EXISTENCE AND ASYMPTOTIC PROPERTIES FOR QUASILINEAR ELLIPTIC EQUATIONS WITH GRADIENT DEPENDENCE

DUMITRU MOTREANU AND PATRICK WINKERT

ABSTRACT. The existence of solutions of opposite constant sign is proved for a Dirichlet problem driven by the weighted (p,q)-Laplacian with q < p and exhibiting a (q-1)-order term as well as a convection term. The approach is based on the method of sub-supersolution. Extremal solutions in relevant ordered intervals are obtained as well.

1. Introduction

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with a C^2 -boundary $\partial \Omega$. We consider the following quasilinear Dirichlet problem

$$-\Delta_p u - \mu(x)\Delta_q u = a|u|^{q-2}u - g(x, u, \nabla u) \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega.$$

$$(P_{\mu, a})$$

with $1 < q < p < +\infty$, a > 0, and a weight function $\mu: \Omega \to \mathbb{R}$ with $\mu \in L^{\infty}(\Omega)$ and ess $\inf_{\Omega} \mu > 0$. Here, for r = p, q, Δ_r stands for the r-Laplace differential operator. The case $\mu \equiv 1$ is fundamental giving rise to the problem driven by the (p,q)-Laplacian. In the statement of $(P_{\mu,a})$ we also have a Carathéodory function $g: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$, i.e., $g(\cdot, s, \xi)$ is measurable for all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^N$ and $g(x, \cdot, \cdot)$ is continuous for a.a. $x \in \Omega$, describing dependence on u and its gradient ∇u which is called convection term. We say that $u \in W_0^{1,p}(\Omega)$ is a weak solution of problem $(P_{\mu,a})$ if it fulfills

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \varphi dx + \int_{\Omega} \mu(x) |\nabla u|^{q-2} \nabla u \cdot \nabla \varphi dx
= a \int_{\Omega} |u|^{q-2} u \varphi dx - \int_{\Omega} g(x, u, \nabla u) \varphi dx \quad \text{for all } \varphi \in W_0^{1,p}(\Omega).$$
(1.1)

Problem $(P_{\mu,a})$ belongs to the class of quasilinear elliptic equations

$$\operatorname{div} A(x, u, \nabla u) = f(x, u, \nabla u) \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega,$$
(1.2)

with Carathéodory mappings $A: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ and $f: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$. Generally, (1.2) does not have variational structure, so non-variational methods must be used, see Averna-Motreanu-Tornatore [1], Carl-Le-Motreanu [2], Faraci-Motreanu-Puglisi [3], Faria-Miyagaki-Motreanu [4], Faria-Miyagaki-Motreanu-Tanaka [5],

 $^{2010\} Mathematics\ Subject\ Classification.\ 35 J92,\ 35 J25.$

Key words and phrases. Quasilinear elliptic equation, (p,q)-Laplacian, gradient dependence, asymptotic properties.

Motreanu [9], Motreanu-Tornatore [10] and Tanaka [11]. A leading part is represented by the sub-supersolution approach, which in addition allows the location of solutions within ordered intervals determined by sub-supersolutions. This enclosure principle is useful for instance to find positive solutions. A frequent assumption is that $f(x, s, \xi)$ in (1.2) is bounded from below with respect to s > 0 near zero by a term of order s^r with r < q - 1, see Faraci-Motreanu-Puglisi [3], Faria-Miyagaki-Motreanu [4], Faria-Miyagaki-Motreanu-Tanaka [5], Motreanu [9], Motreanu-Tornatore [10] and Tanaka [11]. Such a condition is not applicable to $(P_{\mu,a})$ due to the term $a|u|^{q-2}u$ matching the weighted q-Laplacian $\mu(x)\Delta_q$.

The objective of the present paper is to establish the existence of a positive solution and of a negative solution to problem $(P_{\mu,a})$ through an adequate set-up for the method of sub-supersolution. As mentioned before, these results cannot be deduced from what it is known for the more general problem (1.2). Our main contribution consists in dealing with the possibly concave term $a|u|^{q-2}u$ against the convection $g(x, u, \nabla u)$. There is a balance between the roles of the reals p and q. For instance, we argue in the space $W_0^{1,p}(\Omega)$ but assume that the parameter a is above the first eigenvalue of $-\Delta_q$ with weight μ . We are able to provide precise bounds for the obtained solutions. Moreover, we show the existence of extremal (i.e., the greatest and smallest) solutions in relevant ordered intervals.

