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Abstract. We consider a nonlinear Dirichlet problem driven by the (p, q)-
Laplacian and with a reaction which is parametric and exhibits the com-
bined effects of a singular term and of a superdiffusive one. We prove an
existence and nonexistence result for positive solutions depending on the

value of the parameter λ ∈
◦
R+ = (0, +∞).
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1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper, we

study the following singular (p, q)-equation with logistic perturbation

−Δpu − Δqu = λ
[
u−η + uθ−1

] − f(x, u) in Ω,

u = 0 on ∂Ω,

u > 0, λ > 0, 0 < η < 1, 1 < q < p < θ.

(Pλ)

For r ∈ (1,∞) we denote the r-Laplace differential operator defined by

Δru = div
(|∇u|r−2∇u

)
for all u ∈ W 1,r

0 (Ω).

In problem (Pλ) we have the sum of two such operators with different
exponents which implies that the differential operator on the left-hand side
is not homogeneous. The right-hand side of (Pλ) has the combined effects of
a singular term s → λs−η for s > 0 with 0 < η < 1 and of a perturbation
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which is of logistic type, namely the function s → λsθ−1 − f(x, s) for almost
all (a. a.) x ∈ Ω. The function f : Ω × R → R is a Carathéodory function,
that is, x �→ f(x, s) is measurable for all s ∈ R and s �→ f(x, s) is continuous
for a. a. x ∈ Ω. We assume that f(x, ·) is (θ − 1)-superlinear as s → +∞ for
a. a.x ∈ Ω. So, the logistic perturbation is of the superdiffusive type. We are
interested in positive solutions whenever the parameter λ is positive.

Parametric superdiffusive logistic equations with no singular term
present, were investigated by Afrouzi–Brown [1] (for semilinear Dirichlet
problems), Takeuchi [23,24] (for nonlinear Dirichlet problems driven by
the p-Laplacian), Gasiński–O’Regan–Papageorgiou [3] (for nonlinear Dirich-
let problems driven by a nonhomogeneous differential operator), Cardinali–
Papageorgiou–Rubbioni [2], Gasiński–Papageorgiou [7] (both dealing with
nonlinear problems driven by the p-Laplacian) and Papageorgiou–Rădulescu-
Repovš [16] (for semilinear mixed problems). These works reveal that the
superdiffusive logistic equations exhbit a kind of “bifurcation” for large values
of the parameter λ > 0. More precisely, there is a critical parameter value
λ∗ > 0 such that the problem has at least two positive solutions for all λ > λ∗,
the problem has at least one positive solution for λ = λ∗ and there are no
positive solutions for λ ∈ (0, λ∗). This is in contrast to subdiffusive and equid-
iffusive logistic equations for which we do not have multiplicity of positive
solutions, see Papageorgiou–Winkert [19].

When we introduce a singular term in the reaction, the geometry of the
problem changes since u = 0 is no longer a local minimizer of the energy
functional and so we cannot have a multiplicity result. In addition, the singular
term generates an energy functional which is not C1 and so we have difficulties
in using the results of critical point theory. Therefore, we need to find a way to
bypass the singular term and deal with a C1-functional to which we can apply
the results of the critical point theory. Nonlinear singular problems but with a
different kind of perturbation were studied recently by Papageorgiou-Winkert
[20] (equations driven by the p-Laplacian) and by Papageorgiou–Rădulescu-
Repovš [15] (equations driven by a nonhomogeneous differential operator).

The main result of our work here establishes the existence of a critical
parameter λ∗ such that

• problem (Pλ) has at least one positive smooth solution for all λ ≥ λ∗;
• problem (Pλ) has no positive solutions for all λ < λ∗.

Finally we mention that equations driven by the sum of two differential
operators of different nature (such as (p, q)-equations) arise in many mathe-
matical models of physical processes. We refer to the survey papers of Marano–
Mosconi [12] and Rădulescu [22].
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2. Preliminaries and Hypotheses

In this section we present some preliminaries which are needed in the sequel
and also the hypotheses on the data of problem (Pλ).

For every 1 ≤ r < ∞ we consider the usual Lebesgue spaces Lr(Ω) and
Lr(Ω;RN ) equipped with the norm ‖ · ‖r. When 1 < r < ∞ we denote by
W 1,r(Ω) and W 1,r

0 (Ω) the corresponding Sobolev spaces equipped with the
norms ‖ · ‖1,r and ‖ · ‖1,r,0, respectively. Because of the Poincaré inequality we
can equip the space W 1,r

0 (Ω) with the following norm

‖u‖ = ‖∇u‖r for all u ∈ W 1,r
0 (Ω),

The Banach space

C1
0 (Ω) =

{
u ∈ C1(Ω) : u

∣
∣
∂Ω

= 0
}

is an ordered Banach space with positive cone

C1
0 (Ω)+ =

{
u ∈ C1

0 (Ω) : u(x) ≥ 0 for all x ∈ Ω
}

.

This cone has a nonempty interior given by

int
(
C1

0 (Ω)+
)

=

{
u ∈ C1

0 (Ω)+ : u(x) > 0 for all x ∈ Ω,
∂u

∂n
(x) < 0 for all x ∈ ∂Ω

}
,

where n(·) stands for the outward unit normal on ∂Ω.
Let r ∈ (1,+∞) and recall that W 1,r

0 (Ω)∗ = W−1,r′
(Ω) with 1

r + 1
r′ = 1.

By 〈·, ·〉1,r we denote the duality brackets of the pair (W 1,r
0 (Ω),W−1,r′

(Ω)).
For notational simplicity when r = p, we simply write 〈·, ·〉.

