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Abstract. We establish the existence of a smallest positive solution, a great-
est negative solution, and a nontrivial sign-changing solution when the param-

eter λ is greater than the second eigenvalue of the Steklov eigenvalue problem.

Our approach is based on truncation techniques and comparison principles
for nonlinear elliptic differential inequalities. In particular, we make use of

variational and topological tools, such as critical point theory, Mountain-Pass

Theorem, the Second Deformation Lemma and variational characterizations
of the second eigenvalue of the Steklov eigenvalue problem.

1. Introduction

Let Ω ⊂ RN be a bounded domain with smooth boundary ∂Ω. We consider the
following boundary value problem:

−∆pu = f(x, u)− |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u+ g(x, u) on ∂Ω,

(1.1)

where −∆pu = −div(|∇u|p−2∇u), 1 < p < ∞, is the negative p-Laplacian, ∂u
∂ν

means the outer normal derivative of u with respect to ∂Ω, λ is a real parameter
and the nonlinearities f : Ω× R→ R and g : ∂Ω× R→ R are some Carathéodory
functions. For u ∈W 1,p(Ω) defined on the boundary ∂Ω, we make use of the trace
operator τ : W 1,p(Ω) → Lp(∂Ω) which is well known to be compact. For easy
readability we will drop the notation τ(u) and write for short u.
Neumann boundary value problems in the form (1.1) arise in different areas of pure
and applied mathematics, for example in the theory of quasiregular and quasicon-
formal mappings in Riemannian manifolds with boundary (see [29],[60]), in the
study of optimal constants for the Sobolev trace embedding (see [18],[32],[33],[34])
or at non-Newtonian fluids, flow through porus media, nonlinear elasticity, reaction
diffusion problems, glaciology and so on (see [4],[5],[6],[19]).
Our main goal is to provide the existence of multiple solutions of (1.1) meaning that,
for all values λ > λ2, where λ2 denotes the second eigenvalue of (−∆p,W

1,p(Ω))
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known as the Steklov eigenvalue problem (see, e.g., [36, 49, 56]) given by

−∆pu = −|u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u on ∂Ω,

(1.2)

we show that there exist at least three nontrivial solutions. More precisely, we
obtain two constant-sign solutions and one sign-changing solution of problem (1.1).
This is the main result of the present paper and it is formulated in the Theorems
4.3 and 6.3, respectively. In our consideration, the nonlinearities f and g only need
to be Carathéodory functions which are bounded on bounded sets whereby their
growth does not need to be necessarily polynomial. We only require some growth
properties at zero and infinity given by

lim
s→0

f(x, s)

|s|p−2s
= lim
s→0

g(x, s)

|s|p−2s
= 0, lim

|s|→∞

f(x, s)

|s|p−2s
= lim
|s|→∞

g(x, s)

|s|p−2s
= −∞

and we suppose the existence of δf > 0 such that f(x, s)/|s|p−2s ≥ 0 for all 0 <
|s| ≤ δf .
In the last years many papers about the existence of the Neumann problems similar
to the form (1.1) were developed (see, e.g., [3, 17, 31, 35, 48, 68]). Mart́ınez et al.
[48] proved the existence of weak solutions of the Neumann boundary problem

∆pu = |u|p−2u+ f(x, u) in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u− h(x, u) on ∂Ω,

(1.3)

where the perturbations f : Ω × R → R and h : ∂Ω × R → R are bounded
Carathéodory functions satisfying an integral condition of Landesmann-Lazer type.
Their main result is given in [48, Theorem 1.2] which yields the existence of a
weak solution of (1.3) with λ = λ1, where λ1 is the first eigenvalue of the Steklov
eigenvalue problem (see (1.2)). Moreover, they supposed in their main theorem the
boundedness of f(x, t) and h(x, t) by functions f ∈ Lq(Ω) and h ∈ Lq(∂Ω) for all
(x, t) ∈ Ω×R and (x, t) ∈ ∂Ω×R, respectively. A similar work regarding (1.1) can
be found in [32]. There the authors get as well three nontrivial solutions for the
nonlinear boundary value problem

−∆pu+ |u|p−2u = f(x, u) in Ω,

|∇u|p−2 ∂u

∂ν
= g(x, u) on ∂Ω,

where they assume among other things that the Carathéodory functions f and g
are also continuously differentiable in the second argument. The proof is based on
the Lusternik-Schnirelmann method for non-compact manifolds. If the Neumann
boundary values are defined by a function f : R→ R, meaning the problem

∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= f(u) on ∂Ω,

we refer to the results of J. Fernández Bonder and J.D. Rossi in [35]. They con-
sider various cases where f has subcritical growth, critical growth and supercritical
growth, respectively. In the first two cases the existence of infinitely many solutions
under some conditions on the exponents of the growth was demonstrated.
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Another result obtaining multiple solutions with nonlinear boundary conditions can
be found in the paper of J.H. Zhao and P.-H. Zhao [68]. They study the equation

−∆pu+ λ(x)|u|p−2u = f(x, u) in Ω,

|∇u|p−2 ∂u

∂ν
= η|u|p−2u on ∂Ω,

where λ(x) ∈ L∞(Ω) satisfying ess infx∈Ω λ(x) > 0 and η is a real parameter.
They prove the existence of infinitely many solutions when f is superlinear and
subcritical with respect to u by using the fountain theorem and the dual fountain
theorem, respectively. In case that f has the form f(x, u) = |u|p∗−2u+ |u|r−2u they
get at least one nontrivial solution when p < r < p∗ and infinitely many solutions
when 1 < r < p by using the Mountain-Pass Theorem and the ”concentration-
compactness principle”, respectively. A similar result of the same authors is also
developed in [67]. The existence of multiple solutions and sign-changing solutions
for zero Neumann boundary values have been proven in [44, 54, 55, 65] and [68], re-
spectively. Analogous results for the Dirichlet problem have been recently obtained
in [10, 11, 12, 13, 27, 50, 52]. An interesting problem about the existence of multiple
solutions, for both the Dirichlet problem and the Neumann problem, can be found
in [15]. The authors study the existence of multiple solutions to the abstract equa-
tion Jpu = Nfu, where Jp is the duality mapping on a real reflexive and smooth
Banach space X, corresponding to the gauge function ϕ(t) = tp−1, 1 < p <∞, and

Nf : Lq(Ω) → Lq
′
(Ω), 1/q + 1/q′ = 1, is the Nemytskij operator generated by a

function f ∈ C(Ω× R,R).
The novelty of our paper is the fact that we do not need differentiability, poly-
nomial growth or some integral conditions on the mappings f and g. In order
to prove our main results we make use of variational and topological tools, e.g.
critical point theory, Mountain-Pass Theorem, the Second Deformation Lemma
and variational characterizations of the second eigenvalue of the Steklov eigenvalue
problem. This paper is motivated by recent publications of S. Carl and D. Motre-
anu in [12] and [11], respectively. In [12] the authors consider the Dirichlet problem
−∆pu = λ|u|p−2u + g(x, u) in Ω, u = 0 on ∂Ω, and show the existence of at
least three nontrivial solutions for all values λ > λ2, where λ2 denotes the sec-
ond eigenvalue of (−∆p,W

1,p
0 (Ω)). Therein, the main theorem about the existence

of a sign-changing solution is also based on the Mountain-Pass Theorem and the
Second Deformation Lemma. These results have been extended by themselves to
the equation −∆pu = a(u+)p−1 − b(u−)p−1 + g(x, u) in Ω, u = 0 on ∂Ω, where
u+ = max{u, 0} and u− = max{−u, 0} denote the positive and negative part of u,
respectively. Carl et al. have shown that at least three nontrivial solutions exist
provided the value (a, b) is above the first nontrivial curve C of the Fŭcik spectrum
constructed by Cuesta et al. in [16].
The rest of the paper is organized as follows. In Section 2 and Section 3, we recall
some preliminaries and formulate our notation and hypotheses, respectively. In
Section 4, we will show the existence of specific sub- and supersolutions of prob-
lem (1.1), then we will prove that every solution between these pairs of sub- and
supersolutions belongs to int(C1(Ω)+) and finally we will provide the existence of
extremal constant-sign solutions. A variational characterization of these extremal
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solutions is given in Section 5 and our main result about the existence of a nontriv-
ial sign-changing solution is proven in the last section by using the Mountain-Pass
Theorem.

2. Preliminaries

Let us consider some nonlinear boundary value problems with Neumann condi-
tions involving the p-Laplacian. In [47] the authors study the Steklov problem

−∆pu = −|u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u on ∂Ω.

(2.1)

The trace operator τ : W 1,p(Ω) → Lp(∂Ω) is linear bounded (and even compact),
thus a best constant λ1 exists such that

λ
1/p
1 ‖u‖Lp(∂Ω) ≤ ‖u‖W 1,p(Ω).

The best Sobolev trace constant λ1 can be characterized as

λ1 = inf
u∈W 1,p(Ω)

{∫
Ω

[|∇u|p + |u|p]dx such that

∫
∂Ω

|u|pdσ = 1

}
,

and λ1 is the first eigenvalue of (2.1). Mart́ınez et al. showed that the first eigen-
value λ1 > 0 is isolated and simple. The corresponding eigenfunction ϕ1 is strictly
positive in Ω and belongs to L∞(Ω) (cf. [43, Lemma 5.6 and Theorem 4.3]). Ap-
plying the results of Lieberman in [45, Theorem 2] implies ϕ1 ∈ C1,α(Ω). This fact
along with ϕ1(x) > 0 in Ω yields ϕ1 ∈ int(C1(Ω)+), where int(C1(Ω)+) denotes
the interior of the positive cone C1(Ω)+ = {u ∈ C1(Ω) : u(x) ≥ 0,∀x ∈ Ω} in the
Banach space C1(Ω), given by

int(C1(Ω)+) =
{
u ∈ C1(Ω) : u(x) > 0,∀x ∈ Ω

}
.