2. Preliminaries

For a bounded domain $\Omega \subset \mathbb{R}^N$ and a real $1 < r < +\infty$, we denote by $W^{1,r}(\Omega)$ and $W_0^{1,r}(\Omega)$ the usual Sobolev spaces. Recall that the negative r-Laplacian $-\Delta_r$ is the mapping $-\Delta_r: W_0^{1,r}(\Omega) \to (W_0^{1,r}(\Omega))^* = W^{-1,r'}(\Omega)$ given by

$$\Delta_r u = \operatorname{div}\left(|\nabla u|^{r-2} \nabla u\right).$$

Regarding the weighted eigenvalue problem

$$-\mu(x)\Delta_r u = \lambda |u|^{r-2}u \qquad \text{in } \Omega,$$

$$u = 0 \qquad \text{on } \partial\Omega.$$
(2.1)

with $\lambda \in \mathbb{R}$ and a weight function $\mu : \Omega \to \mathbb{R}$ as in $(P_{\mu,a})$, we say that λ is an eigenvalue and $u \in W^{1,r}(\Omega)$ an associated eigenfunction if $u \neq 0$ and

$$\int_{\Omega} \mu(x) |\nabla u|^{r-2} \nabla u \cdot \nabla \varphi dx = \lambda \int_{\Omega} |u|^{r-2} u \varphi dx$$

for all $\varphi \in W_0^{1,r}(\Omega)$. Based on the Ljusternik-Schnirelman principle, see, e.g., Lê [6], we can construct a sequence $\{\lambda_{n,r,\mu}\}_{n\geq 1}$ of eigenvalues for problem (2.1). The first eigenvalue $\lambda_{1,r,\mu}$ admits the variational representation

$$\lambda_{1,r,\mu} = \inf_{u \in W_0^{1,r}(\Omega), u \neq 0} \left\{ \frac{\int_{\Omega} \mu(x) |\nabla u|^r dx}{\int_{\Omega} |u|^r dx} \right\} > 0.$$
 (2.2)

In the study of problem $(P_{\mu,a})$, we make use of (2.2) in the case r=q.

An element $v \in W_0^{1,p}(\Omega)$ with $v|_{\partial\Omega} \geq 0$ $(v|_{\partial\Omega} \leq 0)$ is a supersolution (subsolution) of problem $(P_{\mu,a})$ if it satisfies

$$\int_{\Omega} |\nabla v|^{p-2} \nabla v \cdot \nabla \varphi dx + \int_{\Omega} \mu(x) |\nabla v|^{q-2} \nabla v \cdot \nabla \varphi dx \\
\geq (\leq) a \int_{\Omega} |v|^{q-2} v \varphi dx - \int_{\Omega} g(x, v, \nabla v) \varphi dx \tag{2.3}$$

for all $\varphi \in W_0^{1,p}(\Omega)$ with $\varphi \geq 0$. Corresponding to an ordered pair $\underline{u} \leq \overline{u}$ a.e. in Ω consisting of a subsolution \underline{u} and a supersolution \overline{u} for problem $(P_{\mu,a})$, we introduce the ordered interval

$$[\underline{u}, \overline{u}] = \left\{ u \in W_0^{1,p}(\Omega) : \underline{u}(x) \le u(x) \le \overline{u}(x) \text{ for a.a. } x \in \Omega \right\}. \tag{2.4}$$

The positive and negative parts of any $r \in \mathbb{R}$ are denoted by r^{\pm} , that is, $r^{\pm} = \max\{\pm r, 0\}$. In the sequel, for any r > 1 the notation r' stands for the Hölder conjugate of r, i.e., r' = r/(r-1). In particular, this applies to the Sobolev critical exponent p^* with its conjugate $(p^*)'$. Recall that $p^* = \frac{pN}{N-p}$ if N > p and $p^* = +\infty$ if $N \leq p$. For a later use, it is worth pointing out that $p-1 < p/(p^*)'$. The strong convergence and the weak convergence are denoted by \to and \to , respectively.

