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Abstract. The existence of solutions of opposite constant sign is proved for
a Dirichlet problem driven by the weighted (p, q)-Laplacian with q < p and

exhibiting a (q − 1)-order term as well as a convection term. The approach

is based on the method of sub-supersolution. Extremal solutions in relevant
ordered intervals are obtained as well.

1. Introduction

Let Ω ⊂ RN be a bounded domain with a C2-boundary ∂Ω. We consider the
following quasilinear Dirichlet problem

−∆pu− µ(x)∆qu = a|u|q−2u− g(x, u,∇u) in Ω,

u = 0 on ∂Ω,
(Pµ,a)

with 1 < q < p < +∞, a > 0, and a weight function µ : Ω → R with µ ∈ L∞(Ω)
and ess infΩ µ > 0. Here, for r = p, q, ∆r stands for the r-Laplace differential
operator. The case µ ≡ 1 is fundamental giving rise to the problem driven by the
(p, q)-Laplacian. In the statement of (Pµ,a) we also have a Carathéodory function
g : Ω×R×RN → R, i.e., g(·, s, ξ) is measurable for all (s, ξ) ∈ R×RN and g(x, ·, ·)
is continuous for a.a.x ∈ Ω, describing dependence on u and its gradient ∇u which
is called convection term. We say that u ∈ W 1,p

0 (Ω) is a weak solution of problem
(Pµ,a) if it fulfills∫

Ω

|∇u|p−2∇u · ∇ϕdx+

∫
Ω

µ(x)|∇u|q−2∇u · ∇ϕdx

= a

∫
Ω

|u|q−2uϕdx−
∫

Ω

g(x, u,∇u)ϕdx for all ϕ ∈W 1,p
0 (Ω).

(1.1)

Problem (Pµ,a) belongs to the class of quasilinear elliptic equations

divA(x, u,∇u) = f(x, u,∇u) in Ω,

u = 0 on ∂Ω,
(1.2)

with Carathéodory mappings A : Ω×R×RN → RN and f : Ω×R×RN → R. Gen-
erally, (1.2) does not have variational structure, so non-variational methods must be
used, see Averna-Motreanu-Tornatore [1], Carl-Le-Motreanu [2], Faraci-Motreanu-
Puglisi [3], Faria-Miyagaki-Motreanu [4], Faria-Miyagaki-Motreanu-Tanaka [5],
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Motreanu [9], Motreanu-Tornatore [10] and Tanaka [11]. A leading part is repre-
sented by the sub-supersolution approach, which in addition allows the location
of solutions within ordered intervals determined by sub-supersolutions. This en-
closure principle is useful for instance to find positive solutions. A frequent as-
sumption is that f(x, s, ξ) in (1.2) is bounded from below with respect to s > 0
near zero by a term of order sr with r < q − 1, see Faraci-Motreanu-Puglisi [3],
Faria-Miyagaki-Motreanu [4], Faria-Miyagaki-Motreanu-Tanaka [5], Motreanu [9],
Motreanu-Tornatore [10] and Tanaka [11]. Such a condition is not applicable to
(Pµ,a) due to the term a|u|q−2u matching the weighted q-Laplacian µ(x)∆q.

The objective of the present paper is to establish the existence of a positive
solution and of a negative solution to problem (Pµ,a) through an adequate set-up
for the method of sub-supersolution. As mentioned before, these results cannot
be deduced from what it is known for the more general problem (1.2). Our main
contribution consists in dealing with the possibly concave term a|u|q−2u against
the convection g(x, u,∇u). There is a balance between the roles of the reals p and

q. For instance, we argue in the space W 1,p
0 (Ω) but assume that the parameter a

is above the first eigenvalue of −∆q with weight µ. We are able to provide precise
bounds for the obtained solutions. Moreover, we show the existence of extremal
(i.e., the greatest and smallest) solutions in relevant ordered intervals.

