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Abstract. By using the mountain pass theorem, this article deals with the existence of positive ground state solutions to

a class of (p, n)-Laplace Schrödinger equations with Stein-Weiss reaction under critical exponential growth in the sense of
the Moser-Trudinger inequality in the whole Rn.

1. Introduction and main result

Nowadays, there is a great interest in the study of nonlinear PDEs involving the (p, q)-Laplace operator, see [3, 4, 5], due
to several relevant physical applications in the field of applied sciences such as physics, plasma physics, chemical reaction
design, electromagnetism, electrostatics and electrodynamics, see [6, 9, 11]. Such problems are both fascinating and
difficult to deal with. From an analytical point of view, there are several technical difficulties, such as the inhomogeneous
nature of the (p, q)-Laplacian and the lack of compactness of Palais-Smale sequences due to the unboundedness of the
domain. Concerning problems driven by the (p, n)-Laplacian, we refer to the papers [8, 10, 13, 14], see also the references
therein. Moreover, we also mention [1, 16, 18] for the study of existence and multiplicity of solutions of Choquard equations
with critical exponential growth in the whole Euclidean space.

Motivated by the above mentioned works, we study the following (p, n)-Laplace Schrödinger-Choquard type equation

Lp,V (u) + Ln,V (u) =

(∫
Rn

F (y, u)

|x− y|µ|y|β
dy

)
f(x, u)

|x|β
in Rn, (P)

where 1 < p < n with n ≥ 2, β > 0, 0 < µ < n, 0 < 2β + µ < n, Lm,V (u) = −∆mu + V (x)|u|m−2u and ∆mu =
div(|∇u|m−2∇u) denotes the usual m-Laplacian for m ∈ {p, n}. The nonlinearity f : Rn ×R → R has critical exponential

growth at infinity, that is, it behaves like exp(α|s|
n

n−1 ) when |s| → +∞ for some α > 0, which means that there exists
α0 > 0 such that

(f0) lim|s|→+∞ |f(x, s)| exp(−α|s|
n

n−1 ) =

{
0 if α > α0,

+∞ if α < α0,
uniformly with respect to x ∈ Rn.

For the scalar potential V : Rn → R, we suppose that the following hypotheses are satisfied:

(v1) V ∈ C(Rn,R) and there exists a constant V0 > 0 such that infx∈Rn V (x) ≥ V0;
(v2) V (x) → +∞ as |x| → +∞, or more generally, for any M > 0, µ({x ∈ Rn : V (x) ≤ M}) < +∞, where for any

A ⊂ Rn, µ(A) denotes the Lebesgue measure of A in Rn.

Next, we assume the following hypotheses on the nonlinearity f : Rn × R → R:
(f1) f : Rn ×R → R is a Carathéodory function such that f(·, s) = 0 for all s ≤ 0 and f(·, s) > 0 for all s > 0; further,

there holds f(x, s) = o(|s|n−1) as s→ 0+ for a.a.x ∈ Rn;
(f2) there exists θ > n such that 0 < θF (x, s) = θ

∫ s

0
f(x, t) dt ≤ 2sf(x, s) for a.a.x ∈ Rn and for all s > 0;

(f3) there exists ξ > n and η > 0 such that F (x, s) ≥ ηsξ for a.a.x ∈ Rn and s > 0;

(f4) the maps s 7→ f(x,s)

s
n
2

−1 and s 7→ F (x,s)

s
n
2

are strictly increasing for a.a.x ∈ Rn and for all s > 0.

Due to (f0) and (f1), for any q ≥ n and α > α0, there exist ε > 0 and a constant Dε = Dε(ε, α, q) > 0 depending on ε, α
and q such that

|f(x, s)| ≤ ε|s|n−1 +Dε|s|q−1Φ(α|s|n
′
) for a.a.x ∈ Rn and for all s ∈ R, (1.1)

where Φ(t) = exp(t)−
∑n−2

j=0
tj

j! and n′ = n
n−1 . Thus, one has

max{|sf(x, s)|, |F (x, s)|} ≤ ε|s|n +Dε|s|qΦ(α|s|n
′
) for a.a.x ∈ Rn and for all s ∈ R. (1.2)

Note that the function F (x, s) = η(s+)ξ exp (α0(s
+)n

′
) for a.a.x ∈ Rn and for all s ∈ R, where n ≥ 2, η > 0, ξ > n, 0 <

α0 < α, s+ = max{s, 0} and f(x, s) = ∂F (x,s)
∂s for a.a.x ∈ Rn and for all s ∈ R satisfies hypotheses (f0)− (f4).
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Next, we define the function space X = W 1,p
V (Rn) ∩W 1,n

V (Rn) equipped with the norm ∥ · ∥ = ∥ · ∥W 1,p
V

+ ∥ · ∥W 1,n
V

.