3. Two solutions of opposite constant sign

The following conditions on the nonlinearity $g: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ in $(P_{\mu,a})$ are required:

 ${\rm H}({\rm g})\ g:\Omega\times\mathbb{R}\times\mathbb{R}^N\to\mathbb{R}$ is a Carathéodory function satisfying

(i) there exist constants b > 0 and $\delta > 0$ such that

$$g(x, s, \xi)s \le b|s|^p \tag{3.1}$$

for a.a. $x \in \Omega$, for all $|s| \leq \delta$, for all $\xi \in \mathbb{R}^N$, and

$$\left(\frac{a}{b}\right)^{\frac{1}{p-q}} \le \delta; \tag{3.2}$$

(ii) there exist constants M > 0, $\gamma \in [0, \frac{p}{(p^*)^{\prime}})$ and $c_1, c_2 \geq \delta$, with $\delta > 0$ in (i), for which one has

$$ac_1^{q-1} \le g(x, c_1, 0)$$
 for a.a. $x \in \Omega$, (3.3)

$$-ac_2^{q-1} \ge g(x, -c_2, 0)$$
 for a.a. $x \in \Omega$, (3.4)

$$|g(x, s, \xi)| \le M \left(1 + |\xi|^{\gamma}\right) \quad \text{for a.a. } x \in \Omega, \tag{3.5}$$

for all $|s| \leq \max\{c_1, c_2\}$ and for all $\xi \in \mathbb{R}^N$.

Theorem 3.1. Assume that hypotheses H(g) hold. If $a > \lambda_{1,q,\mu}$, then problem $(P_{\mu,a})$ has at least two solutions $u, v \in C^{1,\beta}(\overline{\Omega})$ of opposite constant sign satisfying

$$0 < u \le c_1$$
 and $-c_2 \le v < 0$ in Ω ,

with some $\beta \in (0,1)$, where c_1 and c_2 are given in (3.3) and (3.4).

Proof. We start with the existence of a positive solution through the method of sub-supersolution. To this end we formulate the auxiliary problem

$$-\Delta_p u - \mu(x)\Delta_q u + b|u|^{p-2}u = a\left(u^+\right)^{q-1} \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega,$$
(3.6)

for b > 0 as in assumption H(g)(i). Notice that (3.6) has variational structure and its corresponding energy functional $J_+: W_0^{1,p}(\Omega) \to \mathbb{R}$ is expressed as

$$J_{+}(w) = \frac{1}{p} \int_{\Omega} (|\nabla w|^{p} + b|w|^{p}) dx + \frac{1}{q} \int_{\Omega} \mu(x) |\nabla w|^{q} dx - \frac{a}{q} \int_{\Omega} (w^{+})^{q} dx.$$

Since p > q and b > 0, the functional J_+ is coercive and weakly sequentially lower semicontinuous. Hence a global minimizer $u_+ \in W_0^{1,p}(\Omega)$ of J_+ exists. It follows that u_+ is a weak solution of problem (3.6), that is,

$$\int_{\Omega} |\nabla u_{+}|^{p-2} \nabla u_{+} \cdot \nabla \varphi dx + \int_{\Omega} \mu(x) |\nabla u_{+}|^{q-2} \nabla u_{+} \cdot \nabla \varphi dx
+ b \int_{\Omega} |u_{+}|^{p-2} u_{+} \varphi dx = a \int_{\Omega} \left((u_{+})^{+} \right)^{q-1} \varphi dx \quad \text{for all } \varphi \in W_{0}^{1,p}(\Omega).$$
(3.7)

The hypothesis $a > \lambda_{1,q,\mu}$, in conjunction with (2.2) for r = q, enables us to fix $w \in W_0^{1,p}(\Omega)$ with w > 0 a.e. in Ω such that

$$\lambda_{1,q,\mu} < \frac{\int_{\Omega} \mu(x) |\nabla w|^q dx}{\int_{\Omega} w^q dx} < a. \tag{3.8}$$

From (3.8) and q < p, for t > 0 sufficiently small, we get

$$J_{+}(tw) = \frac{t^{p}}{p} \int_{\Omega} \left(|\nabla w|^{p} + bw^{p} \right) dx + \frac{1}{q} t^{q} \int_{\Omega} \mu(x) |\nabla w|^{q} dx - \frac{a}{q} t^{q} \int_{\Omega} w^{q} dx < 0.$$

We infer that $J_{+}(u_{+}) < 0$, thus the solution u_{+} of (3.6) is nontrivial.

