RESONANT (p,2)-EQUATIONS WITH CONCAVE TERMS

NIKOLAOS S. PAPAGEORGIOU AND PATRICK WINKERT

ABSTRACT. We consider a nonlinear, nonhomogeneous parametric elliptic Dirich-
let equation driven by the sum of a p-Laplacian and a Laplacian (so-called
(p, 2)-equation) and with a nonlinearity involving a concave term which enters
with a negative sign. By applying variational methods along with truncation
and comparison techniques as well as Morse theory (critical groups), we show
that the problem under consideration has at least five nontrivial solutions (four
of them have constant sign) for all sufficiently small values of the parameter.

1. INTRODUCTION

Let Q C RY be a bounded domain with a C2-boundary 9 and let 1 < ¢ < 2 <
p < co. We study the following nonlinear nonhomogeneous parametric Dirichlet
problem
—Apu — Au = f(z,u) — Mu|T?u in Q,
u=0 on 0,
where A, denotes the p-Laplace differential operator defined by

Apu = div (|[Vull§’Vu)  for all ue W P(9).

(P)x

Here A > 0 is a parameter to be specified and since 1 < ¢ < 2 < p < oo the
right-hand side in problem (P), contains a concave term given through —\|u|?~2u.
The perturbation f : Q@ x R — R is a Carathéodory function (that is, z — f(z, s) is
measurable for all s € R and s — f(x, s) is continuous for a.a. x € Q) being (p—1)-
linear near +o0o and resonance can occur with respect to the principal eigenvalue

Ai(p) > 0 of (pr, Wol’p(Q)). The aim of this work is to prove the existence of

multiple solutions as the parameter A > 0 varies.

The study of elliptic problems with concave nonlinearities started with the sem-
inal work of Ambrosetti-Brezis-Cerami [3], who examined a semilinear equation
driven by the Dirichlet Laplacian and with a parametric reaction of the special
form

f(s) = Als|"™2s + |s|"?s, (1.1)
where
oN
= if N>
l<g<2<r<2f=¢ N2 N =3

+oo fN=1,2"

In (1.1) we have the competing effects of two distinct nonlinearities of differ-
ent nature meaning that there is a concave term \|s|?72s and also a convex one
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|s|"=2s. The authors of [3] were interested to find positive solutions and proved that
the problem has two positive solutions provided A > 0 is sufficiently small. Ad-
ditional results for problems with combined nonlinearities as above were obtained
by Bartsch-Willem [4], Li-Wu-Zhou [17], and Wang [24]. Extensions to equations
driven by the Dirichlet p-Laplacian can be found in Garcia Azorero-Peral Alonso-
Manfredi [10], Gasiniski-Papageorgiou [12], Guo-Zhang [13], Hu-Papageorgiou [14],
and Marano-Papageorgiou [19]. In all of the aforementioned works, the parametric
concave term enters in the reaction with a positive sign. In our problem (P), the
parametric concave term appears in the reaction with a negative sign. This produces
a different geometry for the problem and therefore leads to a different multiplicity
theorem. Semilinear problems with such a concave term were investigated by de
Paiva-Massa [9], Papageorgiou-Rédulescu [21], and Perera [22].

We mention that equations involving the sum of a p-Laplacian and a Laplacian
(also known as (p, 2)-equations) arise in mathematical physics, see, for example, the
works of of Benci-D’Avenia-Fortunato-Pisani [5] (quantum physics) and Cherfils-
I'yasov [7] (plasma physics).

Our approach is variational based on critical point theory coupled with suitable
truncation and comparison techniques as well as Morse theory (critical groups). In
the next section, for the reader’s convenience, we review the main mathematical
tools that we will use in the sequel.

2. PRELIMINARIES

Let X be a Banach space and X* its topological dual while (-,-) denotes the
duality brackets to the pair (X*, X).

Definition 2.1. The functional ¢ € C1(X) fulfills the Palais-Smale condition (the
PS-condition for short) if the following holds: Every sequence (up)n>1 C X such
that (¢(un))n>1 is bounded in R and ¢'(u,) — 0 in X* as n — oo, admits a
strongly convergent subsequence.

This compactness-type condition on ¢ leads to a deformation theorem which is
the main ingredient in the minimax theory of the critical values of ¢. A basic result
in that theory is the so-called mountain-pass theorem.

Theorem 2.2. Let ¢ € C’l(X) be a functional satisfying the PS-condition and let
ur,uz € X, luz —usl[x > p >0,

max{@(“l% SD(UQ)} < lnf{(p(u) : ||u — U1HX = p} = mp
and ¢ = inf,er maxo<i<1 p(7(t)) with T = {y € C([0,1],X) : v(0) = u1,v(1) =

uz}. Then ¢ > m, with c being a critical value of .