2. Preliminaries

For a bounded domain Ω ⊂ RN and a real 1 < r < +∞, we denote by W 1,r(Ω)

and W 1,r
0 (Ω) the usual Sobolev spaces. Recall that the negative r-Laplacian −∆r

is the mapping −∆r : W 1,r
0 (Ω)→ (W 1,r

0 (Ω))∗ = W−1,r′(Ω) given by

∆ru = div
(
|∇u|r−2∇u

)
.

Regarding the weighted eigenvalue problem

−µ(x)∆ru = λ|u|r−2u in Ω,

u = 0 on ∂Ω,
(2.1)

with λ ∈ R and a weight function µ : Ω → R as in (Pµ,a), we say that λ is an
eigenvalue and u ∈W 1,r(Ω) an associated eigenfunction if u 6= 0 and∫

Ω

µ(x)|∇u|r−2∇u · ∇ϕdx = λ

∫
Ω

|u|r−2uϕdx

for all ϕ ∈ W 1,r
0 (Ω). Based on the Ljusternik-Schnirelman principle, see, e.g., Lê

[6], we can construct a sequence {λn,r,µ}n≥1 of eigenvalues for problem (2.1). The
first eigenvalue λ1,r,µ admits the variational representation

λ1,r,µ = inf
u∈W 1,r

0 (Ω),u 6=0

{∫
Ω
µ(x)|∇u|rdx∫

Ω
|u|rdx

}
> 0. (2.2)

In the study of problem (Pµ,a), we make use of (2.2) in the case r = q.

An element v ∈ W 1,p
0 (Ω) with v

∣∣
∂Ω
≥ 0 (v

∣∣
∂Ω
≤ 0) is a supersolution (subsolu-

tion) of problem (Pµ,a) if it satisfies∫
Ω

|∇v|p−2∇v · ∇ϕdx+

∫
Ω

µ(x)|∇v|q−2∇v · ∇ϕdx

≥ (≤) a

∫
Ω

|v|q−2vϕdx−
∫

Ω

g(x, v,∇v)ϕdx

(2.3)
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for all ϕ ∈ W 1,p
0 (Ω) with ϕ ≥ 0. Corresponding to an ordered pair u ≤ u a.e. in Ω

consisting of a subsolution u and a supersolution u for problem (Pµ,a), we introduce
the ordered interval

[u, u] =
{
u ∈W 1,p

0 (Ω) : u(x) ≤ u(x) ≤ u(x) for a.a.x ∈ Ω
}
. (2.4)

The positive and negative parts of any r ∈ R are denoted by r±, that is, r± =
max{±r, 0}. In the sequel, for any r > 1 the notation r′ stands for the Hölder
conjugate of r, i.e., r′ = r/(r− 1). In particular, this applies to the Sobolev critical

exponent p∗ with its conjugate (p∗)′. Recall that p∗ = pN
N−p if N > p and p∗ = +∞

if N ≤ p. For a later use, it is worth pointing out that p− 1 < p/(p∗)′. The strong
convergence and the weak convergence are denoted by → and ⇀, respectively.

3. Two solutions of opposite constant sign

The following conditions on the nonlinearity g : Ω× R× RN → R in (Pµ,a) are
required:

H(g) g : Ω× R× RN → R is a Carathéodory function satisfying
(i) there exist constants b > 0 and δ > 0 such that

g(x, s, ξ)s ≤ b|s|p (3.1)

for a.a.x ∈ Ω, for all |s| ≤ δ, for all ξ ∈ RN , and(a
b

) 1
p−q ≤ δ; (3.2)

(ii) there exist constants M > 0, γ ∈ [0, p
(p∗)′ ) and c1, c2 ≥ δ, with δ > 0

in (i), for which one has

acq−1
1 ≤ g(x, c1, 0) for a.a.x ∈ Ω, (3.3)

−acq−1
2 ≥ g(x,−c2, 0) for a.a.x ∈ Ω, (3.4)

|g(x, s, ξ)| ≤M (1 + |ξ|γ) for a.a.x ∈ Ω, (3.5)

for all |s| ≤ max{c1, c2} and for all ξ ∈ RN .