Testing (3.7) with $\varphi = -(u_+)^-$ we see that $u_+ \ge 0$. Then, in view of (3.6), u_+ is a weak solution of

$$-\Delta_p u - \mu(x)\Delta_q u + bu^{p-1} = au^{q-1} \quad \text{in } \Omega,$$

$$u \ge 0 \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega.$$
(3.9)

Through Moser's iteration, see, e.g., Marino-Winkert [8], applied to (3.9) we note that $u_+ \in L^{\infty}(\Omega)$. At this point, the regularity up to the boundary, see Lieberman [7, p. 320], ensures that $u_+ \in C_0^1(\overline{\Omega}) \setminus \{0\}$. Then, the strong maximum in Motreanu [9, Theorem 2.19] enables us to conclude that $u_+ > 0$ in Ω .

Let us act with $\varphi = u_+^{\alpha+1}$ as test functions in (3.9) for each $\alpha > 0$. By Hölder's inequality, this leads to

$$b\int_{\Omega}u_{+}^{p+\alpha}dx \leq a\int_{\Omega}u_{+}^{q+\alpha}dx \leq a\left(\int_{\Omega}u_{+}^{p+\alpha}dx\right)^{\frac{q+\alpha}{p+\alpha}}|\Omega|^{\frac{p-q}{p+\alpha}},$$

where $|\Omega|$ denotes the Lebesgue measure of Ω . This results in

$$b||u_+||_{L^{p+\alpha}(\Omega)}^{p-q} \le a|\Omega|^{\frac{p-q}{p+\alpha}}.$$

Letting $\alpha \to +\infty$ implies

$$b||u_+||_{L^{\infty}(\Omega)}^{p-q} \le a.$$
 (3.10)

Using (3.1), (3.2), (3.10) and the fact that u_+ is a solution of (3.9), we find

$$-\Delta_p u_+ - \mu(x)\Delta_q u_+ = au_+^{q-1} - bu_+^{p-1} \le au_+^{q-1} - g(x, u_+, \nabla u_+).$$

According to (2.3), this means that $\underline{u} = u_+$ is a subsolution of problem $(P_{\mu,a})$.

Thanks to assumption (3.3) it turns out that $\overline{u} \equiv c_1$ is a supersolution of $(P_{\mu,a})$. By means of (3.10) and (3.2), as well as the assumption $c_1 \geq \delta$, we note that

$$\underline{u}(x) \le \|\underline{u}\|_{L^{\infty}(\Omega)} \le \left(\frac{a}{b}\right)^{\frac{1}{p-q}} \le \delta \le c_1 = \overline{u}(x) \text{ for all } x \in \Omega.$$

We have thus a subsolution \underline{u} and a supersolution \overline{u} of problem $(P_{\mu,a})$ satisfying $\underline{u} \leq \overline{u}$. Therefore, taking into account (3.5), the general method of subsupersolution for quasilinear elliptic equations as presented in Motreanu-Tornatore [10, Theorem 3.1] (see also Carl-Le-Motreanu [2, Theorem 3.17]) can be carried out to problem $(P_{\mu,a})$ with the ordered pair $\underline{u} \leq \overline{u}$. It gives the existence of a weak solution u with the enclosure property $0 < u_+ \leq u \leq c_1$. Again by the nonlinear regularity up to the boundary, we have that $u \in C^{1,\beta}(\overline{\Omega})$ with some $\beta \in (0,1)$.

Let us prove the existence of a negative solution to problem $(P_{\mu,a})$. Consider the auxiliary problem

$$-\Delta_p u - \mu(x)\Delta_q u + b|u|^{p-2}u = -a(u^-)^{q-1} \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega.$$
(3.11)

The energy functional $J_{-}:W_{0}^{1,p}(\Omega)\to\mathbb{R}$ associated to (3.11) is defined by

$$J_{-}(v) = \frac{1}{p} \int_{\Omega} \left(|\nabla v|^p + b|v|^p \right) dx + \frac{1}{q} \int_{\Omega} \mu(x) |\nabla v|^q dx - \frac{a}{q} \int_{\Omega} \left(v^{-} \right)^q dx.$$

As before we can show that there exists a global minimizer v_- of the functional J_- , which is a nontrivial weak solution of (3.11) belonging to $C_0^1(\overline{\Omega})$. Upon acting on (3.11) with $(v_-)^+$, it readily follows that v_- turns out to be a negative weak solution of (3.11). Along the lines of the first part of the proof, arguing this time with the test function $\varphi = |v_-|^{\alpha} v_-$ in (3.11) for each $\alpha > 0$, we arrive at

$$b\|v_-\|_{L^{\infty}(\Omega)}^{p-q} \le a. \tag{3.12}$$

Through (3.11), (3.1), (3.2), and (3.12), we find that

$$-\Delta_p v_- - \mu(x) \Delta_q v_- = a|v_-|^{q-2} v_- - b|v_-|^{p-2} v_- \ge a|v_-|^{q-2} v_- - g(x, v_-, \nabla v_-).$$

This amounts to saying that v_{-} is a negative supersolution of problem $(P_{\mu,a})$.