For r ∈ (1,+∞), let Ar : W 1,r
0 (Ω) → W−1,r′

(Ω) = W 1,r
0 (Ω)∗ with 1

r +
1
r′ = 1 be the nonlinear map defined by

〈Ar(u), h〉1,r =
∫

Ω

|∇u|r−2∇u · ∇h dx for all u, h ∈ W 1,r
0 (Ω). (2.1)

From Gasiński–Papageorgiou [5, Problem 2.192, p. 279] we have the fol-
lowing properties of Ar.

Proposition 2.1. The map Ar : W 1,r
0 (Ω) → W−1,r′

(Ω) defined in (2.1) is
bounded, that is, it maps bounded sets to bounded sets, continuous, strictly
monotone, hence maximal monotone and it is of type (S)+, that is,

un
w→ u in W 1,r

0 (Ω) and lim sup
n→∞

〈Ar(un), un − u〉 ≤ 0,

imply un → u in W 1,r
0 (Ω).

For s ∈ R, we set s± = max{±s, 0} and for u ∈ W 1,p
0 (Ω) we define

u±(·) = u(·)±. It is well known that

u± ∈ W 1,p
0 (Ω), |u| = u+ + u−, u = u+ − u−.
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Furthermore, given a measurable function g : Ω × R → R, we denote by
Ng the corresponding Nemytskii (superposition) operator defined by

Ng(u)(·) = g(·, u(·)) for all measurable u : Ω → R.

It is clear that x → g(x, u(x)) is measurable. Recall that if g : Ω × R → R

is a Carathéodory function, then g is measurable in both arguments, see, for
example, Papageorgiou–Winkert [18, Proposition 2.2.31, p. 106].

If h1, h2 : Ω → R are two measurable functions, then we write h1 ≺ h2

if and only if for every compact K ⊆ Ω we have 0 < cK ≤ h2(x) − h1(x) for
a. a. x ∈ K. Note that if h1, h2 ∈ C(Ω) and h1(x) < h2(x) for all x ∈ Ω, then
h1 ≺ h2.

For u, v ∈ W 1,p
0 (Ω) with u(x) ≤ v(x) for a. a.x ∈ Ω we define

[u, v] =
{
h ∈ W 1,p

0 (Ω) : u(x) ≤ h(x) ≤ v(x) for a. a. x ∈ Ω
}
,

[u) =
{
h ∈ W 1,p

0 (Ω) : u(x) ≤ h(x) for a. a. x ∈ Ω
}
.

Now we are ready to introduce the hypotheses on the perturbation f : Ω×
R → R.

H: f : Ω × R → R is a Carathéodory function such that, for a. a.x ∈ Ω,
f(x, 0) = 0, f(x, ·) is nondecreasing and

(i)

f(x, s) ≤ a(x)
(
1 + sr−1

)

for a.a. x ∈ Ω, for all s ≥ 0, with a ∈ L∞(Ω) and θ < r < p∗, where
p∗ denotes the critical Sobolev exponent with respect to p given by

p∗ =

{
Np

N−p if p < N,

+∞ if N ≤ p;

(ii)

lim
s→+∞

f(x, s)
sθ−1

= +∞ uniformly for a. a. x ∈ Ω;

(iii) there exist 0 < η̂1 ≤ η̂2 and δ0 > 0 such that

η̂1s
q−1 ≤ f(x, s) for a. a. x ∈ Ω and for all s ∈ [0, δ0]

and

lim sup
s→0+

f(x, s)
sq−1

≤ η̂2 uniformly for a. a. x ∈ Ω.

Remark 2.2. With view to our problem it is clear that we are looking for
positive solutions and the hypotheses above only concern the positive semiaxis
R+ = [0,+∞). Therefore, without any loss generality, we may assume that

f(x, s) = 0 for a.a. x ∈ Ω and for all s ≤ 0.
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Hypothesis H(ii) implies that f(x, ·) is (θ − 1)-superlinear as s → +∞ for
a. a.x ∈ Ω. Dropping the x-dependence for simplicity, the following functions
satisfy hypotheses H

f1(x) =

{
(s+)q−1 if s ≤ 1,

sθ−1 [ln(x) + 1] if 1 < s,
with 1 < q < p < θ < p∗,

f2(x) =

{
μ (s+)q−1 − (s+)τ−1 if s ≤ 1,

(μ − 1)sr−1 if 1 < s
with 1 < q < p < r < p∗,

and τ > q as well as μ ≥ p−1
q−1 .

As we already mentioned in the Introduction, the presence of the singular
term leads to an energy functional which is not C1. This creates problems in the
usage of variational tools. In the next section we examine an auxiliary singular
problem and the solution of them will help us in order to avoid difficulties of
having to do with a nonsmooth energy functional.

3. An Auxiliary Singular Problem

In this section we deal with the following parametric singular Dirichlet (p, q)-
equation

−Δpu − Δqu = λu−η − f(x, u) in Ω,

u = 0 on ∂Ω,

u > 0, λ > 0, 0 < η < 1, 1 < q < p.

(Qλ)

For this problem we have the following existence and uniqueness result.

Proposition 3.1. If hypotheses H hold, then for every λ > 0, problem (Qλ)
has a unique positive solution uλ ∈ int

(
C1

0 (Ω)+
)
and the map λ → uλ is

nondecreasing from
◦
R+ = (0,+∞) into C1

0 (Ω).

Proof. First we show the existence of a positive solution for problem (Qλ) for
every λ > 0.

