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Abstract. In this paper we study quasilinear elliptic equations driven by the variable exponent double phase
operator and a right-hand side that contains a parametric term and a superlinear perturbation with a growth that

need not necessarily be polynomial. Under a certain behavior near the origin of the perturbation we prove the

existence of at least two constant sign solutions by using truncation arguments and comparison methods.

1. Introduction and results

Let Ω ⊆ RN (N ≥ 2) be a bounded domain with Lipschitz boundary ∂Ω. For r ∈ C(Ω) we define

r− = min
x∈Ω

r(x) and r+ = max
x∈Ω

r(x).

In this paper, we study the following variable exponent double phase Dirichlet problem with parameter dependence
in the reaction term

−div
(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
= λ|u|p

−−2u− f(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where λ > 0 to be specified and the exponents as well as the weight function are supposed to satisfy the following
conditions:

(H1) p, q ∈ C(Ω) such that 1 < p(x) < N and p(x) < q(x) < p∗(x) for all x ∈ Ω and 0 ≤ µ(·) ∈ L∞(Ω), where
p∗ is given by

p∗(x) =
Np(x)

N − p(x)
for x ∈ Ω.

(H2) There exists ξ0 ∈ RN \ {0} such that for all x ∈ Ω the function px : Ωx → R defined by px(z) = p(x+ zξ0)
is monotone, where Ωx := {z ∈ R : x+ zξ0 ∈ Ω}.

From hypothesis (H2) we know that

λ̂ := inf
u∈W 1,p(·)

0 (Ω)\{0}

∫
Ω

|∇u|p(x) dx∫
Ω

|u|p(x) dx

> 0,

due to Fan-Zhang-Zhao [7, Theorem 3.3].
Let

B :=

{
u ∈ C1

0 (Ω)+ \ {0} :

∫
Ω

|u|p
−

dx ≥
∫

Ω

|u|p(x) dx

}
,

where C1
0 (Ω) and C1

0 (Ω)+ are defined by

C1
0 (Ω) :=

{
u ∈ C1(Ω) : u

∣∣
∂Ω

= 0
}

and C1
0 (Ω)+ :=

{
u ∈ C1

0 (Ω) : u(x) ≥ 0 for all x ∈ Ω
}
.
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Then we put

λ := inf
u∈B

∫
Ω

|∇u|p(x) dx∫
Ω

|u|p(x) dx

According to the above definitions, we easily see that 0 < λ̂ ≤ λ.
In addition, the hypotheses on f are the following ones:

(H3) f : Ω× R→ R is a Carathéodory function such that
(i) f is bounded on bounded sets;

(ii)

lim
s→±∞

f(x, s)

|s|q+−2s
= +∞ uniformly for a. a.x ∈ Ω;

(iii)

lim
s→0

f(x, s)

|s|p−−2s
= 0 uniformly for a. a.x ∈ Ω.

We say that a function u ∈W 1,H
0 (Ω) is a weak solution of problem (1.1) if∫

Ω

(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
· ∇v dx =

∫
Ω

(
λ|u|p

−−2u− f(x, u)
)
v dx

is satisfied for all v ∈W 1,H
0 (Ω) and all the integrals are finite.

Our main result reads as follows.

Theorem 1.1. Let hypotheses (H1), (H2) and (H3) be satisfied and let λ > λ. Then problem (1.1) admits at least

two nontrivial bounded weak solutions u1, u2 ∈W 1,H
0 (Ω) such that that u1 ≥ 0 and u2 ≤ 0 in Ω.

The proof of Theorem 1.1 relies on an appropriate combination of variational tools like truncation and comparison

methods and on the properties of the Musielak-Orlicz Sobolev space W 1,H
0 (Ω). The operator in problem (1.1) is

the so-called variable exponent double phase operator given by

div
(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
, u ∈W 1,H

0 (Ω), (1.2)

which has been recently studied by Crespo-Blanco-Gasiński-Harjulehto-Winkert [5]. Clearly, if inf µ ≥ µ0 > 0 or
µ ≡ 0, (1.2) reduces to the (q(·), p(·))-Laplacian or the p(·)-Laplacian, respectively, and if in addition the exponents
are constants, we get the (q, p)-Laplacian or the usual p-Laplacian, respectively. Operators of type (1.2) have their
origin in the study of functionals of type

ω 7→
∫

Ω

(
|∇ω|p + µ(x)|∇ω|q

)
dx, 1 < p < q < N,

due to Zhikov [25] in order to describe models for strongly anisotropic materials. Double phase differential operators
and corresponding energy functionals appear in several physical applications. For example, in the elasticity theory,
the modulating coefficient µ(·) dictates the geometry of composites made of two different materials with distinct
power hardening exponents q and p, see Zhikov [27]. But also in other mathematical applications such kind
of functional plays an important role, for example, in the study of duality theory and of the Lavrentiev gap
phenomenon, see Papageorgiou-Rădulescu-Repovš [16], Ragusa-Tachikawa [21] and Zhikov [26, 27].

