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Multiple solutions to logarithmic double phase problems
involving superlinear nonlinearities

Valeria Morabito and Patrick Winkert

Abstract. This paper investigates a class of problems involving a logarithmic double phase operator
with variable exponents and right-hand sides that consist of nonlinearities exhibiting subcritical
and superlinear growth. Under very general assumptions, we prove the existence of at least two
nontrivial bounded weak solutions for such problems whereby the solutions have opposite energy
sign. In addition, we give conditions on the nonlinearity under which the solutions turn out to be
nonnegative.

1. Introduction

During the last decade, problems with unbalanced growth have become more important.
These problems are generally characterized by operators that are of the form

� div
�
jrujp.x/�2ruC �.x/jrujq.x/�2ru

�
; (1.1)

with the corresponding energy functional

u 7!

Z
�

�
jrujp.x/

p.x/
C �.x/

jrujq.x/

q.x/

�
dx: (1.2)

Such type of functionals appeared for the first time for constant exponents as

J.u/ D

Z
�

�
jrujp C �.x/jrujq

�
dx (1.3)

in the work of Zhikov [57] related to homogenization and elasticity theory. Indeed, the
coefficient � corresponds to the geometry of composites made of two materials of hard-
ness p and q. It should be noted that functionals of the form (1.3) are special cases
of the groundbreaking works by Marcellini [37, 38] which are related to more general
problems with nonstandard growth and p, q-growth conditions, see also the more recent
works by Cupini–Marcellini–Mascolo [23] and Marcellini [39, 40]. Later on, the results
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of Marcellini in the concrete setting of double phase integrals given by (1.3) have been
improved by the pioneering papers by Baroni–Colombo–Mingione [7–9] and Colombo–
Mingione [20,21], see also Ragusa–Tachikawa [46] for studying (1.2) and Chems Eddine–
Ouannasser–Ragusa [27] for the anisotropic case. Furthermore, double phase operators as
in (1.1) (also for p, q being constants) occur more frequently not only in the mathematical
sense, but also in applications. In this direction, we mention the works by Bahrouni–
Rădulescu–Repovš [6] on transonic flows, Benci–D’Avenia–Fortunato–Pisani [10] on
quantum physics, Cherfils–Il’yasov [16] on reaction diffusion systems, and Zhikov [58,
59] on the Lavrentiev gap phenomenon, the thermistor problem, and the duality theory.
For a comprehensive overview of the related function space as well as the double phase
operator, we direct the reader to the papers by Colasuonno–Perera [18], Colasuonno–
Squassina [19], Crespo-Blanco–Gasiński–Harjulehto–Winkert [22], Ho–Winkert [33],
Liu–Dai [35], and Perera–Squassina [44].

Recently, Arora–Crespo-Blanco–Winkert [5] introduced and studied a new operator,
called logarithmic double phase operator, of the form

div A.u/ D div
�
jrujp.x/�2ru

C �.x/

�
log.e C jruj/C

jruj

q.x/.e C jruj/

�
jrujq.x/�2ru

�
;

(1.4)

where u belongs to an appropriate Musielak–Orlicz Sobolev space W 1;Hlog
0 .�/ generated

by the function

Hlog.x; t/ D t
p.x/
C �.x/tq.x/ log.e C t / for all .x; t/ 2 x� � Œ0;1/;

for p; q 2 C.x�/ with 1 < p.x/ < N , p.x/ < q.x/ for all x 2 x� and 0 � �.�/ 2 L1.�/.
The operator (1.4) extends the classical double phase operator by incorporating logarith-
mic terms, and this generalization enables us to account not only for power-law growth
in each term but also for other growth behaviors, especially those involving logarithmic
functions. As a result, it leads to nonuniform ellipticity of the energy functional related
to (1.4) given by

u!

Z
�

�
jrujp.x/

p.x/
C �.x/

jrujq.x/

q.x/
log.e C jruj/

�
dx; (1.5)

presenting additional analytical challenges. In particular, the inclusion of logarithmic
terms introduces a modulation effect, which is essential in modeling inhomogeneous
materials with spatially varying structural properties. We also point out that functionals
of the form (1.5) have been investigated in several works for special cases of p and q.
Baroni–Colombo–Mingione [8] proved the local Hölder continuity of the gradient of local
minimizers of

u 7!

Z
�

�
jrujp C �.x/jrujp log.e C jruj/

�
dx;
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provided 1 < p <1 and 0 � �.�/ 2 C 0;˛.x�/ while De Filippis–Mingione [25] showed
the local Hölder continuity of the gradients of local minimizers of the functional

u 7!

Z
�

�
jruj log.1C jruj/C �.x/jrujq

�
dx; (1.6)

whenever 0 � �.�/ 2 C 0;˛.x�/ and 1 < q < 1C ˛
n

. Note that functionals of the form (1.6)
originate from functionals with nearly linear growth given by

u 7!

Z
�

jruj log.1C jruj/dx; (1.7)

see the works by Fuchs–Mingione [29] and Marcellini–Papi [41]. We also mention that
functionals as in (1.7) appear in the theory of plasticity with logarithmic hardening, see
Seregin–Frehse [49] and Fuchs–Seregin [30]. Also, the work of Marcellini [38] includes
logarithmic functions defined by

u 7!