To this end, let g ∈ Lp(Ω) and ε > 0. We consider the following Dirichlet
problem

−Δpu − Δqu + f(x, u) =
λ

[|g| + ε]η
in Ω,

u = 0 on ∂Ω,

Moreover, we consider the nonlinear operator V : W 1,p
0 (Ω) → W−1,p′

(Ω)
defined by

V (u) = Ap(u) + Aq(u) + Nf (u) for all u ∈ W 1,p
0 (Ω).
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Recall that W 1,p
0 (Ω) ↪→ W 1,q

0 (Ω) continuously and densely implies that
W−1,q′

(Ω) ↪→ W−1,p′
(Ω) continuously and densely as well, see Gasiński–

Papageorgiou [6, Lemma 2.2.27, p. 141].
By Proposition 2.1 and the fact that f(x, ·) is nondecreasing, we know

that V : W 1,p
0 (Ω) → W−1,p′(Ω) is continuous and strictly monotone, hence,

maximal monotone as well. In addition we have

〈V (u), u〉 ≥ 〈Ap(u), u〉 = ‖∇u‖p
p = ‖u‖p for all u ∈ W 1,p

0 (Ω),

which implies that V : W 1,p
0 (Ω) → W−1,p′(Ω) is also coercive. Therefore, it is

surjective, see Papageorgiou–Rădulescu–Repovš [14, Corollary 2.8.7, p. 135].
Note that

λ

[|g(·)| + ε]η
∈ L∞(Ω) ↪→ W−1,p′

(Ω).

Hence, there exists vε ∈ W 1,p
0 (Ω) such that

V (vε) =
λ

[|g| + ε]η
.

The strict monotonicity of V implies that this solution vε is unique. Since
W 1,p

0 (Ω) ↪→ Lp(Ω) by the Sobolev embedding theorem, we can define the
solution map kε : Lp(Ω) → Lp(Ω) by kε(g) = vε. Note that

Ap(vε) + Aq(vε) + Nf (vε) =
λ

[|g| + ε]η
in W−1,p′

(Ω). (3.1)

On (3.1) we take the test function vε ∈ W 1,p
0 (Ω) and obtain

‖∇vε‖p
p = ‖vε‖p ≤ λ

εη
(3.2)

because f(x, vε)vε ≥ 0. From the compactness of W 1,p
0 (Ω) ↪→ Lp(Ω) it follows

that

kε(Lp(Ω))
‖·‖p ⊆ Lp(Ω) is compact.

Suppose that gn → g in Lp(Ω). From (3.2) we see that

{vn
ε }n∈N

= {kε(gn)}n∈N
⊆ W 1,p

0 (Ω) is bounded.

Hence, by passing to a suitable subsequence if necessary, we may assume that

vn
ε

w→ v∗
ε in W 1,p

0 (Ω) and vn
ε → v∗

n in Lp(Ω). (3.3)

We have

Ap (vn
ε ) + Aq (vn

ε ) + Nf (vn
ε ) =

λ

[|gn| + ε]η
in W−1,p′

(Ω) (3.4)

for all n ∈ N. Applying vn
ε − v∗

ε ∈ W 1,p
0 (Ω) on (3.4), passing to the limit as

n → ∞ and using (3.3), we obtain

lim
n→∞ [〈Ap (vn

ε ) , vn
ε − v∗

ε 〉 + 〈Aq (vn
ε ) , vn

ε − v∗
ε 〉] = 0.
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Since Aq is monotone, we derive

lim sup
n→∞

[〈Ap (vn
ε ) , vn

ε − v∗
ε 〉 + 〈Aq (v∗

ε ) , vn
ε − v∗

ε 〉] ≤ 0

and due to (3.3), we get

lim sup
n→∞

〈Ap (vn
ε ) , vn

ε − v∗
ε 〉 ≤ 0.

Then, by Proposition 2.1, it follows that

vn
ε → v∗

ε in W 1,p
0 (Ω). (3.5)

So, if we pass in (3.4) to the limit as n → ∞ and use (3.5) as well as the
fact that |gn| → |g| in Lp(Ω), we obtain

Ap (v∗
ε ) + Aq (v∗

ε ) + Nf (v∗
ε ) =

λ

[|g| + ε]η
in W−1,p′

(Ω).

Hence, v∗
ε = kε(g).

By the Urysohn’s criterion for the convergence of sequences we have
for the initial sequence kε(gn) → kε(g) in Lp(Ω), see Gasiński–Papageorgiou
[4, p. 33]. This proves that the solution map kε is continuous. Therefore, we
can apply the Schauder–Tychonov fixed point theorem, see Papageorgiou–
Rădulescu–Repovš [14, Theorem 4.3.21, p. 298], which gives the existence of
v̂ε ∈ W 1,p

0 (Ω) such that

kε (v̂ε) = v̂ε, v̂ε ≥ 0, v̂ε �= 0.

We have

−Δpv̂ε − Δq v̂ε =
λ

[v̂ε + ε]η
− f (x, v̂ε) in Ω,

v̂ε = 0 on ∂Ω.

Theorem 7.1 of Ladyzhenskaya–Ural’tseva [10, p. 286] implies that v̂ε ∈
L∞(Ω). Then, from the nonlinear regularity theory of Lieberman [11] we have
that v̂ε ∈ C1

0 (Ω)+ \ {0}. Hypotheses H(i), (iii) imply that if ρε = ‖v̂ε‖∞, then
there exists ξ̂ρε

> 0 such that ξ̂ρε
sp−1 − f(x, s) ≥ 0 for a. a.x ∈ Ω and for all

s ∈ [0, ρε]. Using this we obtain

−Δpv̂ε − Δq v̂ε + ξ̂ρε
v̂p−1 ≥ ξ̂ρε

v̂p−1 − f (x, v̂ε) ≥ 0 in Ω.

Hence, we have

Δpv̂ε + Δq v̂ε ≤ ξ̂ρε
v̂p−1,

which implies that v̂ε ∈ int
(
C1

0 (Ω)+
)
, see Pucci–Serrin [21, pp. 111 and 120].