So far, there are only few results involving the variable exponent double phase operator given in (1.2). We
refer to the recent results of Aberqi-Bennouna-Benslimane-Ragusa [1] for existence results in complete manifolds,
Albalawi-Alharthi-Vetro [2] for convection problems with (p(·), q(·))-Laplace type problems, Bahrouni-Rădulescu-
Winkert [3] for double phase problems of Baouendi-Grushin type operator, Crespo-Blanco-Gasiński-Harjulehto-
Winkert [5] for double phase convection problems, Kim-Kim-Oh-Zeng [13] for concave-convex-type double-phase
problems, Leonardi-Papageorgiou [14] for concave-convex problems and Zeng-Rădulescu-Winkert [24] for multival-
ued problems, see also the references therein. In the context of double phase problems with constant exponents
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or variable exponent double phase problems with balanced growth we refer to the papers of Colasuonno-Squassina
[4] for eigenvalue problems of double phase type, Farkas-Winkert [8] for Finsler double phase problems, Gasiński-
Papageorgiou [9] locally Lipschitz right-hand sides, Gasiński-Winkert [11] for convection problems, Liu-Dai [15] for
a Nehari manifold approach, Papageorgiou-Vetro [17] for superlinear problems, Papageorgiou-Vetro-Vetro [18] for
parametric Robin problems, Perera-Squassina [19] for Morse theoretical approach, Vetro-Winkert [22] for paramet-
ric convective problems, Zeng-Bai-Gasiński-Winkert [23] for implicit obstacle problems with multivalued operators
and the references therein.

We point out that the nonlinearity f in problem (1.1) does not need to satisfy any polynomial growth. The shape
of f is just fixed by the behavior at ±∞ and near the origin. With this work we extend the results of Gasiński-
Winkert [10] to the variable exponent double phase operator. Indeed, if p and q are constants, the condition λ > λ
in Theorem 1.1 becomes λ > λ1,p where λ1,p > 0 is the first eigenvalue of the p-Laplacian with Dirichlet boundary

condition. In our setting, in order to have λ̂ > 0, we need the additional condition in (H2) on the exponent p(·).

2. Preliminaries

In this section we recall some basic facts about variable exponent Sobolev spaces and Musielak-Orlicz Sobolev
spaces. We refer to the monographs of Diening-Harjulehto-Hästö-Růžička [6], Harjulehto-Hästö [12] and Rădulescu-
Repovš [20], see also the recent paper of Crespo-Blanco-Gasiński-Harjulehto-Winkert [5].

Let M(Ω) be the space of all measurable functions u : Ω → R. For r ∈ C(Ω) with r(x) > 1 for all x ∈ Ω, we
denote by Lr(·)(Ω) the usual variable exponent Lebesgue space defined by

Lr(·)(Ω) =

{
u ∈M(Ω) : %r(u) :=

∫
Ω

|u(x)|r(x) dx < +∞
}

equipped with the Luxemburg norm

‖u‖r(·) := inf
{
τ > 0 : %r

(u
τ

)
≤ 1
}

Also, W 1,r(·)(Ω) and W
1,r(·)
0 (Ω) stand for the corresponding Sobolev spaces.

Suppose hypothesis (H1) and let H : Ω× [0,+∞)→ [0,+∞) be the nonlinear function defined by

H(x, t) = tp(x) + µ(x)tq(x).

Moreover, the modular function ρH is given by

ρH(u) :=

∫
Ω

H(x, |u|) dx =

∫
Ω

(
|u|p(x) + µ(x)|u|q(x)

)
dx.

Then, the Musielak-Orlicz space LH(Ω) is defined by

LH(Ω) = {u ∈M(Ω) : ρH(u) < +∞}
endowed with the Luxemburg norm

‖u‖H = inf
{
τ > 0 : ρH

(u
τ

)
≤ 1
}
.