Theorem 3.1. Assume that hypotheses H(g) hold. If a > λ1,q,µ, then problem

(Pµ,a) has at least two solutions u, v ∈ C1,β(Ω) of opposite constant sign satisfying

0 < u ≤ c1 and − c2 ≤ v < 0 in Ω,

with some β ∈ (0, 1), where c1 and c2 are given in (3.3) and (3.4).

Proof. We start with the existence of a positive solution through the method of
sub-supersolution. To this end we formulate the auxiliary problem

−∆pu− µ(x)∆qu+ b|u|p−2u = a
(
u+
)q−1

in Ω,

u = 0 on ∂Ω,
(3.6)

for b > 0 as in assumption H(g)(i). Notice that (3.6) has variational structure and

its corresponding energy functional J+ : W 1,p
0 (Ω)→ R is expressed as

J+(w) =
1

p

∫
Ω

(|∇w|p + b|w|p) dx+
1

q

∫
Ω

µ(x)|∇w|qdx− a

q

∫
Ω

(
w+
)q
dx.
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Since p > q and b > 0, the functional J+ is coercive and weakly sequentially lower

semicontinuous. Hence a global minimizer u+ ∈ W 1,p
0 (Ω) of J+ exists. It follows

that u+ is a weak solution of problem (3.6), that is,∫
Ω

|∇u+|p−2∇u+ · ∇ϕdx+

∫
Ω

µ(x)|∇u+|q−2∇u+ · ∇ϕdx

+ b

∫
Ω

|u+|p−2u+ϕdx = a

∫
Ω

(
(u+)

+
)q−1

ϕdx for all ϕ ∈W 1,p
0 (Ω).

(3.7)

The hypothesis a > λ1,q,µ, in conjunction with (2.2) for r = q, enables us to fix

w ∈W 1,p
0 (Ω) with w > 0 a.e. in Ω such that

λ1,q,µ <

∫
Ω
µ(x)|∇w|qdx∫

Ω
wqdx

< a. (3.8)

From (3.8) and q < p, for t > 0 sufficiently small, we get

J+(tw) =
tp

p

∫
Ω

(|∇w|p + bwp) dx+
1

q
tq
∫

Ω

µ(x)|∇w|qdx− a

q
tq
∫

Ω

wqdx < 0.

We infer that J+(u+) < 0, thus the solution u+ of (3.6) is nontrivial.

Testing (3.7) with ϕ = − (u+)
−

we see that u+ ≥ 0. Then, in view of (3.6), u+

is a weak solution of

−∆pu− µ(x)∆qu+ bup−1 = auq−1 in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω.

(3.9)

Through Moser’s iteration, see, e.g., Marino-Winkert [8], applied to (3.9) we note
that u+ ∈ L∞(Ω). At this point, the regularity up to the boundary, see Lieberman
[7, p. 320], ensures that u+ ∈ C1

0 (Ω)\{0}. Then, the strong maximum in Motreanu
[9, Theorem 2.19] enables us to conclude that u+ > 0 in Ω.

Let us act with ϕ = uα+1
+ as test functions in (3.9) for each α > 0. By Hölder’s

inequality, this leads to

b

∫
Ω

up+α+ dx ≤ a
∫

Ω

uq+α+ dx ≤ a
(∫

Ω

up+α+ dx

) q+α
p+α

|Ω|
p−q
p+α ,

where |Ω| denotes the Lebesgue measure of Ω. This results in

b‖u+‖p−qLp+α(Ω) ≤ a|Ω|
p−q
p+α .

Letting α→ +∞ implies

b‖u+‖p−qL∞(Ω) ≤ a. (3.10)

Using (3.1), (3.2), (3.10) and the fact that u+ is a solution of (3.9), we find

−∆pu+ − µ(x)∆qu+ = auq−1
+ − bup−1

+ ≤ auq−1
+ − g(x, u+,∇u+).