From [14], it is known that (X, ∥ · ∥) is a reflexive and separable Banach space, where by means of (v1) and m ∈ {p, n},
the weighted Sobolev space

W 1,m
V (Rn) =

{
u ∈W 1,m(Rn) : V (x)|u|m ∈ L1(Rn)

}
,

is endowed with the norm ∥ · ∥m
W 1,m

V

= ∥∇ · ∥mm + ∥ · ∥mm,V . As usual, W 1,m(Rn) stands for Sobolev space equipped with

the norm ∥ · ∥mW 1,m = ∥∇ · ∥mm + ∥ · ∥mm, while ∥ · ∥m is the usual norm of Lm(Rn) and ∥ · ∥m,V is the norm of the weighted
Lebesgue space Lm

V (Rn), see [14] for its definition.
We say that u ∈ X is a weak solution of problem (P), if there holds〈

u, ψ
〉
p,V

+
〈
u, ψ

〉
n,V

=

∫
Rn

(∫
Rn

F (y, u)

|x− y|µ|y|β
dy

)
f(x, u)ψ

|x|β
dx for all ψ ∈ X,

where
〈
·, ·
〉
m,V

for m ∈ {p, n} is defined by〈
u, ψ

〉
m,V

=

∫
Rn

|∇u|m−2∇u · ∇ψ dx+

∫
Rn

V (x)|u|m−2uψ dx for u, ψ ∈ X.

In addition, we say that a solution u0 ∈ X is a ground state solution of problem (P), if there holds

J(u0) = inf{J(u) : u ∈ X \ {0} and J ′(u) = 0},

where J ∈ C1(X,R) is the associated functional to problem (P).
Our main result is given by the next theorem.

Theorem 1.1. Let hypotheses (v1)–(v2) and (f0)–(f4) be satisfied and suppose there exists η0 > 0 large enough such that
(f3) holds for all η ≥ η0. Then problem (P) has a positive ground state solution.

The paper is organized as follows. In Section 2, we provide some preliminary results, while Section 3 is devoted to the
proof of Theorem 1.1.

2. Preliminary results

In this section, we introduce some elementary results which will be useful in the sequel.

Lemma 2.1. [14, Corollary 2.6] Let (v1) and (v2) be satisfied. Then the embedding X ↪→ Lτ (Rn) is compact for any
τ ∈ [p, p∗) ∪ [n,+∞), where p∗ = np

n−p is the critical Sobolev exponent.

Now, we recall the celebrated Moser-Trudinger inequality, which was initially established in [12, Lemma 1], see also
[7, 15, 17] and the references therein.

Theorem 2.2 (Moser-Trudinger Inequality). For all n ≥ 2, α > 0 and u ∈W 1,n(Rn), there holds∫
Rn

(
exp(α|u|n

′
)−

n−2∑
j=0

αj

j!
|u|n

′j

)
dx < +∞.

Moreover, if ∥∇u∥nn ≤ 1, ∥u∥n ≤ M < +∞ and α < αn = nω
1

n−1

n−1 , where ωn−1 is the measure of the unit sphere in Rn,
then there exists a constant C = C(n,M,α) > 0 which depends only on n,M and α such that∫

Rn

(
exp(α|u|n

′
)−

n−2∑
j=0

αj

j!
|u|n

′j

)
dx ≤ C(n,M,α).

Lemma 2.3. [21, Lemma 2.1 and Lemma 2.2] For any n ≥ 2, the map s 7→ exp(s) −
∑n−2

j=0
sj

j! is increasing and convex

on [0,+∞). Moreover, for all p ≥ 1 and s ≥ 0, there holds(
exp(s)−

n−2∑
j=0

sj

j!

)p

≤ exp(ps)−
n−2∑
j=0

(ps)j

j!
.

The following doubly weighted Hardy–Littlewood–Sobolev inequality can be found in [20].