Z
�

.1C jruj2/
p
2 log.1C jruj/dx:

Given a bounded domain � � RN , N � 2, with Lipschitz boundary @�, we consider
the following parametric Dirichlet problem:

� div A.u/ D �f .x; u/ in �; u D 0 on @�; (1.8)

where div A is the logarithmic double phase operator given in (1.4) and � > 0 is a param-
eter to be specified. In the following, we denote by � the constant given by

� D
e

e C t0
; (1.9)

where e is Euler’s number and t0 is the unique positive number that satisfies t0D e log.eC
t0/. First, we define

CC.x�/ D
®
r 2 C.x�/W 1 < r.x/ for all x 2 x�

¯
and set, for any r 2 CC.x�/,

r� WD min
x2x�

r.x/ and rC WD max
x2x�

r.x/:

We assume the following hypotheses on the data:

.H/ p;q 2CC.x�/ such that p.x/ <N , p.x/ < q.x/ < p�.x/D Np.x/
N�p.x/

for all x 2 x�
and � 2 L1.�/ with �.�/ � 0.

.Hf/ Let f W� �R! R and F.x; t/D
R t
0
f .x; �/d� be such that the following hold:

.f1/ The function f is of Carathéodory type; i.e., t 7! f .x; t/ is continuous for
a.a. x 2 � and x 7! f .x; t/ is measurable for all t 2 R.
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.f2/ There exist s 2 CC.x�/ with sC < .p�/� and C > 0 such that

jf .x; t/j � C
�
1C jt js.x/�1

�
for a.a. x 2 � and for all t 2 R.

.f3/ We have

lim
�!˙1

F.x; �/

j�jqC log.e C j�j/
D C1 uniformly for a.a. x 2 �:

.f4/ There exist `; z̀ 2 CC.x�/ such that min¹`�; z̀�º 2 ..sC � p�/ Np� ; sC/ and
K > 0 with

0 < K � lim inf
�!C1

f .x; �/� � qC.1C
�
q�
/F.x; �/

j�j`.x/

uniformly for a.a. x 2 �, and

0 < K � lim inf
�!�1

f .x; �/� � qC.1C
�
q�
/F.x; �/

j�j
z̀.x/

uniformly for a.a. x 2 �, where � is given by (1.9).

Our first result reads as follows.

Theorem 1.1. Let hypotheses .H/ and .Hf/ be satisfied and suppose that there exist r; � >
0 such that

max
²
�p� ; �qC log

�
e C

2�

R

�³
< ır (1.10)

such that

.h1/ F.x; t/ � 0 for a.a. x 2 � and for all t 2 Œ0; ��,

.h2/ ˛.r/ < ˇ.�/,

where ˛.r/ and ˇ.�/ are defined in (3.7) and (3.8), respectively. Then, for each � 2 ƒ,
with

ƒ WD

�
1

ˇ.�/
;
1

˛.r/

�
;

problem (1.8) admits at least two nontrivial bounded weak solutions which have opposite
energy sign.

If f is in addition nonnegative and has a special behavior near the origin, we obtain
the following result.

Theorem 1.2. Let hypotheses .H/ and .Hf/ be satisfied and suppose that the nonlinearity
f is nonnegative and fulfills

lim sup
t!0C

infx2� F.x; t/
tp�

D C1: (1.11)
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Then, for each � 2 .0; ��/, where

�� D sup
r>0

1

˛.r/
;

with ˛.r/ given in (3.7), problem (1.8) admits at least two nontrivial, nonnegative, bound-
ed weak solutions which have opposite energy sign.

The proofs of Theorems 1.1 and 1.2 are based on a critical point result due to Bonanno–
D’Aguì [12] which applies to more general classes of variational problems. Furthermore,
we give a concrete interval to which the solutions belong. Our paper can be seen as
an extension of the works by Chinnì–Sciammetta–Tornatore [17], Sciammetta–Tornatore
[47], and Amoroso–Bonanno–D’Aguì–Winkert [1]. The differences to [17] are twofold:
first, in [17], the operator is the well-known .q.�/; p.�//-Laplacian, and so, the function
space is the usual Sobolev space W 1;q.�/

0 .�/ while we are, in addition, able to weaken the
assumptions on f in our paper not supposing the usual Ambrosetti–Rabinowitz condition.
This condition says that there exist � > qC and M > 0 such that

0 < �F.x; s/ � f .x; s/s (AR)

for a.a. x 2� and for all jsj �M . Instead of condition (AR), we suppose that the primitive
of f is q-superlinear at˙1with a logarithmic term (see .f3/) along with another behavior
near ˙1, see .f4/. Both conditions are weaker than (AR). Note that we do not need any
behavior of f or its primitive near the origin in Theorem 1.1. As mentioned above, the
abstract critical point theorem we used is due to Bonanno–D’Aguì [12] and was applied
in the same paper to the p-Laplace problem

��pu D �f .x; u/ in �; u D 0 on @�; (1.12)

in order to get two nontrivial solutions of (1.12).
As already mentioned, the operator in (1.4) has been recently introduced in the work

by Arora–Crespo-Blanco–Winkert [5] who studied problems of the form

� div A.u/ D f .x; u/ in �; u D 0 on @�; (1.13)

where div A is as in (1.4) and f W� � R! R is a Carathéodory function that has sub-
critical growth fulfilling appropriate conditions. Based on the Nehari manifold treatment,
the existence of a sign-changing solution of (1.13) has been shown under the more strict
assumption that qC C 1 < .p�/�, see also the recent work by the same authors [4] related
to more general embeddings and existence results based on the concentration compact-
ness principle. Moreover, Lu–Vetro–Zeng [36] studied the existence and uniqueness of
equations involving the operator

u 7! �HL
u D div

�
H 0L.x; jruj/

jruj
ru

�
; u 2 W 1;HL.�/; (1.14)
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where HLW� � �Œ0;1/! Œ0;1/ is given by