Therefore, we produced a solution v̂ε ∈ int
(
C1

0 (Ω)+
)

for the following
approximation of problem (Qλ)

− Δpu − Δqu =
λ

[|u| + ε]η
− f(x, u) in Ω,

u
∣
∣
∂Ω

= 0, u ≥ 0. (3.6)
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In fact this solutions is unique. Indeed, if ṽε ∈ W 1,p
0 (Ω) is another positive

solution of (3.6), then we have

0 ≤ 〈Ap (v̂ε) − Ap (ṽε) , v̂ε − ṽε〉 + 〈Aq (v̂ε) − Aq (ṽε) , v̂ε − ṽε〉

+
∫

Ω

[f (x, v̂ε) − f (x, ṽε)] (v̂ε − ṽε) dx

=
∫

Ω

λ

[
1

(v̂ε + ε)η − 1
(ṽε + ε)η

]
(v̂ε − ṽε) dx ≤ 0.

Since u → Ap(u) + Aq(u) is strictly monotone, see Proposition 2.1, it follows
that v̂ε = ṽε. This proves the uniqueness of the solution v̂ε ∈ int

(
C1

0 (Ω)+
)

of
(3.6).

claim. If 0 < ε′ < ε ≤ 1, then v̂ε ≤ v̂ε′ .

We have

−Δpv̂ε′ − Δq v̂ε′ + f (x, v̂ε′) =
λ

[v̂ε′ + ε′]η
≥ λ

[v̂ε′ + ε]η
in Ω. (3.7)

Now we introduce the Carathéodory function eε : Ω × R → R defined by

eε(x, s) =

{
λ

[s++ε]η if s ≤ v̂ε′(x),
λ

[v̂ε′ (x)+ε]η if v̂ε′(x) < s.
(3.8)

We set Eε(x, s) =
∫ s

0
eε(x, t) dt and consider the C1-functional σε : W 1,p

0 (Ω) →
R defined by

σε(u) =
1
p
‖∇u‖p

p +
1
q
‖∇u‖q

q +
∫

Ω

F
(
x, u+

)
dx −

∫

Ω

Eε(x, u) dx

for all u ∈ W 1,p
0 (Ω). From (3.8) and since F ≥ 0 we see that σε : W 1,p

0 (Ω) → R

is coercive and because of the Sobolev embedding theorem it is also sequentially
weakly lower semicontinuous. Therefore, by the Weierstraß-Tonelli theorem
there exists ṽε ∈ W 1,p

0 (Ω) such that’

σε (ṽε) = min
[
σε(v) : v ∈ W 1,p

0 (Ω)
]
.

This implies that σ′
ε (ṽε) = 0, that is,

〈Ap (ṽε) , h〉 + 〈Aq (ṽε) , h〉 +
∫

Ω

f (x, ṽε) h dx =
∫

Ω

eε (x, ṽε) h dx (3.9)

for all h ∈ W 1,p
0 (Ω). Taking h = −ṽ−

ε ∈ W 1,p
0 (Ω) as test function in (3.9)

and applying (3.8) we obtain that ṽε ≥ 0. Moreover, we can choose h =
(ṽε − v̂ε′)+ ∈ W 1,p

0 (Ω). Then, using once again (3.8) and also (3.7) we infer
that ṽε ≤ v̂ε′ . So, we have proved that

ṽε ∈ [0, v̂ε′ ] . (3.10)
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From (3.10), (3.8) and (3.9) it follows that

−Δpṽε − Δq ṽε + f (x, ṽε) = [ṽε + ε]−η in Ω,

ṽε

∣
∣
∂Ω

= 0, ṽε ≥ 0.

It is clear that ṽε �= 0 and so from the first part of the proof we have ṽε = v̂ε ∈
int

(
C1

0 (Ω)+
)
. Then, due to (3.10), we obtain ṽε ≤ ṽε′ . This proves the Claim.

Now we are ready to send ε → 0+ in order to produce a solution for
problem (Qλ). So, we consider a sequence εn → 0+ and set v̂n = v̂εn

for all
n ∈ N. We have

〈Ap (v̂n) , h〉 + 〈Aq (v̂n) , h〉 +
∫

Ω

f (x, v̂n) h dx =
∫

Ω

λh

[v̂n + εn]η
dx (3.11)

for all h ∈ W 1,p
0 (Ω). Testing (3.11) with h = v̂n ∈ W 1,p

0 (Ω) and applying the
Claim gives

‖v̂n‖p = ‖∇v̂n‖p
p ≤

∫

Ω

λv̂n

[v̂n + εn]η
dx ≤

∫

Ω

λv̂nv̂−η
1 dx (3.12)

for all n ∈ N.
Let d̂(x) = d(x, ∂Ω) for x ∈ Ω. We know that d̂ ∈ int

(
C1

0 (Ω)+
)
, see

Gilbarg–Trudinger [9, p. 355]. Since v̂1 ∈ int
(
C1

0 (Ω)+
)
, we have

∫

Ω

λv̂nv̂−η
1 dx =

∫

Ω

λv̂1−η
1

v̂n

v̂1
dx ≤ λc1

∫

Ω

v̂n

v̂1
dx ≤ λc2

∫

Ω

v̂n

d̂
dx

≤ λc3

∥
∥
∥
∥

v̂n

d̂

∥
∥
∥
∥

p

≤ λc4 ‖v̂n‖
(3.13)

for some c1, c2, c3, c4 > 0.
From (3.12) and (3.13) it follows that {v̂n} ⊆ W 1,p

0 (Ω) is bounded. There-
fore we may assume that

v̂n
w→ uλ in W 1,p

0 (Ω) and v̂n → uλ in Lr(Ω). (3.14)

Now we choose h = v̂n − uλ ∈ W 1,p
0 (Ω) in (3.11). This yields

〈Ap (v̂n) , v̂n − uλ〉 + 〈Aq (v̂n) , v̂n − uλ〉 +
∫

Ω

f (x, v̂n) (v̂n − uλ) dx

=
∫

Ω

λ [v̂n − uλ]
[v̂n + εn]η

dx

≤
∫

Ω

λ [v̂n − uλ]1−η
dx

≤ λc6 ‖v̂n − uλ‖r for some c6 > 0 and for all n ∈ N,

since uλ ≥ 0. Then, from the convergence properties in (3.14), we conclude
that

lim sup
n→∞

[〈Ap (v̂n) , v̂n − uλ〉 + 〈Aq (v̂n) , v̂n − uλ〉] ≤ 0.
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By the monotonicity of Aq we obtain

lim sup
n→∞

[〈Ap (v̂n) , v̂n − uλ〉 + 〈Aq (uλ) , v̂n − uλ〉] ≤ 0.