The corresponding Musielak-Orlicz Sobolev space W 1,H(Ω) is defined by

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
equipped with the norm

‖u‖1,H = ‖∇u‖H + ‖u‖H,

where ‖∇u‖H = ‖ |∇u| ‖H. Furthermore, the completion of C∞0 (Ω) in W 1,H(Ω) is denoted by W 1,H.
0 (Ω). It is clear

that the norm ‖ · ‖H defined on LH(Ω) is uniformly convex and hence the spaces LH(Ω), W 1,H(Ω) and W 1,H
0 (Ω)

are reflexive Banach spaces, see Crespo-Blanco-Gasiński-Harjulehto-Winkert [5, Proposition 2.12].

We have the following embedding results for the spaces W 1,H(Ω) and W 1,H
0 (Ω), see Crespo-Blanco-Gasiński-

Harjulehto-Winkert [5, Propositions 2.16 and 2.18].

Proposition 2.1. Let hypotheses (H1) be satisfied. Then the following hold:



4 F. VETRO AND P. WINKERT

(i) W 1,H(Ω) ↪→ W 1,r(·)(Ω), W 1,H
0 (Ω) ↪→ W

1,r(·)
0 (Ω) are continuous for all r ∈ C(Ω) with 1 ≤ r(x) ≤ p(x) for

all x ∈ Ω;

(ii) W 1,H(Ω) ↪→ Lr(·)(Ω) and W 1,H
0 (Ω) ↪→ Lr(·)(Ω) are compact for r ∈ C(Ω) with 1 ≤ r(x) < p∗(x) for all

x ∈ Ω;
(iii) W 1,H(Ω) ↪→ LH(Ω) is compact;
(iv) There exists a constant C > 0 independent of u such that

‖u‖H ≤ C‖∇u‖H for all u ∈W 1,H
0 (Ω).

According to the previous proposition, we can equip the space W 1,H
0 (Ω) with the equivalent norm ‖ · ‖1,H,0 =

‖∇ · ‖H.
Finally for any s ∈ R we denote s± = max{±s, 0}, that means s = s+ − s− and |s| = s+ + s−. For any function

v : Ω→ R we denote v±(·) = [v(·)]±.

3. Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1.

Proof of Theorem 1.1. By assumption (H3)(ii), we know that for each a > 0, there exists a constant M > 1 such
that

f(x, s)s ≥ a|s|q
+

for a. a.x ∈ Ω and for all |s| ≥M. (3.1)

Since p(x) < q+ for all x ∈ Ω and M > 1, choosing a = λ and taking a constant function u ∈ [M,∞), from (3.1)
we obtain that

0 ≥ λup
−−1 − f(x, u) for a. a.x ∈ Ω. (3.2)

Let k+ : Ω× R→ R be the truncation function given by

k+(x, s) :=


0 if s < 0,

λsp
−−1 − f(x, s) if 0 ≤ s ≤ u,

λup
−−1 − f(x, u) if u < s,

(3.3)

and let K+(x, s) =
∫ s

0
k+(x, t) dt. We denote by φ+ : W 1,H

0 (Ω)→ R the C1-functional defined by

φ+(u) =

∫
Ω

[
1

p(x)
|∇u|p(x) +

µ(x)

q(x)
|∇u|q(x)

]
dx−

∫
Ω

K+(x, u) dx.

It is clear that the functional φ+ is coercive because of the truncation in (3.3) and the estimate

ρH(∇u) ≥ ‖∇u‖p
−

H for all u ∈W 1,H
0 (Ω) with ‖u‖1,H,0 > 1,

see Crespo-Blanco-Gasiński-Harjulehto-Winkert [5, Proposition 2.13]. In addition, it is sequentially weakly lower

semicontinuous due to the compactness of the embedding W 1,H
0 (Ω) ↪→ Lr(·)(Ω) for any r ∈ C(Ω) with 1 ≤ r(x) <

p∗(x) for all x ∈ Ω, see Proposition 2.1(ii). Hence, there exists u1 ∈W 1,H
0 (Ω) such that

φ+(u1) = inf
[
φ+(u) : u ∈W 1,H

0 (Ω)
]
.

Now, we show that u1 is nontrivial. Thanks to assumption (H3)(iii), we can find for each ε > 0 a number δ ∈ (0, u)
depending on ε such that

F (x, s) ≤ ε

p−
|s|p

−
for a. a.x ∈ Ω and for all |s| ≤ δ (3.4)

with F (x, s) =
∫ s

0
f(x, t) dt.