Theorem 2.4 (Doubly Weighted Hardy–Littlewood–Sobolev Inequality). Let 1 < r, s < +∞, 0 < µ < n,

α + β ≥ 0 and 0 < α + β + µ ≤ n such that 1
r + 1

s + α+β+µ
n = 2 and 1 − 1

r − µ
n < α

n < 1 − 1
r , then there exists a sharp

constant C = C(r, s, n, α, β, µ) > 0 independent of g ∈ Lr(Rn) and h ∈ Ls(Rn) such that∣∣∣∣∣
∫
Rn

∫
Rn

g(x)h(y)

|x|α|x− y|µ|y|β
dx dy

∣∣∣∣∣ ≤ C(r, s, n, α, β, µ)∥g∥r∥h∥s.
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Further, let

T (h(x)) =

∫
Rn

h(y)

|x|α|x− y|µ|y|β
dy.

Then there exists a constant C̃ = C̃(t, s, n, α, β, µ) > 0 independent of h ∈ Ls(Rn) with 1 + 1
t = 1

s + α+β+µ
n and

α
n < 1

t <
α+µ
n such that ∥T (h)∥t ≤ C̃(t, s, n, α, β, µ)∥h∥s.

Next, we define the energy functional J : X → R associated with problem (P) by

J(u) =
1

p
∥u∥p

W 1,p
V

+
1

n
∥u∥n

W 1,n
V

− 1

2

∫
Rn

(∫
Rn

F (y, u)

|x− y|µ|y|β
dy

)
F (x, u)

|x|β
dx for all u ∈ X.

In virtue of (1.2), Lemma 2.1, Theorem 2.2, Lemma 2.3 and Hölder’s inequality, we have F (x, u) ∈ Lζ(Rn) for all u ∈ X
and ζ ≥ 1. Thus, by employing Theorem 2.4 with r = s = 2n

2n−2β−µ and α = β, one has

|I(u)| ≤ C(β, n, µ)∥F (·, u)∥2r, where I(u) =

∫
Rn

(∫
Rn

F (y, u)

|x− y|µ|y|β
dy

)
F (x, u)

|x|β
dx. (2.1)

By using the above inequality, it is easy to see that J is well defined and of class C1(X,R) with

⟨J ′(u), ψ⟩ =
〈
u, ψ

〉
p,V

+
〈
u, ψ

〉
n,V

−
∫
Rn

(∫
Rn

F (y, u)

|x− y|µ|y|β
dy

)
f(x, u)ψ

|x|β
dx for all u, ψ ∈ X, (2.2)

where ⟨·, ·⟩ is the duality pair between the dual X∗ and X. It is standard to see that the critical points of J are exactly
the weak solutions to problem (P).

3. Existence of ground state solutions: Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. First, we need to check that J satisfies the geometrical hypotheses
of the mountain pass theorem.

Lemma 3.1. Let hypotheses (v1)–(v2) and (f0)–(f2) be satisfied. Then the following hold:

(a) Any nontrivial critical point of J is nonnegative;
(b) There exist δ, ρ > 0 such that J(u) ≥ δ for all u ∈ X and ∥u∥ = ρ;
(c) There exists e ∈ X with ∥e∥ > ρ such that J(e) < 0.

Proof. Let u ∈ X \ {0} be a critical point of J . Denote u = u+ − u−, where u± = max{±u, 0}. Now, testing (2.2) by
u− ∈ X, we obtain from ⟨J ′(u), u−⟩ = 0 and (f1) that

∥∇u−∥p
W 1,p

V

+ ∥∇u−∥n
W 1,n

V

= 0, that is, ∥∇u−∥W 1,p
V

= ∥∇u−∥W 1,n
V

= 0.

It follows that ∥u−∥ = 0. Thus, we have u− = 0 a.e. in Rn and u = u+ ≥ 0 a.e. in Rn. This completes the proof of (a).

