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Abstract. We consider a nonlinear, nonhomogeneous parametric elliptic Dirich-

let equation driven by the sum of a p-Laplacian and a Laplacian (so-called

(p, 2)-equation) and with a nonlinearity involving a concave term which enters
with a negative sign. By applying variational methods along with truncation

and comparison techniques as well as Morse theory (critical groups), we show

that the problem under consideration has at least five nontrivial solutions (four
of them have constant sign) for all sufficiently small values of the parameter.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω and let 1 < q < 2 <
p < ∞. We study the following nonlinear nonhomogeneous parametric Dirichlet
problem

−∆pu−∆u = f(x, u)− λ|u|q−2u in Ω,

u = 0 on ∂Ω,
(P )λ

where ∆p denotes the p-Laplace differential operator defined by

∆pu = div
(
‖∇u‖p−2

RN ∇u
)

for all u ∈W 1,p
0 (Ω).

Here λ > 0 is a parameter to be specified and since 1 < q < 2 < p < ∞ the
right-hand side in problem (P )λ contains a concave term given through −λ|u|q−2u.
The perturbation f : Ω×R→ R is a Carathéodory function (that is, x 7→ f(x, s) is
measurable for all s ∈ R and s 7→ f(x, s) is continuous for a.a. x ∈ Ω) being (p−1)-
linear near ±∞ and resonance can occur with respect to the principal eigenvalue

λ̂1(p) > 0 of
(
−∆p,W

1,p
0 (Ω)

)
. The aim of this work is to prove the existence of

multiple solutions as the parameter λ > 0 varies.
The study of elliptic problems with concave nonlinearities started with the sem-

inal work of Ambrosetti-Brezis-Cerami [3], who examined a semilinear equation
driven by the Dirichlet Laplacian and with a parametric reaction of the special
form

f(s) = λ|s|q−2s+ |s|r−2s, (1.1)

where

1 < q < 2 < r < 2∗ =

{
2N
N−2 if N ≥ 3

+∞ if N = 1, 2
.

In (1.1) we have the competing effects of two distinct nonlinearities of differ-
ent nature meaning that there is a concave term λ|s|q−2s and also a convex one
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|s|r−2s. The authors of [3] were interested to find positive solutions and proved that
the problem has two positive solutions provided λ > 0 is sufficiently small. Ad-
ditional results for problems with combined nonlinearities as above were obtained
by Bartsch-Willem [4], Li-Wu-Zhou [17], and Wang [24]. Extensions to equations
driven by the Dirichlet p-Laplacian can be found in Garćıa Azorero-Peral Alonso-
Manfredi [10], Gasiński-Papageorgiou [12], Guo-Zhang [13], Hu-Papageorgiou [14],
and Marano-Papageorgiou [19]. In all of the aforementioned works, the parametric
concave term enters in the reaction with a positive sign. In our problem (P )λ the
parametric concave term appears in the reaction with a negative sign. This produces
a different geometry for the problem and therefore leads to a different multiplicity
theorem. Semilinear problems with such a concave term were investigated by de
Paiva-Massa [9], Papageorgiou-Rădulescu [21], and Perera [22].

We mention that equations involving the sum of a p-Laplacian and a Laplacian
(also known as (p, 2)-equations) arise in mathematical physics, see, for example, the
works of of Benci-D’Avenia-Fortunato-Pisani [5] (quantum physics) and Cherfils-
Il′yasov [7] (plasma physics).

Our approach is variational based on critical point theory coupled with suitable
truncation and comparison techniques as well as Morse theory (critical groups). In
the next section, for the reader’s convenience, we review the main mathematical
tools that we will use in the sequel.

2. Preliminaries

Let X be a Banach space and X∗ its topological dual while 〈·, ·〉 denotes the
duality brackets to the pair (X∗, X).

Definition 2.1. The functional ϕ ∈ C1(X) fulfills the Palais-Smale condition (the
PS-condition for short) if the following holds: Every sequence (un)n≥1 ⊆ X such
that (ϕ(un))n≥1 is bounded in R and ϕ′(un) → 0 in X∗ as n → ∞, admits a
strongly convergent subsequence.

This compactness-type condition on ϕ leads to a deformation theorem which is
the main ingredient in the minimax theory of the critical values of ϕ. A basic result
in that theory is the so-called mountain-pass theorem.

Theorem 2.2. Let ϕ ∈ C1(X) be a functional satisfying the PS-condition and let
u1, u2 ∈ X, ‖u2 − u1‖X > ρ > 0,

max{ϕ(u1), ϕ(u2)} < inf{ϕ(u) : ‖u− u1‖X = ρ} =: mρ

and c = infγ∈Γ max0≤t≤1 ϕ(γ(t)) with Γ = {γ ∈ C ([0, 1], X) : γ(0) = u1, γ(1) =
u2}. Then c ≥ mρ with c being a critical value of ϕ.

In the analysis of problem (P )λ in addition to the Sobolev space W 1,p
0 (Ω) we

will also use the ordered Banach space

C1
0 (Ω) =

{
u ∈ C1(Ω) : u

∣∣
∂Ω

= 0
}

and its positive cone

C1
0 (Ω)+ =

{
u ∈ C1

0 (Ω) : u(x) ≥ 0 for all x ∈ Ω
}
.

This cone has a nonempty interior given by

int
(
C1

0 (Ω)+

)
=

{
u ∈ C1

0 (Ω) : u(x) > 0 ∀x ∈ Ω, and
∂u

∂n
(x) < 0 ∀x ∈ ∂Ω

}
,



RESONANT (p, 2)-EQUATIONS WITH CONCAVE TERMS 3

where n = n(x) is the outer unit normal at x ∈ ∂Ω.