The study of Neumann eigenvalue problems with or without weights are also con-
sidered in [17, 28, 41, 43, 61]. Analogous to the results for the Dirichlet eigenvalue
problem (see [16]), there also exists a variational characterization of the second
eigenvalue of (2.1) meaning that λ2 can be represented as follows:

λ2 = inf
g∈Γ

max
u∈g([−1,1])

∫
Ω

(
|∇u|p + |u|p

)
dx, (2.2)

where

Γ = {g ∈ C([−1, 1], S) | g(−1) = −ϕ1, g(1) = ϕ1},
and

S =

{
u ∈W 1,p(Ω) :

∫
∂Ω

|u|pdσ = 1

}
. (2.3)

The proof of this result can be found in [49]. Now we consider solutions of the
Neumann boundary value problem

−∆pu = −ς|u|p−2u+ 1 in Ω,

|∇u|p−2 ∂u

∂ν
= 1 on ∂Ω,

(2.4)

where ς > 1 is a constant. Let B : Lp(Ω) → Lq(Ω) be the Nemytskij operator
defined by Bu(x) := ς|u(x)|p−2u(x). It is well known that B : Lp(Ω) → Lq(Ω) is
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bounded and continuous. We set B̂ := i∗ ◦ B ◦ i : W 1,p(Ω) → (W 1,p(Ω))∗, where
i∗ : Lq(Ω) → (W 1,p(Ω))∗ is the adjoint operator of the compact embedding i :

W 1,p(Ω)→ Lp(Ω). The operator B̂ is bounded, continuous, completely continuous
and thus, also pseudomonotone. We denote by τ : W 1,p(Ω) → Lp(∂Ω) the trace
operator and with τ∗ : Lq(∂Ω) → (W 1,p(Ω))∗ its adjoint operator. The weak
formulation of (2.4) is given by

u ∈W 1,p(Ω) : 〈−∆pu+ B̂u− i∗(1)− τ∗(1), ϕ〉 = 0, ∀ϕ ∈W 1,p(Ω),

meaning∫
Ω

|∇u|p−2∇u∇ϕdx+ ς

∫
Ω

|u|p−2uϕdx−
∫

Ω

ϕdx−
∫
∂Ω

ϕdσ = 0, ∀ϕ ∈W 1,p(Ω),

where 〈·, ·〉 stands for the duality pairing between W 1,p(Ω) and its dual space
(W 1,p(Ω))∗. The negative p-Laplacian −∆p is pseudomonotone and therefore, the

sum −∆p + B̂ is pseudomonotone. The coercivity of −∆p + B̂ follows directly and
thus, using classical existence results, implies the existence of a solution of problem
(2.4). Let e1, e2 be solutions of (2.4) satisfying e1 6= e2. Subtracting the corre-
sponding weak formulation of (2.4) with respect to e1, e2 and taking ϕ = e1 − e2

yields ∫
Ω

[|∇e1|p−2∇e1 − |∇e2|p−2∇e2]∇(e1 − e2)dx

+ ς

∫
Ω

[|e1|p−2e1 − |e2|p−2e2](e1 − e2)dx = 0.

As the left-hand side is strictly positive for e1 6= e2, we obtain a contradiction and
thus, e1 = e2. Let e be the unique solution of (2.4) in the weak sense. Choosing
the test function ϕ = e− = max{−e, 0} ∈W 1,p(Ω) results in

−
∫
{x∈Ω:e(x)<0}

|∇e|pdx− ς
∫
{x∈Ω:e(x)<0}

|e|pdx =

∫
Ω

e−dx+

∫
∂Ω

e−dσ ≥ 0,

which proves that e is nonnegative. Notice that e is not identically zero. Applying
the Moser Iteration (cf. [26],[43] or see the proof of Proposition 5.2) yields e ∈
L∞(Ω) and thus, the regularity results of Lieberman (see [45, Theorem 2]) ensure
e ∈ C1,α(Ω). From (2.4) we conclude

∆pe = ς|e|p−2e− 1 ≤ ςep−1 a.e. in Ω.

Setting β(s) = ςsp−1 for s > 0 allows us to apply Vázguez’s strong maximum
principle (see [64]) which is possible since

∫
0+

1
(sβ(s))1/p

ds = +∞. This shows that

e(x) > 0 for a.a. x ∈ Ω. If there exists x0 ∈ ∂Ω such that e(x0) = 0, we obtain
by applying again Vázguez’s strong maximum principle that ∂e

∂ν (x0) < 0, which is

a contradiction since |∇e|p−2 ∂e
∂ν (x0) = 1. Hence, e(x) > 0 in Ω and therefore, we

get e ∈ int(C1(Ω)+).

3. Notations and hypotheses

We impose the following conditions on the nonlinearities f and g in problem
(1.1). The mappings f : Ω × R → R and g : ∂Ω × R → R are Carathéodory
functions (that is, measurable in the first argument and continuous in the second
argument) such that
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(f1) lim
s→0

f(x, s)

|s|p−2s
= 0, uniformly with respect to a.a. x ∈ Ω.

(f2) lim
|s|→∞

f(x, s)

|s|p−2s
= −∞, uniformly with respect to a.a. x ∈ Ω.

(f3) f is bounded on bounded sets.

(f4) There exists δf > 0 such that
f(x, s)

|s|p−2s
≥ 0 for all 0 < |s| ≤ δf and for a.a.

x ∈ Ω.

(g1) lim
s→0

g(x, s)

|s|p−2s
= 0, uniformly with respect to a.a. x ∈ ∂Ω.

(g2) lim
|s|→∞

g(x, s)

|s|p−2s
= −∞, uniformly with respect to a.a. x ∈ ∂Ω.

(g3) g is bounded on bounded sets.
(g4) g is locally Hölder continuous in ∂Ω× R, that is,

|g(x1, s1)− g(x2, s2)| ≤ L
[
|x1 − x2|α + |s1 − s2|α

]
,

for all pairs (x1, s1), (x2, s2) in ∂Ω × [−M0,M0], where M0 is a positive
constant and α ∈ (0, 1].

Note that the function s 7→ |s|p−2s is locally Hölder continuous in R. This
implies in view of (g4) that the mapping Φ : ∂Ω × R → R defined by Φ(x, s) :=
λ|s|p−2s + g(x, s) is locally Hölder continuous in ∂Ω × R. Recall that we write
g(x, u(x)) := g(x, τ(u(x))) for u ∈ W 1,p(Ω), where τ : W 1,p(Ω) → Lp(∂Ω) stands
for the trace operator. With a view to the conditions (f1) and (g1), we see at once
that f(x, 0) = g(x, 0) = 0 and thus, u = 0 is a trivial solution of problem (1.1).

Corollary 3.1. Let (f1),(f3) and (g1),(g3) be satisfied. Then, for each a > 0, there
exist constants b1, b2 > 0 such that

|f(x, s)| ≤ b1|s|p−1, ∀s : 0 ≤ |s| ≤ a,
|g(x, s)| ≤ b2|s|p−1, ∀s : 0 ≤ |s| ≤ a.

(3.1)

Proof. The assumption (f1) implies that for each c1 > 0 there exists δ > 0 such
that

|f(x, s)| ≤ c1|s|p−1, ∀s : 0 ≤ |s| ≤ δ. (3.2)

Due to condition (f3), there exists a constant c2 > 0 such that, for a given a > 0,

|f(x, s)| ≤ c2, ∀s : 0 ≤ |s| ≤ a. (3.3)

If δ > a, then inequality (3.2), in particular, implies

|f(x, s)| ≤ b1|s|p−1, ∀s : 0 ≤ |s| ≤ a,

where b1 := c1. Let us assume δ < a. From (3.3) we obtain

|f(x, s)| ≤ c2
δp−1

|s|p−1, ∀s : δ ≤ |s| ≤ a, (3.4)

and thus, combining (3.2) and (3.4) yields

|f(x, s)| ≤ (c1 +
c2
δp−1

)|s|p−1, ∀s : 0 ≤ |s| ≤ a,

where setting b1 := c1 + c2
δp−1 proves (3.1). In the same way, one shows the assertion

for g. �
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Example 3.2. Consider the functions f : Ω×R→ R and g : ∂Ω×R→ R defined
by

f(x, s) =


|s|p−2s(1 + (s+ 1)e−s) if s ≤ −1

sgn(s)
|s|p

2
(|(s− 1) cos(s+ 1)|+ s+ 1) if − 1 ≤ s ≤ 1

sp−1e1−s − |x|(s− 1)sp−1es if s ≥ 1,

and

g(x, s) =


|s|p−2s(s+ 1 + es+1) if s ≤ −1

|s|p−1se(s2+1)
√
|x| if − 1 ≤ s ≤ 1

sp−1(cos(1− s) + (1− s)es) if s ≥ 1.

One verifies that all assumptions (f1)–(f4) and (g1)–(g4) are satisfied.

The definition of a solution of problem (1.1) in the weak sense is defined as
follows.

Definition 3.3. A function u ∈W 1,p(Ω) is called a solution of (1.1) if the following
holds:∫

Ω

|∇u|p−2∇u∇ϕdx

=

∫
Ω

(f(x, u)− |u|p−2u)ϕdx+

∫
∂Ω

(λ|u|p−2u+ g(x, u))ϕdσ, ∀ϕ ∈W 1,p(Ω).

Next, we recall the notations of sub- and supersolutions of problem (1.1).

Definition 3.4. A function u ∈ W 1,p(Ω) is called a subsolution of (1.1) if the
following holds:∫

Ω

|∇u|p−2∇u∇ϕdx

≤
∫

Ω

(f(x, u)− |u|p−2u)ϕdx+

∫
∂Ω

(λ|u|p−2u+ g(x, u))ϕdσ, ∀ϕ ∈W 1,p(Ω)+.

Definition 3.5. A function u ∈ W 1,p(Ω) is called a supersolution of (1.1) if the
following holds:∫

Ω

|∇u|p−2∇u∇ϕdx

≥
∫

Ω

(f(x, u)− |u|p−2u)ϕdx+

∫
∂Ω

(λ|u|p−2u+ g(x, u))ϕdσ, ∀ϕ ∈W 1,p(Ω)+.

Here, W 1,p(Ω)+ := {ϕ ∈ W 1,p(Ω) : ϕ ≥ 0} stands for all nonnegative functions
of W 1,p(Ω). Recall that if u ∈ W 1,p(Ω) satisfies v ≤ u ≤ w, where v, w are some
functions in W 1,p(Ω), then τ(v) ≤ τ(u) ≤ τ(w), where τ : W 1,p(Ω) → Lp(∂Ω)
denotes the trace operator.

4. Extremal constant-sign solutions

We start by generating two ordered pairs of sub- and supersolutions of prob-
lem (1.1) having constant signs. Here and in the following we denote by ϕ1 ∈
int(C1(Ω)+) the first eigenfunction of the Steklov eigenvalue problem (2.1) corre-
sponding to the first eigenvalue λ1.
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Lemma 4.1. Assume (f1)–(f4), (g1)–(g4) and λ > λ1 and let e be the unique
solution of problem (2.4). Then there exists a constant ϑ > 0 such that ϑe and −ϑe
are supersolution and subsolution, respectively, of problem (1.1). In addition, εϕ1

is a subsolution and −εϕ1 is a supersolution of problem (1.1) provided the number
ε > 0 is sufficiently small.

Proof. Let u = εϕ1, where ε is a positive constant specified later. In view of the
Steklov eigenvalue problem (2.1) we obtain∫

Ω

|∇(εϕ1)|p−2∇(εϕ1)∇ϕdx

= −
∫

Ω

(εϕ1)p−1ϕdx+

∫
∂Ω

λ1(εϕ1)p−1ϕdσ, ∀ϕ ∈W 1,p(Ω).

We are going to prove that Definition 3.4 is satisfied for u = εϕ1 meaning that the
inequality∫

Ω

|∇(εϕ1)|p−2∇(εϕ1)∇ϕdx

≤
∫

Ω

(f(x, εϕ1)− (εϕ1)p−1)ϕdx+

∫
∂Ω

(λ(εϕ1)p−1 + g(x, εϕ1))ϕdσ

(4.1)

is valid for all ϕ ∈ W 1,p(Ω)+. Therefore, (4.1) is fulfilled provided the following
holds true:∫

Ω

−f(x, εϕ1)ϕdx+

∫
∂Ω

((λ1 − λ)(εϕ1)p−1 − g(x, εϕ1))ϕdσ ≤ 0, ∀ϕ ∈W 1,p(Ω)+.