HL.x; t/ D Œt
p.x/
C �.x/tq.x/� log.e C ˛t/;

with ˛ � 0, see also Vetro–Zeng [50]. We point out that the operator (1.14) is different
from the one in (1.4). In this direction, we also mention the paper by Vetro–Winkert [52]
who proved the existence of a solution to the logarithmic problem with convection term
of the form

� div A.u/ D f .x; u;ru/ in �; u D 0 on @�; (1.15)

where div A is as in (1.4) and f W� �R �RN ! R is a Carathéodory function that satis-
fies certain growth and coercivity conditions. The authors prove the boundedness, closed-
ness, and compactness of the corresponding solution set to (1.15), see also the recent work
by Vetro [51] concerning related Kirchhoff problems. All in all, our paper extends the
works by Amoroso–Bonanno–D’Aguì–Winkert [1], Chinnì–Sciammetta–Tornatore [17],
Sciammetta–Tornatore [47], and Sciammetta–Tornatore–Winkert [48] to more general
operators and under weaker assumptions, see also related problems to Neumann or Robin
boundary conditions in the papers by Amoroso–Crespo-Blanco–Pucci–Winkert [2], Amo-
roso–Morabito [3], or D’Aguì–Sciammetta–Tornatore–Winkert [24]. Finally, we also
mention some important works dealing with double phase problems and different assump-
tions on the right-hand side, see the papers by Biagi–Esposito–Vecchi [11], Borer–
Pimenta–Winkert [13], Bouaam–El Ouaarabi–Melliani [14], Cheng–Shang–Bai [15],
Gasiński–Winkert [31], Liu–Pucci [34], Papageorgiou–Rădulescu–Repovš [42], Zeng–
Bai–Gasiński–Winkert [53], Zeng–Rădulescu–Winkert [54, 55], Zhang–Rădulescu [56]
and the references therein.

The paper is organized as follows. In Section 2, we present the main properties of
variable exponent Sobolev spaces and Musielak–Orlicz Sobolev spaces with logarithmic
perturbation as well as the properties of the logarithmic double phase operator. Also, we
recall a general critical point theorem which is the basis of our treatment. Finally, in Sec-
tion 3, we give the proofs of our main results by applying variational and topological
tools.

2. Preliminaries and variational framework

In this section, we recall the main properties of variable exponent Sobolev spaces and
Musielak–Orlicz Sobolev spaces with logarithmic perturbation. We also present the main
properties of the logarithmic double phase operator and mention some tools which will be
needed in the sequel. The results are primarily taken from the monographs by Diening–
Harjulehto–Hästö–RVužička [26], Harjulehto–Hästö [32], and Papageorgiou–Winkert [43]
as well as the papers published by Arora–Crespo-Blanco–Winkert [5], Crespo-Blanco–
Gasiński–Harjulehto–Winkert [22], and Fan–Zhao [28].

To this end, let � � RN , N � 2, be a bounded domain with Lipschitz boundary @�.
For 1� r �1, we denote byLr .�/ the usual Lebesgue spaces equipped with the standard
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norm k � kr and for 1 � r <1 the corresponding Sobolev spaces W 1;r .�/ and W 1;r
0 .�/

equipped with the usual norms k � k1;r and k � k1;r;0 D kr � kr , respectively. Denoting by
M.�/ the set of all measurable functions uW�! R, for any r 2 CC.x�/, we introduce
the Lebesgue space Lr.�/.�/ with variable exponent by

Lr.�/.�/ D
®
u 2M.�/W %r.�/.u/ <1

¯
;

endowed with the Luxemburg norm

kukr.�/ D inf
²
� > 0 W %r.�/

�
u

�

�
� 1

³
;

where the corresponding modular is given by

%r.�/.u/ WD

Z
�

jujr.x/dx:

It is well known that the space Lr.�/.�/ is a separable and reflexive Banach space with
a uniformly convex norm. Its dual space is given by ŒLr.�/.�/�� D Lr

0.�/.�/, where r 0.�/
denotes the conjugate variable exponent of r.�/, that is,

1

r.x/
C

1

r 0.x/
D 1 for all x 2 x�:

Moreover, a weaker version of Hölder’s inequality holds in these spaces, stating thatZ
�

juvjdx �
�
1

r�
C

1

rC

�
kukr.�/kvkr 0.�/ � 2kukr.�/kvkr 0.�/

for all u 2 Lr.�/.�/ and v 2 Lr
0.�/.�/. Additionally, if r1; r2 2 CC.x�/ satisfy r1.x/ �

r2.x/ for all x 2 x�, then the continuous embedding

Lr2.�/.�/ ,! Lr1.�/.�/

holds. Next, we recall the following proposition, which establishes a relation between the
norm and its associated modular function, see the paper by Fan–Zhao [28] for its proof.

Proposition 2.1. Let r 2 CC.x�/, u 2 Lr.�/.�/, and � > 0. Then, the following hold.

(i) If u ¤ 0, then kukr.�/ D � , %r.�/.
u
�
/ D 1.

(ii) kukr.�/ < 1 (resp., > 1,D 1), %r.�/.u/ < 1 (resp., > 1,D 1).

(iii) If kukr.�/ < 1) kuk
rC
r.�/
� %r.�/.u/ � kuk

r�
r.�/

.

(iv) If kukr.�/ > 1) kuk
r�
r.�/
� %r.�/.u/ � kuk

rC
r.�/

.

(v) kukr.�/ ! 0, %r.�/.u/! 0.

