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ABSTRACT. This paper is devoted to the study of a quasilinear elliptic inclusion problem driven
by a double phase differential operator with variable exponents, an obstacle effect and a multival-
ued reaction term with gradient dependence. By using an existence result for mixed variational
inequalities with multivalued pseudomonotone operators and the theory of nonsmooth analysis,
we examine the nonemptiness, boundedness and closedness of the solution set to the problem
under consideration. In the second part of the paper we present some convergence analysis for
approximated problems. To be more precise, when the obstacle function is approximated by a
suitable sequence, applying a generalized penalty technique, we introduce a family of perturbed
problems without constraints associated to our problem and prove that the solution set of the
original problem can be approached by the solution sets of the perturbed problems in the sense
of Kuratowski.

1. INTRODUCTION

Originally, the study of obstacle problems is due the pioneering contribution by Stefan [415] in
which the temperature distribution in a homogeneous medium undergoing a phase change, typically
a body of ice at zero degrees centigrade submerged in water, was studied. Such kind of problems
also frequently occur in physics, biology, and financial mathematics. Some important examples
are the dam problem, the Hele-Shaw flow, pricing of American options, quadrature domains and
random matrices. Another groundbreaking work in this direction has been published by J.-L. Lions
[31] who considered the following problem: find the equilibrium position © = u(z) of an elastic
membrane which lies above a given obstacle ¢ = t(x) with € Q and © C R? being a bounded
smooth domain. It turns out that the equilibrium position is the unique solution of the Dirichlet
energy functional

min [ |Vo|*dz

veEK Jq
with K being an appropriate convex set of functions greater or equal to the obstacle ¥. Such
problem can be equivalently written as a variational inequality of the following form: find v € K
such that

Vu-V(v—u)de >0 forallvekK.
Q

It is clear that the solution u solves the equation Au = 0 in the region [v > 4] (so the membrane is
above the obstacle) while in the other region the membrane is equal to the obstacle, that is, u = .
Usually, the region [v = 9] is called the contact set and the interface that separates the two regions
is the free boundary. Different classes of obstacle problems appear naturally when describing
phenomena in the real world. Several interesting models, such as fluid filtration through porous
medium, osmosis, optimal stopping and heat control, are explained and studied in the monographs
of Duvaut and Lions [17] and Rodrigues [13].

In the current paper we are interested in the study of a quasilinear elliptic obstacle inclusion
problem with a double phase differential operator with variable exponents and a multivalued
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convection term. To this end, given a bounded domain Q ¢ RV, N > 2, with Lipschitz boundary
0f), we consider the problem

—div <|Vu|p(w)*2Vu + ,u(:v)|Vu|q<w)*2Vu) + Blul? @2y e f(x,u, Vu) in Q,
u< ® in 0, (1.1)
u=0 on 0,
where 0 < pu(-) € L*(Q), 8> 0, p,q,0: Q — (1,+00) are continuous functions, ®: Q — [0,00) is
a given obstacle function and f: 2 x R x RY — 2R is multivalued convection term. Problem (1.1)
appears naturally when considering optimal stopping problems for Lévy processes with jumps,

which arise for example as option pricing models in mathematical finance.
Problem (1.1) includes several interesting special cases which are listed below.

(i) If 8 =0, then problem (1.1) becomes
—div (|Vu|p(””)_2Vu + ,u(a:)|Vu|q<m)_2Vu) € f(z,u,Vu) in Q,
< in €, (1.2)
=0 on 01,

which has not been investigated yet.
(ii) If ® = 400, then problem (1.1) turns into

— div (|vu|p<w>*2vu + M(x)|vu|q@>*2w) + B’ @2y € f(z,u,Vu)  in Q,
u=0 on 01,

(1.3)

which has not been studied yet.
(iii) If B = 0 and ® = +o00, then problem (1.1) reduces to the following elliptic inclusion
problem without obstacle

—div <|Vu|p("’”)*2Vu + ,u(x)|Vu|q($)*2Vu) € f(z,u, Vu) in €,

(1.4)
u=~0 on 0.

If f is a single valued operator, problem (1.4) has been recently studied by Crespo-Blanco,
Gasiriski, Harjulehto and Winkert [14].
(iv) When p,q and @ are constants, then problem (1.1) can be formulated by the following
multivalued double phase obstacle problem
—div (|VulP"?>Vu + p(2)|Vu|T2Vu) + Blul’u € f(z,u, Vu) in Q,
u<l® in Q, (1.5)
u=20 on 0N).
This problem has not been studied yet. If in addition S = 0, then (1.5) can be written as
—div (|[VuP?Vu + p(z)|Vu|!?Vu) € f(z,u, Vu) in €,
u<d in €,
u=0 on 0,

which has been considered by Zeng, Gasiriski, Winkert and Bai [47, 49].

Therefore, the novelty of the current paper is the fact that several interesting and challenging
phenomena are considered into one problem. To be more precise, problem (1.1) combines the
following effects:

(i) a double phase differential operator with variable exponents which extends the isotropic
case to the anisotropic one;
(ii) a multivalued convection term;
(iii) an obstacle restriction;
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(iv) the functional framework on Musielak-Orlicz Sobolev spaces for variable exponents.

The main contribution of this paper is twofold. The first goal is to study the solution set S
of problem (1.1) and it turns out that this set is nonempty (so an existence result), bounded and
closed. Our method is based on the theory of nonsmooth analysis and an existence theorem for
mixed variational inequalities with multivalued pseudomonotone operators. Since the obstacle ef-
fect leads to various difficulties in obtaining the exact and numerical solutions, some appropriate
and useful approximating methods have been introduced and developed to overcome the obstacle
constraints. Based on this, when the obstacle function is approximated by a suitable sequence,
the second contribution of the paper is aimed to introduce a family of perturbed problems cor-
responding to problem (1.1) without constraints and to establish a critical convergence theorem
which reveals that the solution set of the variable exponent double phase obstacle problem can
be approximated by the solution sets of perturbed problems, denoted by {S, }nen, in the sense of
Kuratowski. More precisely, we establish the following relation

0 # w-limsup S, = s-limsup S,, C S,
n—oo n—oo
where w-lim sup,, .. Sy is the weak Kuratowski upper limit of §,, and s-limsup,,_,., S, stands
for the strong Kuratowski upper limit of S,,. As far as we know this is the first work combining
a variable exponent double phase operator with a multivalued convection term and an obstacle
effect.

Originally, the double phase setting is due to Zhikov [52] who introduced and studied the integral

functional

J(u) :/(|Vu|p+u(x)|Vu\q) da (1.6)

in order to describe models for strongly anisotropic materials. The functional J(-) is related to the
differential operator

u s —div (|VulP 72 Vu + p(z)| Va7 *Vu). (1.7)

Physically, the integral functional (1.6) illustrates the phenomenon that the energy density changes
its ellipticity and growth properties according to the point in the domain. Mathematically, the
behavior of J(-) is related to the sets on which the weight function pu(-) vanishes or not. Therefore,
we have two phases (u(x) = 0 or # 0) and so we call it double phase.