Let ϑ > 0 be such that 2αrϑn
′
< αn for all u ∈ X satisfying ∥u∥ ∈ (0, ϑ]. By direct calculations, one has

u

∥u∥
∈W 1,n(Rn),

∥∥∥∥∥∇
(

u

∥u∥

)∥∥∥∥∥
n

n

≤ 1 and

∥∥∥∥∥ u

∥u∥

∥∥∥∥∥
n

≤ 1
n
√
V0

< +∞. (3.1)

It follows from (1.2), (2.1), (3.1), Lemma 2.1, Theorem 2.2, Lemma 2.3 and Hölder’s inequality that

|I(u)| ≤ C

(
ε2∥u∥2nnr +D2

ε∥u∥
2q
2qr

(∫
Rn

Φ(2αr|u|n
′
) dx

) 1
r
)

≤ C

(
ε2∥u∥2n +D2

ε∥u∥2q
(∫

Rn

Φ(2αr∥u∥n
′
|(u/∥u∥)|n

′
) dx

) 1
r
)

≤ C(ε2∥u∥2n +D2
ε∥u∥2q),

where C > 0 is a suitable constant varies from step to step. Define ρ = min{1, ϑ}. Then, by taking ∥u∥ = ρ for all u ∈ X, we

have J(u) ≥ ∥u∥n
(

1
2n−1n−C

(
ε2∥u∥n+D2

ε∥u∥2q−n
))
. Choosing 0 < ε <

(√
2n−1nC

)−1
and using q ≥ n, we are able to find

ρ > 0 small enough such that 1
2n−1n −C

(
ε2ρn+D2

ερ
2q−n

)
> 0. Thus, we have J(u) ≥ ρn

(
1

2n−1n −C
(
ε2ρn+D2

ερ
2q−n

))
:=

δ > 0 for ∥u∥ = ρ. This shows (b).
Next, fix u0 ∈ X \ {0} with u0 ≥ 0 and define Π: (0,+∞) → R by Π(t) = 1

2I
(

tu0

∥u0∥
)
for all t > 0. By using (f2), one

has Π′(t) ≥ θ
tΠ(t) for all t > 0. Integrating it on [1, s0∥u0∥] with s > 1

∥u0∥ , we deduce that I(su0) ≥ sθ∥u0∥θI
(

u0

∥u0∥
)
and

J(su0) ≤
sp

p
∥u0∥pW 1,p

V

+
sn

n
∥u0∥nW 1,n

V

− 1

2
sθ∥u0∥θI

( u0
∥u0∥

)
→ −∞ as s→ ∞,

where we have used that p < n < θ. Taking s > 1
∥u0∥ large enough and e = su0, we get J(e) < 0 and ∥e∥ > ρ. This

completes the proof of (c) and consequently of Lemma 3.1. □
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By employing Lemma 3.1 and the mountain pass theorem [2] without the Palais-Smale condition, one can see that
there exists a (PS)c-sequence {uk}k∈N ⊂ X, that is, J(uk) → c in R and J ′(uk) → 0 in X∗ as k → ∞, where c is the
mountain pass level given by

c := inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) ≥ δ > 0 with Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, J(γ(1)) < 0}.

Next, we compute the following key estimate for the mountain pass minimax level c.

Lemma 3.2. There exists η0 > 0 large enough such that if (f3) is satisfied for all η ≥ η0, then there holds

0 < c < c0 := min

{
1

2n

(
θ − n

nθ

)n
p
(
αn

α0

) n
n′

,
1

2p

(
θ − n

nθ

)(
αn

α0

) p
n′
}
. (3.2)

Proof. Let ψ ∈ C∞
0 (Rn, [0, 1]) be a cut-off function such that ψ(x) ≡ 1 if |x| ≤ 1, ψ(x) ≡ 0 if |x| ≥ 2 and |∇ψ(x)| ≤ 1 for

all x ∈ Rn. By direct computations, we obtain

(i)
1

m

∫
B2(0)

(|∇(sψ)|m + V (x)|sψ|m) dx ≤ 2nωn−1(1 + ∥V ∥∞)

nm
sm for m ∈ {p, n},

(ii)

∫
B1(0)

∫
B1(0)

dxdy

|x|β |x− y|µ|y|β
≥
ω2
n−1β(n, n− µ+ 1)

n− µ
, where β(z1, z2) =

∫ 1

0

tz1−1(1− t)z2−1 dt

for all z1, z2 ∈ C with Re(z1) > 0 and Re(z2) > 0 is called the Euler integral of the first kind. Thus, for all s ∈ [0, 1], we
obtain from (f3) that

J(sψ) ≤ C1s
p − C2η

2s2ξ with C1 =
2n+1ωn−1(1 + ∥V ∥∞)

np
and C2 =

ω2
n−1β(n, n− µ+ 1)

2(n− µ)
.