(vi) kukr.�/ !C1, %r.�/.u/!C1.
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Starting from the Lebesgue space Lr.�/.�/, we define the variable exponent Sobolev
space W 1;r.�/.�/ by

W 1;r.�/.�/ D
®
u 2 Lr.�/.�/ W jruj 2 Lr.�/.�/

¯
;

equipped with the usual norm

kuk1;r.�/ D kukr.�/ C krukr.�/;

where krukr.�/ D kjrujkr.�/. Moreover, we denote by W 1;r.�/
0 .�/ the closure of C10 .�/

inW 1;r.�/.�/. We know thatW 1;r.�/.�/ andW 1;r.�/
0 .�/ are uniformly convex, separable,

and reflexive Banach spaces. In particular, we know that a Poincaré inequality holds in the
space W 1;r.�/

0 .�/, and so, we can equip W 1;r.�/
0 .�/ with the equivalent norm given by

kuk1;r.�/;0 D krukr.�/:

Next, supposing hypothesis .H/, we introduce the nonlinear function

HlogW� � Œ0;C1/! Œ0;C1/

defined by

Hlog.x; t/ D t
p.x/
C �.x/tq.x/ log.e C t / for all .x; t/ 2 � � Œ0;1/;

where e stands for Euler’s number. Note that Hlog is measurable in the first variable,
Hlog.x; 0/D 0 and Hlog.x; 0/ > 0 for all t > 0. Moreover, Hlog satisfies the�2-condition,
that is,

Hlog.x; 2t/ �MHlog.x; t/

for a.a. x 2 �, for all t 2 .0;C1/, and for some M � 2. Then, we can introduce the
corresponding Musielak–Orlicz space LHlog.�/ defined as

LHlog.�/ D
®
u 2M.�/W %Hlog.u/ < C1

¯
equipped with the Luxemburg norm

kukHlog D inf
²
˛ > 0W %Hlog

�
u

˛

�
� 1

³
;

where %Hlog.�/ is the corresponding modular, namely,

%Hlog.u/ D

Z
�

Hlog.x; juj/dx D
Z
�

�
jujp.x/ C �.x/jujq.x/ log.e C juj/

�
dx:

The next proposition, whose proof can be found in [5, Proposition 3.4], establishes
that LHlog.�/ is a separable and reflexive Banach space and provides the relation between
the norm and the corresponding modular.
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Proposition 2.2. Let hypothesis .H/ be satisfied. Then, LHlog.�/ is a separable, reflexive
Banach space and the following hold:

(i) kukHlog D ˛, %Hlog.
u
˛
/ D 1 for u ¤ 0 and ˛ > 0;

(ii) kukHlog < 1 (resp., > 1,D 1), %Hlog.
u
˛
/ < 1 (resp., > 1,D 1);

(iii) min¹kukp�
Hlog

;kuk
qCC�

Hlog
º � %Hlog.u/ �max¹kukp�

Hlog
;kuk

qCC�

Hlog
º, where � D e

eCt0

is as in (1.9);

(iv) kukHlog ! 0, %Hlog.u/! 0;

(v) kukHlog !C1, %Hlog.u/!C1.

The following lemma will be used later.

Lemma 2.3. Let Q > 1 and hW Œ0;1/! Œ0;1/ given by h.t/ D t
Q.eCt/ log.eCt/ . Then,

h attains its maximum value at t0 and the value is �
Q

, where t0 and � are the same as
in (1.9).

Proof. It holds

h0.t/ D
.e C t / log.e C t / � t .log.e C t /C 1/

Q..e C t / log.e C t //2
D

e log.e C t / � t
Q..e C t / log.e C t //2

:

Since the denominator is positive, h0.t/D 0 is equivalent to e log.eC t /� t D 0. Denoting
g.t/ WD e log.eC t /� t , we see that g.�/ is strictly decreasing for all t > 0, g.0/D e > 0
and limt!1g.t/D�1. Thus, g crosses zero exactly once, and so, there is a unique t0>0
such that e log.e C t0/ D t0. Since g.t/ > 0 for t < t0 and g.t/ < 0 for t > t0, we obtain
h0.t/ > 0 on .0; t0/ and h0.t/ < 0 on .t0;1/. Moreover, h.0/ D 0 and limt!1 h.t/ D 0.
Therefore, h has a strict global maximum at this unique t0. The maximal value is, due to
t0 D e log.e C t0/,

h.t0/ D
t0

Q.e C t0/ log.e C t0/
D

e log.e C t0/
Q.e C t0/ log.e C t0/

D
e

Q.e C t0/
D
�

Q
;

see (1.9).

Next, we introduce the corresponding Musielak–Orlicz Sobolev space given by

W 1;Hlog.�/ D
®
u 2 LHlog.�/W jruj 2 LHlog.�/

¯
;

equipped with the usual norm

kuk1;Hlog D krukHlog C kukHlog ;

where krukHlog D kjrujkHlog . Further, we define

W
1;Hlog
0 .�/ D C10 .�/

k�k1;Hlog :
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Here, we recall Proposition 3.6 by Arora–Crespo-Blanco–Winkert [5] where the authors
prove that W 1;Hlog.�/ and W 1;Hlog

0 .�/ are separable, reflexive Banach spaces. Note that
W
1;Hlog
0 .�/ can be equipped with the equivalent norm

kuk D krukHlog for all u 2 W 1;Hlog
0 .�/;

see Arora–Crespo-Blanco–Winkert [5, Proposition 3.9].
The next proposition states the main embedding results for these spaces, see again [5,

Proposition 3.7].