Throughout this paper we denote the norm of W 1,p
0 (Ω) by ‖·‖W 1,p

0 (Ω) and thanks

to the Poincaré inequality it holds ‖u‖W 1,p
0 (Ω) = ‖∇u‖p for all u ∈W 1,p

0 (Ω), where

‖ · ‖p stands for the usual Lp-norm. The norm of RN is denoted by ‖ · ‖RN and
(·, ·)RN stands for the inner product of RN .

Let f0 : Ω × R → R be a Carathéodory function satisfying a subcritical growth
with respect to the second argument, that is

|f0(x, s)| ≤ a(x)
(
1 + |s|r−1

)
for a.a. x ∈ Ω and all s ∈ R,

with a ∈ L∞(Ω)+, and 1 < r < p∗, where p∗ is the critical exponent of p given by

p∗ =

{
Np
N−p if p < N,

+∞ if p ≥ N.

Let F0(x, s) =
∫ s

0
f0(x, t)dt and let ϕ0 : W 1,p

0 (Ω)→ R be the C1-functional defined
by

ϕ0(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖22 −

∫
Ω

F0(x, u)dx.

The next result is a special case of a more general theorem of Aizicovici-Papageorgiou-
Staicu [2] and essentially is an outgrowth of the nonlinear regularity theory (see
Ladyzhenskaya-Ural′tseva [15], Lieberman [16]).

Theorem 2.3. If u0 ∈W 1,p
0 (Ω) is a local C1

0 (Ω)-minimizer of ϕ0, i.e., there exists
ρ0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1
0 (Ω) with ‖h‖C1

0 (Ω) ≤ ρ0,

then u0 ∈ C1,β
0 (Ω) for some β ∈ (0, 1) and u0 is also a local W 1,p

0 (Ω)-minimizer of
ϕ0, i.e., there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈W 1,p
0 (Ω) with ‖h‖W 1,p

0 (Ω) ≤ ρ1.

Remark 2.4. The first result in this direction was obtained by Brezis-Nirenberg [6].
Subsequently important extensions were proved by Garćıa Azorero-Peral Alonso-
Manfredi [10], Guo-Zhang [13], and Winkert [25].

Given 1 < r <∞, we denote by ∆r : W 1,r
0 (Ω)→W−1,r′(Ω) with 1

r + 1
r′ = 1 the

r-Laplacian defined by

〈∆ru, v〉 =

∫
Ω

‖∇u‖r−2
RN (∇u,∇v)RNdx for all u, v ∈W 1,r

0 (Ω). (2.1)

If r = 2, then ∆r = ∆ becomes the well-known Laplace operator and we have
∆ ∈ L

(
H1

0 (Ω), H−1(Ω)
)
, where L

(
H1

0 (Ω), H−1(Ω)
)

denotes the vector space of all

bounded linear operators from H1
0 (Ω) into H−1(Ω). The next proposition summa-

rizes the main properties of the map −∆r (see Gasiński-Papageorgiou [11]).

Proposition 2.5. If ∆r : W 1,r
0 (Ω) → W−1,r′(Ω) with 1 < r < ∞, 1

r + 1
r′ = 1,

is defined by (2.1), then ∆r is bounded (in the sense that it maps bounded sets
to bounded sets), continuous, strictly monotone (hence maximal monotone) and of

type (S)+, i.e., if un ⇀ u in W 1,p
0 (Ω) and lim supn→∞ 〈−∆run, un − u〉 ≤ 0, then

un → u in W 1,p
0 (Ω).
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Let λ̂1(p) be the first eigenvalue of the negative Dirichlet p-Laplacian
(
−∆p,W

1,p
0 (Ω)

)
which has the subsequent properties:

• λ̂1(p) is positive, simple and isolated;
•

λ̂1(p) = inf

[‖∇u‖pp
‖u‖pp

: u ∈W 1,p
0 (Ω), u 6= 0

]
. (2.2)

The infimum in (2.2) is realized on the one dimensional eigenspace whose el-
ements do not change sign which easily follows from the representation in (2.2).
Denote by û1(p) the Lp-normalized eigenfunction (i.e. ‖û1(p)‖p = 1) associated to

λ̂1(p), the nonlinear regularity theory implies that û1(p) ∈ C1
0 (Ω) and the usage

of the nonlinear maximum principle (see Gasiński-Papageorgiou [11, pp. 737–738])
yields û1(p) ∈ int

(
C1

0 (Ω)+

)
.

In addition to λ̂1(p) > 0, the Lusternik-Schnirelmann minimax scheme gives a

whole strictly increasing sequence
(
λ̂k(p)

)
k≥1

of eigenvalues of
(
−∆p,W

1,p
0 (Ω)

)
such that λ̂k(p) → +∞ as k → ∞. If p 6= 2 we do not know if this sequence

exhausts the whole spectrum of (−∆p,W
1,p
0 (Ω)) but in case N = 1 (ordinary dif-

ferential equations) or p = 2 (linear eigenvalue problem) the answer is positive. In

the case p = 2 we denote by E
(
λ̂k(2)

)
, k ≥ 1, the finite dimensional eigenspace

corresponding to the eigenvalue λ̂k(2). Applying classical regularity theory we have

that E
(
λ̂k(2)

)
⊆ C1

0 (Ω) for all k ≥ 1 and the eigenspace has the so-called unique

continuation property (ucp for short) meaning that if u ∈ E
(
λ̂k(2)

)
vanishes on a

set of positive Lebesgue measure, then u(x) = 0 for all x ∈ Ω. For every k ≥ 1 we
set

Hk =

k⊕
i=1

E
(
λ̂i(2)

)
and Ĥk = H

⊥
k =

⊕
i≥k+1

E
(
λ̂i(2)

)
.

In the linear case we have a variational characterization for all eigenvalues, namely

λ̂1(2) = inf

[
‖∇u‖22
‖u‖22

: u ∈ H1
0 (Ω), u 6= 0

]
(2.3)

and for k ≥ 2

λ̂k(2) = max

[
‖∇u‖22
‖u‖22

: u ∈ Hk, u 6= 0

]
= min

[
‖∇û‖22
‖û‖22

: û ∈ Ĥk−1, û 6= 0

]
.

