be a given sequence converging to λ ∈ ]0, λ∗[, {µn}n∈N be a sequence of
parameters converging to 0+ and {un}n∈N be a sequence of solutions to equation
(1.1) such that un ∈ Sµn(λn) for all n ∈ N. Then there is a subsequence of {un}n∈N
(not relabeled) such that un → u in W

1,p(·)
0 (Ω) with u ∈W 1,p(·)

0 (Ω) being a solution
of (1.1).
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Proof. Since un ∈ Sµn(λn) for all n ∈ N and Λ = {λn : n ∈ N} ∪ {λ} is such that

sup Λ < λ∗, we deduce by Remark 3.6 that {un}n∈N is bounded in W
1,p(·)
0 (Ω). So,

we may assume (for a subsequence if necessary) that

un ⇀ u in W
1,p(·)
0 (Ω) and un → u in Lα(·)(Ω)

for some u ∈W 1,p(·)
0 (Ω), see Proposition 2.3.

Returning to the proof of Theorem 3.1, from (3.2) we know that∫
Ω

f(x, un,∇un)(un − u) dx→ 0 as n→ +∞,

since un → u in Lα(·)(Ω) and by hypothesis (H2)(i).
Now, un ∈ Sµn(λn) for all n ∈ N ensures that〈

Ap(·)(un), h
〉

+ µn
〈
Aq(·)(un), h

〉
= λn

∫
Ω

f(x, un,∇un)hdx (3.10)

for all h ∈W 1,p(·)
0 (Ω). Choosing h = un− u ∈W 1,p(·)

0 (Ω) in (3.10), we deduce that〈
Ap(·)(un), un − u

〉
+ µn

〈
Aq(·)(un), un − u

〉
= λn

∫
Ω

f(x, un,∇un)(un − u) dx
(3.11)

for all n ∈ N. Consequently, passing to the limit as n → +∞ in (3.11) and using
µn → 0+, we obtain

lim
n→+∞

〈
Ap(·)(un), un − u

〉
= 0,

which by the (S+)-property of Ap(·)(·) (see Proposition 2.7) results in un → u in

W
1,p(·)
0 (Ω).

Recall that the Nemytskij operator Nf : W
1,p(·)
0 (Ω) → W−1,p′(·)(Ω) is bounded

and continuous due to hypothesis (H2)(i). Hence, we have

Nf (un)→ Nf (u) in W−1,p′(·)(Ω).

On the other hand,〈
Ap(·)(un), h

〉
→
〈
Ap(·)(u), h

〉
and

〈
Aq(·)(un), h

〉
→
〈
Aq(·)(u), h

〉
.

Therefore, taking the limit in (3.10) as n→ +∞, we conclude that u ∈ W 1,p(·)
0 (Ω)

is a weak solution of (1.1) with µ = 0, that is, a weak solution of the following
problem

−∆p(·)u = λf(x, u,∇u) in Ω,

u = 0 on ∂Ω.

�

Let us now study the case when µ→ +∞.

Proposition 3.8. Let hypotheses (H1) and (H2) be satisfied. Further, let {λn}n∈N
⊂ ]0, λ∗[ be a given sequence with supn∈N λn < λ∗ and {µn}n∈N be a sequence such
that µn → +∞. Then every {un}n∈N such that un ∈ Sµn(λn) for all n ∈ N
converges to zero in W

1,q(·)
0 (Ω).
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Proof. Repeating the arguments from the proof of Proposition 3.7 and using again

Remark 3.6, we know that {un}n∈N is bounded in W
1,p(·)
0 (Ω). Hence,

un ⇀ u in W
1,p(·)
0 (Ω) and un → u in Lα(·)(Ω)

for some u ∈W 1,p(·)
0 (Ω)

We can rewrite (3.10) as

1

µn

〈
Ap(·)(un), h

〉
+
〈
Aq(·)(un), h

〉
=
λn
µn

∫
Ω

f(x, un,∇un)hdx (3.12)

for all h ∈W 1,p(·)
0 (Ω).

For (3.12) we can follow the proof of Proposition 3.7 by changing the roles of

Ap(·) with Aq(·). We have that un → u in W
1,q(·)
0 (Ω). Therefore, taking the limit

in (3.12) as n→ +∞, we obtain that u is a solution of the equation

−∆q(·)u = 0 in Ω,

u = 0 on ∂Ω.

Hence, u = 0 in Ω. Since our arguments apply to every convergent subsequence of
{un}n∈N, we conclude that it holds for the whole sequence. So, we have un → 0 in

W
1,q(·)
0 (Ω). �

4. Properties of the solution sets

In this section we are going to prove some properties of the solution sets intro-
duced in Section 3 concerning compactness and closedness. Recall that from Propo-
sition 3.4 and Remarks 3.5, 3.6, we already know the boundedness of Sµ(λ), S(λ),

Sµ(Λ) and S(Λ) in W
1,p(·)
0 (Ω) for all λ ∈ ]0, λ∗[ and Λ ⊂ ]0, λ∗[ with sup Λ < λ∗.