Based on the recent results of Crespo-Blanco, Gasiriski, Harjulehto and Winkert [14] we extend
the isotropic double phase operator in (1.7) to the following anisotropic one

u s —div (|VulP 2V + p(2) | Vu|!® 2 V),

in which the exponents are now functions. We point out that isotropic and anisotropic double
phase differential operators and related energy functionals describe several natural phenomena
and model numerous problems in Mechanics, Physics and Engineering Sciences. In the elasticity
theory, for example, the modulating coefficient p(-) dictates the geometry of composites made of
two different materials with distinct power hardening exponents ¢(x) and p(z), see Zhikov [53]. In
general, equations driven by the sum of two differential operators of different nature arise often
in mathematical models of physical processes. We refer to the papers of Bahrouni, Radulescu
and Repovs [5] for transonic flow problems and of Cherfils and I'yasov [10] for reaction diffusion
systems.

As already mentioned there are only few works dealing with similar variable exponent double
phase operators as in our work. In 2018, Zhang and R&dulescu [51] considered the problem

—div A(z, Vu) 4+ V(2)|u|*® 2 = f(z,u) (1.8)

where A fulfills certain (p(x), ¢(z))-growth conditions. Using a variational approach and critical
point theory in Orlicz-Sobolev spaces with variable exponent, the existence of a pair of nontrivial
constant sign solutions and infinitely many solutions of (1.8), respectively, was shown. Related re-
sults can be found in the work of Shi, Radulescu, Repovs and Zhang [14]. Very recently, Bahrouni,
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Radulescu and Winkert [7] obtained the existence of stationary waves under quite general assump-
tions based on pseudomonotone operators for Baouendi-Grushin type problems with convection
given in the form

Ayt + A, y) ([u] 9V 4 [u]YEV By = £ ((2,),u, Vu)  inQ,
u =20 on 00,

where G: © — (1,00) is a continuous function and Ag(,,,) stands for the Baouendi-Grushin
operator with variable coefficient. We also refer to the related work of Bahrouni, Radulescu and
Repovs [5, 6]. A first parabolic version of anisotropic double phase problems has been developed
by Arora and Shmarev [1] (see also Arora [2] and Arora and Shmarev [3]) who studied the problem

ug — div <|Vu|p(“")72Vu + a(z)|Vu|q(“’)72Vu> =F(z,u) inQr=Qx(0,7T).

Under various conditions on the right-hand side the authors prove the existence of a unique strong
solution with a certain kind of regularity. We also mention some papers dealing with existence
results for p(z)- or (p(x),q(x))-Laplacian problems, see, for example, Cencelj, Ridulescu and
Repovs [9], Gasiriski and Papageorgiou [21], Vetro and Vetro [16] and the references therein.

Finally we mention some existence and regularity results for isotropic double phase problems (or
related operators) with different right-hand sides (single valued or multivalued and/or convection).
We refer to the works of Alves, Garain and Rédulescu [1], Baroni, Colombo and Mingione [],
Colasuonno and Squassina [11], Colombo and Mingione [12, 13], De Filippis and Mingione [15], El
Manouni, Marino and Winkert [18], Farkas, Fiscella and Winkert [19], Farkas and Winkert [20],
Gasiiiski and Papageorgiou [22, 23], Gasifski and Winkert [24, 25, 26], Liu and Dai [32], Marino
and Winkert [33] Papageorgiou, Radulescu and Repovs [36, 37, 38], Papageorgiou, Vetro and Vetro
[39], Zeng, Bai, Gasiniski and Winkert [18], Zeng, Radulescu and Winkert [50] and the references
therein. We also mention the overview article of Radulescu [11] about isotropic and anisotropic
double phase problems and the recent article of Mingione and R&dulescu [35] concerning recent
developments for problems with nonstandard growth and nonuniform ellipticity.

The paper is organized as follows. In Section 2 we will recall some necessary and useful pre-
liminaries such as the Dirichlet eigenvalue problem for the r-Laplacian (1 < r < o0), an exis-
tence theorem for mixed variational inequalities involving multivalued pseudomonotone operators,
variable exponent Lebesgue and Sobolev spaces as well as Musielak-Orlicz spaces L7(2) and its
corresponding Sobolev spaces VVO1 7'L(Q), respectively. Section 3 is devoted to the properties of
the solution set to problem (1.1) which is nonempty, bounded and closed, see Theorem 3.3. Fi-
nally, in Section 4, when the obstacle function is approximated by a suitable sequence, applying a
generalized penalty technique, we are going to introduce a family of perturbed problems without
constraints associated to our problem and prove that the solution set of (1.1) can be approached
by the solution sets of the perturbed problems in the sense of Kuratowski.

2. PRELIMINARIES

In this section we present the main tools which are need in the sequel. To this end, let €2 be a
bounded domain in RY (N > 2) with Lipschitz boundary 9Q and let 1 < s < co. We denote by
L(Q) := L*(;R) and L*(£;RY) the usual Lebesgue spaces endowed with the norm || - ||,, that
is,

lJulls = (/ |ul® da:) C foralluc L* ().
Q
We set
L) :={ue L) : u(zr) >0 for a.a.z € Q}.

Moreover, W1#(Q) stands for the Sobolev space endowed with the norm | - ||1 s, namely,

llull1,s == ||u|ls + [|Vul|s forall u e Wl’S(Q)7
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where |Vulls = || |Vu|||s.
Let s > 1. We recall the well-known eigenvalue problem for the s-Laplacian with homogeneous
Dirichlet boundary condition given by

—Agu = Mu|*"?u in Q,
u=20 on 0f.

It is well-known that the first eigenvalue, denoted by \; ,, is positive, simple and isolated. Moreover,
it can be variationally characterized through

(2.1)

AL 1= in HVUHS
wewLa(@\{0} |lulls

see Lé [30].

We now recall some basic properties of Lebesgue and Sobolev spaces with variable exponent;
see Radulescu and Repovs [12] for more details. We first introduce a subset Cy () of C(€2) defined
by

Cy(Q):={heC@Q) : 1 <h(x) for all z € Q}

and denote by M(Q) the space of all measurable functions u: @ — R. For any r € C,(Q), we
define

r_ = mlLl’r‘(,’L‘) and ry = mai(r(x)
z€Q e

Let p € C(Q). In what follows, we denote by p’ € C(Q) the conjugate variable exponent to p,
namely,
o,
p(z)  p'(x)
Furthermore, we denote by p* the critical Sobolev variable exponent to p given by
N
Np(@) ) < N, _
p () :={ N —p) for all z € Q. (2.2)
+oo if p(x) > N,

=1 forallzeQ.

For r € C (Q) the variable exponent Lebesgue space L"()(Q) is defined by
L'(Q) = {u e M(Q) : / Jul"® dar < +oo} .
Q

It is well-known that L") () equipped with the Luxemburg norm given by

r(z)
l|ul(y := inf {/\ >0 : / (';fl) dz < 1} ,
Q

is a separable and reflexive Banach space. Moreover, the dual space of L") (Q) is L™ ()(Q) and
the following Holder type inequality holds

1 1
[l e < [ n ] el ol iy < 2l ol
Q T_ rT_

for all uw € L")(Q) and for all v € L™ O(Q). If r1, 75 € Oy (Q) are such that i (x) < ry(z) for all
x € €, then we have the continuous embedding

L=20(Q) — L O(Q).
For any r € C1(£2), we consider the modular function p,.): L") (Q) — R given by

pry(u) = / lu|"® dz for all u € L™O)(). (2.3)
Q
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The following proposition states some important relations between the norm of LT(')(Q) and the
modular function p,..) defined in (2.3).