(2.4)

Taking into account the ucp of the eigenspaces along with (2.3), (2.4) we obtain
the subsequent lemma.

Lemma 2.6.

(a) If k ≥ 1, ϑ ∈ L∞(Ω)+, ϑ(x) ≤ λ̂k(2) a.e. in Ω with ϑ 6= λ̂k(2), then there

exists ξ̂0 > 0 such that

‖∇û‖22 −
∫

Ω

ϑû2dx ≥ ξ̂0 ‖û‖2H1
0 (Ω) for all û ∈ Ĥk−1.



RESONANT (p, 2)-EQUATIONS WITH CONCAVE TERMS 5

(b) If k ≥ 1, ϑ ∈ L∞(Ω)+, ϑ(x) ≥ λ̂k(2) a.e. in Ω with ϑ 6= λ̂k(2), then there

exists ξ̂1 > 0 such that

‖∇u‖22 −
∫

Ω

ϑu2dx ≤ −ξ̂1 ‖u‖2H1
0 (Ω) for all u ∈ Hk.

Using the properties of λ̂1(p) we derive the following result (see, for example,
Papageorgiou-Kyritsi [20, p. 356]).

Lemma 2.7. Let ϑ ∈ L∞(Ω)+ be such that ϑ(x) ≤ λ̂1(p) a.e. in Ω and ϑ 6= λ̂1(p).

Then there exists a number ξ̂2 > 0 such that

‖∇u‖pp −
∫

Ω

ϑ|u|pdx ≥ ξ̂2‖u‖pW 1,p
0 (Ω)

for all u ∈W 1,p
0 (Ω).

Next, we briefly recall some basic definitions and facts about Morse theory related
to critical points. To this end, let X be a Banach space, ϕ ∈ C1(X) and c ∈ R. We
introduce the following sets.

ϕc = {u ∈ X : ϕ(u) ≤ c} (the sublevel set of ϕ at c),

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ),

Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c} (the critical set of ϕ at the level c).

Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X. For every integer k ≥ 0 we

denote by Hk(Y1, Y2) the k
th
=-relative singular homology group of the pair (Y1, Y2)

with integer coefficients. The critical groups of ϕ at an isolated u0 ∈ Kc
ϕ are defined

by

Ck(ϕ, u0) = Hk (ϕc ∩ U,ϕc ∩ U \ {u0}) for all integers k ≥ 0,

where U is a neighborhood of u0 such that Kϕ ∩ ϕc ∩ U = {u0}. The excision
property of singular homology theory implies that the definition of critical groups
above is independent of the particular choice of the neighborhood U .

If u0 ∈ X is a local minimizer of ϕ, then

Ck(ϕ, u0) = δk,0Z for all k ≥ 0, (2.5)

where δk,0 is the Kronecker symbol, that is

δk,0 =

{
1 if k = 0

0 if k ≥ 1
.

For s ∈ R, we set s± = max{±s, 0} and for u ∈W 1,p
0 (Ω) we define u±(·) = u(·)±.

It is well known that

u± ∈W 1,p
0 (Ω), |u| = u+ + u−, u = u+ − u−.

The Lebesgue measure on RN will be denoted by |·|N . Finally, for any Carathéodory
function h : Ω× R → R we define the Nemytskij operator Nh : Lp(Ω) → (Lp(Ω))∗

corresponding to the function h by

Nh(u)(·) = h(·, u(·)).
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3. Constant sign solutions

In this section we prove the existence of constant sign solutions for problem (P )λ.
We impose the following conditions on the perturbation f : Ω× R→ R.

H1: f : Ω × R → R is a Carathéodory function such that f(x, 0) = 0 for a.a.
x ∈ Ω and

(i) |f(x, s)| ≤ a(x)
(
1 + |s|p−1

)
for a.a. x ∈ Ω, for all s ∈ R, and with

a ∈ L∞(Ω)+;

(ii) lim sups→±∞
f(x,s)
|s|p−2s ≤ λ̂1(p) uniformly for a.a. x ∈ Ω and there exists

ξ0 > 0 such that

f(x, s)s− pF (x, s) ≥ −ξ0 for a.a. x ∈ Ω and for all s ∈ R,

where F (x, s) =
∫ s

0
f(x, t)dt;

(iii) there exist functions η, η̂ ∈ L∞(Ω)+ such that

λ̂1(2) ≤ η(x) a.e. in Ω, η 6= λ̂1(2)

and

η(x) ≤ lim inf
s→0

f(x, s)

s
≤ lim sup

s→0

f(x, s)

s
≤ η̂(x)

uniformly for a.a. x ∈ Ω;
(iv) f(x, ·) is locally lower Lipschitz for a.a. x ∈ Ω, that is, for every

compact set K ⊆ R, there exists a constant cK > 0 such that

f(x, s1)− f(x, s2) ≥ −cK |s1 − s2| for all s1, s2 ∈ K.

Remark 3.1. Hypothesis H1(ii) implies that we can have resonance asymptotically

at ±∞ with respect to λ̂1(p) > 0.

In order to prove the existence of constant sign solutions we consider the positive
and negative truncations of the reaction in problem (P )λ for λ > 0, namely the
Carathéodory functions

g±λ (x, s) = f(x,±s±)∓ λ
(
s±
)q−1

.

We set G±λ (x, s) =
∫ s

0
g±λ (x, t)dt and consider the C1-functionals ϕ±λ : W 1,p

0 (Ω)→ R
defined by

ϕ±λ (u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖22 −

∫
Ω

G±λ (x, u)dx.

The corresponding energy functional ϕλ : W 1,p
0 (Ω)→ R to problem (P )λ is defined

by

ϕλ(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖22 +

λ

q
‖u‖qq −

∫
Ω

F (x, u)dx,

which is of class C1 as well. First, we will see that the functionals stated above are
coercive.