Therefore,

lim sup
n→∞

〈Ap (v̂n) , v̂n − uλ〉 ≤ 0,

which by Proposition 2.1 implies that

v̂n → uλ in W 1,p
0 (Ω). (3.15)

From the Claim we know that v̂1 ≤ v̂n for all n ∈ N and so, v̂1 ≤ uλ.
Thus, uλ �= 0.

For every h ∈ W 1,p
0 (Ω), since v̂1 ∈ int

(
C1

0 (Ω)+
)
, by Hardy’s inequality,

we have

0 ≤ |h(x)|
[v̂n + εn]η

≤ |h(x)|v̂−η
1 ∈ L1(Ω) for all n ∈ N.

Moreover, we have
h(x)

[v̂n(x) + εn]η
→ h(x)

uλ(x)η
for a. a. x ∈ Ω

due to (3.14). Therefore, we can apply the Dominated Convergence Theorem
and obtain ∫

Ω

h

[v̂n + εn]η
dx →

∫

Ω

h

uη
λ

as n → ∞. (3.16)

We return to (3.11), pass to the limit as n → ∞ and use (3.15) as well
as (3.16). We obtain

〈Ap (uλ) , h〉 + 〈Aq (uλ) , h〉 +
∫

Ω

f (x, uλ) h dx =
∫

Ω

λh

uη
λ

dx

for all h ∈ W 1,p
0 (Ω). Hence, uλ is a positive solution of (Qλ) for λ > 0.

From Marino–Winkert [13] we have that

v̂n ∈ L∞(Ω) and ‖v̂n‖∞ ≤ c7

for some c7 > 0 and for all n ∈ N. Then, by hypothesis H(i) we know that

{Nf (v̂n)}n∈N
⊆ L∞(Ω) is bounded.

We have

−Δpv̂n − Δq v̂n =
λ

[v̂n + εn]η
− f (x, v̂n) in Ω, v̂n

∣
∣
∂Ω

= 0

for all n ∈ N.
Using the nonlinear regularity theory of Lieberman [11], we have that

{v̂n}n∈N
⊆ C1

0 (Ω) is relatively compact.

Hence, due to (3.15), we obtain v̂n → uλ in C1
0 (Ω). Since v̂1 ≤ uλ, we then

conclude that uλ ∈ int
(
C1

0 (Ω)+
)
.
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So, we have proved that for every λ > 0, problem (Qλ) has a solution
uλ ∈ int

(
C1

0 (Ω)+
)
.

We need to show that this is the unique positive solution of (Qλ). To this
end, let vλ ∈ W 1,p

0 (Ω) be another positive solution of (Qλ). Since Ap and Aq

are strictly monotone and f(x, ·) is nondecreasing, we have

0 ≤ 〈Ap (uλ) − Ap (vλ) , uλ − vλ〉 + 〈Ap (uλ) − Aq (vλ) , uλ − vλ〉

+
∫

Ω

[f (x, uλ) − f (x, vλ)] (uλ − vλ) dx

=
∫

Ω

λ

[
1
uη

λ

− 1
vη

λ

]
(uλ − vλ) dx ≤ 0.

Therefore, uλ = vλ.
Finally, we are going to show the monotonicity of λ → uλ. So, let λ < μ.

We consider the Carathéodory function dμ : Ω × R → R defined by

dμ(x, s) =

{
μuλ(x)−η − f (x, uλ(x)) if s ≤ uλ(x),
μs−η − f(x, s) if uλ(x) < s.

(3.17)

We set Dμ(x, s) =
∫ s

0
dμ(x, t) dt and consider the C1-functional τμ : W 1,p

0 (Ω) →
R defined by

τμ(u) =
1
p
‖∇u‖p

p +
1
q
‖∇u‖q

q −
∫

Ω

Dμ(x, u) dx for all u ∈ W 1,p
0 (Ω).

Since τμ : W 1,p
0 (Ω) → R is coercive, the direct method of the calculus of vari-

ations produces ũμ ∈ W 1,p
0 (Ω) such that

τμ (ũμ) = min
[
τμ(u) : u ∈ W 1,p

0 (Ω)
]
.

From (3.17) we see that

ũμ ∈ Kτμ
=

{
u ∈ W 1,p

0 (Ω) : τ ′
μ(u) = 0

}
⊆ [uλ) ∩ int

(
C1

0 (Ω)+
)

and

ũμ = uμ ∈ int
(
C1

0 (Ω)+
)
.

Hence, uλ ≤ uμ. �

4. Positive Solutions

In this section we prove the existence and nonexistence of positive solutions

for problem (Pλ) as λ moves in
◦
R+ = (0,+∞).

We introduce the following two sets

L = {λ > 0 : problem (Pλ) has a positive solution} ,

Sλ = {u : u is a positive solution of problem (Pλ)} .
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Proposition 4.1. If hypotheses H hold, then uλ ≤ u for all u ∈ Sλ.

Proof. Let u ∈ Sλ. We introduce the Carathéodory function kλ : Ω ×
◦
R+ → R

defined by

kλ(x, s) =

{
λs−η − f(x, s) if 0 < s ≤ u(x),
λu(x)−η − f(x, u(x)) if u(x) < s.