Define the map g : [0, 1] → X by g(s) = sψ for all s ∈ [0, 1] and choose η1 > 0 such that J(ψ) ≤ C1 − C2η
2
1 < 0 for all

η > η1. It follows that g ∈ Γ. Hence, one has

c ≤ max
s∈[0,1]

J(g(s)) ≤ max
s≥0

J(sψ) ≤ max
s≥0

[
C1s

p − C2η
2s2ξ

]
=

(2ξ − p)C1

2ξ

(
pC1

2ξη2C2

) p
2ξ−p

→ 0 as η → ∞.

Therefore, we can find η0 > η1 large enough such that c < c0 for all η ≥ η0, where c0 is defined in (3.2). □

Lemma 3.3. Every (PS)c-sequence {uk}k∈N ⊂ X for J is bounded in X, where c ∈ (0, c0) and c0 is given in Lemma 3.2.
Moreover, there holds

lim sup
k→∞

∥uk∥n
′
<
αn

α0
. (3.3)

Proof. Let c ∈ (0, c0) and {uk}k∈N ⊂ X be a (PS)c-sequence for J . Applying (f2) leads to

c+ ok(1) + ok(1)∥uk∥ ≥
(
1

n
− 1

θ

)(
∥uk∥pW 1,p

V

+ ∥uk∥nW 1,n
V

)
as k → ∞. (3.4)

Suppose now that {uk}k∈N is unbounded in X. We consider three cases. Case 1: Assume that ∥uk∥W 1,p
V

→ ∞ and

∥uk∥W 1,n
V

→ ∞ as k → ∞. By using 1 < p < n, one has ∥uk∥nW 1,n
V

≥ ∥uk∥pW 1,n
V

> 1 for large k. It follows from (3.4) that

c+ ok(1) + ok(1)∥uk∥ ≥ 21−p

(
1

n
− 1

θ

)
∥uk∥p as k → ∞.

Dividing ∥uk∥p on both sides and letting k → ∞, we have 0 ≥ 21−p
(
1
n − 1

θ

)
> 0, which is a contradiction. Case 2: Suppose

that ∥uk∥W 1,p
V

→ ∞ as k → ∞ and ∥uk∥W 1,n
V

is bounded. Thus, we deduce from (3.4) that

c+ ok(1) + ok(1)∥uk∥ ≥
(
1

n
− 1

θ

)
∥uk∥pW 1,p

V

as k → ∞.

Dividing ∥uk∥pW 1,p
V

on both sides and sending k → ∞, we have 0 ≥
(
1
n − 1

θ

)
> 0, which is again a contradiction. Case 3:

Suppose that ∥uk∥W 1,n
V

→ ∞ as k → ∞ and ∥uk∥W 1,p
V

is bounded, then by arguing as in Case 2, we can easily arrive at a

contradiction. Thus, {uk}k∈N is a bounded sequence in X. Further, by using (3.4), we get

lim sup
k→∞

∥uk∥nW 1,n
V

≤
(

nθ

θ − n

)
c and lim sup

k→∞
∥uk∥nW 1,p

V

≤
[(

nθ

θ − n

)
c

]n
p

. (3.5)

It follows from (3.5) and the inequality (a+ b)σ ≤ 2σ−1(aσ + bσ) for all a, b ≥ 0 and σ ∈ [1,+∞) that

lim sup
k→∞

∥uk∥n
′
≤ 2

1
n−1

([(
nθ

θ − n

)
c

] 1
n−1

+

[(
nθ

θ − n

)
c

] n
(n−1)p

)
.
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By using the fact that nθ
θ−n > 1 and 1

n−1 <
n

(n−1)p , we obtain from the previous inequality that

lim sup
k→∞

∥uk∥n
′
≤

[
2

(
nθ

θ − n

)n
p

] 1
n−1(

c
1

n−1 + c
n

(n−1)p

)
≤


[
2n
(

nθ
θ−n

)n
p

c

] 1
n−1

if c ≤ 1,[
2n
(

nθc
θ−n

)n
p

] 1
n−1

if c ≥ 1.

(3.6)

Due to (3.2) and (3.6), one can easily obtain (3.3). This finishes the proof of the lemma. □

Lemma 3.4. Let hypotheses (v1)–(v2) and (f0)–(f3) be satisfied. Then J satisfies the (PS)c compactness condition for
all c ∈ (0, c0), where c0 is defined in Lemma 3.2.