Condition (f4) implies for ε ∈ (0, δf/‖ϕ1‖∞]∫
Ω

−f(x, εϕ1)ϕdx =

∫
Ω

−f(x, εϕ1)

(εϕ1)p−1
(εϕ1)p−1ϕdx ≤ 0,

where ‖ · ‖∞ stands for the supremum norm. Due to assumption (g1) there exists
a number δλ > 0 such that

|g(x, s)|
|s|p−1

< λ− λ1 for a.a. x ∈ ∂Ω and all 0 < |s| ≤ δλ.

If ε ∈
(

0, δλ
‖ϕ1‖∞

]
, we get∫

∂Ω

((λ1 − λ)(εϕ1)p−1 − g(x, εϕ1))ϕdσ ≤
∫
∂Ω

(
λ1 − λ+

|g(x, εϕ)|
(εϕ1)p−1

)
(εϕ1)p−1ϕdσ

<

∫
∂Ω

(λ1 − λ+ λ− λ1)(εϕ1)p−1ϕdσ

= 0.

Choosing 0 < ε ≤ min{δf/‖ϕ1‖∞, δλ/‖ϕ1‖∞} proves that u = εϕ1 is a positive
subsolution. In a similar way one proves that u = −εϕ1 is a negative supersolution.
Let u = ϑe, where ϑ is a positive constant specified later. From the auxiliary
problem (2.4) we conclude∫

Ω

|∇(ϑe)|p−2∇(ϑe)∇ϕdx

= −ς
∫

Ω

(ϑe)p−1ϕdx+

∫
Ω

ϑp−1ϕdx+

∫
∂Ω

ϑp−1ϕdσ, ∀ϕ ∈W 1,p(Ω).

(4.2)
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In order to fulfill the assertion of the lemma, we have to show the validity of
Definition 3.5 for u = ϑe, meaning that, for all ϕ ∈W 1,p(Ω)+,∫

Ω

|∇(ϑe)|p−2∇(ϑe)∇ϕdx

≥
∫

Ω

(f(x, ϑe)− (ϑe)p−1)ϕdx+

∫
∂Ω

(λ(ϑe)p−1 + g(x, ϑe))ϕdσ.

(4.3)

With a view to (4.2) we see at once that inequality (4.3) is satisfied if the following
holds: ∫

Ω

(ϑp−1 − c̃(ϑe)p−1 − f(x, ϑe))ϕdx

+

∫
∂Ω

(ϑp−1 − λ(ϑe)p−1 − g(x, ϑe))ϕdσ ≥ 0,

(4.4)

where c̃ = ς − 1 with c̃ > 0. By (f2) there exists sς > 0 such that

f(x, s)

sp−1
< −c̃, for a.a. x ∈ Ω and all s > sς ,

and by (f3) we have

| − f(x, s)− c̃sp−1| ≤ |f(x, s)|+ c̃sp−1 ≤ cς , for a.a. x ∈ Ω and all s ∈ [0, sς ].

Thus, we get

f(x, s) ≤ −c̃sp−1 + cς , for a.a. x ∈ Ω and all s ≥ 0. (4.5)

Applying (4.5) to the first integral in (4.4) yields∫
Ω

(ϑp−1 − c̃(ϑe)p−1 − f(x, ϑe))ϕdx

≥
∫

Ω

(ϑp−1 − c̃(ϑe)p−1 + c̃(ϑe)p−1 − cς)ϕdx

=

∫
Ω

(ϑp−1 − cς)ϕdx,

which shows that for ϑ ≥ c
1
p−1
ς the integral is nonnegative. Due to hypothesis (g2)

there is sλ > 0 such that

g(x, s)

sp−1
< −λ, for a.a. x ∈ ∂Ω and all s > sλ.

Assumption (g3) ensures the existence of a constant cλ > 0 such that

| − g(x, s)− λsp−1| ≤ |g(x, s)|+ λsp−1 ≤ cλ, for a.a. x ∈ ∂Ω and all s ∈ [0, sλ].

We obtain

g(x, s) ≤ −λsp−1 + cλ, for a.a. x ∈ ∂Ω and all s ≥ 0. (4.6)

Using (4.6) to the second integral in (4.4) provides∫
∂Ω

(ϑp−1 − λ(ϑe)p−1 − g(x, ϑe))ϕdσ

≥
∫
∂Ω

(ϑp−1 − λ(ϑe)p−1 + λ(ϑe)p−1 − cλ)ϕdσ

≥
∫
∂Ω

(ϑp−1 − cλ)ϕdσ.
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Choosing ϑ := max

{
c

1
p−1
ς , c

1
p−1

λ

}
proves that both integrals in (4.4) are nonnega-

tive, and thus, u = ϑe is a positive supersolution of problem (1.1). In order to prove
that u = −ϑe is a negative subsolution we make use of the following estimates:

f(x, s) ≥ −c̃sp−1 − cς , for a.a. x ∈ Ω and all s ≤ 0,

g(x, s) ≥ −λsp−1 − cλ, for a.a. x ∈ ∂Ω and all s ≤ 0.
(4.7)

which can be derived as stated above. With the aid of (4.7) one verifies that
u = −ϑe is a negative subsolution of problem (1.1). �

According to Lemma 4.1 we obtain a positive pair [εϕ1, ϑe] and a negative pair
[−ϑe,−εϕ1] of sub- and supersolutions of problem (1.1) assuming ε > 0 is suffi-
ciently small.
The next lemma will prove the C1,α regularity of solutions of problem (1.1) lying
in the order interval [0, ϑe] and [−ϑe, 0], respectively. Note that u = u = 0 is both
a subsolution and a supersolution due to the assumptions (f1) and (g1). In the
following proof we make use of the regularity results of Lieberman (see [45]) and
Vázguez in [64]. To obtain regularity results, in particular for elliptic Neumann
problems, we refer also to the papers of Tolksdorf in [60] and DiBenedetto in [20].

Lemma 4.2. Let the conditions (f1)–(f4) and (g1)–(g4) be satisfied and let λ > λ1.
If u ∈ [0, ϑe] (respectively, u ∈ [−ϑe, 0]) is a solution of problem (1.1) satisfying
u 6≡ 0 in Ω, then u ∈ int(C1(Ω)+) (respectively, u ∈ − int(C1(Ω)+)).

Proof. Let u be a solution of (1.1) such that 0 ≤ u ≤ ϑe. Then it follows that
u ∈ L∞(Ω) and thus, u ∈ C1,α(Ω) by Lieberman [45, Theorem 2] (see also Fan
[30]). The conditions (f1),(f3),(g1) and (g3) (cf. Corollary 3.1) imply the existence
of constants cf , cg > 0 such that

|f(x, s)| ≤ cfsp−1 for a.a. x ∈ Ω and all 0 ≤ s ≤ ϑ‖e‖∞,
|g(x, s)| ≤ cgsp−1 for a.a. x ∈ ∂Ω and all 0 ≤ s ≤ ϑ‖e‖∞.

(4.8)

Applying the first line in (4.8) along with (1.1) yields ∆pu ≤ c̃up−1 almost every-
where in Ω, where c̃ is a positive constant. This allows us to apply Vázguez’s strong
maximum principle (see [64, Theorem 5]). We take β(s) = c̃sp−1 for all s > 0 which
is possible because

∫
0+

1

(sβ(s))
1
p
ds = +∞. We get u > 0 in Ω. Let us assume there

exists x0 ∈ ∂Ω such that u(x0) = 0. By applying again the maximum principle we
obtain ∂u

∂ν (x0) < 0. But taking into account g(x0, u(x0)) = g(x0, 0) = 0 along with

the Neumann condition in (1.1) yields ∂u
∂ν (x0) = 0, which is a contradiction. Thus,

u > 0 in Ω which proves u ∈ int(C1(Ω)+). The proof in case u ∈ [−ϑe, 0] can be
shown in an analogous manner. �

The result of the existence of extremal constant-sign solutions is read as follows.

Theorem 4.3. Assume (f1)–(f4) and (g1)–(g4). Then for every λ > λ1 there
exists a smallest positive solution u+ = u+(λ) ∈ int(C1(Ω)+) in the order interval
[0, ϑe] and a greatest negative solution u− = u−(λ) ∈ − int(C1(Ω)+) in the order
interval [−ϑe, 0] with ϑ > 0 stated in Lemma 4.1.

Proof. We fix λ > λ1. On the basis of Lemma 4.1, there exists an ordered pair
of a positive supersolution u = ϑe ∈ int(C1(Ω)+) and a positive subsolution u =
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εϕ1 ∈ int(C1(Ω)+) of problem (1.1) assuming ε > 0 is sufficiently small such that
εϕ1 ≤ ϑe. The method of sub- and supersolution (see [9]) with respect to the order
interval [εϕ1, ϑe] implies the existence of a smallest positive solution uε = uε(λ)
of problem (1.1) satisfying εϕ1 ≤ uε ≤ ϑe which ensures uε ∈ int(C1(Ω)+) (see
Lemma 4.2). Hence, for every positive integer n sufficiently large there exists a
smallest solution un ∈ int(C1(Ω)+) of problem (1.1) in the order interval [ 1

nϕ1, ϑe],
and therefore, we have

un ↓ u+ for a.a. x ∈ Ω, (4.9)

where u+ : Ω → R is some function satisfying 0 ≤ u+ ≤ ϑe. We are going
to show that u+ is a solution of problem (1.1). Since un belongs to the order
interval [ 1

nϕ1, ϑe], it follows that un is bounded in Lp(Ω). Moreover, we obtain the
boundedness of un in Lp(∂Ω) because τ(un) ≤ τ(ϑe). As un solves (1.1) in the
weak sense, one has by setting ϕ = un in Definition 3.3

‖∇un‖pLp(Ω) ≤
∫

Ω

|f(x, un)|undx+ ‖un‖pLp(Ω) + λ‖un‖pLp(∂Ω) +

∫
Ω

|g(x, un)|undσ

≤ ‖un‖pLp(Ω) + a1‖un‖Lp(Ω) + λ‖un‖pLp(∂Ω) + a2‖un‖Lp(∂Ω)

≤ a3,

where ai, i = 1, . . . , 3 are some positive constants independent of n. Thus, un is
bounded in W 1,p(Ω). The reflexivity of W 1,p(Ω), 1 < p < ∞, ensures the exis-
tence of a weakly convergent subsequence of un. Due to the compact embedding
W 1,p(Ω) ↪→ Lp(Ω), the monotony of un and the compactness of the trace operator
τ , we get for the entire sequence un

un ⇀ u+ in W 1,p(Ω),

un → u+ in Lp(Ω) and for a.a. x ∈ Ω,

un → u+ in Lp(∂Ω) and for a.a. x ∈ ∂Ω.

(4.10)

Due to the fact that un solves problem (1.1), one has for all ϕ ∈W 1,p(Ω)∫
Ω

|∇un|p−2∇un∇ϕdx

=

∫
Ω

(f(x, un)− up−1
n )ϕdx+

∫
∂Ω

(λup−1
n + g(x, un))ϕdσ.