(4.1)

We consider the following Dirichlet singular (p, q)-equation

−Δpu − Δqu = kλ(x, u) in Ω, u
∣
∣
∂Ω

= 0, u > 0. (4.2)

Reasoning as in the proof of Proposition 3.1, see also Papageorgiou–Rădulescu–
Repovš [15, Proposition 10], we show that (4.2) has a positive solution ũλ ∈
int

(
C1

0 (Ω)+
)
. The weak formulation of (4.2) is given by

〈Ap (ũλ) , h〉 + 〈Aq (ũλ) , h〉 =
∫

Ω

kλ (x, ũλ) h dx for all u ∈ W 1,p
0 (Ω). (4.3)

Now, we choose h = (ũλ − u)+ ∈ W 1,p
0 (Ω) as test function in (4.3). Then, by

applying (4.1), u ≥ 0 and u ∈ Sλ, we obtain
〈
Ap (ũλ) , (ũλ − u)+

〉
+

〈
Aq (ũλ) , (ũλ − u)+

〉

=
∫

Ω

[
λu−η − f(x, u)

]
(ũλ − u)+ dx

≤ [
λ

(
u−u + uθ−1

) − f(x, u)
]
(ũλ − u)+ dx

=
〈
Ap (u) , (ũλ − u)+

〉
+

〈
Aq (u) , (ũλ − u)+

〉
.

Therefore, ũλ ≤ u because of the monotonicity of Ap and Aq.
Then, from (4.1) and Proposition 3.1, it follows that ũλ = uλ ∈

int
(
C1

0 (Ω)+
)

and so, uλ ≤ u for all u ∈ Sλ. �
Next we determine the regularity of the elements of the solution set Sλ.

Proposition 4.2. If hypotheses H hold, then Sλ ⊆ int
(
C1

0 (Ω)+
)
for all λ > 0.

Proof. The result is trivially true if Sλ = ∅. So, suppose that Sλ �= ∅ and let
u ∈ Sλ. From Proposition 4.1 we know that uλ ≤ u and so u−η ≤ u−η

λ ∈ L1(Ω).
Recall that v̂1 ≤ uλ and v̂−η

1 ∈ L1(Ω), see the proof of Proposition 3.1. There-
fore, using Theorem B.1 of Giacomoni–Saoudi [8], we see that u ∈ C1

0 (Ω)+\{0}.
On account of hypotheses H(i), (ii), if ρ = ‖u‖∞, then we can find ξ̂ρ > 0

such that

ξ̂ρs
p−1 − f(x, s) ≥ 0 for a.a. x ∈ Ω and for all 0 ≤ s ≤ ρ.

Using this, we have

Δpu + Δqu ≤ ξ̂ρu
p−1 in Ω.

Then, by Pucci–Serrin [21, pp. 111 and 120], we derive u ∈ int
(
C1

0 (Ω)+
)
.

Hence, Sλ ⊆ int
(
C1

0 (Ω)+
)
. �
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Next, we are going to prove the nonemptiness of L.

Proposition 4.3. If hypotheses H hold, then L �= ∅.
Proof. Let uλ ∈ int

(
C1

0 (Ω)+
)

be the unique positive solution of (Qλ), see
Proposition 3.1. We introduce the Carathéodory function eλ : Ω × R → R

defined by

eλ(x, s) =

{
λuλ(x)−η − f (x, uλ(x)) + λ (s+)θ−1 if s ≤ uλ(x),
λs−η − f(x, s) + λsθ−1 if uλ(x) < s.

(4.4)

We set Eλ(x, s) =
∫ s

0
eλ(x, t) dt and consider the functional γλ : W 1,p

0 (Ω) → R

defined by

γλ(u) =
1
p
‖∇u‖p

p +
1
q
‖∇u‖q

q −
∫

Ω

Eλ(x, u) dx for all u ∈ W 1,p
0 (Ω).

Since u−η
λ ∈ L1(Ω), see the proof of Proposition 3.1, we have that γλ ∈

C1(W 1,p
0 (Ω)), see also Proposition 3 of Papageorgiou–Smyrlis [17].
From (4.4) and hypothesis H(ii), we infer that γλ is coercive. Moreover, it

is also sequentially weakly lower semicontinuous. Hence, there exists a global
minimizer u◦

λ ∈ W 1,p
0 (Ω) of γλ, that is,

γλ (u◦
λ) = min

[
γλ(u) : u ∈ W 1,p

0 (Ω)
]
. (4.5)

Let u ∈ int
(
C1

0 (Ω)+
)

and choose t ∈ (0, 1) small so that tu ≤ uλ.
Recall that uλ ∈ int

(
C1

0 (Ω)+
)

and use Proposition 4.1.22 of Papageorgiou–
Rădulescu–Repovš [14, p. 274].

We have

γλ(tu) ≤ tp

p
‖∇u‖p

p +
tq

q
‖∇u‖q

q − t

∫

Ω

[
λu−η

λ − f (x, uλ)
]
u dx. (4.6)

Let λ0 = ‖uη
λf (x, uλ)‖∞, see hypothesis H(i), and let λ > λ0. Then

∫

Ω

[
λu−η

λ − f (x, uλ)
]

dx = μ > 0.

So, from (4.6) we have

γλ(tu) ≤ c10t
q − μt for some c10 > 0,

since t ∈ (0, 1) and q < p.
Since q > 1, by taking t ∈ (0, 1) even smaller if necessary, we see that

γλ(tu) < 0. Taking (4.5) into account we know that

γλ (u◦
λ) < 0 = γλ(0) for all λ > λ0.

Thus, u◦
λ �= 0.