Proof. Let {uk}k∈N ⊂ X be a (PS)c-sequence for J . Then, by employing Lemma 3.3, one sees that {uk}k∈N is bounded in
X and (3.3) is satisfied. Hence, up to a subsequence not relabeled, there exists u ∈ X such that uk ⇀ u in X. Thus, from
Lemma 2.1, we obtain uk → u in Lτ (Rn) for all τ ∈ [p, p∗)∪ [n,+∞) and uk → u a.e. in Rn. In addition, as a consequence
of (1.2), (3.3), Lemma 2.1, Theorem 2.2, Lemma 2.3 and Hölder’s inequality, one can deduce that {F (·, uk)}k∈N is bounded
in Lr(Rn). Using the continuity of the map s 7→ F (·, s), we obtain F (x, uk) → F (x, u) a.e. in Rn as k → ∞. It immediately
follows that F (x, uk)⇀ F (x, u) in Lr(Rn) as k → ∞. Set t = 2n

2β+µ , then by Theorem 2.4, the map

Lr(Rn) ∋ h(x) 7→
∫
Rn

h(y)

|x|β |x− y|µ|y|β
dy ∈ Lt(Rn)

is a linear and bounded operator. As a result, we obtain∫
Rn

F (y, uk)

|x|β |x− y|µ|y|β
dy ⇀

∫
Rn

F (y, u)

|x|β |x− y|µ|y|β
dy in Lt(Rn) as k → ∞.

Therefore, the sequence
{∫

Rn

F (y,uk)
|x|β |x−y|µ|y|β dy

}
k∈N

is bounded in Lt(Rn). Note that (3.1) holds replacing u by uk. Since

(3.3) holds and passing to a subsequence if necessary (not relabeled), we can assume that supk∈N ∥uk∥n
′
< αn

α0
. Let us fix

m̄ ∈ (∥uk∥n
′
, αn

α0
) and α > α0 close to α0 in such a way that 2αqrm̄ < αn. Now, by using (1.1), Lemma 2.1, Theorem 2.2,

Lemma 2.3, Hölder’s inequality and the boundedness of {uk}k∈N in X, we have

|⟨I ′(uk), uk − u⟩| ≤ C

[(∫
Rn

|uk|(n−1)r|uk − u|r dx
) 1

r

+

(∫
Rn

|uk|(q−1)r|uk − u|rΦ(αr|uk|n
′
) dx

) 1
r
]

≤ C

[
∥uk∥n−1

nr ∥uk − u∥nr + ∥uk∥q−1
qr ∥uk − u∥2qr

(∫
Rn

Φ(2αqr∥uk∥n
′
|(uk/∥uk∥)|n

′
) dx

) 1
2qr
]
= ok(1)

as k → ∞, where C > 0 is a suitable positive constant. It follows that

lim
k→∞

∫
Rn

(∫
Rn

F (y, uk)

|x− y|µ|y|β
dy

)
f(x, uk)(uk − u)

|x|β
dx = 0, (3.7)

lim
k→∞

∫
Rn

(∫
Rn

F (y, u)

|x− y|µ|y|β
dy

)
f(x, u)(uk − u)

|x|β
dx = 0. (3.8)

Recall that ⟨J ′(uk)− J ′(u), uk − u⟩ = ok(1) as k → ∞. Hence, for m ∈ {p, n}, we obtain by using (3.7), (3.8), the
convexity of the map t 7→ 1

m |t|m and (v1) that

lim
k→∞

∫
Rn

(
|∇uk|m−2∇uk − |∇u|m−2∇u

)
· (∇uk −∇u) dx = 0, (3.9)

lim
k→∞

∫
Rn

V (x)
(
|uk|m−2uk − |u|m−2u

)
(uk − u) dx = 0. (3.10)

From [19], for all w, z ∈ Rd with d ≥ 1, there exist two positive constants Cσ and cσ depending only on σ such that

|w − z|σ ≤

{
Cσ

[(
|w|σ−2w − |z|σ−2z

)
(w − z)

]σ
2
[
|w|σ + |z|σ

] 2−σ
2 if 1 < σ < 2,

cσ
(
|w|σ−2w − |z|σ−2z

)
(w − z) if σ ≥ 2.