Proposition 4.1. Let hypotheses (H1) and (H2) be satisfied. Then Sµ(Λ) is com-

pact in W
1,p(·)
0 (Ω) for all µ ≥ 0 and Λ ⊂ ]0, λ∗[ being closed in R.

Proof. Let u ∈ Sµ(Λ)\Sµ(Λ). Then there exists a sequence {un}n∈N ⊂ Sµ(Λ) such
that un → u.

Claim 1: Sµ(Λ) is closed for all µ ∈ [0,+∞[ and Λ ⊂ ]0, λ∗[ being closed in R.
First we note that for each n ∈ N there is λn ∈ Λ such that un ∈ Sµ(λn). Since

the sequence {λn}n∈N is bounded, we can assume, for a subsequence if necessary,
that λn → λ ∈ Λ. Since un ∈ Sµ(λn) for all n ∈ N, we obtain〈

Ap(·)(un), h
〉

+ µ
〈
Aq(·)(un), h

〉
= λn

∫
Ω

f(x, un,∇un)hdx (4.1)

for all h ∈ W 1,p(·)
0 (Ω). Thus, passing to the limit as n → +∞ in (4.1), it follows

that 〈
Ap(·)(u), h

〉
+ µ

〈
Aq(·)(u), h

〉
= λ

∫
Ω

f(x, u,∇u)hdx

for all h ∈W 1,p(·)
0 (Ω). This implies that u ∈ Sµ(λ) ⊂ Sµ(Λ) and so Sµ(Λ) is closed

in W
1,p(·)
0 (Ω). This proves Claim 1.

Claim 2: Each {un}n∈N ⊂ Sµ(Λ) admits a subsequence converging to some
u ∈ Sµ(Λ).
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Remark 3.6 ensures that every sequence {un}n∈N ⊂ Sµ(Λ) is bounded. So, we
may assume, for a subsequence if necessary, that

un ⇀ u in W
1,p(·)
0 (Ω) and un → u in Lα(·)(Ω)

for some u ∈W 1,p(·)
0 (Ω).

Next, let λn ∈ Λ be such that un ∈ Sµ(λn) for all n ∈ N. Returning to the proof
of Theorem 3.1, from (3.9) we can deduce that∫

Ω

f(x, un,∇un)(un − u) dx→ 0 as n→ +∞,

as un → u in Lα(·)(Ω) along with hypotheses (H2)(i). If we take h = un − u ∈
W

1,p(·)
0 (Ω) in (4.1), we have that〈
Ap(·)(un), un − u

〉
+µ

〈
Aq(·)(un), un − u

〉
= λn

∫
Ω

f(x, un,∇un)(un−u) dx (4.2)

for all n ∈ N. Passing to the limit as n→ +∞ in (4.2) and considering that Aq(·)
is monotone, we obtain

lim sup
n→+∞

〈
Ap(·)(un), un − u

〉
≤ 0.

Therefore, un → u in W 1,p(·)(Ω) by Proposition 2.7 and so, u ∈ Sµ(Λ) by Claim 1.
This shows Claim 2.

From Claims 1 and 2 we conclude that Sµ(Λ) is compact in W
1,p(·)
0 (Ω). �

From the previous proposition, we deduce the following corollary.

Corollary 4.2. Let hypotheses (H1) and (H2) be satisfied. Then Sµ(λ) is compact

in W
1,p(·)
0 (Ω) for all µ ≥ 0 and for all λ ∈ ]0, λ∗[.

Next, we give a sufficient condition when S(Λ) is closed.

Proposition 4.3. Let hypotheses (H1) and (H2) be satisfied. Then S(Λ) is closed
for all Λ ⊂ ]0, λ∗[ whenever 0 ∈ S(Λ) and Λ is closed in R. In particular, S(Λ)∪{0}
is a closed subset of W

1,p(·)
0 (Ω) for all Λ ⊂ ]0, λ∗[ being closed in R.

Proof. From Proposition 3.8 we know that 0 ∈ S(Λ). So, let u ∈ S(Λ)\(S(Λ)∪{0}).
We are going to show that u ∈ S(Λ). Since u ∈ S(Λ) \ (S(Λ) ∪ {0}) we can find a

sequence {un}n∈N ⊂ S(Λ) such that un → u in W
1,p(·)
0 (Ω). First, observe that for

every n ∈ N there exist µn ≥ 0 and λn ∈ Λ such that un ∈ Sµn(λn). This means
that 〈

Ap(·)(un), h
〉

+ µn
〈
Aq(·)(un), h

〉
= λn

∫
Ω

f(x, un,∇un)hdx (4.3)

for all h ∈W 1,p(·)
0 (Ω).