From (4.5) we have γ′
λ (u◦

λ) = 0, that is,

〈Ap (u◦
λ) , h〉 + 〈Aq (u◦

λ) , h〉 =
∫

Ω

eλ (x, u◦
λ) h dx for all h ∈ W 1,p

0 (Ω). (4.7)



  169 Page 14 of 20 N. S. Papageorgiou and P. Winkert Results Math

We choose h = (uλ − u◦
λ)+ ∈ W 1,p

0 (Ω) as test function in (4.7). Applying (4.4)
and Proposition 3.1 gives

〈
Ap (u◦

λ) , (uλ − u◦
λ)+

〉
+

〈
Aq (u◦

λ) , (uλ − u◦
λ)+

〉

=
∫

Ω

[
λu−η

λ − f (x, uλ) + λ
(
(u◦

λ)+
)θ−1

]
(uλ − u◦

λ)+ dx

≥
∫

Ω

[
λu−η

λ − f (x, uλ)
]
(uλ − u◦

λ)+ dx

=
〈
Ap (uλ) , (uλ − u◦

λ)+
〉

+
〈
Aq (uλ) , (uλ − u◦

λ)+
〉

.

As before, by the monotonicity of Ap and Aq we conclude that uλ ≤ u◦
λ. Using

this fact along with (4.4) and (4.7) we infer that

u◦
λ ∈ Sλ ⊆ int

(
C1

0 (Ω)+
)
,

see Proposition 4.2. Therefore, λ ∈ L and so (λ0,+∞) ⊆ L �= ∅. �

The next proposition establishes a structural property for L, namely that
L is an upper half-line.

Proposition 4.4. If hypotheses H hold, λ ∈ L and μ > λ, then μ ∈ L.
Proof. Since λ ∈ L there exists uλ ∈ Sλ ⊆ int

(
C1

0 (Ω)+
)
, see Proposition 4.2.

From Proposition 4.1 we have uλ ≤ uλ. Therefore,

u−η
λ ∈ L1(Ω). (4.8)

We now introduce the Carathéodory function gμ : Ω × R → R defined by

gμ(x, s) =

{
μ

[
uλ(x)−η + uλ(x)θ−1

] − f (x, uλ(x)) if s ≤ uλ(x),
μ

[
s−η + sθ−1

] − f (x, s) if uλ(x) < s.
(4.9)

We set Gμ(x, s) =
∫ s

0
gμ(x, t) dt and consider the C1-functional ϕμ : W 1,p

0 (Ω) →
R defined by

ϕμ(u) =
1
p
‖∇u‖p

p +
1
q
‖∇u‖q

q −
∫

Ω

Gμ(x, u) dx for all u ∈ W 1,p
0 (Ω),

see (4.8).
From (4.8) and hypothesis H(ii) we see that ϕμ is coercive and we know

it is also sequentially weakly lower semicontinuous. Hence, we can find uμ ∈
W 1,p

0 (Ω) such that

ϕμ (uμ) = min
[
ϕμ(u) : u ∈ W 1,p

0 (Ω)
]
.

This implies that ϕ′
μ (uμ) = 0, that is,

〈Ap (uμ) , h〉 + 〈Aq (uμ) , h〉 =
∫

Ω

gμ (x, uμ) h dx for all h ∈ W 1,p
0 (Ω).

(4.10)
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We choose h = (uλ − uμ)+ ∈ W 1,p
0 (Ω) as test function in (4.10). Applying

(4.9), λ < μ and uλ ∈ Sλ, we obtain

〈
Ap (uμ) , (uλ − uμ)+

〉
+

〈
Aq (uμ) , (uλ − uμ)+

〉

=
∫

Ω

[
μ

(
u−η

λ + uθ−1
λ

) − f (x, uλ)
]
(uλ − uμ)+ dx

≥
∫

Ω

[
λ

(
u−η

λ + uθ−1
λ

) − f (x, uλ)
]
(uλ − uμ)+ dx

=
〈
Ap (uλ) , (uλ − uμ)+

〉
+

〈
Aq (uλ) , (uλ − uμ)+

〉
.

Again, from the monotonicity of Ap and Aq, we deduce that uλ ≤ uμ. This
along with (4.9) as well as (4.10) implies that uμ ∈ Sμ ⊆ int

(
C1

0 (Ω)+
)
. Hence,

μ ∈ L. �

So, according to Proposition 4.4, L is an upper half-line. Moreover, a
byproduct of the proof of Proposition 4.4 is the following corollary.

Corollary 4.5. If hypotheses H hold, λ ∈ L, uλ ∈ Sλ and μ > λ, then μ ∈ L
and there exists uμ ∈ Sμ such that uλ ≤ uμ.

If we strengthen a little the conditions on f(x, ·), we can improve the
assertion of this corollary.

H’: f : Ω × R → R is a Carathéodory function such that f(x, 0) = 0 for
a. a. x ∈ Ω, f(x, ·) is nondecreasing, hypotheses H’(i), (ii), (iii) are the
same as the corresponding hypotheses H(i), (ii), (iii) and
(iv) for every � > 0 there exists ξ̂	 > 0 such that the function

s → ξ̂	s
p−1 − f(x, s)

is nondecreasing on [0, �] for a. a. x ∈ Ω.

Remark 4.6. The examples in Sect. 2 satisfy this extra condition.

Proposition 4.7. If hypotheses H’ hold, λ ∈ L, uλ ∈ Sλ and μ > λ, then μ ∈ L
and there exists uμ ∈ Sμ such that uμ − uλ ∈ int

(
C1

0 (Ω)+
)
.