Proposition 3.2. Let hypotheses H1 be satisfied and let λ > 0. Then the function-
als ϕ±λ and ϕλ are coercive.
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Proof. We will show the proof only for ϕ+
λ , the proofs for the other functionals work

similarly. Arguing by contradiction we suppose that ϕ+
λ is not coercive. Then we

find a sequence (un)n≥1 ⊆W 1,p
0 (Ω) and a number M1 > 0 such that

‖un‖W 1,p
0 (Ω) →∞ and ϕ+

λ (un) ≤M1.

The second relation gives

1

p
‖∇un‖pp +

1

2
‖∇un‖22 −

∫
Ω

G+
λ (x, un)dx ≤M1 for all n ≥ 1. (3.1)

Taking yn = un
‖un‖

W
1,p
0 (Ω)

implies ‖yn‖W 1,p
0 (Ω) = 1 and we may assume that

yn ⇀ y in W 1,p
0 (Ω) and yn → y in Lp(Ω) (3.2)

with some y ∈W 1,p
0 (Ω). Applying the representation of yn inequality (3.1) becomes

1

p
‖∇yn‖pp −

∫
Ω

G+
λ (x, un)

‖un‖pW 1,p
0 (Ω)

dx ≤ M1

‖un‖pW 1,p
0 (Ω)

for all n ≥ 1. (3.3)

Because of hypothesis H1(i) we have that(
G+
λ (·, un(·))
‖un‖pW 1,p

0 (Ω)

)
n≥1

⊆ L1(Ω) is uniformly integrable.

Taking into account the Dunford-Pettis theorem along with assumption H1(ii) we
obtain

G+
λ (·, un(·))
‖un‖pW 1,p

0 (Ω)

⇀
1

p
ϑ
(
y+
)p

in L2(Ω) (3.4)

with ϑ ∈ L∞(Ω) satisfying ϑ(x) ≤ λ̂1(p) a.e. in Ω. Passing to the limit in (3.3) as
n→∞ and applying (3.2) as well as (3.4) yields

‖∇y‖pp ≤
∫

Ω

ϑ
(
y+
)p
dx, (3.5)

which implies ∥∥∇y+
∥∥p
p
≤
∫

Ω

ϑ
(
y+
)p
dx. (3.6)

Suppose now that ϑ 6= λ̂1(p). Then from (3.6) and Lemma 2.7 we get y+ = 0. So
inequality (3.5) implies y− = 0, that is y = 0. Then, using (3.3), we see that

yn → 0 in W 1,p
0 (Ω),

a contradiction to the fact that ‖yn‖W 1,p
0 (Ω) = 1 for all n ≥ 1.

Now we assume that ϑ(x) = λ̂1(p) a.e. in Ω. Then (3.6) and (2.2) give∥∥∇y+
∥∥p
p

= λ̂1(p)
∥∥y+

∥∥p
p

which means that

y+ = ξû1(p) for some ξ ≥ 0.

If ξ = 0, then y+ = 0 and due to (3.5) y = 0. Hence, because of (3.3), yn → 0

in W 1,p
0 (Ω) which is a contradiction since ‖yn‖W 1,p

0 (Ω) = 1 for all n ≥ 1.
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If ξ > 0, then y+ ∈ int
(
C1

0 (Ω)+

)
and so y+(x) > 0 for all x ∈ Ω. Since y+ is the

limit of y+
n in W 1,p

0 (Ω) (see (3.2)) and y+
n =

u+
n

‖un‖
W

1,p
0 (Ω)

it follows that

u+
n (x)→ +∞ for a.a. x ∈ Ω. (3.7)

Thanks to hypothesis H1(ii) and since q < p we further obtain for a.a. x ∈ Ω and
for all u > 0

d

du

G+
λ (x, u)

up
=
f(x, u)up − λuq+p−1 − pF (x, u)up−1 + λp

q u
q+p−1

u2p

=
f(x, u)u− λuq − pF (x, u) + λp

q u
q

up+1

≥ − ξ0
up+1

.

We conclude

G+
λ (x, y)

yp
−
G+
λ (x, u)

up
≥ ξ0

p

[
1

yp
− 1

up

]
(3.8)

for a.a. x ∈ Ω and for all y ≥ u > 0. From hypothesis H1(ii) we see at once that

lim sup
s→±∞

pF (x, s)

|s|p
≤ λ̂1(p) uniformly for a.a. x ∈ Ω.

Then, passing in (3.8) to the limit as y → +∞, since q < p, we derive

λ̂1(p)

p
−
G+
λ (x, u)

up
≥ −ξ0

p

1

up
for a.a. x ∈ Ω and for all u > 0,

which implies

pF (x, u)− λp

q
uq − λ̂1(p)up ≤ ξ0 for a.a. x ∈ Ω and for all u ≥ 0. (3.9)

Inequality (3.1) can be written as

1

p
‖∇un‖pp +

1

2
‖∇un‖22 ≤M1 +

∫
Ω

G+
λ (x, un)dx for all n ≥ 1,

which, due to (2.2) and (3.9), gives

p

2
λ̂1(2)

∥∥u+
n

∥∥2

2
≤M1p+

∫
Ω

[
pF
(
x, u+

n

)
− λp

q

(
u+
n

)q − λ̂1(p)
(
u+
n

)p]
dx

≤M2

with M2 = M1p+ ξ0|Ω|N > 0 and for all n ≥ 1. This implies∫
Ω

(
u+
n

)2
dx ≤ 2M2

pλ̂1(2)
for all n ≥ 1. (3.10)

On the other side, from (3.7) and Fatou’s Lemma, we have∫
Ω

(
u+
n

)2
dx→ +∞ as n→∞. (3.11)

Comparing (3.10) and (3.11) we reach a contradiction. This proves that ϕ+
λ is

coercive. �
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In general coercivity does not imply the PS-condition (see, for example, Gasiński-
Papageorgiou [11, Example 5.1.15]). However, for the functionals ϕ±λ and ϕλ this
implication is true as stated in the next proposition, which is a consequence of
Proposition 2.2 of Marano-Papageorgiou [18]. For completeness we provide the
proof.