Proposition 2.1. Ifr € C;(Q) and u,u, € L")(Q), then we have the following assertions:
) lul:oy =2 = pry (§) =1 withu#0;

() [Jullr¢y <1 (resp. =1, >1) <= pyy(u) <1 (resp. =1, >1);
(i) fully) <1 = HUH,() < pr(y (u) < lullygys
@) ey > 1 = [l < pry () < ull7f;
V) HunH,() — O — p.(‘)(un) — 05
(Vi) [[unllr()y = 400 = pr(y(un) = +o0.
For r € C'(Q), we denote by W()(Q) the variable exponent Sobolev space given by

Wi (Q) = {u e L'O(Q) : |[Vu| LT(')(Q)} .
We know that W1()(Q) equipped with the norm
| = |lullrcy + IVullpy for allu e WHO(Q)

is a separable and reflexive Banach space, where |[Vul|,.) := ||[Vul|||,(). We also consider the
subspace VV1 ) (Q) of W) (Q) defined by

WOLT(.)(Q) _ WH'HLT(-).

For the space WO1 ’T(')(Q)7 it is well-known that Poincaré’s inequality holds, that is,
lully(y < collVullncy for all w e Wy (@)

for some ¢g > 0. So, in what follows, we endow the space WO1 ’T(')(Q) with the equivalent norm
[ulliry.o = [Vullny  for all we Wy ().

For problem (1.1), in the whole paper, we assume that the weight function p and the variable
exponents p, g satisfy the following conditions:

(H1): p,q € C+(Q) and 0 < pu(-) € L>=(Q2) such that
(i) p(x) < N for all z €
(ii) p(z) < q(z) < p*(x) for all x € Q.
We set Ry := [0, +00). Let us introduce the nonlinear function H: Q x Ry — R, given by
H(z,t) = t*@ 4+ pu(@)t1®  for all (z,t) € Q x Ry

In addition, we denote by ps(-) the modular function defined as

/’H z,u(z))de = /Q <|u\P(m) +u(x)|u|‘I(”’)) dz. (2.4)

In the sequel, L (Q) stands for the corresponding Musielak-Orlicz space related to the function
‘H defined by
LH(Q) = {u € M(Q) : py(u) < +o3},
which is, equipped with the Luxemburg norm

llull = inf{)\ >0: py (/\) < 1} for all u € L™(Q),

a separable and reflexive Banach space. Similarly, we introduce the Musielak-Orlicz Sobolev spaces
WLH(Q) and W, () given by

WhH(Q) = {ue L™(Q) : |Vu| € L*(Q)}
Wy @) = Cr@ ",
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where the norm || - |1, for both spaces is defined by

va= lulla + |Vulln for all uw € WHH(Q) resp. Wy Q).

[[ul

Furthermore, we introduce the seminormed space LZ(')(Q) defined by

L1O(Q) = {u e M(9) : /Qu(x)\UP(’”) dz < —I—oo}

endowed with the seminorm

a(z)
ullg(.),p == inf {)\ >0 : /Q,u(a?) ('1;') dz < 1} for all u € LZ(')(Q)_

From Crespo-Blanco, Gasinski, Harjulehto and Winkert [14, Proposition 2.13] we have the
following proposition.

Proposition 2.2. Let hypotheses (H1) be satisfied and let py; be defined by (2.4).
(i) if u # 0, then ||lully = X if and only if pu (%) = 1;
(ii) ||ullg <1 (resp.> 1, =1) if and only if py(u) <1 (resp.> 1, =1);
(i) o Julla < 1, then [ull$f < pru(u) < Jully ;
(iv) if [l > 1, then [ullly < prw) < Jull
(v) Jlulls = 0 if and only if py (u) — O;
(vi) |lullgg — oo if and only if py(u) — +o00.

Next, we collect some useful embedding results for the spaces L* (), W1 () and W, ().
We refer to Crespo-Blanco, Gasinski, Harjulehto and Winkert [14, Proposition 2.15] for its detailed
proof.

Proposition 2.3. Let hypotheses (H1) be satisfied and let p*(-) be the critical exponent to p(-)
given in (2.2). Then the following embeddings hold:
(i) LH(Q) — L™O(Q), WIH(Q) — WirO(Q), WEH*(Q) < Wi "(Q) are continuous for
all € C(Q) with 1 < r(x) < p(z) for all x € Q;
(i) WhH(Q) — L"O(Q) and Wy (Q) < L™O(Q) are compact for all r € C(Q) with 1 <
r(x) < p*(z) for all x € Q;
(iii) L™(Q) < LL(Q) is continuous;
(iv) LIO(Q) < LM(Q) is continuous.

From Proposition 2.16 (ii) in Crespo-Blanco, Gasiriski, Harjulehto and Winkert [14] we know
that Poincaré’s inequality holds

lullz < e1]|Vull  for all u € WEH(Q)

for some ¢; > 0 independent of u. Therefore, in this paper, we equip I/VO1 H(Q) with the equivalent
norm

lul = [Vullz for all u e Wy ().

Wy

Throughout the paper the symbols 7 — 7 and ”—” stand for the weak and the strong con-
vergences, respectively. For a Banach space (X, | - ||x) we denote its dual space by X* and by
(-, Y x+xx the duality pairing between X* and X.

Now, we consider the nonlinear operator A: W, ) - W, (Q)* defined by

(A(u),v) = /Q (\Vu|p(z)72Vu+u(as)\Vu|Q(z)72Vu) -Voudzx (2.5)

for u,v € Wo*(Q) with (-,-) being the duality pairing between Wy *(€) and its dual space
WO1 H(Q)* The operator has the following properties, see Crespo-Blanco, Gasinski, Harjulehto
and Winkert [14, Theorem 3.3].
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Theorem 2.4. Let hypotheses (H1) be satisfied. Then, the operator A defined by (2.5) is bounded,
continuous, strictly monotone and of type (Sy), that is,

Uy —5 uin Wol’H(Q) and limsup(Auy, u, —u) <0,

n—oo
imply u, — u in Wy (Q).

Next, we recall the following definition about Kuratowski limits, see Papageorgiou and Winkert
[40, Definition 6.7.4].

Definition 2.5. Let (X,7) be a Hausdorff topological space and let {A,} C 2% be a sequence of
sets. We define the T-Kuratowski lower limit of the sets A, by

T-liminf A, ::{xeX cx=7- lim x,, x, € A, for all nzl},

n—o0 n—oo

and the T-Kuratowski upper limit of the sets A,

T—limsupAn::{xeX cx=r71- lim wnk,xnkEAnk,n1<n2<...<nk<...}.

n— oo k—o0

If

A = 7-liminf A, = 7-limsup 4,,
n—0o0 n—00

then A is called T-Kuratowski limit of the sets A,,.

We end this section by recalling the following existence theorem to mixed variational inequalities
which will be applied in Section 3 for examining the nonemptiness of the solution set to problem
(1.1), see, for example, Theorem 3.1 of Khan and Motreanu [29].