(3.11)

Due to (3.9), (3.10), (3.11) and the boundedness of {uk}k∈N in X, we obtain for m ≥ 2 that

∥∇uk −∇u∥mm ≤ cm

∫
Rn

(
|∇uk|m−2∇uk − |∇u|m−2∇u

)
· (∇uk −∇u) dx = ok(1) as k → ∞,

∥uk − u∥mm,V ≤ cm

∫
Rn

V (x)
(
|uk|m−2uk − |u|m−2u

)
(uk − u) dx = ok(1) as k → ∞.
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Because of (3.9), (3.10), (3.11), Hölder’s inequality and the boundedness of {uk}k∈N in X, we get for 1 < m < 2 that

∥∇uk −∇u∥mm ≤ Cm

∫
Rn

[(
|∇uk|m−2∇uk − |∇u|m−2∇u

)
.(∇uk −∇u)

]m
2
[
|∇uk|m + |∇u|m

] 2−m
2 dx

≤ Cm

∫
Rn

[(
|∇uk|m−2∇uk − |∇u|m−2∇u

)
.(∇uk −∇u)

]m
2

[
|∇uk|

(2−m)m
2 + |∇u|

(2−m)m
2

]
dx

≤ Cm

(∫
Rn

(
|∇uk|m−2∇uk − |∇u|m−2∇u

)
.(∇uk −∇u) dx

)m
2 [

∥∇uk∥
(2−m)m

2
m + ∥∇u∥

(2−m)m
2

m

]
= ok(1)

as k → ∞ and

∥uk − u∥mm,V ≤ Cm

∫
Rn

V (x)
[(
|uk|m−2uk − |u|m−2u

)
(uk − u)

]m
2
[
|uk|m + |u|m

] 2−m
2 dx

≤ Cm

∫
Rn

V (x)
[(
|uk|m−2uk − |u|m−2u

)
(uk − u)

]m
2

[
|uk|

(2−m)m
2 + |u|

(2−m)m
2

]
dx

≤ Cm

(∫
Rn

V (x)
(
|uk|m−2uk − |u|m−2u

)
(uk − u) dx

)m
2 [

∥uk∥
(2−m)m

2

m,V + ∥u∥
(2−m)m

2

m,V

]
= ok(1) as k → ∞.

Hence, we deduce from the above convergences that ∇uk → ∇u in Lm(Rn) as k → ∞ and uk → u in Lm
V (Rn) as k → ∞

for m ∈ {p, n}. It follows that uk → u in X as k → ∞. This finishes the proof. □

Proof of Theorem 1.1. By using Lemma 3.4 and J ∈ C1(X,R), one has J(u) = c > 0 and J ′(u) = 0. Thus, we obtain
from Lemma 3.1 that u is a positive solution of (P). Next, we claim that u is a ground state solution of (P). It suffices to
show c ≤ Θ := inf{J(u) : u ∈ N}, where N := {u ∈ X \{0} : J ′(u) = 0}. Define the map π : (0,+∞) → R by π(s) = J(su)
for all u ∈ N and s > 0. Note that π′(s) = 1

s ⟨J
′(su), su⟩ − sn−1⟨J ′(u), u⟩. Moreover, by direct calculations, we have

π′(s) = (sp−1 − sn−1)∥u∥p
W 1,p

V

+ sn−1

[∫
Rn

{∫
Rn

(
F (y, u)

u
n
2

− F (y, su)

(su)
n
2

)
u

n
2

|x− y|µ|y|β
dy

}
f(x, u)

u
n
2 −1

u
n
2

|x|β
dx

+

∫
Rn

(∫
Rn

F (y, su)

(su)
n
2

u
n
2

|x− y|µ|y|β
dy

){
f(x, u)

u
n
2 −1

− f(x, su)

(su)
n
2 −1

}
u

n
2

|x|β
dx

]
.

Due to (f4), one sees that π′(s) > 0 for all s ∈ (0, 1) and π′(s) < 0 for all s ∈ (1,+∞). It follows that 1 is the maximum
point of π and thus J(u) = maxs≥0 J(su). Further, let g : [0, 1] → X be such that g(s) = ss0u, where s0 fulfills J(s0u) < 0.
Hence, g ∈ Γ and c ≤ maxs∈[0,1] J(g(s)) ≤ maxs≥0 J(su) = J(u). Since u ∈ N is arbitrary, we have c ≤ Θ. □
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