In the analysis of problem (P), in addition to the Sobolev space W, () we
will also use the ordered Banach space

Co(Q) = {ueC () :ul,, =0}
and its positive cone
Co() 4 ={ueCy(Q) :u(z) >0 forall z € Q}.

This cone has a nonempty interior given by

int (C5(Q)4) = {u € Cy(Q) s u(xr) >0 Ve €Q, and g—Z(aB) <0Vze 89} ,
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where n = n(x) is the outer unit normal at x € 9.

Throughout this paper we denote the norm of W, () by ||- ||W01,p(9) and thanks
to the Poincaré inequality it holds Hu||W01,p(Q) = ||Vul|, for all u € W, P(Q), where
| - ||, stands for the usual LP-norm. The norm of RY is denoted by || - |gpy and
(+,-)gr~ stands for the inner product of RV,

Let fo: 2 x R — R be a Carathéodory function satisfying a subcritical growth
with respect to the second argument, that is

\fo(z,s)| <a(z) (1+]s|""") foraa z€Qandalls€eR,
with @ € L>®(Q)4, and 1 < r < p*, where p* is the critical exponent of p given by

b — »%  ifp<N,
400 if p> N.

Let Fy(z,s) = [ fo(x,t)dt and let ¢y : WyP(€2) = R be the C'-functional defined
by

1 1
colw) = |Vull? + 2 vul3 - / Fo(z, u)de.
D 2 Q

The next result is a special case of a more general theorem of Aizicovici-Papageorgiou-
Staicu [2] and essentially is an outgrowth of the nonlinear regularity theory (see
Ladyzhenskaya-Ural’tseva [15], Lieberman [10]).

Theorem 2.3. If ug € WP (Q) is a local C}(Q)-minimizer of oo, i.e., there exists
po > 0 such that

vo(uo) < wo(ug +h) for all h € C5(Q) with Hh||cé(§) < po,

then ug € CyP(Q) for some B € (0,1) and ug is also a local Wy (Q)-minimizer of
o, i.e., there exists py > 0 such that

wolug) < wolug +h) for allh € WOLP(Q) with ||hHW01,p(Q) < pi.

Remark 2.4. The first result in this direction was obtained by Brezis-Nirenberg [6].
Subsequently important extensions were proved by Garcia Azorero-Peral Alonso-
Manfredi [10], Guo-Zhang [13], and Winkert [25].

Given 1 < r < 0o, we denote by A, : Wy () — W1 (Q) with 1+ L =1 the
r-Laplacian defined by

(Ayu,v) = / V|53 (Vu, Vo)gnda  for all u,v € Wy (). (2.1)
Q

If r = 2, then A, = A becomes the well-known Laplace operator and we have
A€ L(Hg(Q),H1(Q)), where £ (Hg (), H1()) denotes the vector space of all
bounded linear operators from H}(Q) into H~1(Q2). The next proposition summa-
rizes the main properties of the map —A, (see Gasiriski-Papageorgiou [11]).

Proposition 2.5. If A, : Wy (Q) — W=L7(Q) with 1 < r < oo, 1+L =1,
is defined by (2.1), then A, is bounded (in the sense that it maps bounded sets
to bounded sets), continuous, strictly monotone (hence mazimal monotone) and of
type (8)y, i.e., if u, — u in Wy'P(Q) and limsup,, .. (—Aptn, un —u) < 0, then

Uy, — u in Wy P(Q).
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Let A1 (p) be the first eigenvalue of the negative Dirichlet p-Laplacian (—Ap, Wyt (Q))
which has the subsequent properties:

° 5\1(p) is positive, simple and isolated;

[ )
[Vull3

A p) = inf
1(p) Tl

cue Wy (Q),u # o} . (2.2)

The infimum in (2.2) is realized on the one dimensional eigenspace whose el-
ements do not change sign which easily follows from the representation in (2.2).
Denote by 41 (p) the LP-normalized eigenfunction (i.e. |41 (p)|l, = 1) associated to
A1(p), the nonlinear regularity theory implies that 4 (p) € C3(Q) and the usage
of the nonlinear maximum principle (see Gasiniski-Papageorgiou [11, pp. 737-738])
yields @, (p) € int (C§(Q)4).