Proposition 2.4. Let .H/ be satisfied; then, the following embeddings hold:

(i) W
1;Hlog
0 .�/ ,! W

1;p.�/
0 .�/ is continuous;

(ii) W
1;Hlog
0 .�/ ,! Lm.�/.�/ is compact form 2 C.x�/ with 1 � m.x/ < p�.x/ for

all x 2 x�;

(iii) W 1;Hlog.�/ ,! LHlog.�/.�/ is compact.

In particular, condition (ii) in Proposition 2.4 implies that there exists a constant km >
0 such that

kukm.�/ � kmkuk: (2.1)

Next, we introduce the nonlinear operator

AWW
1;Hlog
0 .�/! W

1;Hlog
0 .�/�

defined by

hA.u/; vi

D

Z
�

jrujp.x/�2ru � rv dx

C

Z
�

�.x/

�
log.e C jruj/C

jruj

q.x/.e C jruj/

�
jrujq.x/�2ru � rv dx;

(2.2)

where h �; � i denotes the duality pairing between the space W 1;Hlog
0 .�/ and its dual space

W
1;Hlog
0 .�/�. The properties of AWW 1;Hlog

0 .�/ ! W
1;Hlog
0 .�/� are summarized in the

following proposition, see Arora–Crespo-Blanco–Winkert [5, Theorem 4.4].

Theorem 2.5. Let hypotheses .H/ be satisfied, and let A be given as in (2.2). Then, A
is bounded, continuous, strictly monotone and satisfies the .SC/-property; that is, any
sequence ¹unºn2N � W

1;Hlog
0 .�/ such that un * u weakly in W 1;Hlog

0 .�/ and

lim sup
n!1

hA.un/; un � ui � 0

converges strongly to u in W 1;Hlog
0 .�/.
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A function u 2 W 1;Hlog
0 .�/ is said to be a weak solution of (1.8) ifZ

�

jrujp.x/�2ru � rv dx

C

Z
�

�.x/

�
log.e C jruj/C

jruj

q.x/.e C jruj/

�
jrujq.x/�2ru � rv dx

D �

Z
�

f .x; u/v dx

is satisfied for all v 2 W 1;Hlog
0 .�/. Furthermore, we define the functionals

ˆ;‰; I�WW
1;Hlog
0 .�/! R

by

ˆ.u/ D

Z
�

�
jrujp.x/

p.x/
C �.x/

jrujq.x/

q.x/
log.e C jruj/

�
dx;

‰.u/ D

Z
�

F.x; u/dx; where F.x; t/ D
Z t

0

f .x; �/d�

I�.u/ D ˆ.u/ � �‰.u/;

(2.3)

where I� is the energy functional associated with our problem (1.8).

Remark 2.6. Note that, under hypotheses .H/ and .Hf/, the functional I� is unbounded
from below. In order to see this, choose a fixed test function ' 2 C10 .�/ with ' � 0 and
' 6� 0. Then, ' 2 W 1;Hlog

0 .�/ and r' 2 L1.�/. Hence,

jr'.x/j � C1 for a.a. x 2 �

for some C1 > 1. Let t > 0 sufficiently large. Since q.x/ � qC and

log.e C t jr'j/ � log.e C tC1/ � C1 log.e C t /;

we obtain

ˆ.t'/ �

Z
�

�
tqCC1 C k�k1t

qCC 21 log.e C t /
�
dx � C2t qC log.e C t / (2.4)

for someC2>0. Since ' � 0 and ' 6� 0, there exist a measurable setE ��with Lebesgue
measure jEj > 0 and a constant C3 > 0 such that '.x/ � C3 for all x 2 E. Moreover, by
assumption .f3/, for every M > 0, there exists TM > 0 such that

F.x; s/ �M jsjqC log.e C jsj/ for a.a. x 2 � and for all jsj � TM :

Because of t'.x/ � tC3 for x 2 E and t > 0 is sufficiently large, we have t'.x/ � TM
for all x 2 E. Therefore,

F.x; t'.x// �M.t'.x//qC log.e C t'.x// �M.tC3/qC log.e C tC3/; x 2 E;
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which implies, due to log.e C tC3/ � C4 log.e C t / for t sufficiently large and C4 > 0,
that

‰.t'/ D

Z
�

F.x; t'/dx �
Z
E

F.x; t'/dx �M.tC3/qC log.e C tC3/jEj

�M.tC3/
qCC4 log.e C t /jEj D C5MtqC log.e C t /; (2.5)

with C5 D C
qC
3 C4jEj. Combining (2.4) and (2.5), we have

I�.t'/ D ˆ.t'/ � �‰.t'/ � t
qC log.e C t /.C2 � �C5M/

for all sufficiently large t . Since M > 0 is arbitrary, we may choose M such that C2 �
�C5M < 0, which gives I�.t'/! �1 as t !1; i.e., the functional I� is unbounded
from below.

We know that the functionals in (2.3) are Gâteaux differentiable with derivatives

hˆ0.u/; vi D

Z
�

jrujp.x/�2ru � rv dx

C

Z
�

�.x/

�
log.e C jruj/C

jruj

q.x/.e C jjru/

�
jrujq.x/�2ru � rv dx;

h‰0.u/; vi D

Z
�

f .x; u/v dx;

hI 0�.u/; vi D

Z
�

jrujp.x/�2ru � rv dx

C

Z
�

�.x/

�
log.e C jruj/C

jruj

q.x/.e C jruj/

�
jrujq.x/�2ru � rv dx

� �

Z
�

f .x; u/v dx

for all u;v2W 1;Hlog
0 .�/. Hence, every critical point u2W 1;Hlog

0 .�/ of I� (i.e., hI 0
�
.u/;viD

0 for all v 2W 1;Hlog
0 .�/) is a weak solution of (1.8). Therefore, we approach the problem

in finding critical points of the associated energy functional which are then weak solutions
of (1.8). Our results rely on an abstract critical point theorem developed by Bonanno–
D’Aguì [12, Theorem 2.1 and Remark 2.2], which serves as our primary tool. Before
proceeding, we recall the definition of the Cerami condition.