Proposition 3.3. If ϕ±λ and ϕλ are coercive, then they satisfy the PS-condition.

Proof. The proof will be given only for ϕ+
λ , the other ones work similarly. Suppose

(un)n≥1 ⊆W 1,p
0 (Ω) is a PS-sequence, that is∣∣ϕ+

λ (un)
∣∣ ≤M4 for some M4 > 0, for all n ≥ 1, (3.12)(

ϕ+
λ

)′
(un)→ 0 in W−1,p′(Ω) as n→∞. (3.13)

The assertion in (3.12) along with the coercivity of ϕ+
λ implies that (un)n≥1 ⊆

W 1,p
0 (Ω) is bounded. Therefore, we may assume that

un ⇀ u in W 1,p
0 (Ω) and un → u in Lp(Ω). (3.14)

From (3.13) it follows∣∣∣∣〈−∆pun, h〉+ 〈−∆un, h〉 −
∫

Ω

g+
λ (x, un)hdx

∣∣∣∣ ≤ εn‖h‖W 1,p
0 (Ω),

for all h ∈ W 1,p
0 (Ω) with εn → 0+. Now, choosing h = un − u ∈ W 1,p

0 (Ω), passing
to the limit as n→∞, and using the convergence properties in (3.14) we obtain

lim
n→∞

[〈−∆pun, un − u〉+ 〈−∆un, un − u〉] = 0,

which by the monotonicity of −∆ implies that

lim sup
n→∞

[〈−∆pun, un − u〉+ 〈−∆u, un − u〉] ≤ 0.

Applying again (3.14) we infer from the last relation

lim sup
n→∞

〈−∆pun, un − u〉 ≤ 0,

which by the (S)+-property of −∆p (see Proposition 2.5) results in un → u in

W 1,p
0 (Ω). Hence, ϕ+

λ fulfills the PS-condition. �

Proposition 3.4. If hypotheses H1 hold, then we can find λ∗ > 0 such that for all
λ ∈ (0, λ∗) there exists t∗ = t∗(λ) for which

ϕλ (±t∗û1(2)) < 0.

Proof. Given ε > 0, by virtue of hypotheses H1(i), (iii), there exists c1 = c1(ε) > 0
such that

F (x, s) ≥ 1

2
(η(x)− ε) s2 − c1|s|p for a.a. x ∈ Ω and for all s ∈ R. (3.15)
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By means of (3.15) we have for t > 0

ϕλ (tû1(2)) =
tp

p
‖∇û1(2)‖pp +

t2

2
‖∇û1(2)‖22 +

λtq

q
‖û1(2)‖qq

−
∫

Ω

F (x, tû1(2)) dx

≤ t2

2

[∫
Ω

(
λ̂1(2)− η(x)

)
(û1(2))

2
dx+ ε

]
+ c2 [tp + λtq]

for some c2 > 0. Thanks to hypothesis H1(iii) and since û1(2) ∈ int
(
C1

0 (Ω)+

)
we

conclude

ξ∗ =

∫
Ω

(
η(x)− λ̂1(2)

)
(û1(2))

2
dx > 0.

Choosing ε ∈ (0, ξ∗) we have

ϕλ (tû1(2)) ≤ −c3t2 + c2 [tp + λtq]

=
[
c2
(
tp−2 + λtq−2

)
− c3

]
t2

(3.16)

for some c3 > 0 and for all t > 0.
Let βλ(t) = tp−2 + λtq−2 for all t > 0. Obviously, βλ ∈ C1(0,∞) and since

q < 2 < p it follows

βλ(t)→ +∞ as t→ 0+ and as t→ +∞.

Hence, we find a number t0 ∈ (0,+∞) such that

β (t0) = inf [βλ(t) : t > 0] > 0.

Moreover, it holds

β′λ(t0) =
[
(p− 2)tp−3

0 + λ(q − 2)tq−3
0

]
= 0,

which implies

t0 = t0(λ) =

[
λ(2− q)
p− 2

] 1
p−q

.

We see that βλ(t0(λ)) → 0 as λ → 0+. Therefore, there exists a number λ∗ > 0
such that

βλ (t0) <
c3
c2

for all λ ∈ (0, λ∗) .

Taking t∗ = t∗(λ) = t0(λ), inequality (3.16) gives

ϕλ (±t∗û1(2)) < 0.

�

The next proposition will be helpful in verifying the mountain-pass geometry of
the functionals ϕ±λ and ϕλ.

Proposition 3.5. Let hypotheses H1 be satisfied and let λ > 0. Then u = 0 is a
local minimizer of the functionals ϕ±λ and ϕλ.
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Proof. As before we will do the proof only for ϕ+
λ . By virtue of hypothesis H1(iii)

there exist numbers c4 > 0 and δ > 0 such that

F (x, s) ≤ c4s2 for a.a. x ∈ Ω and for all s ∈ [0, δ]. (3.17)

Let u ∈ C1
0 (Ω) satisfy ‖u‖C1

0 (Ω) ≤ δ. Applying (3.17) it follows

ϕ+
λ (u) =

1

p
‖∇u‖pp +

1

2
‖∇u‖22 −

∫
Ω

G+
λ (x, u)dx

≥ 1

p
‖∇u‖pp +

1

2
‖∇u‖22 +

[
λ

q
− c4‖u‖2−qC(Ω)

] ∥∥u+
∥∥q
q

≥ 1

p
‖∇u‖pp +

1

2
‖∇u‖22 +

[
λ

q
− c4δ2−q

] ∥∥u+
∥∥q
q
.