In addition to A;(p) > 0, the Lusternik-Schnirelmann minimax scheme gives a
whole strictly increasing sequence (5% (p)) of eigenvalues of (—Ap, I/VO1 P (Q))

k>1
such that Ap(p) — +oo as k — oo. If p # 2 we do not know if this sequence

exhausts the whole spectrum of (—A,, W, ?(Q)) but in case N = 1 (ordinary dif-
ferential equations) or p = 2 (linear eigenvalue problem) the answer is positive. In

the case p = 2 we denote by F (5\;@(2)) ,k > 1, the finite dimensional eigenspace
corresponding to the eigenvalue e (2). Applying classical regularity theory we have
that £ (5\;@(2)) C C}() for all k > 1 and the eigenspace has the so-called unique
continuation property (ucp for short) meaning that if u € E (5\;€ (2)) vanishes on a

set of positive Lebesgue measure, then u(z) = 0 for all x € Q. For every k > 1 we
set

Te=@r (@) md H=T = @ (o).
i=1 i>k+1

In the linear case we have a variational characterization for all eigenvalues, namely

Q . Vul3
A1(2) = inf [||||u||22 cu € Hi(Q),u # 0:| (2.3)
2
and for k > 2
A u 2 —
Ak (2) = max [|||VT|!2 cu € Hy,u# O]
il (2.4)

112
= min [HVAUQQ 0 € Hi_1,0 # O] .
a3

Taking into account the ucp of the eigenspaces along with (2.3), (2.4) we obtain
the subsequent lemma.

Lemma 2.6.
(a) If k > 1,9 € L®(Q)4,9(z) < Ap(2) a.e. in Q with 9 # M\e(2), then there
exists &g > 0 such that

Va3 — / ditde > &o||il ) for all @ € Hy—1.
Q
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(b) If k> 1,9 € L®°(Q)4,9(x) > M\e(2) a.e. in Q with 9 # M\.(2), then there
ezists & > 0 such that

|val? - / 0i2d < —& [l for allwe Hy.
Q 0

Using the properties of A;(p) we derive the following result (see, for example,
Papageorgiou-Kyritsi [20, p. 356]).

Lemma 2.7. Let 9 € L>®(Q) be such that ¥(z) < A (p) a.e. in Q and ¥ # A1 (p).
Then there exists a number & > 0 such that

IVully ~ [ dlulde > &allullysg) for allu e WoT(@)

Next, we briefly recall some basic definitions and facts about Morse theory related
to critical points. To this end, let X be a Banach space, ¢ € C1(X) and ¢ € R. We
introduce the following sets.

={ueX:pu)<c} (the sublevel set of ¢ at c¢),
K,={ue X :¢(u)=0} (the critical set of ),
Kg={u€ K,:p(u)=c} (the critical set of ¢ at the level ¢).

Let (Y1, Y>3) be a topological pair such that Yo C Y7 C X. For every integer k > 0 we

denote by Hy(Y7,Y3) the k % relative singular homology group of the pair (Y1, Y>?)
with integer coefficients. The critical groups of ¢ at an isolated ug € K are defined
by

Cr(p,uo) = Hg (¢°NU, °NU\ {up}) for all integers k > 0,

where U is a neighborhood of ug such that K, N ¢“NU = {up}. The excision
property of singular homology theory implies that the definition of critical groups
above is independent of the particular choice of the neighborhood U.

If ug € X is a local minimizer of ¢, then

Cr(p,up) = 0k 0Z for all k > 0, (2.5)

where Jy, o is the Kronecker symbol, that is

P 1 ifk=0
MO0 k>
For s € R, we set s* = max{=+s,0} and for u € W, "*(Q2) we define u*(-) = u(-)*.
It is well known that
uF e Wy P(Q), |ul=ut+uT, u=ut—u.

The Lebesgue measure on R will be denoted by || . Finally, for any Carathéodory
function h : 2 x R — R we define the Nemytskij operator Ny, : LP(Q) — (LP(Q))*
corresponding to the function h by

Nu(u)(-) = h(-;u(-).
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3. CONSTANT SIGN SOLUTIONS

In this section we prove the existence of constant sign solutions for problem (P),.
We impose the following conditions on the perturbation f: Q) x R — R.
Hi: f: QxR — R is a Carathéodory function such that f(z,0) = 0 for a.a.
x € Q and
(i) [f(z,s)] < a(z) (1+|s[P7t) for a.a. € Q, for all s € R, and with
a € L>(Q)4;
(i) limsup, 4. ";l(f,‘z)s < A1(p) uniformly for a.a. x € Q and there exists
&o > 0 such that

flx,8)s — pF(x,s) > =& fora.a. x € Q and for all s € R,

where F(z,s) = [ f(x,t)dt;
(iii) there exist functions 1,7 € L*°(02); such that

M(2) < nlz) ae. in Qn#A(2)

and

5—0 S s—0 S

<(z)

uniformly for a.a. x € Q;
(iv) f(=,-) is locally lower Lipschitz for a.a. = € , that is, for every
compact set K C R, there exists a constant cx > 0 such that

flz,s1) — f(x,82) > —ci|s1 — sa| for all 51,59 € K.