Definition 2.7. Let .X; k � k/ be a Banach space, X� its dual space, and L 2 C 1.X/. We
say that the functional L satisfies the Cerami condition, (C)-condition for short, if any
sequence ¹unºn2N � X , such that

.C1/ ¹L.un/ºn2N � R is bounded,

.C2/ .1C kunk/L0.un/! 0 in X� as n!1,

has a strongly convergent subsequence in X .



Multiple solutions to logarithmic double phase problems 13

Theorem 2.8. Let X be a real Banach space, and let ˆ;‰WX ! R be two continuously
Gâteaux differentiable functionals such that

inf
u2X

ˆ.u/ D ˆ.0/ D ‰.0/ D 0:

Assume that ˆ is coercive and that there exist r 2 R and Qu 2 X , with 0 < ˆ. Qu/ < r , such
that

supu2ˆ�1..�1;r�/‰.u/

r
<
‰. Qu/

ˆ. Qu/
(2.6)

and for all � 2 ƒr D .ˆ. Qu/
‰. Qu/

; r
supu2ˆ�1..�1;r�/‰.u/

/, the functional I� D ˆ � �‰ satisfies

the (C)-condition and it is unbounded from below. Then, for each � 2 ƒr , the functional
ˆ� �‰ admits at least two nontrivial critical points u�;1, u�;2 such that I�.u�;1/ < 0 <
I�.u�;2/.

3. Proofs of our main results

In this section, we present the proofs of Theorems 1.1 and 1.2. Our purpose is to apply
Theorem 2.8 to the functionals ˆ and ‰ defined in (2.3). We start with the following
result.

Proposition 3.1. Let hypotheses .H/ and .Hf/ be satisfied. Then, the functional I� satis-
fies the (C)-condition for all � > 0.

Proof. Let ¹unºn2N �W
1;Hlog
0 .�/ be a sequence such that .C1/ and .C2/ hold. The proof

is divided into three steps.

Step 1. ¹unºn2N is bounded in L`�.�/, where ` 2 CC.x�/ is given in .f4/.
From .C1/, one has that there exists a constant C1 > 0 such that jI�.un/j � C1 for all

n 2 N, i.e.,ˇ̌̌̌Z
�

�
jrujp.x/

p.x/
C �.x/

jrujq.x/

q.x/
log.e C jruj/

�
dx � �

Z
�

F.x; un/dx
ˇ̌̌̌
� C1;

which leads to
%Hlog.run/ � �

Z
�

qCF.x; un/dx � C2 (3.1)

for some C2 > 0 and for all n 2 N. Besides, from .C2/, we know that there exists a
sequence "n ! 0 such that, for all v 2 W 1;Hlog

0 .�/,ˇ̌̌̌Z
�

jrunj
p.x/�2

run � rv dx

C

Z
�

�.x/

�
log.e C jrunj/C

run

q.x/.e Crun/

�
jrunj

q.x/�2
run � rv dx

� �

Z
�

f .x; un/dx
ˇ̌̌̌
�

"nkvk

1C kunk
for all n 2 N:

(3.2)
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Choosing v D un in (3.2) and taking Lemma 2.3 into account, one has

�

�
1C

�

q�

�
%Hlog.run/C �

Z
�

f .x; un/undx < "n:

On the other hand, multiplying inequality (3.1) by .1C �
q�
/ > 0, it follows that�

1C
�

q�

�
%Hlog.run/ � �

Z
�

qC

�
1C

�

q�

�
F.x; un/dx � C3

for some C3 > 0 and for all n 2 N. Adding both inequalities, one getsZ
�

f .x; un/undx � qC

�
1C

�

q�

�Z
�

F.x; un/dx � C4

for all n 2N and for some C4 > 0. Assuming without any loss of generality that `� � z̀�,
from .f2/ and .f4/, we can find C5; C6 > 0

f .x; t/t � qC

�
1C

�

q�

�
F.x; t/ � C5jt j

`� � C6:

Combining the last two inequalities, it holds that

kunk
`�
`�
� C7 (3.3)

for some C7 > 0 and for all n 2 N. Hence, ¹unºn2N is bounded in L`�.�/.

Step 2. ¹unºn2N is bounded in W 1;Hlog
0 .�/.