(3.18)

Choosing δ > 0 such that δ <
(
λ
qc4

) 1
2−q

we infer from (3.18)

ϕ+
λ (u) ≥ 0 = ϕ+

λ (0) for all u ∈ C1
0 (Ω) with ‖u‖C1

0 (Ω) ≤ δ.

This means that u = 0 is a local C1
0 (Ω)-minimizer of ϕ+

λ and because of Theorem

2.3 u = 0 is also a local W 1,p
0 (Ω)-minimizer of ϕ+

λ . The proofs for ϕ−λ and ϕλ can
be done in the same way. �

Now, we will apply the mountain-pass theorem (Theorem 2.2) and the direct
method to prove the existence of at least four nontrivial constant sign solutions of
(P )λ for all λ > 0 sufficiently small whereby two of the solutions have positive sign
and the other ones have negative sign. In what follows λ∗ > 0 denotes the number
obtained in Proposition 3.4.

Proposition 3.6. Let hypotheses H1 be satisfied and let λ ∈ (0, λ∗). Then problem
(P )λ admits at least four nontrivial solutions of constant sign, namely

u0, û ∈ C1
0 (Ω)+ \ {0} and v0, v̂ ∈ −

(
C1

0 (Ω)+

)
\ {0}

such that

u0(x), û(x) > 0 for all x ∈ Ω and v0(x), v̂(x) < 0 for all x ∈ Ω.

Moreover, u0 and v0 are local minimizers of ϕλ.

Proof. Taking into account Proposition 3.2 we know that ϕ+
λ is coercive for all

λ > 0. Moreover, by applying the Sobolev embedding theorem we easily verify that
ϕ+
λ is sequentially weakly lower semicontinuous as well. Therefore, by virtue of the

Weierstrass theorem, there exists an element u0 ∈W 1,p
0 (Ω) such that

ϕ+
λ (u0) = inf

[
ϕ+
λ (u) : u ∈W 1,p

0 (Ω)
]
. (3.19)

From Proposition 3.4 it follows that if λ ∈ (0, λ∗) we can find a number t∗ = t∗(λ) >
0 such that

ϕλ (t∗û1(2)) < 0,

which ensures, due to ϕλ
∣∣
C1

0 (Ω)+
= ϕ+

λ

∣∣
C1

0 (Ω)+
and û1(2) ∈ int

(
C1

0 (Ω)+

)
, that

ϕ+
λ (t∗û1(2)) < 0.
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Hence, because of (3.19), we obtain

ϕ+
λ (u0) < 0 = ϕ+

λ (0),

implying u0 6= 0. Since u0 is a critical point of ϕ+
λ we have(

ϕ+
λ

)′
(u0) = 0,

that is,

〈−∆pu0, h〉+ 〈−∆u0, h〉 =
〈
Ng+

λ
(u0), h

〉
for all h ∈W 1,p

0 (Ω). (3.20)

Taking h = −u−0 ∈ W 1,p
0 (Ω) as test function in (3.20) gives u0 ≥ 0. Therefore,

(3.20) becomes

〈−∆pu0, h〉+ 〈−∆u0, h〉 =
〈
Nf (u0)− λuq−1

0 , h
〉

for all h ∈W 1,p
0 (Ω),

meaning that u0 solves our original problem

−∆pu0 −∆u0 = f(x, u0)− λuq−1
0 in Ω,

u = 0 on ∂Ω.
(3.21)

Note that u0 ∈ L∞(Ω) (see Ladyzhenskaya-Ural′tseva [15, p. 286]) and by means of
the regularity results of Lieberman [16, Theorem 1] we infer that u0 ∈ C1

0 (Ω)+\{0}.
Now, let a : RN → RN be the map defined by a(ξ) = ‖ξ‖p−2

RN ξ + ξ. Since p > 2

it is easy to see that a ∈ C1
(
RN ,RN

)
. There holds

∇a(ξ) = ‖ξ‖p−2
RN

[
I + (p− 2)

ξ ⊗ ξ
‖ξ‖2RN

]
+ I for all ξ ∈ RN

and

(∇a(ξ)y, y)RN ≥ ‖ξ‖
2
RN for all ξ, y ∈ RN .

Thanks to hypothesis H1(iv) we may apply the tangency principle of Pucci-Serrin
[23, p. 35] which gives

u0(x) > 0 for all x ∈ Ω.

Claim: u0 is a local C1
0 (Ω)-minimizer of ϕλ.

Arguing by contradiction suppose we can find a sequence (un)n≥1 ⊆ C1
0 (Ω) such

that

un → u0 in C1
0 (Ω) and ϕλ(un) < ϕλ(u0).

Since ϕλ
∣∣
C1

0 (Ω)+
= ϕ+

λ

∣∣
C1

0 (Ω)+
and because of (3.19) it follows

0 > ϕλ(un)− ϕλ(u0)

= ϕλ(un)− ϕ+
λ (u0)

≥ ϕλ(un)− ϕ+
λ (un)

=
1

p
‖∇un‖pp +

1

2
‖∇un‖22 +

λ

q
‖un‖qq −

∫
Ω

F (x, un)dx

− 1

p
‖∇un‖pp −

1

2
‖∇un‖22 −

λ

q

∥∥u+
n

∥∥q
q

+

∫
Ω

F
(
x, u+

n

)
dx

=
λ

q

∥∥u−n ∥∥qq − ∫
Ω

F
(
x,−u−n

)
dx.