Theorem 2.6. Let X be a reflexive Banach space with its dual space X*, C be a nonempty,
bounded, closed and convex subset of X, f € X*. If U: X — R := RU {400} is l.s.c. and convex
with C N D(V) # 0, and multivalued mapping F: X — 2X" satisfies the following conditions:

(i) for each x € X, the set F(x) is nonempty, closed and convex in X*,

(i) for any sequence {(@n,wn)}nen C Gr(F) such that

T, — x and limsup(w,,z, —z) <0,
n— oo

then for each y € X there exists w(y) € F(x) satisfying

n— oo

(i) for each x € X and for each bounded subset B of X with BN D(F) # 0, there exists a
constant ¢(B,x) € R such that for each (z,u) € Gr(F) with z € B it holds

<U7Z - 1‘> > C(B,$),
then there exists © € C' N D(V) such that for some w € F(z) we have
(w—f,z—x)+¥(2)—V(x) >0 forallzeC.

3. PROPERTIES OF THE SOLUTION SET

This section is devoted to explore the properties of the solution set to problem (1.1) which turns
out to be nonempty, bounded and closed. First we impose the following hypotheses on the data
of problem (1.1).

(H2): 6 € C(Q) is such that
p_ <0(z) <p*(z) forallzel,
where p* is the critical Sobolev variable exponent of p given in (2.2).

(H3): The multivalued convection mapping f: Q x R x RY — 2% has nonempty, compact and
convex values such that f(x,0,0) # {0} for a.a.2 € Q and
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(i) the multivalued mapping = — f(z,s,£) has a measurable selection for all (s,§) €
R x RY;
(ii) the multivalued mapping (s,&) — f(z,s,&) is upper semicontinuous for a.a.x € €;
r()
(iii) there exist oy € L™O-1(Q)4 and ay,by > 0 such that

p(@)(r(z)=1)
Il < aglé]™ 7@ +bsls" @7t 4 ay(x)

for all n € f(z,s,¢), for all s € R, for all ¢ € RY and for a.a.z € , where r € C(Q)
is such that

r(x) < p*(z) forall x €
(iv) there exist By € L1 (Q) and ¢y, dy > 0 satisfying
ns < cs P 4 dy|sP- + By(x)
for all n € f(z,s,€), for all s € R, for all £ € RY and for a.a.x €  and the inequality
1—cp—dfAy, >0,
holds, where )\17)11,7 is the first eigenvalue of the Dirichlet eigenvalue problem for the
p—-Laplacian, see (2.1) for s =p_.
(H4): The function ®: @ — [0, 00) is such that ® € M(Q).
Let K be defined by

K = {u e WEM(Q) : ulz) < B(a) for a.a.x € Q} (3.1)

Remark 3.1. Let (H4) be satisfied. Then, the set K is a nonempty, closed and conver subset of
Wy (Q). Indeed, since ®(z) > 0 for a.a.xz € Q, we see that 0 € K, i.e., K # 0. The convezity
of K is obvious. Let {up}tnen C K be a sequence such that u, — u in WOI’H(Q) as n — oo for
some u € Wy (Q). Since the embedding of Wy ™ () to LP~ () is continuous, we have u, — u in
LP-(Q) as n — co. Passing to a subsequence if necessary, we may assume that u,(x) — u(z) as
n — oo for a.a.x € Q. Hence, it follows that ®(x) > lim, oo un(x) = u(x) for a.a.x € Q, thus,
u € K. Therefore, K is closed.

We are now in a position to give the following definition of weak solutions to problem (1.1).

Definition 3.2. A function u € K is called a weak solution of problem (1.1) if there exists a
function n € L™ ) (Q) such that n(z) € f(x,u(z), Vu(x)) for a.a.z € Q and

/ (|Vu\p(””)_2Vu + u(x)|Vu\q<$)_2Vu) V(v —u)dz + / Blul?@ =2y (v — u) dz
Q Q

> [ @)= wds
Q
for all v € K with K defined in (3.1).

The main result in this section is given by the following theorem which states several properties
of the solution set of problem (1.1).

Theorem 3.3. Let hypotheses (H1)—(H4) be satisfied. Then, the solution set S of problem (1.1)
is nonempty, bounded and weakly closed in Wy " (Q) (hence, weakly compact in Wy (52)).

Proof. Existence: From hypotheses (H3)(i), (ii) and the Yankov-von Neumann-Aumann selection
theorem (see Papageorgiou and Winkert [10, Theorem 2.7.25)) it follows that for each u € W' *(Q)
we are able to find a measurable selection n: Q& — R such that n(z) € f(z,u(x), Vu(z)) for



10 S. ZENG, V.D. RADULESCU, AND P. WINKERT

a.a.xz € . On the other hand, employing hypothesis (H3)(iii) and the elementary inequality
(Ja| + |b])* < 257 1(Ja|® + |b|®) for all s > 1 and for all a,b € R, we obtain

[ @ az
Q
. r(z)’
p(z)
< [ (adValf ot sa)  a
Q

< Ml/ (‘VMP(I) + ‘u|r(m) Jraf(l,)r(:r)/) dz (3.2)
Q
= M (pp() (IVul) + priy () + prry ()

< My (max {IVull2e), [9ull?f) } o+ mas {lul 20, Nl g b+ max {llag ), gl )
< 400,

for some M; > 0, where we have used Proposition 2.1(iii), (iv) and the inequality
/ cg/(x) dz < max {|Q[c; ™, [Qey" } for any ¢ > 0.
Q

So, we have 7 € L™ ()(Q). This allows us to introduce the Nemytskij operator NG : WolH(Q) C
LT(')(Q) oL@ corresponding to the multivalued mapping f given by

Ny(u) = {77 e L'V(Q) : n(z) € f(z,u(z), Vu(x)) for a.a.z € Q}

for all u € Wy (Q).

Let ¢: Wy (Q) — X := L"0)(Q) be the embedding operator of Wy "*(Q) into X. It is obvious
from Proposition 2.3(ii) that ¢ is linear and compact. We denote by ¢*: L™ ()(Q) — W *(Q)* the
adjoint operator of + and consider the nonlinear operator B: LC)(Q) — L) (Q) defined by

(Bu,v) = / ﬂ|u|9($)_2uv dz for all u,v € Lg(‘)(Q).
Q

Obviously, B is a bounded, continuous and monotone operator. Under the definitions above, it is
not difficult to see that u € K is a solution of problem (1.1), if there exists € L™ ()(Q) such that
n(z) € f(z,u(z), Vu(z)) for a.a.z € Q and

(Au+ Bu,v —u) 2 (n,v —u)
for all v € K.

Let n € N be large enough such that K,, := K N B(0,n) # (), where B(0,n) is the closed ball
centered at the origin with radius n. First, we consider the following auxiliary problem: Find
up, € K, such that there exists 1, € Ny(u,) and

(Aty, + Bun, v — Up) > (N, v — Up) (3.3)

for all v € K,,. We are going to apply Theorem 2.6 to examine the existence of a solution to
problem (3.3). To this end, let Fu := Au+ Bu — *Ny(u) for all u € WeH(Q). From Kenmochi
[28] we see that if F' is pseudomonotone, then F' satisfies all conditions of Theorem 2.6.