Remark 3.1. Hypothesis Hy (ii) implies that we can have resonance asymptotically
at oo with respect to A1 (p) > 0.

In order to prove the existence of constant sign solutions we consider the positive
and negative truncations of the reaction in problem (P), for A > 0, namely the
Carathéodory functions

gi[(a?, s) = f(z,+sF) F A (si)q_l .

We set G (x,8) = IN g5 (x,t)dt and consider the C''-functionals ¢ : WyP(Q) = R
defined by

1 1
oy (u) = [ Vullh + §||Vu||§ —/ G (w,u)da.
p Q

The corresponding energy functional @y : Wy (Q2) = R to problem (P), is defined
by

1 1 A
oa(u) = —[[Vullp + §||Vu||§ + —lull§ - / F(z,u)dz,
p q Q

which is of class C'! as well. First, we will see that the functionals stated above are
coercive.

Proposition 3.2. Let hypotheses Hy be satisfied and let A > 0. Then the function-
als gaf and @y are coercive.
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Proof. We will show the proof only for <pj{, the proofs for the other functionals work
similarly. Arguing by contradiction we suppose that 4,0; is not coercive. Then we
find a sequence (uy,)n>1 C Wol’p(Q) and a number M; > 0 such that

Hun”wolvp(g) — oo and gpf\(un) < M.

The second relation gives
1 1
IVl + 5Vl —/ Gf (ryun)de < My foralln>1.  (3.1)
Q

Taking vy, = - implies ||yn||W01.,p(Q) =1 and we may assume that

”un”W[}vP< )
Yo =y mW,P(Q) and y, —y in LP(Q) (3.2)
with some y € WO1 "P(Q). Applying the representation of y,, inequality (3.1) becomes
+
Gy (z,un) de < M,

for all n > 1. (3.3)
D = D =
Q ||un||W017P(Q) ||u7l||W01P(Q)

1
I Vumlly =

Because of hypothesis H; (i) we have that

(GI(-,unc))

T > C L'(Q) is uniformly integrable.
Un,
n>1

P
WP (9)

Taking into account the Dunford-Pettis theorem along with assumption Hj (ii) we
obtain

(-
ALl L Ly e (3.4
HunHWOl"(Q) p

with ¥ € L>=(Q) satisfying 9(x) < A;(p) a.e. in Q. Passing to the limit in (3.3) as
n — oo and applying (3.2) as well as (3.4) yields

IVallp < [ o) o (35
which implies
vl < [ 06y a. 36)
Suppose now that 9 # 5\1(]9). Then from (3.6) and Lemma 2.7 we get y* = 0. So
inequality (3.5) implies y~ = 0, that is y = 0. Then, using (3.3), we see that
Yo — 0 in Wy P(Q),

a contradiction to the fact that Hyn||W01,p(Q) =1foralln>1.
Now we assume that 9(z) = Ay (p) a.e. in . Then (3.6) and (2.2) give

Iy 7 = Xa) [l
which means that
yt =&y (p) for some & > 0.

If £ = 0, then y* = 0 and due to (3.5) y = 0. Hence, because of (3.3), y, — 0
in W, ”(Q) which is a contradiction since [Ynllyyr(qy =1 for all n > 1.
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If £ > 0, then y* € int (C§(2)+) and so y™(z) > 0 for all z € Q. Since y™ is the
limit of y;© in W, P(Q) (see (3.2)) and y;" = W it follows that

Wi P (Q)
uf () = +oo for a.a. z € Q. (3.7

Thanks to hypothesis Hy (i) and since ¢ < p we further obtain for a.a. x € Q and
for all u >0

d G (wu)  fl@uu? = 2Pt — pF(z,u)up~" 4 Puttr!

du  uP u2p
flx,u)u — Mu? — pF(x,u) + %uq
- uptl
&
- quptl’

We conclude

Cilen)_Gilew 61 1] .
yp ub D yp ub
for a.a. x € Q and for all y > u > 0. From hypothesis H;(ii) we see at once that
I3 .
lim sup M < A1(p) uniformly for a.a. x € Q.
s—+oo Is‘p

Then, passing in (3.8) to the limit as y — 400, since ¢ < p, we derive

M) Gl &1

for a.a. z € Q and for all u > 0,

w2 W
which implies
A .
pF(z,u) — P A(p)uf <& for a.a. x € Q and for all u > 0. (3.9)
q