(3.22)
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By virtue of hypotheses H1(i)–(iii) there exist numbers c5, c6 > 0 such that

F (x, s) ≤ c5s2 + c6|s|p for a.a. x ∈ Ω and for all s ∈ R. (3.23)

Applying (3.23) in (3.22) yields

0 > ϕλ(un)− ϕλ(u0)

≥ λ

q

∥∥u−n ∥∥qq − c5 ∥∥u−n ∥∥2

2
− c6

∥∥u−n ∥∥pp
≥ λ

q

∥∥u−n ∥∥qq − [c5 ∥∥u−n ∥∥2−q
C(Ω)

+ c6
∥∥u−n ∥∥p−qC(Ω)

] ∥∥u−n ∥∥qq .
(3.24)

Since u0 > 0 we note that u−n → 0 in C(Ω). Therefore, (3.24) implies the existence
of a number n0 ≥ 1 such that

0 > ϕλ(un)− ϕλ(u0) ≥ 0 for all n ≥ n0,

which is a contradiction. This proves the Claim.
Taking into account the Claim and Theorem 2.3 we obtain that u0 is a W 1,p

0 (Ω)-
minimizer of ϕ+

λ .

From Proposition 3.5 we know that u = 0 is a local minimizer of ϕ+
λ . We

may assume that it is an isolated critical point of ϕ+
λ or otherwise we have a whole

sequence of distinct positive solutions of (P )λ. Then, from Aizicovici-Papageorgiou-
Staicu [1, Proof of Proposition 29] (see also de Figueiredo [8, Theorem 5.10, p. 42])

we can find a number ρ ∈
(

0, ‖u0‖W 1,p
0 (Ω)

)
sufficiently small such that

ϕ+
λ (u0) < 0 = ϕ+

λ (0) < inf
[
ϕ+
λ (u) : ‖u‖W 1,p

0 (Ω) = ρ
]

= m+
ρ . (3.25)

Recall that ϕ+
λ is coercive (see Proposition 3.2). So, Proposition 3.3 implies that

ϕ+
λ fulfills the PS-condition. This fact along with (3.25) permit the usage of the

mountain-pass theorem stated in Theorem 2.2 to obtain an element û ∈ W 1,p
0 (Ω)

such that

û ∈ Kϕ+
λ

and m+
ρ ≤ ϕ+

λ (û) . (3.26)

Since û ∈ Kϕ+
λ

we have
(
ϕ+
λ

)′
(û) = 0, that is

〈−∆pû, h〉+ 〈−∆û, h〉 =
〈
Ng+

λ
(û), h

〉
for all h ∈W 1,p

0 (Ω). (3.27)

Taking h = −û− ∈ W 1,p
0 (Ω) in (3.27) gives ‖∇û−‖pp + ‖∇û−‖22 = 0. Thus, û ≥ 0.

From (3.25) and (3.26) it follows that û 6∈ {0, u0} and û is a positive solution of
(P )λ with λ ∈ (0, λ∗). As before the nonlinear regularity theory and the tangency
principle imply that û ∈ C1

0 (Ω)+ \ {0} with û(x) > 0 for all x ∈ Ω.
Similarly, working with ϕ−λ instead of ϕ+

λ , we show the existence of two negative

constant sign solutions v0, v̂ ∈ −
(
C1

0 (Ω)+

)
\ {0} with v0(x), v̂(x) < 0 for all x ∈

Ω. �

4. Five nontrivial solutions

In this section we have to strengthen the hypotheses of the nonlinearity f :
Ω×R→ R in order to prove the existence of a fifth nontrivial solution of problem
(P )λ for all λ > 0 sufficiently small. We suppose the following conditions.



14 N. S. PAPAGEORGIOU AND P. WINKERT

H2: f : Ω×R→ R is a measurable function such that f(x, 0) = 0 for a.a. x ∈ Ω,
f(x, ·) ∈ C1(R) and
(i) |f ′s(x, s)| ≤ a(x)

(
1 + |s|p−2

)
for a.a. x ∈ Ω, for all s ∈ R, and with

a ∈ L∞(Ω)+;

(ii) lim sups→±∞
f(x,s)
|s|p−2s ≤ λ̂1(p) uniformly for a.a. x ∈ Ω and there exists

ξ0 > 0 such that

f(x, s)s− pF (x, s) ≥ −ξ0 for a.a. x ∈ Ω and for all s ∈ R,

where F (x, s) =
∫ s

0
f(x, t)dt;

(iii) there exist an integer m ≥ 3 such that

f ′s(x, 0) ∈
[
λ̂m(2), λ̂m+1(2)

]
a.e. in Ω,

with f ′s(·, 0) 6= λ̂m(2), f ′s(·, 0) 6= λ̂m+1(2) and

f ′s(x, 0) = lim
s→0

f(x, s)

s
uniformly for a.a. x ∈ Ω;

(iv) |F (x, s)| ≤ λ̂m+1(2)
2 s2 + λ̂1(p)

p |s|
p for a.a. x ∈ Ω and for all s ∈ R.

Remark 4.1. The differentiability of f(x, ·) along with hypothesis H2(i) imply that
f(x, ·) is locally Lipschitz.

Let

Vm =

m⊕
i=1

E
(
λ̂i(2)

)
and Wm = W 1,p

0 (Ω) ∩ V ⊥m .

Then we have

W 1,p
0 (Ω) = Vm

⊕
Wm and dm = dimVm <∞.

In what follows let

∂Bmρ =
{
u ∈ Vm : ‖u‖W 1,p

0 (Ω) = ρ
}
, ρ > 0.

Proposition 4.2. If hypotheses H2 hold, then we can find λ∗0 ∈ (0, λ∗], where
λ∗ > 0 is as in Proposition 3.4, such that for all λ ∈ (0, λ∗0) there exists a number
ρ = ρ(λ) > 0 for which

sup
[
ϕλ(u) : u ∈ ∂Bmρ

]
< 0.

Proof. Let η(x) = f ′s(x, 0). Given ε > 0, by virtue of hypotheses H2(i),(iii), there
exists a number c7 = c7(ε) > 0 such that

F (x, s) ≥ 1

2
(η(x)− ε) s2 − c7|s|p for a.a. x ∈ Ω and for all s ∈ R. (4.1)
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Taking into account (4.1) we obtain for u ∈ Vm

ϕλ(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖22 +

λ

q
‖u‖qq −

∫
Ω

F (x, u)dx

≤ 1

p
‖∇u‖pp +

1

2
‖∇u‖22 +

λ

q
‖u‖qq −

1

2

∫
Ω

η(x)u2dx

+
ε

2
‖u‖22 + c7‖u‖pp

=
1

2

[
‖∇u‖22 −

∫
Ω

η(x)u2dx+ ε‖u‖22
]

+

[
1

p
‖∇u‖pp +

λ

q
‖u‖qq + c7‖u‖pp

]
.