We claim that F': WO1 H(Q) 5 oW @) g pseudomonotone and coercive. The boundedness of
A and B along with (3.2) implies that F' is a bounded mapping. The convexity of f guarantees
that N (u) is also convex for each u € Wy *(Q). This means that F(u) is nonempty, bounded,
closed and convex in WOI’H (Q)* for each u € W, *(Q). Taking Proposition 3.58 of Migérski, Ochal
and Sofonea [34] into account, it is sufficient to prove that F is a generalized pseudomonotone
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operator. Let {uy }nen C W&’H(Q) and {np fnen C W&’H(Q)* be sequences such that
uy, —= uw i WPHQ), n, <5 n in WIHQ)*,

Mn € Fu,) and  limsup(n,,u, —u) <0

n— oo

(3.4)

for some u € W(}H(Q) Our goal is to show that n € F(u) and (n,, u,) — (n,u). For each n € N,
there exists &, € Ny(u,) such that n, = Au,, + Bu,, —t*&, for each n € N. Keeping in mind that
N is a bounded mapping (see (3.2)), we conclude that {&,},en is bounded in L' ()(Q). Passing
to a subsequence if necessary, we may assume that &, — £ in LT/(')(Q) as n — oo for some
¢ e L" (). From (3.4), we have

lim sup{Auy,, uy, — u) + lim inf (Bu,, u, — u) + lilginf@*{n, U — Up)

n—o0 n—0o0
< lim sup(ny,, un, — u)y < 0. (3.5)
n— o0

Note that ¢ is a compact embedding, so it holds

Jim (&, u —up) = T (6o, e(u =) 1) @) rror ) = 0- (3.6)

Because of (x) < p*(x) for all z € Q, we use Proposition 2.3 (ii) in order to find
i (B ) = finy

Inserting (3.6) and (3.7) into (3.5) yields
lim sup(Auy,, un, —u) < 0.

n— o0

(Btin; tin = ) 1o/ () (@) x £60) () = 0- (3.7)

This combined with the fact that A is of type (S..) (see Theorem 2.4) implies u,, — u in Wy 7*(€Q).
Taking the continuity of A and B account into we know that

Au,, - Au and Bu, — Bu.

Employing Mazur’s theorem for the sequence {&,}ncn, we know that there exists a sequence
{Cn}nen of convex combinations of {&, }nen such that

(o= € in L7O(Q).

Since the embeddings of L™ )(£2) into L™ (€2) and of Wy 7 (Q) into W7~ (Q) are both continuous,
we may assume, without any loss of generality, that

Cn(z) = €(x), un(z) > u(z) and Vu,(x) = Vu(z) fora.a.z €. (3.8)

However, the convexity of f ensures that (,(x) € f(x,un(z), Vu,(z)) for a.a.z € Q. Since f is
u.s.c. and has nonempty, bounded, closed values, using Theorem 1.1.4 of Kamenskii, Obukhovskii
and Zecca [27], we conclude that f is closed, that is, f has closed graph. This fact along with the
convergence properties in (3.8) shows that £(z) € f(x,u(z), Vu(z)) for a.a.z € Q. This reveals
that & € Ny(u). Therefore, we have n = Au+ Bu — *§ € F(u) and

lm (1, u,) = nlLr&(Aun + Buy, — tép,un) = (Au+ Bu — 1§, u) = (n,u).

n—oo
Consequently, we have proved that F' is generalized pseudomonotone. Applying Proposition 3.58
of Migdérski, Ochal and Sofonea [34], it turns out that F' is pseudomonotone.
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Next, we have to show that F' is coercive. For any u € Wol’H(Q) and any 7 € Ny(u), by using
Proposition 2.2(iii) and (iv), we have

(Fu, u) :/ (|Vu|p(x)—|—u(a:)|Vu|‘I(m)) dx—l—/ Blul?@ dx—/n(x)udx
Q Q Q

> pn(Vu) — /Q (cf|Vu|p(x) + dylulP- +,8f(13)> dx

> pu(Vu) = cppp(Vu) = deAp, IVl + 1187l

(3.9)
> (V) = oY) =T [ 1P da = 181~ My

> (1=cr—dpATy, ) pu(Vu) = 1Bl — My
> (1= —dpapy ) min {|Vulgf, I Vull; } = 181 - Ms.

Here we have used Young’s inequality to get

/ |u|P~ dz < / |u[P®) dz 4+ M
Q Q

for some M3 > 0 owing to p € C(Q) with p(z) > p_ for all x € Q. This proves that F is coercive.

Therefore, all conditions of Theorem 2.6 are fulfilled with ¥ = 0. Using this theorem, we
conclude that for each n € N problem (3.3) has at least one solution u,, € K,,. Furthermore, we
claim that there exists Ny > 0 such that

[[unoll < No, (3.10)

where uy, is a solution of problem (3.3) with n = Ny. Let us assume that (3.10) is not true. Then
for each n € N and for any solution u,, € K,, of problem (3.3) we have

|un || = n. (3.11)
Since 0 € K, for every n € N, we can take v = 0 into (3.3) in order to get
(Aun + Bug, un) < (1, Un)-

From (3.9), we have
pr(Vun) < [ (e Fu?@) o dglu -+ 5y(a)) da
Q

< crpu(Vun) + dgdy, [Vun |5 + 118l 1)
< cpru(Vun) +dpTh [ Jual do |8y + Mo
Q

< (ep +dpATh ) pu(Veun) + 1185l + M
for some M, > 0. Hence,
(1= cr = dpany ) min {[Vuallff, [Vl }

< (1 —cf— df)\f,zlj,) pr(Vun)
< Byl + My.

Passing to the limit as n — oo in the inequality above and using (3.11) this leads to a contradiction.
Therefore, there exists Ny > 0 such that inequality (3.10) holds. Let un, € Ky, satisfy inequality
(3.10). For any w € K, we take ¢t € (0,1) small enough such that v; = tw + (1 — t)un, € Kn,
which is possible due to (3.10). Inserting v; into (3.3) with n = Ny gives

<AUN0 + BUNO’U} - UN0> > <77Novw - U'No>
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with nn, € Ny(un,). The arbitrariness of w € K and the fact that f(z,0,0) # {0} for a.a.z € Q,
implies that uy, is a nontrivial weak solution of problem (1.1). Consequently, the solution set of
problem (1.1) is nonempty.

Boundedness: Arguing by contradiction, suppose that the solution set S of problem (1.1) is
unbounded. Then, we are able to find a sequence {uy}neny C S such that ||u,| — 0o as n — oc.
Arguing as above, for each n € N, we have 5, € L™ )(Q) with 5, (z) € f(x,un(z), Vu,(z)) for
a.a.z € ) and

/ (|Vun|p('r) —l—u(m)\VunP(‘"”)) dz +/ Blu,|? @ dz — / N (@)U, dz < 0.
Q Q Q
Applying (3.9) yields

02 (1 ¢ —dpary ) mind|Vun %, IVunllf } = 187l = Ms — +oc

for some Ms > 0, which is a contradiction. Therefore, the solution set S of problem (1.1) is
bounded.