Inequality (3.1) can be written as
1 1
—[[Vun |5 + §\|Vun||% < M, —|—/ GY(x,up)dx for alln > 1,
p Q

which, due to (2.2) and (3.9), gives
Ap

§x1<z)uu;|\jgz\41p+/ﬂ [pp () = 22 ()" = M) ()|

< Ms
with My = Mip + &|Q|n > 0 and for all n > 1. This implies

2M.
/ (UZ)Q dr < — 2 foralln > 1. (3.10)
On the other side, from (3.7) and Fatou’s Lemma, we have
/ (u,‘f)zdm—%!—oo as n — 00. (3.11)
Q

Comparing (3.10) and (3.11) we reach a contradiction. This proves that ¢y is
coercive. g
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In general coercivity does not imply the PS-condition (see, for example, Gasiriski-
Papageorgiou [11, Example 5.1.15]). However, for the functionals Lpf and ¢, this
implication is true as stated in the next proposition, which is a consequence of
Proposition 2.2 of Marano-Papageorgiou [18]. For completeness we provide the
proof.

Proposition 3.3. If cpf and @y are coercive, then they satisfy the PS-condition.

Proof. The proof will be given only for ¢, the other ones work similarly. Suppose
(Un)n>1 C Wol’p(Q) is a PS-sequence, that is

| (un)| < My for some My > 0, for all n > 1, (3.12)
(goj\')l (up) = 0 in W17 (Q) as n — oo. (3.13)

The assertion in (3.12) along with the coercivity of ¢} implies that (un)n>1 C
WyP(€) is bounded. Therefore, we may assume that

U, —u in WyP(Q) and w, —u in LP(Q). (3.14)

From (3.13) it follows

(—Apun, hY + (—Auy, h) — / gx (z,uy)hdx
Q

< 8n||h||W01*"(Q)7

for all h € W, *(2) with &, — 0T. Now, choosing h = u,, — u € W,y"*(2), passing
to the limit as n — 0o, and using the convergence properties in (3.14) we obtain

lim [(—Aptn, un — u) + (=Auy, uy, — u)] =0,

n—oo

which by the monotonicity of —A implies that

lim sup [(—Aptp, un, — u) + (—Au, u, — u)] <O0.

n— oo

Applying again (3.14) we infer from the last relation

lim sup (—Aptp, un —u) <0,

n— oo

which by the (S)i-property of —A, (see Proposition 2.5) results in u, — u in
W, P(Q). Hence, ¢ fulfills the PS-condition. O

Proposition 3.4. If hypotheses Hy hold, then we can find \* > 0 such that for all
A € (0, \*) there exists t* = t*(X\) for which

ox (Ft"11(2)) < 0.

Proof. Given ¢ > 0, by virtue of hypotheses H; (i), (iii), there exists ¢; = ¢1(¢) > 0
such that

F(x,8) > = (n(z) —¢) s> —c1|s[P for a.a. 2 € Q and for all s € R. (3.15)

N =
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By means of (3.15) we have for ¢t > 0
N [, 2 DYZEN
o (ti(2) = S [V @) + 5 Vi@ + = s )1
- / F (2, tin (2)) da
Q
t2 . . 2
<3 / ()\1(2) - n(m)) (@1(2))2 da + €| + c2 [P + At1]
Q

for some ¢ > 0. Thanks to hypothesis Hy (iii) and since @1(2) € int (C§(Q)4) we
conclude

€ = / () = 2a(2)) (@0 (2)) dz > 0.

Q
Choosing ¢ € (0,£&,) we have
th1(2)) < —cst® + o [tP + A9

e (ti1(2)) 3 _22[ % ] 2 (3.16)

= [CQ (fp + At? ) — 03] t

for some c3 > 0 and for all £ > 0.
Let Bx(t) = tP72 + A\t?72 for all ¢ > 0. Obviously, By € C'(0,00) and since
q < 2 < p it follows

Ba(t) = +oo ast— 0T and as t — +oo.
Hence, we find a number ¢, € (0, 400) such that
B (to) = inf [Br(t) : t > 0] > 0.
Moreover, it holds
Bilto) = [(p— 2t~ + Ma - 28] =0,
which implies

w=tot = M=)

We see that B5(to(\)) — 0 as A\ — 0F. Therefore, there exists a number A\* > 0

such that

B (to) < %Z for all A € (0, \*).

Taking t* = ¢*(\) = to(A), inequality (3.16) gives
or (171 (2) < 0.
(]

The next proposition will be helpful in verifying the mountain-pass geometry of
the functionals gpf and @,.