(4.11)

The choice ϕ = un − u+ ∈W 1,p(Ω) is admissible in equation (4.11) which implies∫
Ω

|∇un|p−2∇un∇(un − u+)dx

=

∫
Ω

(f(x, un)− up−1
n )(un − u+)dx+

∫
∂Ω

(λup−1
n + g(x, un))(un − u+)dσ.

Applying (4.10) and the conditions (f3), (g3) result in

lim sup
n→∞

∫
Ω

|∇un|p−2∇un∇(un − u+)dx ≤ 0,

which ensures by the (S+)-property of −∆p on W 1,p(Ω) combined with (4.10)

un → u+ in W 1,p(Ω). (4.12)

Taking into account the uniform boundedness of the sequence (un) in combination
with the strong convergence in (4.12) and the assumptions (f3) and (g3) allows us
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to pass to the limit in (4.11) which proves that u+ is a solution of problem (1.1).
As u+ is a solution of (1.1) belonging to [0, ϑe], we can use Lemma 4.2 provided
u+ 6≡ 0. We argue by contradiction and assume that u+ ≡ 0 which in view of (4.9)
results in

un(x) ↓ 0 for all x ∈ Ω. (4.13)

We set

ũn =
un

‖un‖W 1,p(Ω)
for all n.

Obviously, the sequence (ũn) is bounded in W 1,p(Ω) which implies the existence of
a weakly convergent subsequence of ũn, not relabeled, such that

ũn ⇀ ũ in W 1,p(Ω),

ũn → ũ in Lp(Ω) and for a.a. x ∈ Ω,

ũn → ũ in Lp(∂Ω) and for a.a. x ∈ ∂Ω,

(4.14)

where ũ : Ω→ R is some function belonging to W 1,p(Ω). Moreover, we may suppose
there are functions z1 ∈ Lp(Ω)+, z2 ∈ Lp(∂Ω)+ such that

|ũn(x)| ≤ z1(x) for a.a. all x ∈ Ω,

|ũn(x)| ≤ z2(x) for a.a. all x ∈ ∂Ω.
(4.15)

By means of (4.11), we get for ũn the following variational equation∫
Ω

|∇ũn|p−2∇ũn∇ϕdx =

∫
Ω

(
f(x, un)

up−1
n

ũp−1
n − ũp−1

n

)
ϕdx+

∫
∂Ω

λũp−1
n ϕdσ

+

∫
∂Ω

g(x, un)

up−1
n

ũp−1
n ϕdσ, ∀ϕ ∈W 1,p(Ω).

(4.16)

Choosing ϕ = ũn − ũ ∈W 1,p(Ω) in the last equality, we obtain∫
Ω

|∇ũn|p−2∇ũn∇(ũn − ũ)dx

=

∫
Ω

(
f(x, un)

up−1
n

ũp−1
n − ũp−1

n

)
(ũn − ũ)dx+

∫
∂Ω

λũp−1
n (ũn − ũ)dσ

+

∫
∂Ω

g(x, un)

up−1
n

ũp−1
n (ũn − ũ)dσ.

(4.17)

Using (4.8) along with (4.15) implies

|f(x, un(x))|
up−1
n (x)

ũp−1
n (x)|ũn(x)− ũ(x)| ≤ cfz1(x)p−1(z1(x) + |ũ(x)|), (4.18)

respectively,

|g(x, un(x))|
up−1
n (x)

ũp−1
n (x)|ũn(x)− ũ(x)| ≤ cgz2(x)p−1(z2(x) + |ũ(x)|). (4.19)

The right-hand sides of (4.18) and (4.19) are in L1(Ω) and L1(∂Ω), respectively,
which allows us to apply Lebesgue’s dominated convergence theorem. This fact
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and the convergence properties in (4.14) show

lim
n→∞

∫
Ω

f(x, un)

up−1
n

ũp−1
n (ũn − ũ)dx = 0,

lim
n→∞

∫
∂Ω

g(x, un)

up−1
n

ũp−1
n (ũn − ũ)dσ = 0.

(4.20)

From (4.14), (4.17), (4.20) we conclude

lim sup
n→∞

∫
Ω

|∇ũn|p−2∇ũn∇(ũn − ũ)dx = 0.

Taking into account the (S+)-property of −∆p with respect to W 1,p(Ω), we have

ũn → ũ in W 1,p(Ω). (4.21)

Notice that ‖ũ‖W 1,p(Ω) = 1. The statements in (4.13), (4.21) and (4.16) yield along
with the conditions (f1),(g1)∫

Ω

|∇ũ|p−2∇ũ∇ϕdx = −
∫

Ω

ũp−1ϕdx+

∫
∂Ω

λũp−1ϕdσ, ∀ϕ ∈W 1,p(Ω). (4.22)

Due to ũ 6≡ 0, the equation (4.22) is the Steklov eigenvalue problem in (2.1), where
ũ ≥ 0 is the eigenfunction corresponding to the eigenvalue λ > λ1. The fact that
ũ ≥ 0 is nonnegative in Ω yields a contradiction to the results of Mart́ınez et al. in
[47, Lemma 2.4] because ũ must change sign on ∂Ω. Thus, u+ 6≡ 0 and we obtain
by applying Lemma 4.2 that u+ ∈ int(C1(Ω)+).
Now we need to show that u+ is the smallest positive solution of (1.1) within [0, ϑe].
Let u ∈ W 1,p(Ω) be a positive solution of (1.1) lying in the order interval [0, ϑe].
Lemma 4.2 implies u ∈ int(C1(Ω)+). Then there exists an integer n sufficiently
large such that u ∈ [ 1

nϕ1, ϑe]. Since un is the smallest solution of (1.1) in [ 1
nϕ1, ϑe],

one gets un ≤ u. This yields by passing to the limit u+ ≤ u. Hence, u+ must be
the smallest positive solution of (1.1). In similar way one proves the existence of
the greatest negative solution of (1.1) within [−ϑe, 0]. This completes the proof of
the theorem. �

5. Variational characterization of extremal solutions

Theorem 4.3 implies the existence of extremal positive and negative solutions
of (1.1) for all λ > λ1 denoted by u+ = u+(λ) ∈ int(C1(Ω)+) and u− = u−(λ) ∈
− int(C1(Ω)+), respectively. Now, we introduce truncation functions T+, T−, T0 :
Ω× R→ R and T ∂Ω

+ , T ∂Ω
− , T ∂Ω

0 : ∂Ω× R→ R as follows:ss

T+(x, s) =


0 if s ≤ 0

s if 0 < s < u+(x)

u+(x) if s ≥ u+(x)

, T ∂Ω
+ (x, s) =


0 if s ≤ 0

s if 0 < s < u+(x)

u+(x) if s ≥ u+(x)

T−(x, s) =


u−(x) if s ≤ u−(x)

s if u−(x) < s < 0

0 if s ≥ 0

, T ∂Ω
− (x, s) =


u−(x) if s ≤ u−(x)

s if u−(x) < s < 0

0 if s ≥ 0
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T0(x, s) =


u−(x) if s ≤ u−(x)

s if u−(x) < s < u+(x)

u+(x) if s ≥ u+(x)

, T ∂Ω
0 (x, s) =


u−(x) if s ≤ u−(x)

s if u−(x) < s < u+(x)

u+(x) if s ≥ u+(x)

For u ∈W 1,p(Ω) the truncation operators on ∂Ω apply to the corresponding traces
τ(u). We just write for simplification T ∂Ω

+ (x, u), T ∂Ω
+ (x, u), T ∂Ω

+ (x, u) without τ .
Furthermore, the truncation operators are continuous and uniformly bounded on
R and they are Lipschitz continuous with respect to the second argument (see, e.g.
[40]). By means of these truncations, we define the following associated functionals
given by

E+(u) =
1

p
[‖∇u‖pLp(Ω) + ‖u‖pLp(Ω)]−

∫
Ω

∫ u(x)

0

f(x, T+(x, s)dsdx

−
∫
∂Ω

∫ u(x)

0

[
λT ∂Ω

+ (x, s)p−1 + g(x, T ∂Ω
+ (x, s))

]
dsdσ,

(5.1)

E−(u) =
1

p
[‖∇u‖pLp(Ω) + ‖u‖pLp(Ω)]−

∫
Ω

∫ u(x)

0

f(x, T−(x, s)dsdx

−
∫
∂Ω

∫ u(x)

0

[
λ|T ∂Ω
− (x, s)|p−2T ∂Ω

− (x, s) + g(x, T ∂Ω
− (x, s))

]
dsdσ,

E0(u) =
1

p
[‖∇u‖pLp(Ω) + ‖u‖pLp(Ω)]−

∫
Ω

∫ u(x)

0

f(x, T0(x, s)dsdx

−
∫
∂Ω

∫ u(x)

0

[
λ|T ∂Ω

0 (x, s)|p−2T ∂Ω
0 (x, s) + g(x, T ∂Ω

0 (x, s))
]
dsdσ,

which are well-defined and belong to C1(W 1,p(Ω)). Due to the truncations, one can
easily show that these functionals are coercive and weakly lower semicontinuous
which implies that their global minimizers exist.

Lemma 5.1. Let u+ and u− be the extremal constant-sign solutions of (1.1). Then
the following holds:

(i) A critical point v ∈ W 1,p(Ω) of E+ is a (nonnegative) solution of (1.1)
satisfying 0 ≤ v ≤ u+.

(ii) A critical point v ∈ W 1,p(Ω) of E− is a (nonpositive) solution of (1.1)
satisfying u− ≤ v ≤ 0.

(iii) A critical point v ∈ W 1,p(Ω) of E0 is a solution of (1.1) satisfying u− ≤
v ≤ u+.

Proof. Let v be a critical point of E+, that is, E′+(v) = 0. In view of (5.1) we
obtain ∫

Ω

|∇v|p−2∇v∇ϕdx

=

∫
Ω

[f(x, T+(x, v))− |v|p−2v]ϕdx

+

∫
∂Ω

[λT ∂Ω
+ (x, v)p−1 + g(x, T ∂Ω

+ (x, v))]ϕdσ, ∀ϕ ∈W 1,p(Ω).

(5.2)
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Since u+ is a positive solution of (1.1) we have by using Definition 3.3∫
Ω

|∇u+|p−2∇u+∇ϕdx =

∫
Ω

[f(x, u+)− up−1
+ ]ϕdx

+

∫
∂Ω

[λup−1
+ + g(x, u+)]ϕdσ, ∀ϕ ∈W 1,p(Ω).