Closedness: Let {u,}nen C S be a sequence such that u, —— w in Wol’% (). Then, for each
n € N, there exists 1, € L™ ()(Q) such that n,(z) € f(x, un(z), Vun(2)) for a.a.z € Q and

/ (|Vun|p(w)_2Vun + u(x)|Vun|q($)_2Vun> V(v —uy,)de

¢ (3.13)

—|—/ Blun|” 20, (v — uy) do > / () (v — uy,) da
Q Q

for all v € K. The convexity and the closedness of K ensures that u € K. Recall that the
embedding Wol’H (Q) — L™)(Q) is compact and the sequence {1, }nex is bounded in L™ ()(Q) (see
(3.2)). Therefore, we have
lim [ n,(z)(u—u,)dz =0,
Q

n— oo

where we have used Fatou’s Lemma. Taking v = w in (3.13) and passing to the upper limit as
n — oo for the resulting inequality, we get

lim sup(A(up), un, — uy < limsup(B(up), v — uy) — lim [ ny(2)(u — up)dz < 0.

n—oo n—00 n—oo Jo

Here we have applied the continuity of B and the compactness of the embedding of VVO1 e (Q) into
LPO)(Q). This together with the convergence u, —= u in Wy "*(Q) and the (S, )-property of A
(see Proposition 2.4) deduces that u,, — u in Wy ().

From hypotheses (H3) and the boundedness of {1, }nen, we can show that 7, — nin L™ ()
with some 7 € L™ ()(Q) such that n(z) € f(z,u(x), Vu(z)) for a.a.z € Q. Taking the upper limit
in inequality (3.13) as n — oo yields

/ (|Vu\p(z)_2Vu + ﬂ(x)|Vu\q<m)_2Vu) V(v —wu)dz+ / Blul?@ =2y (v — u) dz
Q Q

> [ @)= wds

Q

for all v € K with n(x) € f(z,u(z), Vu(x)) for a.a.z € Q. Thus, u € S and so, S is weakly closed
in Wy Q). 0

Let us now mention some special cases of our problem. Particularly, if & = 400, then we have
K= W&H(Q) In this situation, we can use the same arguments as in the proof of Theorem 3.3
to get the following result.

Corollary 3.4. Let hypotheses (H1)—(H3) be satisfied. Then, the solution set of the elliptic inclu-
sion (1.3) is nonempty, bounded and weakly closed in Wy *(€2).
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If 8 =0, we have the following existence theorem for problem (1.2).

Corollary 3.5. Let hypotheses (H1), (H3) and (H4) be satisfied. Then, the solution set of the
elliptic inclusion (1.2) is nonempty, bounded and weakly closed in W&H(Q)

If we combine the two cases above, that is, 8 = 0 and ® = 400, we obtain the following result.

Corollary 3.6. Let hypotheses (H1) and (H3) be satisfied. Then, the solution set of the elliptic
inclusion (1.4) is nonempty, bounded and weakly closed in Wy " (Q).

Remark 3.7. Note that if f is a single valued mapping, then Corollary 3.6 coincides with Theorem
4.4 of Crespo-Blanco, Gasiriski, Harjulehto and Winkert [14].

Finally, when p, g and 6 are constants, that is, 1 <p < N, p < g < p* and 1 < 0 < p*, then we
have the following result.

Corollary 3.8. Let hypotheses (H3) and (H4) be satisfied. If, in addition, p,q,0 are constants
and 0 < u(-) € L=() such that 1 <p < N, p < q < p* and 0 < p*, then the solution set of the
elliptic inclusion (1.5) is nonempty, bounded and weakly closed in WOH'L(Q)

4. CONVERGENCE ANALYSIS

The section is devoted to explore a critical convergence result for the variable exponent double
phase obstacle problem given in (1.1). More precisely, when the obstacle function ® is approximated
by a suitable sequence, via applying a generalized penalty technique, we are going to introduce
a family of perturbed problems without constraints associated with problem (1.1). Then, a con-
vergence theorem is established which shows that the solution set S can be approached by the
solution sets of the perturbed problems, denoted by {S,, }nen, in the sense of Kuratowski.

We suppose the following assumptions.

(H5): {en}nen is a sequence such that &, > 0 for each n € N and ¢,, — 0 as n — oc.
(H6): ® € Wy () and {®,,}neny € W™ (Q) are such that ®(z) > 0 for a.a.z € Q and ®,, — &
in W *(Q) as n — oc.

From hypothesis (H6), without any loss of any generality, we can assume that ®,(z) > 0 for
a.a.x €  and for all n € N. For each n € N, let us introduce a family of penalty operators
{P}nen with P, : LPO(Q) — LP'()(Q) associated to the sets {K, }nen defined by

(P, v) ) (@) x LrO) () = / [(U - q’n)Jr]p(x)_l vdz  for all u,v € LPO)(Q), (4.1)
where K, is given by ’
K, = {u e Wo™(Q) : u(z) < ®,(z) for a.a.z € Q}
For each fixed n € N, the following lemma gives some important properties of P,.

Lemma 4.1. If ®, € LP)(Q), then the function P,: LPO)(Q) — LF'O(Q) given in (4.1) is
bounded, demicontinuous and monotone.

Proof. Let u € LPO)(Q) and A = |Ju|,(.). From Young’s inequality and Proposition 2.1 it follows
that

[ Patl|pry = Sup (Pru, U>Lp’(«>(Q)pr<~>(Q)
UELP(')(Q), H’U”p(_)zl
p(z)—-1
= sup / [(u - @n)ﬂ vdz
veELPO(Q), |lv]l,y=1/Q

N

-1 p(z) 1
< sup [m / {(u — <I>n)+} dr + — / |v|P(®) dx}
veLrO (@), ollpy=1 L P— Ja p-Ja
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::¢+_1L[m—¢mﬂmﬂdx+l]

p- p—
Ty —1 N 1
< |22 [l o -]

p- Q p

_ p(z)
< | (e UMG/ [(W) M@ 1 19,7 | dg 4 -
Q A p

p_ -
< My [max {A\P~ AP+ } + 1]

for some Mg, M7 > 0. Therefore, P, is bounded.

Note that D(P,) = LP)(Q). So, from Denkowski, Migérski and Papageorgiou [16, Exercise 1.9
in Sect. 1.9] we know that P, is demicontinuous if and only if P, is hemicontinuous. Employing
the estimates above along with Lebesgue’s Dominated Convergence Theorem, it is not difficult to
see that ¢ +— (P, (u + tv),w) is continuous for all u,v,w € LPC)(Q). Thus, P, is hemicontinuous
and so it is also demicontinuous. Finally, the monotonicity of P, is a direct consequence of the
fact that the function s — (s1)" is increasing for all n > 0. O

Remark 4.2. From the definition of K, and P, we have P,u = 0 for all uw € K,, that is,
K, C ker(P,). It is not difficult to see that if u € LP)(Q) is such that P,u = 0, then we have

(z)—1
{(u—@n)qp =0 foraaxeq.

This implies that u(x)

®,(2) a.a.x € Q. Therefore, u € Wy (Q) with P,u = 0 entails that
u € Ky, i.e., ker(P,) .

<
K,
We introduce the function P: LPO)(Q) — LP' () (Q) given by
Lp@)-1 )
(Pu, 0) o ) (@) x Lr() () = /Q [(u — D) ] vdz for all u,v € LPV(Q).