According to (2.3), this means that u = u+ is a subsolution of problem (Pµ,a).
Thanks to assumption (3.3) it turns out that u ≡ c1 is a supersolution of (Pµ,a).

By means of (3.10) and (3.2), as well as the assumption c1 ≥ δ, we note that

u(x) ≤ ‖u‖L∞(Ω) ≤
(a
b

) 1
p−q ≤ δ ≤ c1 = u(x) for all x ∈ Ω.
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We have thus a subsolution u and a supersolution u of problem (Pµ,a) satis-
fying u ≤ u. Therefore, taking into account (3.5), the general method of sub-
supersolution for quasilinear elliptic equations as presented in Motreanu-Tornatore
[10, Theorem 3.1] (see also Carl-Le-Motreanu [2, Theorem 3.17]) can be carried out
to problem (Pµ,a) with the ordered pair u ≤ u. It gives the existence of a weak
solution u with the enclosure property 0 < u+ ≤ u ≤ c1. Again by the nonlinear
regularity up to the boundary, we have that u ∈ C1,β(Ω) with some β ∈ (0, 1).

Let us prove the existence of a negative solution to problem (Pµ,a). Consider
the auxiliary problem

−∆pu− µ(x)∆qu+ b|u|p−2u = −a(u−)q−1 in Ω,

u = 0 on ∂Ω.
(3.11)

The energy functional J− : W 1,p
0 (Ω)→ R associated to (3.11) is defined by

J−(v) =
1

p

∫
Ω

(
|∇v|p + b|v|p

)
dx+

1

q

∫
Ω

µ(x)|∇v|qdx− a

q

∫
Ω

(
v−
)q
dx.

As before we can show that there exists a global minimizer v− of the functional
J−, which is a nontrivial weak solution of (3.11) belonging to C1

0 (Ω). Upon acting
on (3.11) with (v−)+, it readily follows that v− turns out to be a negative weak
solution of (3.11). Along the lines of the first part of the proof, arguing this time
with the test function ϕ = |v−|αv− in (3.11) for each α > 0, we arrive at

b‖v−‖p−qL∞(Ω) ≤ a. (3.12)

Through (3.11), (3.1), (3.2), and (3.12), we find that

−∆pv− − µ(x)∆qv− = a|v−|q−2v− − b|v−|p−2v− ≥ a|v−|q−2v− − g(x, v−,∇v−).

This amounts to saying that v− is a negative supersolution of problem (Pµ,a).
From (2.3) and (3.4), it is clear that the negative constant −c2 is a subsolution

of problem (Pµ,a). On the basis of (3.2), (3.12) and because c2 ≥ δ, we see that

−c2 ≤ −δ ≤ −
(a
b

) 1
p−q ≤ −‖v−‖L∞(Ω) ≤ v−(x) for all x ∈ Ω.

On account of (3.5), we are thus able to implement the method of sub-supersolution
in the form of Motreanu-Tornatore [10, Theorem 3.1] (see also Carl-Le-Motreanu
[2, Theorem 3.17]) to the quasilinear elliptic problem (Pµ,a) with the ordered pair
−c2 ≤ v−, which leads to the existence of a weak solution to (Pµ,a) with −c2 ≤ v ≤
v− < 0 in Ω. The fact that v ∈ C1,β(Ω) for some β ∈ (0, 1) is the consequence of
the nonlinear regularity theory up to the boundary applied to problem (Pµ,a) with
the weak solution v. The proof is complete. �

Finally, we focus on extremal solutions to problem (Pµ,a).

Corollary 3.2. Under hypotheses H(g) and a > λ1,q,µ, problem (Pµ,a) possesses
extremal solutions (i.e., the smallest and greatest solution) in each of the ordered
sub-supersolution interval [u, u] obtained by Theorem 3.1.

Proof. We only prove the existence of the smallest solution in the ordered interval
[u+, c1]. The proof for the existence of the greatest solution in [u+, c1], as well as for
the extremal solutions in the ordered interval [−c2, v−], can be done analogously.