(5.3)

Choosing ϕ = (v − u+)+ ∈ W 1,p(Ω) in (5.3) and (5.2) and subtracting (5.3) from
(5.2) results in∫

Ω

[|∇v|p−2∇v − |∇u+|p−2∇u+]∇(v − u+)+dx+

∫
Ω

[|v|p−2v − up−1
+ ](v − u+)+dx

=

∫
Ω

[f(x, T+(x, v))− f(x, u+)](v − u+)+dx

+

∫
∂Ω

[λT ∂Ω
+ (x, v)p−1 − λup−1

+ + g(x, T ∂Ω
+ (x, v))− g(x, u+)](v − u+)+dσ

= 0,

by the definition of T+ and T ∂Ω
+ ,respectively. We obtain for v > u+

0 =

∫
Ω

[|∇v|p−2∇v − |∇u+|p−2∇u+]∇(v − u+)+dx

+

∫
Ω

[|v|p−2v − up−1
+ ](v − u+)+dx > 0,

which is a contradiction. This implies (v − u+)+ = 0, and thus, v ≤ u+. Taking
ϕ = v− = max(−v, 0) in (5.2) yields∫

{x:v(x)<0}
|∇v|pdx+

∫
{x:v(x)<0}

|v|pdx = 0,

consequently, ‖v−‖pW 1,p(Ω) = 0 and equivalently v− = 0, that is, v ≥ 0. By the

definition of the truncation operators we see at once that T+(x, v) = v, T ∂Ω
+ (x, v) =

v and therefore, v is a solution of (1.1) satisfying 0 ≤ v ≤ u+. The statements in
(ii) and (iii) can be shown in a similar way. �

The next result matches C1(Ω) and W 1,p(Ω)-local minimizers for a large class
of C1-functionals. We will show that every local C1-minimizer of E0 is a local
W 1,p(Ω)-minimizer of E0. This result was first proven for the Dirichlet problem by
Brezis and Nirenberg [8] when p = 2 and was extended by Garćıa Azorero et al.
in [37] for p 6= 2 (see also [39] when p > 2). For the zero Neumann problem we
refer to the recent results of Motreanu et al. in [51] for 1 < p < ∞. In the case
of nonsmooth functionals the authors in [53] and [7] proved the same result for the
Dirichlet problem and the zero Neumann problem when p ≥ 2. We give the proof
for the nonlinear nonzero Neumann problem for any 1 < p <∞.

Proposition 5.2. If z0 ∈W 1,p(Ω) is a local C1(Ω)-minimizer of E0, meaning that
there exists r1 > 0 such that

E0(z0) ≤ E0(z0 + h) for all h ∈ C1(Ω) with ‖h‖C1(Ω) ≤ r1,

then z0 is a local minimizer of E0 in W 1,p(Ω), meaning that there exists r2 > 0
such that

E0(z0) ≤ E0(z0 + h) for all h ∈W 1,p(Ω) with ‖h‖W 1,p(Ω) ≤ r2.
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Proof. Let h ∈ C1(Ω). If β > 0 is small, we have

0 ≤ E0(z0 + βh)− E0(z0)

β
,

meaning that the directional derivative of E0 at z0 in direction h satisfies

0 ≤ E′0(z0;h) for all h ∈ C1(Ω).

We recall that h 7→ E′0(z0;h) is continuous on W 1,p(Ω) and the density of C1(Ω)
in W 1,p(Ω) results in

0 ≤ E′0(z0;h) for all h ∈W 1,p(Ω).

Therefore, setting −h instead of h, we get

0 = E′0(z0),

which yields

0 =

∫
Ω

|∇z0|p−2∇z0∇ϕdx−
∫

Ω

(f(x, z0)− |z0|p−2z0)ϕdx

−
∫
∂Ω

λ|z0|p−2z0ϕdσ −
∫
∂Ω

g(x, z0)ϕdσ, ∀ϕ ∈W 1,p(Ω).

(5.4)

By means of Lemma 5.1, we obtain u− ≤ z0 ≤ u+ and thus, z0 ∈ L∞(Ω). As
before, via the regularity results of Lieberman [45] and Vázguez [64], it follows that
z0 ∈ int(C1(Ω)) (cf. Lemma 4.2). Let us assume the proposition is not valid. The
functional E0 : W 1,p(Ω) → R is weakly sequentially lower semicontinuous and the
set Bε = {y ∈W 1,p(Ω) : ‖y‖W 1,p(Ω) ≤ ε} is weakly compact in W 1,p(Ω). Thus, for

any ε > 0 we can find yε ∈ Bε such that

E0(z0 + yε) = min{E0(z0 + y) : y ∈ Bε)} < E0(z0). (5.5)

Obviously, yε is a solution of the following minimum-problem:{
minE0(z0 + y)

y ∈ Bε, gε(y) := 1
p (‖y‖pW 1,p(Ω) − ε

p) ≤ 0.

Applying the Lagrange multiplier rule (see, e.g., [46] or [14]) yields the existence of
a multiplier λε > 0 such that

E′0(z0 + yε) + λεg
′
ε(yε) = 0,

which results in∫
Ω

|∇(z0 + yε)|p−2∇(z0 + yε)∇ϕdx

−
∫

Ω

(f(x, T0(x, z0 + yε))− |z0 + yε|p−2(z0 + yε))ϕdx

−
∫
∂Ω

(λ|T ∂Ω
0 (x, z0 + yε)|p−2T ∂Ω

0 (x, z0 + yε) + g(x, T ∂Ω
0 (x, z0 + yε)))ϕdσ

+ λε

∫
Ω

|∇yε|p−2∇yε∇ϕdx+ λε

∫
Ω

|yε|p−2yεϕdx = 0,

(5.6)
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for all ϕ ∈W 1,p(Ω). Notice that λε cannot be zero since the constraints guarantee
that yε belongs to Bε. Let 0 < λε ≤ 1 for all ε ∈ (0, 1]. We multiply (5.4) by λε,
set vε = z0 + yε in (5.6), and add these new equations. One obtains∫

Ω

|∇vε|p−2∇vε∇ϕdx+ λε

∫
Ω

|∇z0|p−2∇z0∇ϕdx

+ λε

∫
Ω

|∇(vε − z0)|p−2∇(vε − z0)∇ϕdx

=

∫
Ω

(λεf(x, z0) + f(x, T0(x, vε)))ϕdx

−
∫

Ω

(λε|z0|p−2z0 + |vε|p−2vε + λε|vε − z0|p−2(vε − z0))ϕdx

+

∫
∂Ω

λ(λε|z0|p−2z0 + |T ∂Ω
0 (x, vε)|p−2T ∂Ω

0 (x, vε))ϕdσ

+

∫
∂Ω

(λεg(x, z0) + g(x, T ∂Ω
0 (x, vε)))ϕdσ.

(5.7)

Now, we introduce the maps Aε : Ω×RN → RN , Bε : Ω×R→ R and Φε : ∂Ω×R→
R defined by

Aε(x, ξ) = |ξ|p−2ξ + λε|H|p−2H + λε|ξ −H|p−2(ξ −H)

−Bε(x, ψ) = λεf(x, z0) + f(x, T0(x, ψ))

− (λε|z0|p−2z0 + |ψ|p−2ψ + λε|ψ − z0|p−2(ψ − z0))

Φε(x, ψ) = λ(λε|z0|p−2z0 + |T ∂Ω
0 (x, ψ)|p−2T ∂Ω

0 (x, ψ))

+ λεg(x, z0) + g(x, T ∂Ω
0 (x, ψ)),

where H(x) = ∇z0(x) and H ∈ (Cα(Ω))N for some α ∈ (0, 1]. Apparently, the
operator Aε(x, ξ) belongs to C(Ω× RN ,RN ). For x ∈ Ω we have

(Aε(x, ξ), ξ)RN
= ‖ξ‖p + λε(|ξ −H|p−2(ξ −H)− | −H|p−2(−H), ξ −H − (−H))RN

≥ ‖ξ‖p for all ξ ∈ RN ,
(5.8)

where (·, ·)RN stands for the inner product in RN . (5.8) shows that Aε satisfies a
strong ellipticity condition. Hence, the equation in (5.7) is the weak formulation of
the elliptic Neumann problem

−divAε(x,∇vε) + Bε(x, vε) = 0 in Ω,

∂vε
∂ν

= Φε(x, vε) on ∂Ω,

where ∂vε
∂ν denotes the conormal derivative of vε. To prove the L∞-regularity of

vε, we will use the Moser iteration technique (see e.g. [23],[24],[25], [26], [43]). It
suffices to consider the proof in case 1 ≤ p ≤ N , otherwise we would be done.
First we are going to show that v+

ε = max{vε, 0} belongs to L∞(Ω). For M > 0
we define vM (x) = min{v+

ε (x),M}. Letting K(t) = t if t ≤ M and K(t) = M
if t > M , it follows by [43, Theorem B.3] that K ◦ v+

ε = vM ∈ W 1,p(Ω) and

hence vM ∈ W 1,p(Ω) ∩ L∞(Ω). For real k ≥ 0 we choose ϕ = vkp+1
M , then ∇ϕ =
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(kp+ 1)vkpM∇vM and ϕ ∈W 1,p(Ω)∩L∞(Ω). Notice that vε(x) ≤ 0 implies directly

vM (x) = 0. Testing (5.7) with ϕ = vkp+1
M , one gets

(kp+ 1)

∫
Ω

|∇v+
ε |p−2∇v+

ε ∇vMv
kp
M dx+

∫
Ω

|v+
ε |p−2v+

ε v
kp+1
M dx

+ λε(kp+ 1)

∫
Ω

[
|∇(v+

ε − z0)|p−2∇(v+
ε − z0)− | − ∇z0|p−2(−∇z0)

]
× (∇vM −∇z0 − (−∇z0))vkpM dx

=

∫
Ω

(λεf(x, z0) + f(x, T0(x, v+
ε )))vkp+1

M dx

−
∫

Ω

(λε|z0|p−2z0 + λε|v+
ε − z0|p−2(v+

ε − z0))vkp+1
M dx

+

∫
∂Ω

λ(λε|z0|p−2z0 + |T ∂Ω
0 (x, v+

ε )|p−2T ∂Ω
0 (x, v+

ε ))vkp+1
M dσ

+

∫
∂Ω

(λεg(x, z0) + g(x, T ∂Ω
0 (x, v+

ε )))vkp+1
M dσ.

(5.9)

Since z0 ∈ [u−, u+], τ(z0) ∈ [τ(u−), τ(u+)], T0(x, vε) ∈ [u−, u+] and T ∂Ω
0 (x, vε) ∈

[τ(u−), τ(u+)] we get for the right-hand side of (5.9) by using (f3) and (g3)

(1)

∫
Ω

(λεf(x, z0) + f(x, T0(x, v+
ε )))vkp+1

M dx ≤ e1

∫
Ω

(v+
ε )kp+1dx

(2) −
∫

Ω

(λε|z0|p−2z0 + λε|v+
ε − z0|p−2(v+

ε − z0))vkp+1
M dx

≤ e2

∫
Ω

|v+
ε |p−1(v+

ε )kp+1dx+ e3

∫
Ω

|z0|p−1(v+
ε )kp+1dx

≤
∫

Ω

e2(v+
ε )(k+1)pdx+ e4

∫
Ω

(v+
ε )kp+1dx

(3)

∫
∂Ω

λ(λε|z0|p−2z0 + |T ∂Ω
0 (x, v+

ε )|p−2T ∂Ω
0 (x, v+

ε )))vkp+1
M dσ

≤ e5

∫
∂Ω

(v+
ε )kp+1dσ

(4)

∫
∂Ω

(λεg(x, z0) + g(x, T ∂Ω
0 (x, v+

ε )))vkp+1
M dσ

≤ e6

∫
∂Ω

(v+
ε )kp+1dσ.