Proposition 3.5. Let hypotheses Hy be satisfied and let X > 0. Then u =0 is a
local minimizer of the functionals @f and @)y .
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Proof. As before we will do the proof only for ¢} . By virtue of hypothesis H; (iii)
there exist numbers ¢4 > 0 and § > 0 such that

F(x,8) < cys® for a.a. o € Q and for all s € [0,4]. (3.17)

Let u € C}(Q) satisfy ||“HC§(§) < 4. Applying (3.17) it follows

1 1
X () = —[IVull} + 5[ Vull3 —/ G (z,u)dx
p Q

1 1 A _
> —||Vullh + §||Vu||§ + [q - C4||u||2c(g)] Hu+HZ (3.18)

_ 3

1 A
> 29l + 51Vl + |3 e ] .

3

1
Choosing § > 0 such that § < (q%) *" we infer from (3.18)

i (u) > 0= (0) forall ue Cj(Q) with ”uHCé(ﬁ) <6

This means that u = 0 is a local C}(Q)-minimizer of ¢} and because of Theorem
2.3 u =0 is also a local Wol’p(Q)—minimizer of cpj\r. The proofs for ¢, and ¢y can
be done in the same way. O

Now, we will apply the mountain-pass theorem (Theorem 2.2) and the direct
method to prove the existence of at least four nontrivial constant sign solutions of
(P)y for all A > 0 sufficiently small whereby two of the solutions have positive sign
and the other ones have negative sign. In what follows A* > 0 denotes the number
obtained in Proposition 3.4.

Proposition 3.6. Let hypotheses Hy be satisfied and let X € (0, \*). Then problem
(P)x admits at least four nontrivial solutions of constant sign, namely

ug, 4 € Cy ()4 \ {0} and v, 0 € — (Cy(Q)4) \ {0}
such that
uo(x),4(z) >0 forallzeQ and wvo(x),0(x) <0 forallz e Q.
Moreover, ug and vg are local minimizers of .

Proof. Taking into account Proposition 3.2 we know that gpj is coercive for all
A > 0. Moreover, by applying the Sobolev embedding theorem we easily verify that
¢y is sequentially weakly lower semicontinuous as well. Therefore, by virtue of the
Weierstrass theorem, there exists an element ug € WO1 P(£2) such that

o} (uo) = inf [gp;(u) cue whr@)]. (3.19)

From Proposition 3.4 it follows that if A € (0, A*) we can find a number t* = t*(X\) >
0 such that

o (t*01(2)) <0,
. _ + ~ . 1/
which ensures, due to ¢y 1@y, = P |C1(§)+ and 41 (2) € int (C§(€2)4), that
0 0

eF (t*01(2)) < 0.



12 N. S. PAPAGEORGIOU AND P. WINKERT

Hence, because of (3.19), we obtain
¢x (uo) < 0= ¢3(0),
implying ug # 0. Since ug is a critical point of goj\' we have

(¥3) (o) =0,
that is,

(—Apug, h) + (—Aug, h) = <Ng1 (uo),h> for all h € WEP(Q). (3.20)

Taking h = —uy; € W, P(Q) as test function in (3.20) gives ug > 0. Therefore,
(3.20) becomes

(= ptto, h) + (~Aug, h) = Ny (uo) = g ™' b)) for all h e Wy(%),
meaning that ug solves our original problem
—Ayug — Aug = f(x,u9) — Mud ™ in Q,
u=20 on JN).

Note that ug € L>*(2) (see Ladyzhenskaya-Ural’tseva [15, p. 286]) and by means of
the regularity results of Lieberman [16, Theorem 1] we infer that ug € C3(Q)+\{0}.

Now, let a : RY — RY be the map defined by a(¢) = H§||§}2€ + &. Since p > 2
it is easy to see that a € C* (RN, RN). There holds

§®¢
(I3[

(3.21)

Va(§) = |15 |1+ (p - 2) 41 forall¢ e RN

and
(Va(@)y, y)gy > H§||]?§N for all £,y € RY.

Thanks to hypothesis Hy (iv) we may apply the tangency principle of Pucci-Serrin
[23, p. 35] which gives

up(x) >0 for all z € Q.

Claim: wyg is a local C}(Q)-minimizer of ¢,.
Arguing by contradiction suppose we can find a sequence (uy), ~; C C} () such
that -

U, —ug  in C3(Q) and  px(un) < @x(uo).
Since 90)‘|Cl(ﬁ)+ = gaj\'|cl(§)+ and because of (3.19) it follows
0 0
0 > oa(un) — pa(uo)
= @A(un) - ‘P;\F<UO>
> oa(un) — ‘Pj(un)

1 1 A
= IVl 51Vl + Sl = [ oo (322

1 1 A
— IV = Il = 5t + [ P (o) do
A

= Xz |7 - /QF(I, —u3) da.

q
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By virtue of hypotheses Hy (i)—(iii) there exist numbers ¢, ¢cg > 0 such that
F(z,s) < c58% +cgls|P for a.a. € Q and for all s € R. (3.23)
Applying (3.23) in (3.22) yields

0> @a(un) — @a(uo)
Ay
q

v

Juz g = 5 flu I3 = co [l [ (3.24)

Ay _2- _p— _
el = fes e oy eo e oy ] e -

Since ug > 0 we note that u;, — 0 in C(Q2). Therefore, (3.24) implies the existence
of a number ng > 1 such that

0 > @alun) — pa(ug) >0 for all n > nyg,

which is a contradiction. This proves the Claim.