Let u∗ ∈ B be a function such that∫
Ω

|∇u∗|p(x) dx < (λ+ ε)

∫
Ω

|u∗|p(x) dx ≤ (λ+ ε)

∫
Ω

|u∗|p
−

dx. (3.5)
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Now we take t ∈ (0, 1) small enough such that tu∗(x) ∈ [0, δ] for all x ∈ Ω. Hence, by applying (3.4) and (3.5), we
get

φ+(tu∗) =

∫
Ω

[
1

p(x)
|∇(tu∗)|p(x) +

µ(x)

q(x)
|∇(tu∗)|q(x)

]
dx−

∫
Ω

K+ (x, tu∗) dx

≤ tp
−

p−

∫
Ω

|∇u∗|p(x) dx+
tq

−

q−

∫
Ω

µ(x)|∇u∗|q(x) dx− λtp
−

p−

∫
Ω

|u∗|p
−

dx+
εtp

−

p−

∫
Ω

|u∗|p
−

dx

≤ tp
−

p−
(
λ− λ+ 2ε

) ∫
Ω

|u∗|p
−

dx+
tq

−

q−

∫
Ω

µ(x)|∇u∗|q(x) dx.

If we choose ε ∈ (0, 1
2 (λ− λ)), then λ− λ+ 2ε < 0 and since p− < q−, for t > 0 sufficiently small, we have

tp
−
[
λ− λ+ 2ε

p−

] ∫
Ω

|u∗|p
−

dx+
tq

−

q−

∫
Ω

µ(x)|∇u∗|q(x) dx < 0.

This shows that for t ∈ (0, 1) sufficiently small φ+(tu∗) < 0 = φ+(0). Hence, u1 6= 0.
Now, taking into account that u1 is a global minimizer of φ+, we have φ′+(u1) = 0, that is,∫

Ω

(
|∇u1|p(x)−2∇u1 + µ(x)|∇u1|q(x)−2∇u1

)
· ∇v dx =

∫
Ω

k+(x, u1)v dx for all v ∈W 1,H
0 (Ω). (3.6)

Note that ±u± ∈W 1,H
0 (Ω) for any u ∈W 1,H

0 (Ω), see Crespo-Blanco-Gasiński-Harjulehto-Winkert [5, Proposition
2.17]. Choosing the test function v = −(u1)− in (3.6) we obtain that (u1)− = 0 and hence u1 ≥ 0. On the other
hand, taking v = (u1 − u)+ in (3.6) and using (3.2) as well as (3.3), we have∫

Ω

(
|∇u1|p(x)−2∇u1 + µ(x)|∇u1|q(x)−2∇u1

)
· ∇(u1 − u)+ dx

=

∫
Ω

k+(x, u1)(u1 − u)+ dx

=

∫
Ω

(
λup

−−1 − f(x, u)
)

(u1 − u)+ dx ≤ 0.

This implies that ∫
{x∈Ω :u1(x)>u(x)}

|∇u1|p(x) dx+

∫
{x∈Ω :u1(x)>u(x)}

µ(x)|∇u1|q(x) dx ≤ 0

and hence we deduce that u1 ≤ u. Finally, since 0 ≤ u1 ≤ u and taking into account the definition of the truncation

function k+ in (3.3) and hypothesis (H3)(i), we conclude that u+ ∈W 1,H
0 (Ω)∩L∞(Ω) is a weak solution of problem

(1.1).
In a similar way we show the existence of a negative solution of problem (1.1). Indeed, we can take a = λ and

choose a constant function u ∈ (−∞,−M ] so that 0 ≤ λ|u|p−−2u − f(x, u) for a. a.x ∈ Ω. Then, we consider the
truncation function k− : Ω× R→ R given by

k−(x, s) :=


λ|u|p−−2u− f(x, u) if s < u,

λ|s|p−−2s− f(x, s) if u ≤ s ≤ 0,

0 if 0 < s,

and the C1-functional φ− : W 1,H
0 (Ω)→ R defined by

φ−(u) =

∫
Ω

[
1

p(x)
|∇u|p(x) +

µ(x)

q(x)
|∇u|q(x)

]
dx−

∫
Ω

K−(x, u) dx,

where K−(x, s) =
∫ s

0
k−(x, t) dt. Thus, we can show that the global minimizer of φ−(u) is nontrivial and it is a

bounded negative weak solution for our problem. �
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[11] L. Gasiński, P. Winkert, Existence and uniqueness results for double phase problems with convection term, J. Differential Equations
268 (2020), no. 8, 4183–4193
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