(5.10)
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The left-hand side of (5.9) can be estimated to obtain

(kp+ 1)

∫
Ω

|∇v+
ε |p−2∇v+

ε ∇vMv
kp
M dx+

∫
Ω

|v+
ε |p−2v+

ε v
kp+1
M dx

+ λε(kp+ 1)

∫
Ω

[
|∇(v+

ε − z0)|p−2∇(v+
ε − z0)− | − ∇z0|p−2(−∇z0)

]
× (∇vM −∇z0 − (−∇z0))vkpM dx

≥ (kp+ 1)

∫
Ω

|∇vM |pvkpM dx+

∫
Ω

(v+
ε )p−1vkp+1

M dx

≥ kp+ 1

(k + 1)p

[∫
Ω

|∇vk+1
M |pdx+

∫
Ω

(v+
ε )p−1vkp+1

M dx

]
.

(5.11)

Using the Hölder inequality we see at once∫
Ω

1 · (v+
ε )kp+1dx ≤ |Ω|

p−1
(k+1)p

(∫
Ω

(v+
ε )(k+1)pdx

) kp+1
(k+1)p

, (5.12)

and analogously for the boundary integral∫
∂Ω

1 · (v+
ε )kp+1dσ ≤ |∂Ω|

p−1
(k+1)p

(∫
∂Ω

(v+
ε )(k+1)pdσ

) kp+1
(k+1)p

. (5.13)

Applying the estimates (5.10)–(5.13) to (5.9) one gets

kp+ 1

(k + 1)p

[∫
Ω

|∇vk+1
M |pdx+

∫
Ω

(v+
ε )p−1vkp+1

M dx

]
≤ e2

∫
Ω

(v+
ε )(k+1)pdx+ e7

(∫
Ω

(v+
ε )(k+1)pdx

) kp+1
(k+1)p

+ e8

(∫
∂Ω

(v+
ε )(k+1)pdσ

) kp+1
(k+1)p

.

We have limM→∞ vM (x) = v+
ε (x) for a.a. x ∈ Ω and can apply Fatou’s Lemma

which results in

kp+ 1

(k + 1)p

[∫
Ω

|∇(v+
ε )k+1|pdx+

∫
Ω

|(v+
ε )k+1|pdx

]
≤ e2

∫
Ω

(v+
ε )(k+1)pdx+ e7

(∫
Ω

(v+
ε )(k+1)pdx

) kp+1
(k+1)p

+ e8

(∫
∂Ω

(v+
ε )(k+1)pdσ

) kp+1
(k+1)p

.

(5.14)

We have either(∫
Ω

(v+
ε )(k+1)pdx

) kp+1
(k+1)p

≤ 1 or

(∫
Ω

(v+
ε )(k+1)pdx

) kp+1
(k+1)p

≤
∫

Ω

(v+
ε )(k+1)pdx,

respectively, either(∫
∂Ω

(v+
ε )(k+1)pdσ

) kp+1
(k+1)p

≤ 1 or

(∫
∂Ω

(v+
ε )(k+1)pdσ

) kp+1
(k+1)p

≤
∫
∂Ω

(v+
ε )(k+1)pdσ.
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Thus, we obtain from (5.14)

kp+ 1

(k + 1)p

[∫
Ω

|∇(v+
ε )k+1|pdx+

∫
Ω

|(v+
ε )k+1|pdx

]
≤ e9

∫
Ω

(v+
ε )(k+1)pdx+ e10

∫
∂Ω

(v+
ε )(k+1)pdσ + e11.

(5.15)

Next we want to estimate the boundary integral by an integral in the domain Ω.
To this end, we need the following continuous embeddings

T1 : Bspp(Ω)→ B
s− 1

p
pp (∂Ω), with s >

1

p
,

T2 : B
s− 1

p
pp (∂Ω) = F

s− 1
p

pp (∂Ω)→ F 0
p2(∂Ω) = Lp(∂Ω), with s >

1

p
,

where Ω is a bounded C∞-domain (see [58, Page 75 and Page 82], [62, 2.3.1 and
2.3.2] and [63, 3.3.1]). Let s = m + ι with m ∈ N0 and 0 ≤ ι < 1. Then the
embeddings are also valid if ∂Ω ∈ Cm,1 ([59]). In [21, Satz 9.40] the proof is
given for p = 2, however, it can be extended to p ∈ (1,∞) by using the Fourier
transformation in Lp(Ω) ([22]).
Here Bspq and F spq denote the Besov and Lizorkin-Triebel spaces, respectively, which

are equal in case p = q with 1 < p < ∞ and −∞ < s < ∞. We set s = 1
p + ε̃,

where ε̃ > 0 is arbitrarily fixed such that s = 1
p + ε̃ < 1. Thus the embeddings are

valid for a Lipschitz boundary ∂Ω. This yields the continuous embedding

T3 : B
1
p+ε̃
pp (Ω)→ Lp(∂Ω). (5.16)

The real interpolation theory implies(
F 0
p2(Ω), F 1

p2(Ω)
)

1
p+ε̃,p

=
(
Lp(Ω),W 1,p(Ω)

)
1
p+ε̃,p

= B
1
p+ε̃
pp (Ω),

(for more details see [2], [62], [63]) which ensures the norm estimate

‖v‖
B

1
p
+ε̃

pp (Ω)
≤ e12‖v‖

1
p+ε̃

W 1,p(Ω)‖v‖
1− 1

p−ε̃
Lp(Ω) , ∀v ∈W 1,p(Ω) (5.17)

with a positive constant e12. Using (5.16), (5.17) and Young’s inequality yields∫
∂Ω

((v+
ε )k+1)pdσ

= ‖(v+
ε )k+1‖pLp(∂Ω)

≤ ep13‖(v+
ε )k+1‖p

B
1
p
+ε̃

pp (Ω)

≤ ep13e
p
12‖(v+

ε )k+1‖(
1
p+ε̃)p
W 1,p(Ω)‖(v

+
ε )k+1‖(1− 1

p−ε̃)p
Lp(Ω)

≤ ep13e
p
12(δ‖(v+

ε )k+1‖(1+ε̃p)q̃
W 1,p(Ω) + C(δ)‖(v+

ε )k+1‖(p−1−ε̃p)q̃′
Lp(Ω) )

= ep13e
p
12(δ‖(v+

ε )k+1‖pW 1,p(Ω) + C(δ)‖(v+
ε )k+1‖pLp(Ω)),

(5.18)

where q̃ = p
1+ε̃p and q̃′ = p

p−1−ε̃p are chosen such that 1
q̃ + 1

q̃′ = 1 and δ is a free

parameter specified later. Note that the positive constant C(δ) depends only on δ.
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Applying (5.18) to (5.15) shows

kp+ 1

(k + 1)p

[∫
Ω

|∇(v+
ε )k+1|pdx+

∫
Ω

|(v+
ε )k+1|pdx

]
≤ e9

∫
Ω

(v+
ε )(k+1)pdx+ e10

∫
∂Ω

(v+
ε )(k+1)pdσ + e11

≤ e9

∫
Ω

(v+
ε )(k+1)p)dx+ e14δ‖(v+

ε )k+1‖pW 1,p(Ω) + e14C(δ)‖(v+
ε )k+1‖pLp(Ω) + e11,

where e14 = e10e
p
13e

p
12 is a positive constant. We take δ = kp+1

e142(k+1)p to get(
kp+ 1

(k + 1)p
− e14

kp+ 1

e142(k + 1)p

)[∫
Ω

|∇(v+
ε )k+1|pdx+

∫
Ω

|(v+
ε )k+1|p)dx

]
≤ e9

∫
Ω

(v+
ε )(k+1)p)dx+ e14C(δ)‖(v+

ε )k+1‖pLp(Ω) + e11

≤ e15

∫
Ω

(v+
ε )(k+1)p)dx+ e11,

and hence,

‖(v+
ε )k+1‖pW 1,p(Ω) ≤

2(k + 1)p

kp+ 1

[
e15

∫
Ω

(v+
ε )(k+1)p)dx+ e11

]
.

By Sobolev’s embedding theorem a positive constant e16 exists such that

‖(v+
ε )k+1‖Lp∗ (Ω) ≤ e16‖(v+

ε )k+1‖W 1,p(Ω)

where p∗ = Np
N−p if 1 < p < N and p∗ = 2p if p = N . We have

‖v+
ε ‖L(k+1)p∗ (Ω)

= ‖(v+
ε )k+1‖

1
k+1

Lp∗ (Ω)

≤ e
1
k+1

16 ‖(v+
ε )k+1‖

1
k+1

W 1,p(Ω)

≤ e
1
k+1

16

(
2

1
p (k + 1)

(kp+ 1)1/p

) 1
k+1 [

e15

∫
Ω

(v+
ε )(k+1)p)dx+ e11

] 1
(k+1)p

≤ e
1
k+1

16 e
1

(k+1)p

17

(
(k + 1)

(kp+ 1)1/p

) 1
k+1
[∫

Ω

(v+
ε )(k+1)p)dx+ 1

] 1
(k+1)p

.

where e17 = 2 max{e15, e11}.

Since

(
(k + 1)

(kp+ 1)
1
p

) 1√
k+1

≥ 1 and lim
k→∞

(
(k + 1)

(kp+ 1)
1
p

) 1√
k+1

= 1, there exists a con-

stant e18 > 1 such that

(
(k + 1)

(kp+ 1)
1
p

) 1
k+1

≤ e
1√
k+1

18 . We obtain

‖v+
ε ‖L(k+1)p∗ (Ω) ≤ e

1
k+1

16 e
1√
k+1

18 e
1

(k+1)p

17

[∫
Ω

(v+
ε )(k+1)p)dx+ 1

] 1
(k+1)p

. (5.19)
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Now, we will use the bootstrap arguments similarly as in the proof of [26, Lemma
3.2] starting with (k1 + 1)p = p∗ to get

‖v+
ε ‖L(k+1)p∗ (Ω) ≤ c(k)

for any finite number k > 0 which shows that v+
ε ∈ Lr(Ω) for any r ∈ (1,∞).

To prove the uniform estimate with respect to k we argue as follows. If there is a
sequence kn →∞ such that ∫

Ω

(v+
ε )(kn+1)pdx ≤ 1,

we have immediately

‖v+
ε ‖L∞(Ω) ≤ 1,

(cf. the proof of [26, Lemma 3.2]). In the opposite case there exists k0 > 0 such
that ∫

Ω

(v+
ε )(k+1)pdx > 1

for any k ≥ k0. Then we conclude from (5.19)

‖v+
ε ‖L(k+1)p∗ (Ω) ≤ e

1
k+1

16 e
1√
k+1

18 e
1

(k+1)p

19 ‖v+
ε ‖L(k+1)p , for any k ≥ k0, (5.20)

where e19 = 2e17. Choosing k := k1 such that (k1 + 1)p = (k0 + 1)p∗ yields

‖v+
ε ‖L(k1+1)p∗ (Ω) ≤ e

1
k1+1

16 e
1√
k1+1

18 e
1

(k1+1)p

19 ‖v+
ε ‖L(k1+1)p(Ω).

Next, we can choose k2 in (5.20) such that (k2 + 1)p = (k1 + 1)p∗ to get

‖v+
ε ‖L(k2+1)p∗ (Ω) ≤ e

1
k2+1

16 e
1√
k2+1

18 e
1

(k2+1)p

19 ‖v+
ε ‖L(k2+1)p(Ω)

= e
1

k2+1

16 e
1√
k2+1

18 e
1

(k2+1)p

19 ‖v+
ε ‖L(k1+1)p∗ (Ω).