It is clear that u € K if and only if Pu = 0, that is, P is a penalty operator of K.
For each n € N, we consider the following perturbed problem corresponding to problem (1.1)

— div (|ul" @ "2Vu + (@) Vult 2T + Blul’ )2y

1 in Q,
+—[w—2n" € f(z,u, Vu) (4.2)

u=20 on 0N.

The weak solutions of problem (4.2) are understood in the following sense.

}P(x)—l

Definition 4.3. A function u € W&’H(Q) is called a weak solution of problem (4.2) if there exists
ne L"OQ) such that n(z) € f(z,u(z), Vu(z)) for a.a.z € Q and
/ <|Vu|p(w)_2Vu + ,u(x)|Vu|q(I)_2Vu> -Vovdx
Q

1 p(z)—1
—|—/ Blul?@~2yy dz + 7/ {(u - <I>n)+} vdx
Q €n Ja

:/ n(x)vde
Q
for all v e W (Q).

The main result in this section about the existence and convergence properties of problem (4.2)
is given as follows.

Theorem 4.4. Let hypotheses (H1)-(H3), (H5) and (H6) be satisfied.
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(i) For each n € N, the set S,, of the weak solutions to problem (4.2) is nonempty, bounded
and weakly closed in W)™ ().
(ii) It holds
0 # w-limsup S, = s-limsupS,, C S.
n—oo n—roo

(iii) For each u € s-limsupS,, and any sequence {Un }nen with
n— o0

Up € T(Sp,u) for eachn € N,

there exists a subsequence of {un tnen converging strongly to u in WOI’H(Q), where the set

T (Sn,u) is defined by
T(Sp,u):={u €S8, : |lu—1l <|lu—v| forallveS,}.
Proof. (i) Let n € N be fixed. Taking Lemma 4.1 into account we see that operator P,, defined

in (4.1) is demicontinuous, monotone and bounded. Similar to the proof of Theorem 3.3, consider
B(:) + P, instead of B(-), we can show that the solution set of problem (4.2) is nonempty,

En
bounded and weakly closed.

(ii) We divide the proof of this part into three steps.

Step I: The set |J S, is uniformly bounded in W(}’H(Q).
neN

Let us suppose that |J S, is unbounded in W, *(€2). Then there exists a sequence {u, }nen C
neN

W, Q) (for a subsequence if necessary) with u, € S, for each n € N such that

lun|| = 00 as n — oco.

Thus, for each n € N, we can find 1, € L™ (Q) with 5, (z) € f(2, un(z), Vun(x)) for a.a.z € Q
such that

/ (\Vuﬂp(m)ﬁVun + u(x)|Vun|q(z)*2Vun) -Vodzx
Q

1 (@)-1
+ / B|un\9(’v)_2unv dr + — [(un — <I>n)+r vdx (4.3)
Q

En Q
:/nn(x)vdx
Q

for all v € Wy (2). Choosing v = —u,, in (4.3) we obtain

/ (|Vun\p(z)+u(x)|Vun|q(z)> der/ mun|0(x) de
Q Q

1 p(z)—1
== [ -] Cude s [ o do
En JQ Q

g/nn(x)und;v,
Q

Lp(@)-1

where the last inequality is obtained by using the nonnegativity of s — {(s —d,) s due to

@, (x) >0 for a.a.z € Q. A simple calculation gives (similar to (3.12)) that
(1= —dprip. ) min{ | Vun |5, [ Vunl; )

< (1 —cf — df)‘f,;la,) pn(Vuy)
< [|B¢llr + Ms

for some Mg > 0. Passing to the limit as n — oo for the estimates above, we get a contradiction.

Therefore, the set |J S, is uniformly bounded in W, (). This proves Step 1.
neN
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Let {up fnen C Wol’H (Q) be a sequence such that u,, € S, for each n € N. Based on Step I, we
may assume that

Up — u  asn — 00 (4.4)

for some u € W, Q) and for a subsequence if necessary. Thus, the set w-limsup, . S, is
nonempty.

In the next step, we are going to show that w-limsup,,_,., S, is a subset of S. For any fixed
w € w-limsup,,_, . Sp, passing to a subsequence if necessary, we are able to find a sequence
{tn}nen € Wy H(Q) with u,, € S, for all n € N such that (4.4) is satisfied. Our aim is to show
that u € S.

Step II: u € K, that is, u(z) < ®(z) for a.a.z € Q.

For every n € N, we have n,, € Ny(u,) and

1
— [ (up — ®,) T vdz = (Aup, + Buy,, —v) + / N ()0 dz. (4.5)
En JQ Q

For any § > 0, by applying Young’s inequality, Holder’s inequality and hypothesis (H3)(iii) we
obtain

p(z)(r(x)—1)
/nn(l‘)v dz S/ (af|vun‘p o "'bf|un|r(m)_1 +O‘f(x)) vdz
Q Q

= / (B9 unl + 1 (8) o] @ + olun ") + c(8) 0] ) da (4.6)
Q

1 1
+ |+ ] st ol
for some ¢1(0),c2(d) > 0. Using (4.6) in (4.5), by applying the boundedness of A and B (see
Proposition 2.4), the convergence (4.4) and the continuity of the embedding Wol’H(Q) — L"0)(Q),

there exists a constant Mg > 0, which is independent of n, such that

1 p(z)—-1
= [ 2] vde < Mo(1+ o),
n JQ
or equivalently,
p(z)—1
[l =2 vde < 214 ol (4.7)
Q

for all v € Wol’H(Q). Letting n — oo in (4.7), using the convergence (4.4), the compactness of the
embedding Wy '*(Q) — LPO)(Q) and Lebesgue’s Dominated Convergence Theorem, we have

/Q [(u - ‘I>)+r(r)71 vde = /th_g)lo [(un - <I>n)+} v vdz

(z)—1
= lim {(un — q)n)"_}p vdz
< lim e, Mo(1 + [jv]])
n— o0

=0

for all v € Wol’H(Q). This implies (u(z) — ®(z))" = 0 for a.a.z € Q and so, u(z) < ®(z) for
a.a.z € (). Hence, u € K.
Step III: u € S.
First, we know that
1 L1p@)-1
<Aun7un - U> = <Bunvv - un> + 7/ [(un - (Dn) :| (U - un) dx +/ nn(x)(un - ’U) dz
Q Q

n
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for all v € W, "(Q). The monotonicity of P, implies that

(Atp, uy — v)

< (B, v = Up) + i/ﬂ [(U - q)n)+] v (v —up)de + /Q Nn(2)(Un —v) da

(4.8)

for all v € Wy ().

For any w € K, we claim that there exists a sequence {v, }nen C WOI’H(Q) with v,, € K,, such
that

v, —w  in Wy Q). (4.9)

Let w € K be arbitrary, but fixed. Using hypothesis (H6), we construct a sequence {v, nen C
W () defined by

wP,,

for all n € N.

Unp =

Since w € K and w(z) < ®(z), ®,(z) > 0 and ®(z) > 0 for a.a.z € Q by hypothesis (H6), it

holds

w(z)®n(z) _ P(2)Pn(z)
O(z) O(z)

Thus, v, € K,. Applying Lebesgue’s Dominated Convergence Theorem and hypothesis (H6), we

have

IN

vp(x) = =®,(z) fora.a.xze.

lim p(V (v, — w))

T:FLH;O /Q |V (0 — w)[") dx

b o) e (]
x L) [P

= Jpm oo (-5 v ()| e

=0.
This combined with Proposition 2.2(v) ensures that
v, = w  in Wy ().