Taking into account the Claim and Theorem 2.3 we obtain that ug is a VVO1 P(Q)-
minimizer of cp;f.

From Proposition 3.5 we know that v = 0 is a local minimizer of <p;f. We
may assume that it is an isolated critical point of cpf\ or otherwise we have a whole
sequence of distinct positive solutions of (P),. Then, from Aizicovici-Papageorgiou-
Staicu [1, Proof of Proposition 29] (see also de Figueiredo [8, Theorem 5.10, p. 42])

we can find a number p € (0, ||u0HW01,p(Q)) sufficiently small such that

@5 (o) < 0= 9} (0) < inf [ (u) 5 Jullyangqy = p| =} (3.25)

Recall that @}L\ is coercive (see Proposition 3.2). So, Proposition 3.3 implies that
¢ fulfills the PS-condition. This fact along with (3.25) permit the usage of the
mountain-pass theorem stated in Theorem 2.2 to obtain an element @ & VVO1 P(Q)
such that

U € K@;r and m} < o1 (4). (3.26)
Since u € ij we have (goj)/ (@) = 0, that is
(—Ayi, h) + (—Ad, by = <NgI (ﬁ),h> for all h € WlP(Q). (3.27)

Taking h = —i~ € WyP(Q) in (3.27) gives [Va~ |2 + Va3 = 0. Thus, @ > 0.
From (3.25) and (3.26) it follows that @ & {0,uo} and 4 is a positive solution of
(P) with A € (0, A*). As before the nonlinear regularity theory and the tangency
principle imply that 4 € C3(Q)4 \ {0} with a(z) > 0 for all z € Q.

Similarly, working with ¢y instead of goj\', we show the existence of two negative
constant sign solutions vg, 9 € — (C3(Q)4) \ {0} with vo(x),d(x) < 0 for all x €
Q. O

4. FIVE NONTRIVIAL SOLUTIONS

In this section we have to strengthen the hypotheses of the nonlinearity f :
Q) x R — R in order to prove the existence of a fifth nontrivial solution of problem
(P)y for all A > 0 sufficiently small. We suppose the following conditions.
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Hy: f: QxR — Ris a measurable function such that f(x,0) = 0 for a.a. z € Q,
f(z,") € CY(R) and
(i) [fi(z,s)| < a(z) (14 |s[P72) for a.a. z € Q, for all s € R, and with
a € L>(Q)y;
(i) limsup,_, 4o ‘il(f,’sz)s < A1(p) uniformly for a.a. z €  and there exists

&o > 0 such that

f(z,8)s — pF(x,s) > =& for a.a. z € Q and for all s € R,

where F(z,s) = [ f(z,t)dt;
(iii) there exist an integer m > 3 such that

fi@,0) € [An(@), Ams1(2)] 2 in @,
with f;(’()) 7& S‘m(Q)’f‘;(WO) 7é 5‘m+1(2) and

£1(2,0) = tim L%

uniformly for a.a. x € Q;
s—0 S

(iv) |F(z,s)| < 3‘"”“21(2) s+ :\lzsp) |s|P for a.a. z € Q and for all s € R.

Remark 4.1. The differentiability of f(x,-) along with hypothesis Hs (i) imply that
f(zx,-) is locally Lipschitz.

Let

Then we have
WoP(Q) = Ve P W and  dy, = dim V;, < 00,
In what follows let
0By = {ue Vi llulyypnigy = p}op>0.
Proposition 4.2. If hypotheses Ho hold, then we can find A € (0, \*], where
A* > 0 is as in Proposition 3.4, such that for all X\ € (0, \j) there exists a number
p = p(A) >0 for which
sup [ (u) : u € dB)'| < 0.