By induction we obtain

‖v+
ε ‖L(kn+1)p∗ (Ω) ≤ e

1
kn+1

16 e
1√
kn+1

18 e
1

(kn+1)p

19 ‖v+
ε ‖L(kn+1)p(Ω)

= e
1

kn+1

16 e
1√
kn+1

18 e
1

(kn+1)p

19 ‖v+
ε ‖L(kn−1+1)p∗ (Ω)

,

where the sequence (kn) is chosen such that (kn + 1)p = (kn−1 + 1)p∗ with k0 > 0.

One easily verifies that kn + 1 =
(
p∗

p

)n
. Thus

‖v+
ε ‖L(kn+1)p∗ (Ω) = e

∑n
i=1

1
ki+1

16 e

∑n
i=1

1√
ki+1

18 e

∑n
i=1

1
(ki+1)p

19 ‖v+
ε ‖L(k0+1)p∗ (Ω),

with rn = (kn + 1)p∗ → ∞ as n → ∞. Since 1
ki+1 = ( pp∗ )i and p

p∗ < 1 there is a

constant e20 > 0 such that

‖v+
ε ‖L(kn+1)p∗ (Ω) ≤ e20‖v+

ε ‖L(k0+1)p∗ (Ω) <∞. (5.21)
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Let us assume that v+
ε 6∈ L∞(Ω). Then there exist η > 0 and a set A of positive

measure in Ω such that v+
ε (x) ≥ e20‖v+

ε ‖L(k0+1)p∗ (Ω) + η for x ∈ A. It follows that

‖v+
ε ‖L(kn+1)p∗ (Ω) ≥

(∫
A

|v+
ε (x)|(kn+1)p∗

) 1
(kn+1)p∗

≥ (e20‖v+
ε ‖L(k0+1)p∗ (Ω) + η)|A|

1
(kn+1)p∗ .

Passing to the limes inferior in the above inequality yields

lim inf
n→∞

‖v+
ε ‖L(kn+1)p∗ (Ω) ≥ e20‖v+

ε ‖L(k0+1)p∗ (Ω) + η,

which is a contradiction to (5.21) and hence, v+
ε ∈ L∞(Ω). In a similar way one

shows that v−ε = max{−vε, 0} ∈ L∞(Ω). This proves vε = v+
ε − v−ε ∈ L∞(Ω).

In order to show some structure properties of Aε note that its derivative has the
form

DξAε(x, ξ) =|ξ|p−2I + (p− 2)|ξ|p−4ξξT

+ λε|ξ −H|p−2I + λε(p− 2)|ξ −H|p−4(ξ −H)(ξ −H)T ,
(5.22)

where I is the unit matrix and ξT stands for the transpose of ξ. Using (5.22) implies

‖DξAε(x, ξ)‖RN ≤ a1 + a2|ξ|p−2, (5.23)

where a1, a2 are some positive constants. We also obtain

(DξAε(x, ξ)y, y)RN

= |ξ|p−2‖y‖2RN + (p− 2)|ξ|p−4(ξ, y)2
RN

+ λε|ξ −H|p−2‖y‖2RN + λε(p− 2)|ξ −H|p−4(ξ −H, y)2
RN

≥

{
|ξ|p−2‖y‖2RN if p ≥ 2

(p− 1)|ξ|p−2‖y‖2RN if 1 < p < 2

≥ min{1, p− 1}|ξ|p−2‖y‖2RN .

(5.24)

For the case 1 < p < 2 in (5.24) we have used the estimate |ξ|p−2‖y‖2RN + (p −
2)|ξ|p−4(ξ, y)2

RN ≥ (p− 1)|ξ|p−2‖y‖2RN . Because of (5.23) and (5.24), the operators
Aε,Bε and Φε satisfy the assumptions (0.3a-d) and (0.6) of Lieberman in [45] and
thus, Theorem 2 in [45] ensures the existence of α ∈ (0, 1) and M > 0, both
independent of ε ∈ (0, 1], such that

vε ∈ C1,α(Ω) and ‖vε‖C1,α(Ω) ≤M, for all ε ∈ (0, 1]. (5.25)

Due to yε = vε − z0 and the fact that vε, z0 ∈ C1,α(Ω), one realizes immediately
that yε satisfies (5.25), too. Next, we assume λε > 1 with ε ∈ (0, 1]. Multiplying
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(5.4) by −1 and adding this new equation to (5.6) yields∫
Ω

|∇(z0 + yε)|p−2∇(z0 + yε)∇ϕdx−
∫

Ω

|∇z0|p−2∇z0∇ϕdx

+ λε

∫
Ω

|∇yε|p−2∇yε∇ϕdx

=

∫
Ω

(f(x, T0(x, z0 + yε))− f(x, z0))ϕdx

+

∫
Ω

(|z0|p−2z0 − |z0 + yε|p−2(z0 + yε)− λε|yε|p−2yε)ϕdx

+

∫
∂Ω

λ(|T ∂Ω
0 (x, z0 + yε)|p−2T ∂Ω

0 (x, z0 + yε)− |z0|p−2z0)ϕdσ

+

∫
∂Ω

(g(x, T ∂Ω
0 (x, z0 + yε))− g(x, z0))ϕdσ.

(5.26)

Defining again

Aε(x, ξ) =
1

λε
(|H + ξ|p−2(H + ξ)− |H|p−2H) + |ξ|p−2ξ

−Bε(x, ψ) = f(x, T0(x, z0 + ψ))− f(x, z0) + |z0|p−2z0

− |z0 + ψ|p−2(z0 + ψ)− λε|ψ|p−2yε

Φε(x, ψ) = λ(|T ∂Ω
0 (x, z0 + ψ)|p−2T ∂Ω

0 (x, z0 + ψ)− |z0|p−2z0)

+ g(x, T ∂Ω
0 (x, z0 + ψ))− g(x, z0),

and rewriting (5.26) yields the Neumann equation

−divAε(x,∇yε) +
1

λε
Bε(x, yε) = 0 in Ω,

∂vε
∂ν

=
1

λε
Φε(x, yε) on ∂Ω,

where ∂vε
∂ν denotes the conormal derivative of vε. As above, we have the following

estimate

(Aε(x, ξ), ξ)RN =
1

λε
(|H + ξ|p−2(H + ξ)− |H|p−2H,H + ξ −H)RN + ‖ξ‖p

≥ ‖ξ‖p for all ξ ∈ RN ,

and can write the derivative DξAε(x, ξ) as

DξAε(x, ξ) =
1

λε
(|H + ξ|p−2I + (p− 2)|H + ξ|p−4(H + ξ)(H + ξ)T

|ξ|p−2I + (p− 2)|ξ|p−4ξξT .

We have again the following estimate

‖DξAε(x, ξ)‖RN ≤ a1 + a2|ξ|p−2,

where a1, a2 are some positive constants. One also gets

(DξAε(x, ξ)y, y)RN ≥ min{1, p− 1}|ξ|p−2‖y‖2RN .

As before, the nonlinear regularity theory implies the existence of α ∈ (0, 1) and
M > 0, both independent of ε ∈ (0, 1), such that (5.25) holds for yε.
Let ε ↓ 0. Using the compact embedding C1,β(Ω) ↪→ C1(Ω) (cf. [42, p. 38] or [1, p.
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11]), we may assume for a subsequence yε → ỹ in C1(Ω). By construction we have
yε → 0 in W 1,p(Ω) and thus, ỹ = 0 which implies for a subsequence ‖yε‖C1(Ω) ≤ r1.

Hence, one has

E0(z0) ≤ E0(z0 + yε),

which is a contradiction to (5.5). This completes the proof of the proposition. �

Lemma 5.3. Let λ > λ1. Then the extremal positive solution u+ (respectively,
negative solution u−) of (1.1) is the unique global minimizer of the functional E+

(respectively, E−). Moreover, u+ and u− are local minimizers of E0.

Proof. We know that E+ : W 1,p(Ω)→ R is coercive and weakly sequentially lower
semicontinuous. Therefore, by [66, Theorem 25.D] there exists a global minimizer
v+ ∈ W 1,p(Ω) of E+. Since v+ is a critical point of E+, Lemma 5.1 implies that
v+ is a nonnegative solution of (1.1) satisfying 0 ≤ v+ ≤ u+. By (g1) we infer that

|g(x, s)| ≤ (λ− λ1)sp−1, ∀s : 0 < s ≤ δλ. (5.27)

Using (f4) and (5.27) and applying the Steklov eigenvalue problem in (2.1), we

conclude for ε < min
{

δf
‖ϕ1‖∞ ,

δλ
‖ϕ1‖∞

}
E+(εϕ1) = −

∫
Ω

∫ εϕ1(x)

0

f(x, s)dsdx+
λ1 − λ
p

εp‖ϕ1‖pLp(∂Ω)

−
∫
∂Ω

∫ εϕ1(x)

0

g(x, s)dsdσ

<
λ1 − λ
p

εp‖ϕ1‖Lp(∂Ω) +

∫
∂Ω

∫ εϕ1(x)

0

(λ− λ1)sp−1dsdσ

= 0.

This shows E+(v+) < 0 and we obtain v+ 6= 0. Applying Lemma 4.2 implies
v+ ∈ int(C1(Ω)+). Since u+ is the smallest positive solution of (1.1) in [0, ϑe] and
0 ≤ v+ ≤ u+, it holds v+ = u+. Thus, u+ is the unique global minimizer of E+.
In the same way one verifies that u− is the unique global minimizer of E−. Now
we want to show that u+ and u− are local minimizers of the functional E0. As
u+ ∈ int(C1(Ω)+) there exists a neighborhood Vu+

of u+ in the space C1(Ω) such

that Vu+
⊂ C1(Ω)+. Hence E+ = E0 on Vu+

which ensures that u+ is a local

minimizer of E0 on C1(Ω). In view of Proposition 5.2, we obtain that u+ is also a
local minimizer of E0 on the space W 1,p(Ω). By the same arguments as above we
prove that u− is a local minimizer of E0. �

Lemma 5.4. The functional E0 : W 1,p(Ω) → R has a global minimizer v0 which
is a nontrivial solution of (1.1) satisfying u− ≤ v0 ≤ u+.

Proof. The functional E0 : W 1,p(Ω)→ R is coercive and weakly sequentially lower
semicontinuous. Hence, a global minimizer v0 of E0 exists. Since v0 is a critical
point of E0 we know by Lemma 5.1 that v0 is a solution of (1.1) satisfying u− ≤
v0 ≤ u+. Due to E0(u+) = E+(u+) < 0 (cf. the proof of Lemma 5.3) we obtain
that v0 is nontrivial meaning v0 6= 0. �
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6. Existence of sign-changing solutions

First, we are going to show that our functionals introduced in Section 5 satisfy
the Palais-Smale condition. In order to prove this result, we will need a preliminary
lemma which can be found in [48, Lemma 2.1-Lemma 2.3] in similar form.