Denote by S the set of solutions to problem (Pµ,a) belonging to [u+, c1]. Theorem
3.1 ensures that S is nonempty. It is well-known that there exists a sequence
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{un}n≥1 in S such that with respect to the pointwise order in W 1,p
0 (Ω) and the

pointwise convergence it holds

inf S = lim
n→∞

un. (3.13)

Since un ∈ S, by (1.1), it satisfies (1.1), that is∫
Ω

|∇un|p−2∇un · ∇ϕdx+

∫
Ω

µ(x)|∇un|q−2∇un · ∇ϕdx

= a

∫
Ω

|un|q−2unϕdx−
∫

Ω

g(x, un,∇un)ϕdx for all ϕ ∈W 1,p
0 (Ω).

(3.14)

If we insert ϕ = un in (3.14) and use that the sequence {un}n≥1 is uniformly
bounded, namely u+ ≤ un ≤ c1 (see (2.4)), by (3.5) we infer that∫

Ω

|∇un|pdx+

∫
Ω

µ(x)|∇un|qdx ≤ a

∫
Ω

|un|qdx+ C

∫
Ω

(1 + |∇un|γ)dx,

with a constant C > 0. Due to γ < p, it turns out that the sequence {un}n≥1 is

bounded in W 1,p
0 (Ω), thus, up to a subsequence, un ⇀ u for some u ∈ W 1,p

0 (Ω).
Through (3.14) with ϕ = un−u, in conjunction with (3.5) and Hölder’s inequality,
we derive that

lim sup
n→∞

∫
Ω

|∇un|p−2∇un · ∇(un − u)dx ≤ 0.

Then the S+-property of −∆p on W 1,p
0 (Ω), see Carl-Le-Motreanu [2, Theorem

2.109], implies the strong convergence un → u in W 1,p
0 (Ω). We can pass to the

limit as n →∞ in (3.14), whence u ∈ S. In view of (3.13), the desired conclusion
ensues. �

We end the paper with a simple example of term g(x, s, ξ) in problem (Pµ,a)
verifying assumptions H(g). For simplicity we drop the dependence on x ∈ Ω in
g(x, s, ξ).

Example 3.3. Let 1 < q < p < +∞, a weight function µ : Ω→ R with µ ∈ L∞(Ω)
and ess infΩ µ > 0, and a > λ1,q,µ, for which we state problem (Pµ,a). For fixed
constants b1, b2 ≥ a, 0 < r1, r2 < p − 1, γ1, γ2 ∈ [0, p

(p∗)′ ) and d1, d2 > 0, we

introduce the continuous function g : Ω× R× RN → R by

g(x, s, ξ) =

{
−asr1 + b1s

p−1 − d1|ξ|γ1s if s ≥ 0

asr2 − b2|s|p−1 − d2|ξ|γ2s if s < 0.

Condition H(g) is satisfied taking for instance δ = 1, b = max{b1, b2}, γ =
max{γ1, γ2} and a sufficiently large M > 0.
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[6] A. Lê, Eigenvalue problems for the p-Laplacian, Nonlinear Anal.64 (2006), no. 5, 1057–1099.

[7] G. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and

Ural’tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), no. 2-3,
311–361.

[8] G. Marino, P. Winkert, Moser iteration applied to elliptic equations with critical growth on

the boundary, Nonlinear Anal.180 (2019), 154–169.
[9] D. Motreanu, Nonlinear Differential Problems with Smooth and Nonsmooth Constraints, Aca-

demic Press, London, 2018.

[10] D. Motreanu, E. Tornatore, Location of solutions for quasi-linear elliptic equations with gen-
eral gradient dependence, Electron. J. Qual. Theory Differ. Equ. 2017, Paper No. 87, 1–10.

[11] M. Tanaka, Existence of a positive solution for quasilinear elliptic equations with a nonlin-
earity including the gradient, Bound. Value Probl.173 (2013), 1-11.
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