From (2.3) and (3.4), it is clear that the negative constant $-c_2$ is a subsolution of problem $(P_{\mu,a})$. On the basis of (3.2), (3.12) and because $c_2 \geq \delta$, we see that

$$-c_2 \leq -\delta \leq -\left(\frac{a}{b}\right)^{\frac{1}{p-q}} \leq -\|v_-\|_{L^\infty(\Omega)} \leq v_-(x) \quad \text{for all } x \in \Omega.$$

On account of (3.5), we are thus able to implement the method of sub-supersolution in the form of Motreanu-Tornatore [10, Theorem 3.1] (see also Carl-Le-Motreanu [2, Theorem 3.17]) to the quasilinear elliptic problem $(P_{\mu,a})$ with the ordered pair $-c_2 \leq v_-$, which leads to the existence of a weak solution to $(P_{\mu,a})$ with $-c_2 \leq v \leq v_- < 0$ in Ω . The fact that $v \in C^{1,\beta}(\overline{\Omega})$ for some $\beta \in (0,1)$ is the consequence of the nonlinear regularity theory up to the boundary applied to problem $(P_{\mu,a})$ with the weak solution v. The proof is complete.

Finally, we focus on extremal solutions to problem $(P_{\mu,a})$.

Corollary 3.2. Under hypotheses H(g) and $a > \lambda_{1,q,\mu}$, problem $(P_{\mu,a})$ possesses extremal solutions (i.e., the smallest and greatest solution) in each of the ordered sub-supersolution interval $[u, \overline{u}]$ obtained by Theorem 3.1.

Proof. We only prove the existence of the smallest solution in the ordered interval $[u_+, c_1]$. The proof for the existence of the greatest solution in $[u_+, c_1]$, as well as for the extremal solutions in the ordered interval $[-c_2, v_-]$, can be done analogously.

Denote by S the set of solutions to problem $(P_{\mu,a})$ belonging to $[u_+, c_1]$. Theorem 3.1 ensures that S is nonempty. It is well-known that there exists a sequence

 $\{u_n\}_{n\geq 1}$ in S such that with respect to the pointwise order in $W_0^{1,p}(\Omega)$ and the pointwise convergence it holds

$$\inf \mathcal{S} = \lim_{n \to \infty} u_n. \tag{3.13}$$

Since $u_n \in \mathcal{S}$, by (1.1), it satisfies (1.1), that is

$$\int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \cdot \nabla \varphi dx + \int_{\Omega} \mu(x) |\nabla u_n|^{q-2} \nabla u_n \cdot \nabla \varphi dx
= a \int_{\Omega} |u_n|^{q-2} u_n \varphi dx - \int_{\Omega} g(x, u_n, \nabla u_n) \varphi dx \text{ for all } \varphi \in W_0^{1,p}(\Omega).$$
(3.14)

If we insert $\varphi = u_n$ in (3.14) and use that the sequence $\{u_n\}_{n\geq 1}$ is uniformly bounded, namely $u_+ \leq u_n \leq c_1$ (see (2.4)), by (3.5) we infer that

$$\int_{\Omega} |\nabla u_n|^p dx + \int_{\Omega} \mu(x) |\nabla u_n|^q dx \le a \int_{\Omega} |u_n|^q dx + C \int_{\Omega} (1 + |\nabla u_n|^{\gamma}) dx,$$

with a constant C > 0. Due to $\gamma < p$, it turns out that the sequence $\{u_n\}_{n \geq 1}$ is bounded in $W_0^{1,p}(\Omega)$, thus, up to a subsequence, $u_n \rightharpoonup u$ for some $u \in W_0^{1,p}(\Omega)$. Through (3.14) with $\varphi = u_n - u$, in conjunction with (3.5) and Hölder's inequality, we derive that

$$\limsup_{n \to \infty} \int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \cdot \nabla (u_n - u) dx \le 0.$$

Then the S_+ -property of $-\Delta_p$ on $W_0^{1,p}(\Omega)$, see Carl-Le-Motreanu [2, Theorem 2.109], implies the strong convergence $u_n \to u$ in $W_0^{1,p}(\Omega)$. We can pass to the limit as $n \to \infty$ in (3.14), whence $u \in \mathcal{S}$. In view of (3.13), the desired conclusion ensues.