Lemma 6.1. Let A,B,C : W 1,p(Ω)→ (W 1,p(Ω))∗ be given by

〈A(u), v〉 :=

∫
Ω

|∇u|p−2∇u∇vdx+

∫
Ω

|u|p−2uvdx,

〈B(u), v〉 :=

∫
∂Ω

λ|T ∂Ω
0 (x, u)|p−2T ∂Ω

0 (x, u)vdx,

〈C(u), v〉 :=

∫
Ω

f(x, T0(x, u))vdx+

∫
∂Ω

g(x, T ∂Ω
0 (x, u))vdx,

then A is continuous and continuously invertible and the operators B,C are con-
tinuous and compact.

By means of this auxiliary lemma, we can prove the following.

Lemma 6.2. The functionals E+, E−, E0 : W 1,p(Ω)→ R satisfy the Palais-Smale
condition.

Proof. We show this Lemma only for E0. The proof for E+, E− is very similar.
Let (un) ⊂ W 1,p(Ω) be a sequence such that E0(un) is bounded and E′0(un) → 0
as n tends to infinity. Since |E0(un)| ≤ M for all n, we obtain by using Young’s
inequality and the compact embedding W 1,p(Ω) ↪→ Lp(∂Ω)

M ≥ E0(un)

=
1

p

[
‖∇un‖pLp(Ω) + ‖un‖pLp(Ω)

]
−
∫

Ω

∫ un(x)

0

f(x, T0(x, s))dsdx

−
∫
∂Ω

∫ un(x)

0

[
λ|T ∂Ω

0 (x, s)|p−2T ∂Ω
0 (x, s) + g(x, T ∂Ω

0 (x, s))
]
dsdσ

≥ (1/p− ε1 − ε2 − ε3)||un‖pW 1,p(Ω) − C.

Choosing εi, i = 1, 2, 3 sufficiently small yields the boundedness of un in W 1,p(Ω),
and thus, we get un ⇀ u for a subsequence of un still denoted with un. We have

A(un)− λB(un)− C(un) = E′0(un)→ 0,

which implies the existence of a sequence (δn) ⊂ (W 1,p(Ω))∗ converging to zero
such that

un = A−1(λB(un) + C(un) + δn).

By Lemma 6.1 we know that B,C are compact and A−1 is continuous. Passing to
the limit in the previous equality yields

un → A−1(λB(u) + C(u)) =: u,

meaning that un → u strongly in W 1,p(Ω). �

Now, we can formulate our main result about the existence of a nontrivial solu-
tion of problem (1.1).

Theorem 6.3. Under hypotheses (f1)–(f4), (g1)–(g4) and for every number λ >
λ2, problem (1.1) has a nontrivial sign-changing solution u0 ∈ C1(Ω).
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Proof. Lemma 5.1 implies that every critical point of E0 is a solution of problem
(1.1) in [u−, u+]. The coercivity and the weakly sequentially lower semicontinuity
of E0 ensure along with infW 1,p(Ω)E+(u) < 0 (cf. the proof of Lemma 5.3) the

existence of a global minimizer v0 ∈ W 1,p(Ω) satisfying v0 6= 0. This means that
v0 is a nontrivial solution of (1.1) belonging to [u−, u+]. If v0 6= u− and v0 6= u+,
then u0 := v0 must be a sign-changing solution since u− is the greatest negative
solution and u+ is the smallest positive solution of (1.1) which proves the theorem
in this case. So, we still have to show that the theorem is also true in case that
either v0 = u− or v0 = u+. Without loss of generality we suppose v0 = u+. The
function u− can be assumed to be a strict local minimizer. Otherwise we would be
done. Now, we can find a ρ ∈ (0, ‖u+ − u−‖W 1,p(Ω)) such that

E0(u+) ≤ E0(u−) < inf{E0(u) : u ∈ ∂Bρ(u−)}, (6.1)

where ∂Bρ = {u ∈ W 1,p(Ω) : ‖u − u−‖W 1,p(Ω) = ρ}. Assertion (6.1) along with
the fact that E0 satisfies the Palais-Smale condition (see Lemma 6.2) enables us
to apply the Mountain-Pass Theorem to E0 (see [57]) which yields the existence of
u0 ∈W 1,p(Ω) satisfying E′0(u0) = 0 and

inf{E0(u) : u ∈ ∂Bρ(u−)} ≤ E0(u0) = inf
γ∈Γ

max
t∈[−1,1]

E0(γ(t)), (6.2)

where

Γ = {γ ∈ C([−1, 1],W 1,p(Ω)) : γ(−1) = u−, γ(1) = u+}.

We see at once that (6.1) and (6.2) show u0 6= u− and u0 6= u+, and therefore, u0

is a sign-changing solution provided u0 6= 0. In order to prove u0 6= 0 we are going
to show that E0(u0) < 0 which is satisfied if there exists a path γ̃ ∈ Γ such that

E0(γ̃(t)) < 0, ∀t ∈ [−1, 1].

Let S = W 1,p(Ω) ∩ ∂BL
p(∂Ω)

1 , where ∂B
Lp(∂Ω)
1 = {u ∈ Lp(∂Ω) : ‖u‖Lp(∂Ω) = 1},

and SC = S ∩ C1(Ω) be equipped with the topologies induced by W 1,p(Ω) and
C1(Ω), respectively. Furthermore, we set

Γ0 = {γ ∈ C([−1, 1], S) : γ(−1) = −ϕ1, γ(1) = ϕ1},
Γ0,C = {γ ∈ C([−1, 1], SC) : γ(−1) = −ϕ1, γ(1) = ϕ1}.

In view of assumption (g1) there exists a constant δ2 > 0 such that

|g(x, s)|
|s|p−1

≤ µ, for a.a. x ∈ ∂Ω and all 0 < |s| ≤ δ2, (6.3)

where µ ∈ (0, λ − λ2). We select ρ0 ∈ (0, λ − λ2 − µ). Thanks to the results of
Mart́ınez and Rossi in [49] we have the following variational characterization of λ2

given by (see (2.2)-(2.3) in Section 2)

λ2 = inf
γ∈Γ0

max
u∈γ([−1,1])

∫
Ω

[
|∇u|p + |u|p

]
dx. (6.4)

Since (6.4) there exists a γ ∈ Γ0 such that

max
t∈[−1,1]

‖γ(t)‖pW 1,p(Ω) < λ2 +
ρ0

2
.
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It is well known that SC is dense in S. This implies the density of Γ0,C in Γ0 and

thus, for a fixed number r satisfying 0 < r ≤ (λ2 + ρ0)
1
p − (λ2 + ρ0

2 )
1
p , there is a

γ0 ∈ Γ0,C such that

max
t∈[−1,1]

‖γ(t)− γ0(t)‖pW 1,p(Ω) < r.

This yields

max
t∈[−1,1]

‖γ0(t)‖pW 1,p(Ω) < λ2 + ρ0.

Let δ := min{δf , δ2}, where δf is the constant in condition (f4). Due to the bound-

edness of the set γ0([−1, 1])(Ω) in R ensures the existence of ε0 > 0 such that

ε0|u(x)| ≤ δ for all x ∈ Ω and all u ∈ γ0([−1, 1]). (6.5)

Lemma 4.3 ensures that u+,−u− ∈ int(C1(Ω)+). Thus, for every u ∈ γ0([−1, 1])
and any bounded neighborhood Vu of u in C1(Ω) there exist positive numbers hu
and ju satisfying

u+ −
1

h
v ∈ int(C1(Ω)+) and − u− +

1

j
v ∈ int(C1(Ω)+), (6.6)

if h ≥ hu, j ≥ ju, v ∈ Vu. By a compactness argument from (6.6) we conclude the
existence of ε1 > 0 such that

u−(x) ≤ ε̃u(x) ≤ u+(x) for all x ∈ Ω, u ∈ γ0([−1, 1]) and ∀ε̃ ∈ (0, ε1). (6.7)

Let 0 < ε < min{ε0, ε1}. Now, we consider the continuous path εγ0 in C1(Ω)
joining −εϕ1 and εϕ1. We obtain by using hypothesis (f4)

−
∫

Ω

∫ εγ0(t)(x)

0

f(x, T0(x, s))dsdx ≤ 0. (6.8)

Applying (6.3), (6.5), (6.6), (6.7),(6.8) and the fact that γ0([−1, 1]) ⊂ ∂BL
p(∂Ω)

1 we
have

E0(εγ0(t))

=
εp

p
[‖∇γ0(t)‖pLp(Ω) + ‖γ0(t)‖pLp(Ω)]−

∫
Ω

∫ εγ0(t)(x)

0

f(x, T0(x, s))dsdx

−
∫
∂Ω

∫ εγ0(t)(x)

0

[
λ|T ∂Ω

0 (x, s)|p−2T ∂Ω
0 (x, s) + g(x, T ∂Ω

0 (x, s))
]
dsdσ

<
εp

p
(λ2 + ρ0)− εp

p
λ−

∫
∂Ω

∫ εγ0(t)(x)

0

g(x, s)dsdσ

<
εp

p
(λ2 + ρ0 − λ+ µ)

< 0 for all t ∈ [−1, 1].

(6.9)

In the next step we are going to construct continuous paths γ+, γ− which join εϕ1

and u+, respectively, u− and −εϕ1. We denote

c+ = c+(λ) = E+(εϕ1),

m+ = m+(λ) = E+(u+),

E
c+
+ = {u ∈W 1,p(Ω) : E+(u) ≤ c+}.
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Since u+ is a global minimizer of E+, we see at once that m+ < c+. Using Lemma
5.1 yields the nonexistence of critical values in the interval (m+, c+]. Due to the
coercivity of E+ along with its property satisfying the Palais-Smale condition (see
Lemma 6.2), we can apply the Second Deformation Lemma (see, e.g. [38, p. 366]) to
E+. This guarantees the existence of a continuous mapping η ∈ C([0, 1]×Ec++ , E

c+
+ )

with the following properties:

(i) η(0, u) = u for all u ∈ Ec++

(ii) η(1, u) = u+ for all u ∈ Ec++

(iii) E+(η(t, u)) ≤ E+(u), ∀t ∈ [0, 1] and ∀u ∈ Ec++ .

We introduce the path γ+ : [0, 1] → W 1,p(Ω) given by γ+(t) = η(t, εϕ1)+ =
max{η(t, εϕ1), 0} for all t ∈ [0, 1]. Apparently, γ+ is continuous in W 1,p(Ω) and
joins εϕ1 and u+. Moreover, we have

E0(γ+(t)) = E+(γ+(t)) ≤ E+(η(t, εϕ1)) ≤ E+(εϕ1) < 0 for all t ∈ [0, 1]. (6.10)

Analogously, we can apply the Second Deformation Lemma to the functional E−
and obtain a continuous path γ− : [0, 1] → W 1,p(Ω) between −εϕ1 and u− such
that

E0(γ−(t)) < 0 for all t ∈ [0, 1]. (6.11)

Putting the paths together, γ−, εγ0 and γ+ yield a continuous path γ̃ ∈ Γ joining
u− and u+. In view of (6.9), (6.10) and (6.11) it holds u0 6= 0. So, we have found
a nontrivial sign-changing solution u0 of problem (1.1) satisfying u− ≤ u0 ≤ u+.
This completes the proof. �
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