Proof. Let n(x) = f.(x,0). Given € > 0, by virtue of hypotheses Hs(i),(iii), there
exists a number ¢; = ¢7(g) > 0 such that

F(x,8) > = (n(z) —¢)s* —c7|s|P for a.a. 2 € Q and for all s € R. (4.1)

N | =
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Taking into account (4.1) we obtain for u € V,,

1 1 A
oa(u) = —[[Vullp + §||Vu||§ + = lullg = / F(z,u)dz
p q Q

1 1 A 1
< SVl + < || Vaull3 + =|julld - = 2d
_pll ullp + 5 UI|2+qIIU\|q 2/{)77(33)1& x

£
+ 5Hu||§ + cr||ullb (4.2)
1
— 3 [IVul3 - [ el +elulg]
Q
1 A
+[quw+quw+wmm]

Because of u € V,;,, and due to hypothesis Hy(iii) along with Lemma 2.6(b) we verify
that

IVul} ~ [ nie)lds < & Julfyy o
Q

Since V,,, is finite dimensional it is clear that all norms of V,,, are equivalent. There-
fore, from (4.2) and for € > 0 sufficiently small, we have

(@) < —esllullZynr gy + o (Ml g + el gy )

-2 —2
= [ s+ eo (Mully 2o g + Il ) )] Tl

for some cg = cg(g),co > 0.

We consider the function ﬁA,\(t) = At972 4 tP=2 and recall that ¢ < 2 < p. As in
the proof of Proposition 3.4 we can find A* > 0 such that for all A € (0, 5\*) there
exists p = p(A) > 0 for which

pa(u) <0 forallue€ dB)".
Taking A§ = min {5\*, )\*} proves the assertion of the proposition. ([

We have another useful result.

Proposition 4.3. Let hypotheses Ho be satisfied and let X > 0. Then there holds
‘P/\’Wm = 0.

Proof. Taking into accout (2.2), (2.4) as well as hypothesis Ha(iv) we have for
ue W,

1 1 A
ea(u) = = Vull® + 5 [|Vull3 + =[lullf — / F(x,u)dx
D 2 q Q

1 “ 1 N
> IVl = M @luli] + 5 [IVul = A (2)ull
> 0.

(Il

Now we are ready to prove the complete multiplicity theorem concerning problem
(P)y for all A > 0 sufficiently small.



16 N. S. PAPAGEORGIOU AND P. WINKERT

Theorem 4.4. If hypotheses Hy hold, then there exists A\j > 0 such that for all
A € (0,A§] problem (P)y admits at least five distinct nontrivial solutions

wo. € CHE \ {0}, vos € — (CH@1) \ {0}, and yo € CE)\ {0}
such that
uo(x),4(z) >0 forallzeQ and wvo(x),0(x) <0 forallz Q.

Proof. As it is always the case in multiplicity theorems, we assume that the energy
functional ) has a finite critical set or otherwise we already have a fifth solution
and so we are done (recall that the critical points of the energy functional are
solutions of our problem). From Proposition 3.6 we know that we can find A* > 0
such that for all A € (0, A*) problem (P)) has at least four nontrivial constant sign
solutions

worit € CH(@), \ {0} and wp,0 € — (CH@),)\ {0}
such that
uo(x),4(x) >0 forallz € Q and wvo(z),0(x) <0 forall z € Q.

From Proposition 3.6 we know that ug and vy are local minimizers of ¢,. Hence,
due to (2.5),

Ck (o, u0) = Ck (o, v0) = 0k oZ for all k > 0. (4.3)

Furthermore, the proof of Proposition 3.6 shows that @ € Cg ()1 \ {0} and 9 €
— (C4(92)+) \ {0} are critical points of ¢ and ¢y, respectively, of mountain-pass
type such that

0<m} <px(a) and 0<m, <@(0). (4.4)

Since ) is coercive (see Proposition 3.2), it is bounded from below. This fact
along with Propositions 4.2, 4.3 imply the existence of A§ € (0, A*] such that for
all A € (0, ) o, fulfills the assumptions of Theorem 3.1 in Perera [22]. Hence, we
can find yo € W, *(2) such that

Yo € KQOM ©x (yO) <0= @A(O)v and Cdmfl (80,\73/0) 7& 0. (45)

From (4.5) it follows that y is a nontrivial solution of (P), for all A € (0, ).
Since m > 3 we note that d,,, — 1 > 2. Therefore, from (4.3) and (4.5) we conclude
that yo & {uo,vo} and from (4.4) and (4.5) it follows that yo ¢ {@,0}. Finally, as
before, the nonlinear regularity theory implies yo € C3(Q) \ {0}. This finishes the
proof. Il

Remark 4.5. In contrast to the problems where the concavity enters in the non-
linearity with a positive sign (see Gasiriski-Papageorgiou [12] and Hu-Papageorgiou
[14]), here we are unable to show that the fifth solution yo is nodal. It is an interest-
ing open problem whether yo has changing sign. Finally, we mention that we could
have used the differential operator —Apu — pAu with @ > 0 without any problem.
For simplicity in the presentation we have assumed that p = 1.
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