(4.2)

Because of u ∈ Vm and due to hypothesis H2(iii) along with Lemma 2.6(b) we verify
that

‖∇u‖22 −
∫

Ω

η(x)u2dx ≤ −ξ̂1‖u‖2H1
0 (Ω).

Since Vm is finite dimensional it is clear that all norms of Vm are equivalent. There-
fore, from (4.2) and for ε > 0 sufficiently small, we have

ϕλ(u) ≤ −c8‖u‖2W 1,p
0 (Ω)

+ c9

(
λ‖u‖q

W 1,p
0 (Ω)

+ ‖u‖p
W 1,p

0 (Ω)

)
=
[
−c8 + c9

(
λ‖u‖q−2

W 1,p
0 (Ω)

+ ‖u‖p−2

W 1,p
0 (Ω)

)]
‖u‖2

W 1,p
0 (Ω)

for some c8 = c8(ε), c9 > 0.

We consider the function β̂λ(t) = λtq−2 + tp−2 and recall that q < 2 < p. As in

the proof of Proposition 3.4 we can find λ̂∗ > 0 such that for all λ ∈
(

0, λ̂∗
)

there

exists ρ = ρ(λ) > 0 for which

ϕλ(u) < 0 for all u ∈ ∂Bmρ .

Taking λ∗0 = min
{
λ̂∗, λ∗

}
proves the assertion of the proposition. �

We have another useful result.

Proposition 4.3. Let hypotheses H2 be satisfied and let λ > 0. Then there holds
ϕλ
∣∣
Wm
≥ 0.

Proof. Taking into accout (2.2), (2.4) as well as hypothesis H2(iv) we have for
u ∈Wm

ϕλ(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖22 +

λ

q
‖u‖qq −

∫
Ω

F (x, u)dx

≥ 1

p

[
‖∇u‖pp − λ̂1(p)‖u‖pp

]
+

1

2

[
‖∇u‖22 − λ̂m+1(2)‖u‖22

]
≥ 0.

�

Now we are ready to prove the complete multiplicity theorem concerning problem
(P )λ for all λ > 0 sufficiently small.
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Theorem 4.4. If hypotheses H2 hold, then there exists λ∗0 > 0 such that for all
λ ∈ (0, λ∗0] problem (P )λ admits at least five distinct nontrivial solutions

u0, û ∈ C1
0 (Ω)+ \ {0}, v0, v̂ ∈ −

(
C1

0 (Ω)+

)
\ {0}, and y0 ∈ C1

0 (Ω) \ {0}

such that

u0(x), û(x) > 0 for all x ∈ Ω and v0(x), v̂(x) < 0 for all x ∈ Ω.

Proof. As it is always the case in multiplicity theorems, we assume that the energy
functional ϕλ has a finite critical set or otherwise we already have a fifth solution
and so we are done (recall that the critical points of the energy functional are
solutions of our problem). From Proposition 3.6 we know that we can find λ∗ > 0
such that for all λ ∈ (0, λ∗) problem (P )λ has at least four nontrivial constant sign
solutions

u0, û ∈ C1
0 (Ω)+ \ {0} and v0, v̂ ∈ −

(
C1

0 (Ω)+

)
\ {0}

such that

u0(x), û(x) > 0 for all x ∈ Ω and v0(x), v̂(x) < 0 for all x ∈ Ω.

From Proposition 3.6 we know that u0 and v0 are local minimizers of ϕλ. Hence,
due to (2.5),

Ck (ϕλ, u0) = Ck (ϕλ, v0) = δk,0Z for all k ≥ 0. (4.3)

Furthermore, the proof of Proposition 3.6 shows that û ∈ C1
0 (Ω)+ \ {0} and v̂ ∈

−
(
C1

0 (Ω)+

)
\ {0} are critical points of ϕ+

λ and ϕ−λ , respectively, of mountain-pass
type such that

0 < m+
ρ ≤ ϕλ (û) and 0 < m−ρ ≤ ϕλ (v̂) . (4.4)

Since ϕλ is coercive (see Proposition 3.2), it is bounded from below. This fact
along with Propositions 4.2, 4.3 imply the existence of λ∗0 ∈ (0, λ∗] such that for
all λ ∈ (0, λ∗0) ϕλ fulfills the assumptions of Theorem 3.1 in Perera [22]. Hence, we

can find y0 ∈W 1,p
0 (Ω) such that

y0 ∈ Kϕλ , ϕλ (y0) < 0 = ϕλ(0), and Cdm−1 (ϕλ, y0) 6= 0. (4.5)

From (4.5) it follows that y0 is a nontrivial solution of (P )λ for all λ ∈ (0, λ∗0).
Since m ≥ 3 we note that dm − 1 ≥ 2. Therefore, from (4.3) and (4.5) we conclude
that y0 6∈ {u0, v0} and from (4.4) and (4.5) it follows that y0 6∈ {û, v̂}. Finally, as
before, the nonlinear regularity theory implies y0 ∈ C1

0 (Ω) \ {0}. This finishes the
proof. �

Remark 4.5. In contrast to the problems where the concavity enters in the non-
linearity with a positive sign (see Gasiński-Papageorgiou [12] and Hu-Papageorgiou
[14]), here we are unable to show that the fifth solution y0 is nodal. It is an interest-
ing open problem whether y0 has changing sign. Finally, we mention that we could
have used the differential operator −∆pu − µ∆u with µ > 0 without any problem.
For simplicity in the presentation we have assumed that µ = 1.
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