Applying again Proposition 3.8 leads to the fact that {µn}n∈N is a bounded
sequence and so we can assume that µn → µ for some µ ∈ [0,+∞[. Since the
sequence {λn}n∈N is bounded we can assume that λn → λ ∈ Λ. From un → u, we
get that

〈Nf (un), h〉 → 〈Nf (u), h〉, 〈Ap(un), h〉 → 〈Ap(u), h〉, 〈Aq(un), h〉 → 〈Aq(u), h〉
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for h ∈W 1,p(·)
0 (Ω). Therefore, taking the limit in (4.3) as n→ +∞, we see that〈

Ap(·)(u), h
〉

+ µ
〈
Aq(·)(u), h

〉
= λ

∫
Ω

f(x, u,∇u)hdx

for all h ∈ W 1,p(·)
0 (Ω). Thus, u ∈ Sµ(λ) ⊂ S(Λ). Consequently, we have that S(Λ)

is closed whenever 0 ∈ S(Λ), that is, S(Λ) ∪ {0} is closed in W
1,p(·)
0 (Ω). �

We have the following corollary.

Corollary 4.4. Let hypotheses (H1) and (H2) be satisfied. Then S(λ) is closed
for all λ ∈ ]0, λ∗[ whenever 0 ∈ S(λ). Therefore, S(λ) ∪ {0} is a closed subset of

W
1,p(·)
0 (Ω) for all λ ∈ ]0, λ∗[.

In the last part of this paper, we introduce the set-valued map SΛ : [0,+∞[→
2W

1,p(·)
0 (Ω) defined by SΛ(µ) = Sµ(Λ) for all µ ∈ [0,+∞[ with Λ ⊂ ]0, λ∗[ being

closed in R. SΛ is the Λ-solution map of (1.1).

We have the following properties of SΛ : [0,+∞[→ 2W
1,p(·)
0 (Ω).

Proposition 4.5. Let hypotheses (H1) and (H2) be satisfied. Then the set-valued
map SΛ is upper semicontinuous for all Λ ⊂ ]0, λ∗[ being closed in R.

Proof. The set-valued map SΛ is upper semicontinuous if for each closed subset C

of W
1,p(·)
0 (Ω) the set

S−Λ (C) = {µ ∈ [0,+∞[ : SΛ(µ) ∩ C 6= ∅}

is closed in [0,+∞[. To this end, let {µn}n∈N ⊂ S−Λ (C) be such that µn → µ in
[0,+∞[. Obviously, for every n ∈ N there exists un ∈ SΛ(µn) ∩ C. From Remark

3.6 it follows that the sequence {un}n∈N is bounded in W
1,p(·)
0 (Ω). Similar to the

proof of Proposition 3.7 we can show that un → u in W
1,p(·)
0 (Ω).

Arguing as in the proof of Proposition 4.3 (since un ∈ Sµn(Λ)), we deduce
that u ∈ Sµ(Λ) = SΛ(µ). On the other hand, u ∈ C since C is closed. Hence,
µ ∈ S−Λ (C). This completes the proof. �

Proposition 4.6. Let hypotheses (H1) and (H2) be satisfied. Then the set-valued
map SΛ is compact, that is, SΛ maps bounded sets in [0,+∞[ into relatively com-

pact subsets of W
1,p(·)
0 (Ω).

Proof. Let Θ ⊂ [0,+∞[ be a bounded set, {un}n∈N ⊂ SΛ(Θ) and µn ∈ Θ be such
that un ∈ Sµn(Λ) for all n ∈ N.

We distinguish the following two situations:
Case 1: If the set {µn : n ∈ N} is finite, then there exists some µ ∈ Θ such

that µ = µn for infinite values of n. We deduce that {un}n∈N admits a subsequence
{unk}k∈N ⊂ Sµ(Λ). Since Sµ(Λ) is compact, we have that {unk}k∈N admits a
subsequence converging to some u ∈ Sµ(Λ) ⊂ SΛ(Θ).

Case 2: If the set {µn : n ∈ N} has infinite elements, then {µn}n∈N has a
convergent subsequence (not relabeled). If we assume that µn → µ for some µ ∈ Θ,
then we have

un ⇀ u in W
1,p(·)
0 (Ω) for some u ∈W 1,p(·)

0 (Ω),

since {un}n∈N is bounded in W
1,p(·)
0 (Ω). Then we can show that un → u in

W
1,p(·)
0 (Ω). It is easy to verify that u ∈ Sµ(Λ) and u ∈ SΛ(Θ).
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Next, let {un}n∈N be a sequence in SΛ(Θ) \SΛ(Θ). From SΛ(Θ) ⊂ S(Λ), we
deduce that {un}n∈N ⊂ S(Λ) and hence it is bounded. This implies that for a
subsequence of {un}n∈N (not relabeled), we have

un → u in W
1,p(·)
0 (Ω) for some u ∈W 1,p(·)

0 (Ω),

Therefore, u ∈ SΛ(Θ) and so, SΛ(Θ) is a relatively compact subset of W
1,p(·)
0 (Ω).

This proves that the set-valued map SΛ is compact. �
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