Note that, from .f1/ and .f4/, we have that

`� < sC < .p�/
�:

So, there exists t 2 .0; 1/ such that

1

sC
D

t

.p�/�
C
1 � t

`�
: (3.4)

Then, by applying the interpolation inequality (see Papageorgiou–Winkert [43, Propo-
sition 2.3.17]), one has

kunksC � kunk
t
.p�/�
kunk

1�t
`�
:

From (3.3), we obtain
kunksC � C8kunk

t
.p�/�

for some C8 > 0 and for all n 2 N. Now, choosing v D un in (3.2), we have

%Hlog.run/ � �

Z
�

f .x; un/undx < "n: (3.5)
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For simplicity, we can suppose that kunk � 1 for all n 2 N. Taking into account .f2/,
Proposition 2.2 (iii), by (3.5), it follows that

kunk
p� � %Hlog.run/ < "n C �

Z
�

f .x; un/undx

� �C.kunk1 C kunk
sC
sC
/C "n:

From the continuous embeddings LsC.�/ ,! L1.�/ and W 1;Hlog
0 .�/ ,! LsC.�/ (see

Proposition 2.4 (ii)), we obtain

kunk
p� � C9.1C kunk

tsC/C "n (3.6)

for some C9 > 0 and for all n 2 N. From (3.4) and hypothesis .f4/, we know that

tsC D
.p�/

�.sC � `�/

.p�/� � `�
D

Np�.sC � `�/

Np� �N`� C p�`�

<
Np�.sC � `�/

Np� �N`� C p�.sC � p�/
N
p�

D p�:

Using this, the boundedness of ¹unºn2N in W 1;Hlog
0 .�/ follows from (3.6).

Step 3. un ! u in W 1;Hlog
0 .�/ up to a subsequence.

Since ¹unºn2N �W
1;Hlog
0 .�/ is bounded andW 1;Hlog

0 .�/ is a reflexive Banach space,
there exists a subsequence (still denoted by un) such that

un * u in W 1;Hlog
0 .�/ and un ! u in LsC.�/:

By exploiting this in (3.2), taking v D un � u 2 W
1;Hlog
0 .�/, one has that

lim
n!C1

hA.un/; un � ui D 0:

Since AWW 1;Hlog
0 .�/ ! W

1;Hlog
0 .�/� fulfills the .SC/-property (see Theorem 2.5), we

conclude that un ! u in W 1;Hlog
0 .�/ and the proof is complete.

Now, we are able to give the proof of Theorem 1.1. First, put

R WD sup
x2�

dist.x; @�/:

Then, we can find x0 2 � such that B.x0; R/ � �, where B.x0; R/ denotes the ball with
center x0 and radius R > 0. We also denote by

!R WD
�
N
2

�.1C N
2
/
RN
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the Lebesgue measure of the N -dimensional ball of radius R, where

�.t/ D

Z C1
0

zt�1e�zdz for all t > 0

is the Gamma function. Next, we put

ı D
min¹Rp� ; RqCºp�

2qCC1�N!R.2N � 1/max¹1; k�k1º
;

and for any r; � 2 RC, we define

˛.r/ D
C.k1 max¹.qCr/

1
p� ; .qCr/

1
qCC� ; º C Nks max¹.qCr/

sC
p� ; .qCr/

s�
qCC� º/

r
; (3.7)

ˇ.�/ D
ı
R
B.x0;

R
2 /
F.x; �/dx

max¹�p� ; �qC log.e C 2�
R
/º
; (3.8)

where Nks D max¹ks�s ; k
sC
s º and k1, ks , C , and s are defined in (2.1) and .f2/, respectively.

Proof of Theorem 1.1. Our goal is to apply Theorem 2.8 with X D W 1;Hlog
0 .�/ and ˆ as

well as ‰ defined as in (2.3). Observe that from Proposition 2.2 (iii) we know that ˆ is
coercive and from .f3/ it is clear that I� is unbounded from below, see Remark 2.6. So,
we fix � 2 ƒ (which is nonempty due to .h2/) and consider a function Qu 2 W 1;Hlog

0 .�/

defined as

Qu.x/ D

8̂̂<̂
:̂
0 if x 2 � n B.x0; R/;
2�
R
.R � jx � x0j/ if x 2 B.x0; R/ n B

�
x0;

R
2

�
;

� if x 2 B
�
x0;

R
2

�
:

Taking (1.10) into account, it follows that

ˆ. Qu/ D

Z
B.x0;R/nB.x0;

R
2 /

�
1

p.x/

�
2�

R

�p.x/
C
�.x/

q.x/

�
2�

R

�q.x/
log
�
e C

2�

R

��
dx

�
2qC

p�

Z
B.x0;R/nB.x0;

R
2 /

��
�

R

�p.x/
C �.x/

�
�

R

�q.x/
log
�
e C

2�

R

��
dx

�
2qC

p�
max

®
1; k�k1

¯
max

²�
�

R

�p�
;

�
�

R

�qC
log
�
e C

2�

R

�³
� 2 �

�
!R � !R

2

�
D
2qCC1�N

p�
.2N � 1/max

®
1; k�k1

¯max¹�p� ; �qC log.e C 2�
R
/º

min¹Rp� ; RqCº
� !R

D
1

ı
max

²
�p� ; �qC log

�
e C

2�

R

�³
< r:
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This shows that 0 < ˆ. Qu/ < r . Now, we prove (2.6). From .h1/, we have

‰. Qu/ D

Z
B.x0;R/nB.x0;

R
2 /

F

�
x;
2�

R
.R � jx � x0j/

�
dx C

Z
B.x0;

R
2 /

F.x; �/dx

�

Z
B.x0;

R
2 /

F.x; �/dx:

Hence,
‰. Qu/

ˆ. Qu/
�

ı
R
B.x0;

R
2 /
F.x; �/dx

max¹�p� ; �qC log.e C 2�
R
/º
: (3.9)

Moreover, for u 2 W 1;Hlog
0 .�/ satisfying ˆ.u/ � r , one has that

qCr > qCˆ.u/ > %Hlog.ru/ � min
®
kukp� ; kukqCC�

¯
:

This implies that

ˆ�1..�1; r�/ �
®
u 2 W

1;Hlog
0 .�/W kuk < max

®
.qCr/

1
p� ; .qCr/

1
qCC�

¯¯
:

From this, .f2/, Proposition 2.1 (iii), (iv), and (2.1), we conclude that

sup
u2ˆ�1..�1;r�/

‰.u/

D sup
u2ˆ�1..�1;r�/

Z
�

F.x; u/dx

� sup
u2ˆ�1..�1;r�/

C

Z
�

�
juj C jujs.x/

�
dx

D sup
u2ˆ�1..�1;r�/

C
�
kuk1 C %s.�/.u/

�
� sup
u2ˆ�1..�1;r�/

C
�
k1kuk Cmax¹kuks�

s.�/
; kuk

sC
s.�/
º
�

� sup
u2ˆ�1..�1;r�/

C
�
k1kuk Cmax¹ks�s ; k

sC
s ºmax¹kuks� ; kuksCº

�
� C

�
k1 max

®
.qCr/

1
p� ; .qCr/

1
qCC� ;

¯
C Nks max

®
.qCr/

sC
p� ; .qCr/

s�
qCC�

¯�
:

Now, taking .h2/ and (3.9) into account, one has

supu2ˆ�1..�1;r�/‰.u/

r

�
C.k1 max¹.qCr/

1
p� ; .qCr/

1
qCC� ; º C Nks max¹.qCr/

sC
p� ; .qCr/

s�
qCC� º/

r

� ˇ.�/ �
‰. Qu/

ˆ. Qu/
:
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Thus, condition (2.6) is verified, and from Proposition 3.1, we know that I� fulfills the (C)-
condition. Therefore, we can apply Theorem 2.8 and obtain two nontrivial weak solutions
u�;1; u�;2 2 W

1;Hlog
0 .�/ of (1.8) such that I�.u�;1/ < 0 < I�.u�;2/. From Theorem 3.1

by Rădulescu–Stapenhorst–Winkert [45], we know that these solutions are bounded as
well.

A direct consequence about nonnegative solutions is the following corollary.

Corollary 3.2. Suppose that, in addition to the assumptions of Theorem 1.1, f .x; 0/ � 0
and f .x; t/D f .x; 0/ for a.a. x 2� and for all t < 0. Then, problem (1.8) admits at least
two nontrivial and nonnegative bounded weak solutions with opposite energy sign.

Proof. Applying Theorem 1.1 gives us two bounded nontrivial weak solutions u�;1 and
u�;2 of (1.8). We only have to prove the nonnegativity. Testing the weak formulation of
problem (1.8) related to u�;1 with v D �u�

�;1
D �max¹�u�;1; 0º 2 W

1;Hlog
0 .�/ (see [5,

Proposition 3.8 (iii)]), we obtainZ
�

jru�;1j
p.x/�2

ru�;1 � r.�u
�
�;1/dx

C

Z
�

�.x/

�
log.e C jruj/C

jruj

q.x/.e C jruj/

�
jru�;1j

q.x/�2
ru�;1 � r.�u

�
�;1/dx

D �

Z
�

f .x; u�;1/u
�
�;1dx;

and so,
�%Hlog.ru

�
�;1/ � 0:

On the other hand, Proposition 2.2 (iii) gives

min
®
ku�;1k

p� ; ku�;1k
qCC�

¯
� %Hlog.u�;1/ � 0;

which implies that ku�
�;1
k D 0. Then, u�

�;1
D 0 and u�;1 � 0. The same argument shows

that u�;2 � 0.

Finally, we can give the proof of Theorem 1.2.

Proof of Theorem 1.2. From condition (1.11), we have

lim sup
�!0C

ˇ.�/ D lim sup
�!0C

ı

R
B.x0;

R
2 /
F.x; �/dx

max¹�p� ; �qC log.e C 2�
R
/º

� ı!R
2

lim sup
�!0C

infx2� F.x; �/
�p�

D C1:

(3.10)

Thus, fixing � 2 �0; ��/, we can choose r > 0 such that

� <
1

˛.r/
D

r

C.k1 max¹.qCr/
1
p� ; .qCr/

1
qCC� º C Nks max¹.qCr/

sC
p� ; .qCr/

s�
qCC� º/

:
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Next, from (3.10), we deduce that there exists � > 0 small enough such that

ı!R
2

infx2� F.x; �/
�p�

>
1

�
:

This implies that ˛.r/ < ˇ.�/. Finally, applying Theorem 1.1 and following the arguments
used in the proof of Corollary 3.2, we conclude that problem (1.8) admits at least two
nontrivial, nonnegative, bounded weak solutions with opposite energy signs, as required.

Finally, we provide an example of a function f W� � R! R satisfying the assump-
tions .Hf/.

Example 3.3. Let f W� �R! R be defined by

f .x; t/ D

´
jt j˛.x/�2t; jt j < 1;

jt jˇ.x/�2t
�
log jt j C 1

�
; jt j � 1;

where ˛; ˇ 2 C.x�/ such that

qC < ˇ.x/ < .p�/
� for all x 2 x� and

ˇC

p�
�
ˇ�

N
< 1:

By construction, f satisfies the Carathéodory condition .f1/. Moreover, setting l.x/ D
ˇ.x/ for all x 2 x� and s.x/ D ˇ.x/C � for all x 2 x� for some sufficiently small � > 0
such that

sC

p�
�
ˇ�

N
< 1 and sC < .p�/

�;

conditions .f2/, .f3/, and .f4/ are satisfied.
If, in addition, ˛.x/ < p� for all x 2 x�, then Theorem 1.2 applies to

fC.x; t/ D jf .x; t/j

for every .x; t/ 2 � �R.
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