Therefore, for each w € K, there exists a sequence {vy, }nen C Wol’H(Q) with v,, € K,, such that
(4.9) holds.

From Step II, we know that u € K. So, we can find a sequence {wy}nen C Wol’H(Q) with
w, € K, for each n € N such that w,, = u in WOH-L(Q) as n — oo. Inserting v = w,, into (4.8)
and using the definition of K,,, we have

(Atp, ty — wy) < (Blg, Wy — Up) + /Q N (@) (U, — wy,) dz (4.10)

with 7, € Nf(uy). Recall that Ny is bounded (see the proof of Theorem 3.3), we know that

{Nn }nen is bounded in L’”/(')(Q). Passing to a relabeled subsequence if necessary, we may assume
that

e —% n in L7O(Q)  for some n € L (Q).
Moreover, we use the boundedness of A and the convergence w,, — u in WO1 H(Q) in order to get

lim sup{Auy,, uy, — wy,) > limsup{Au,,, u, — u) + liminf(Au,, u — wy,)
n—oo n— oo n—oo

= lim sup{Auy,, u, — u). (4.11)

n—oo
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Since the embeddings of Wol’H(Q) into L") (Q) and of Wol’H (Q) into L) (Q) are compact, we get

lim (B, w, — up) + /Q M () (uy, — wy) dz| = 0. (4.12)

n—0o0
Passing to the upper limit as n — oo in (4.10) and using (4.11) as well as (4.12), it follows that

lim sup{Auy,, 4, — wy,) < 0.
n—oo

Since A is of type (S;) (see Theorem 2.4) we conclude that u, — u in Wy 7 () as n — oo.
Thus, we have w-limsup,_,., S, C s-limsup,_,., S, and combined with s-limsup,,_,., S, C
w-limsup,,_, . Sy, it follows that §§ # w-limsup,,_, ., S, = s-limsup,,_, . Sx.

Arguing as in the proof of Theorem 3.3, we can prove that n € Ny(u). For any w € K, there
exists a sequence {v, }nen C Wol’H(Q) such that v, € K,, and v,, - w in WolH(Q) as n — 00.
Taking v = v, in (4.8) and passing to the limit as n — oo yields

(Au,w — u) + (Bu,w —u) = lm [(Auy, v, — upn) + (Bup, vy — uy)]
n— 00

n— oo

> lim [ n(x)(vp — u,) da
Q

= [ n@)w =) da.

Since w € K is arbitrary and n € Ny(u), we infer that v € K is a solution of problem (1.1),
namely, u € S. We conclude that ) # w-limsup,,_, . S, = s-limsup,,_, ., S, C S.

(iii) For any fixed u € s-limsup,,_, ., Sn, the nonemptiness, boundedness and closedness of S,
guarantees that the set T(S,,,u) is well-defined. Let {@, }n,en be any sequence such that

Un € T(Sn,u) for each n € N.
From Step I we know that the sequence {u, },en is bounded. Hence, we may suppose that
U, % in Wy Q) (4.13)

for some u € WO1 7{(Q) Similar to the argument in Step II, we get that u € K. Therefore, for each
n € N, we have

(Atty, Uy, — v)
1

= (B v — i) + /Q [(an - %*]pm_l (v — i) dz + /Q (@) (@, — v) dz

for all v € WOI’H(Q). Arguing exactly as in the proof of Step III, we derive that w is a solution
of problem (1.1). Because of u € s-limsup,,_, ., Sy, passing to a subsequence if necessary, we can
find a sequence {u,}nen such that w, € S, and w, — w in WOH'L(Q) as n — oo. This fact along
with (4.13) gives
@ — ul| <liminf ||, — u| < liminf [ju, —ul| = 0.
n—oo n—oo
Hence, u = u. This finishes the proof of the theorem. O

In the last part of this section we consider some special cases of Theorem 4.4.
If ®,, = ® for each n € N, we have the following result.

Corollary 4.5. Let hypotheses (H1)-(H5) be satisfied.
(i) For each n € N, the set S,, of weak solutions of the problem

—div (|Vu‘p(z)7zvu + M(x)|Vu\q(z)72Vu) + Blul?® =2y,
in Q

+ E [(u — <I>)+r(w)_1 € f(z,u,Vu) ’

En

u=20 on 0N
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is nonempty, bounded and weakly closed in WOH'L(Q)
(ii) It holds

0 # w-limsup S, = s-limsupS,, C S,

n—oo n—oo

where S is the solution set to problem (1.1).

(i) For each u € s-limsup S,, and any sequence {uy nen with
n— 00

Un, € T(Sn,u) for eachn € N,
there exists a subsequence of {un tnen converging strongly to u in WOI’H(Q), where the set
T(Sn,u) is defined by
T(Sn,u):={uesS, : lu—ul <||lu—2v| for allveS,}.
If =0, then Theorem 4.4 reduces the following corollary.

Corollary 4.6. Let hypotheses (H1), (H3), (H5) and (H6) be satisfied.
(i) For eachn € N, the set S, of weak solutions of the problem

—div (|Vu|p(””)*2Vu + ,u(x)|Vu|q("”)*2Vu) + % (u—®,)" € flx,u,Vu) inQ,
u=0 on 09
is nonempty, bounded and weakly closed in Wy ™ (Q)
(ii) It holds
0 # w-limsup S,, = s-limsup S, C S,

n—oo n— o0

where S is the solution set to problem (1.2).

(iii) For each u € s-limsupS,, and any sequence {Uy }nen with
n—oo

Ty € T(Sn,u) for each n € N,

there exists a subsequence of {lin tnen converging strongly to u in WOI’H(Q), where the set

T(Sn,u) is defined by
T (Snyu) = {11 €S, i lu—1il <|u—vl| forallv e Sn}
If p, q, 0 are constants and 0 < u(-) € L>®(2) such that 1 <p < N, p < ¢ < p* and 0 < p*, then
Theorem 4.4 becomes the following.

Corollary 4.7. Let hypotheses (H3), (H5) and (H6) be satisfied.
(i) For eachn € N, the set Sn of weak solutions of the problem

1
—div (|Vul[P7*Vu + pu(2)|Vu|T2Vu) + Blul’?u + - (u—®,)" € flx,u,Vu) inQ,
u=0 on 0€.

is nonempty, bounded and weakly closed in W(}H(Q)
(ii) It holds
0 # w-limsup S,, = s-limsup S, C S,
n—oo n— oo

where S is the solution set to problem (1.5).
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(iif) For each u € s-limsup S, and any sequence {ty }nen with
n—oo

Uy € T(Sn,u) for each n € N,

there exists a subsequence of {ln tnen converging strongly to u in Wol’H(Q), where the set
T(Sn,u) is defined by

T(Sp,u) == {u €8yt |lu—al < |u—v| for allv e Sn}

More particularly, if p, ¢, 8 are constants and 0 < () € L®(Q2) such that 1 < p < N, p < ¢ < p*,
0 < p*, 8 =0 and ¢, = P, then Corollary 4.7 coincides with Theorem 3.4 of Zeng, Bai, Gasinski
and Winkert [47].
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