We end the paper with a simple example of term $g(x, s, \xi)$ in problem $(P_{\mu,a})$ verifying assumptions H(g). For simplicity we drop the dependence on $x \in \Omega$ in $g(x, s, \xi)$.

Example 3.3. Let $1 < q < p < +\infty$, a weight function $\mu : \Omega \to \mathbb{R}$ with $\mu \in L^{\infty}(\Omega)$ and $\operatorname{ess\,inf}_{\Omega} \mu > 0$, and $a > \lambda_{1,q,\mu}$, for which we state problem $(P_{\mu,a})$. For fixed constants $b_1, b_2 \geq a$, $0 < r_1, r_2 < p - 1$, $\gamma_1, \gamma_2 \in [0, \frac{p}{(p^*)'})$ and $d_1, d_2 > 0$, we introduce the continuous function $g : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ by

$$g(x, s, \xi) = \begin{cases} -as^{r_1} + b_1s^{p-1} - d_1|\xi|^{\gamma_1}s & \text{if } s \ge 0\\ as^{r_2} - b_2|s|^{p-1} - d_2|\xi|^{\gamma_2}s & \text{if } s < 0. \end{cases}$$

Condition H(g) is satisfied taking for instance $\delta = 1$, $b = \max\{b_1, b_2\}$, $\gamma = \max\{\gamma_1, \gamma_2\}$ and a sufficiently large M > 0.

ACKNOWLEDGMENT

The authors thank the referee for the valuable comments. The first author was partially supported by INdAM - GNAMPA Project 2015.

References

- D. Averna, D. Motreanu, E. Tornatore, Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence, Appl. Math. Lett. 61 (2016), 102–107.
- [2] S. Carl, V. K. Le, D. Motreanu, "Nonsmooth Variational Problems and Their Inequalities", Springer, New York, 2007.
- [3] F. Faraci, D. Motreanu, D. Puglisi, Positive solutions of quasi-linear elliptic equations with dependence on the gradient, Calc. Var. Partial Differential Equations 54 (2015), no. 1, 525– 538.
- [4] L. F. O. Faria, O. H. Miyagaki, D. Motreanu, Comparison and positive solutions for problems with (p, q)-Laplacian and convection term, Proc. Edinb. Math. Soc. 57 (2014), no. 3, 687–698.
- [5] L. F. O. Faria, O. H. Miyagaki, D. Motreanu, M. Tanaka, Existence results for nonlinear elliptic equations with Leray-Lions operator and dependence on the gradient, Nonlinear Anal. 96 (2014), 154–166.
- [6] A. Lê, Eigenvalue problems for the p-Laplacian, Nonlinear Anal. 64 (2006), no. 5, 1057–1099.
- [7] G. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), no. 2-3, 311–361
- [8] G. Marino, P. Winkert, Moser iteration applied to elliptic equations with critical growth on the boundary, Nonlinear Anal. 180 (2019), 154–169.
- [9] D. Motreanu, Nonlinear Differential Problems with Smooth and Nonsmooth Constraints, Academic Press, London, 2018.
- [10] D. Motreanu, E. Tornatore, Location of solutions for quasi-linear elliptic equations with general gradient dependence, Electron. J. Qual. Theory Differ. Equ. 2017, Paper No. 87, 1–10.
- [11] M. Tanaka, Existence of a positive solution for quasilinear elliptic equations with a nonlinearity including the gradient, Bound. Value Probl. 173 (2013), 1-11.
- (D. Motreanu) Département de Mathématiques, Université de Perpignan, 66860 Perpignan, France

 $E ext{-}mail\ address: motreanu@univ-perp.fr}$

(P. Winkert) Technische Universität Berlin, Institut für Mathematik, Strasse des 17. Juni 136, 10623 Berlin, Germany

E-mail address: winkert@math.tu-berlin.de