Proof. From Corollary 4.5 we already know that μ ∈ L and we can find uμ ∈
Sμ ⊆ int

(
C1

0 (Ω)+
)

such that

uλ ≤ uμ. (4.11)
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Let � = ‖uμ‖∞ and let ξ̂	 > 0 be as postulated by hypothesis H’(iv). Since
λ < μ, uλ ∈ Sλ and due to (4.11) as well as hypothesis H’(iv) we obtain

− Δpuλ − Δquλ + ξ̂	u
p−1
λ − μu−η

λ

≤ −Δpuλ − Δquλ + ξ̂	u
p−1
λ − λu−η

λ

= λuθ−1
λ + ξ̂	u

p−1
λ − f(x, uλ)

≤ μuθ−1
μ + ξ̂	u

p−1
μ − f(x, uμ)

= −Δpuμ − Δquμ + ξ̂	u
p−1
μ − μu−η

μ .

(4.12)

Note that since uλ int
(
C1

0 (Ω)+
)

we have

0 ≺ [μ − λ] uθ−1
λ .

So, from (4.12) and Proposition 7 of Papageorgiou–Rădulescu–Repovš [15], we
conclude that uμ − uλ ∈ int

(
C1

0 (Ω)+
)
. �

Let λ∗ = inf L.

Proposition 4.8. If hypotheses H’ hold, then λ∗ > 0.

Proof. On account of hypotheses H’(ii), (iii) we can find λ̂ > 0 such that

λ̂sθ−1 − f(x, s) ≤ 0 for a.a. x ∈ Ω and for all s ≥ 0. (4.13)

Consider λ ∈ (0, λ̂) and suppose that λ ∈ L. Then we can find uλ ∈ Sλ ⊆
int

(
C1

0 (Ω)+
)
. We set �λ = maxΩ uλ. Then, for δ ∈ (0, �λ) small enough, we

set �δ
λ = �λ −δ > 0. For ξ̂λ = ξ̂	λ

> 0 as postulated by hypothesis H’(iv) along
with (4.13), λ̂ > λ, uλ ∈ Sλ and δ > 0 small enough, we obtain

− Δp�
δ
λ − Δq�

δ
λ + ξ̂λ

(
�δ

λ

)p−1 − λ
(
�δ

λ

)−η

≥ ξ̂λ�p−1
λ − χ(δ) with χ(δ) → 0+ as δ → 0+

≥ λ̂�θ−1
λ − f (x, �λ) + ξ̂λ�p−1

λ − χ(δ)

= λ�θ−1
λ − f (x, �λ) + ξ̂λ�p−1

λ +
[
λ̂ − λ

]
�θ−1

λ − χ(δ)

≥ λ�θ−1
λ − f (x, �λ) + ξ̂λ�p−1

λ

≥ λuθ−1
λ − f (x, uλ) + ξ̂λup−1

λ

= −Δpuλ − Δquλ + ξ̂λup−1
λ − λu−η

λ .

Invoking Proposition 6 of Papageorgiou–Rădulescu–Repovš [15], we have that

�δ
λ > uλ(x) for all x ∈ Ω and for all small δ ∈ (0, �λ),
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a contradiction to the definition of �λ. Therefore

0 < λ̂ ≤ λ∗ = inf L.

�

Next, we show that λ∗ is admissible, that is, λ∗ > 0.

Proposition 4.9. If hypotheses H’ hold, then λ∗ ∈ L.
Proof. Let {λn}n∈N ⊆ L be such that λn ↘ λ∗. For every n ∈ N, let un ∈
Sλn

⊆ int
(
C1

0 (Ω)+
)
. From Proposition 3.1 we know that

uλ∗ ≤ un for all n ∈ N. (4.14)

Moreover we have

〈Ap (un) , h〉 + 〈Aq (un) , h〉 =
∫

Ω

[
λn

(
u−η

n + uθ−1
n

) − f (x, un)
]
h dx (4.15)

for all h ∈ W 1,p
0 (Ω) and for all n ∈ N.

On account of hypotheses H’(i), (ii), (iii) there exists c11 > 0 such that

λnsθ−1 − f(x, s) ≤ c11 (4.16)

for a. a.x ∈ Ω, for all s ≥ 0 and for all n ∈ N.
Choosing h = un ∈ W 1,p

0 (Ω) in (4.15) and using (4.14) and (4.16), results
in

‖un‖p ≤ c12 ‖un‖ for some c12 > 0 and for all n ∈ N.

Therefore, {un}n∈N ⊆ W 1,p
0 (Ω) is bounded.

So, we may assume that

un
w→ u∗ in W 1,p

0 (Ω) and un → u∗ in Lr(Ω). (4.17)

Taking h = un − u∗ ∈ W 1,p
0 (Ω) as test function in (4.15), passing to the limit

as n → ∞ and using (4.17) yields

lim sup
n→∞

〈Ap (un) , un − u∗〉 ≤ 0,

see the proof of Proposition 3.1. Then, from Proposition 2.1 we conclude that

un → u∗ in W 1,p
0 (Ω). (4.18)

Now we can apply (4.18) along with (4.14) as well as (4.15), as in the proof of
Proposition 3.1, in the limit as n → ∞, we obtain

uλ∗ ≤ u∗
and

〈Ap (u∗) , h〉 + 〈Aq (u∗) , h〉 =
∫

Ω

[
λ∗

(
u−η

∗ + uθ−1
∗

)
f (x, u∗)

]
h dx

for all h ∈ W 1,p
0 (Ω). Finally, we reach u∗ ∈ Sλ∗ ⊆ int

(
C1

0 (Ω)+
)

and so λ∗ ∈ L.
�
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So, we have L = [λ∗,+∞) and we can state the following theorem for the
positive solutions of problem (Pλ).

Theorem 4.10. If hypotheses H’ hold, then there exists λ∗ > 0 such that

(1) for every λ ≥ λ∗, problem (Pλ) has a positive solution uλ ∈ int
(
C1

0 (Ω)+
)
;

(2) for every λ ∈ (0, λ∗), problem (Pλ) has no positive solutions.
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