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Abstract
In this paper we deal with quasilinear elliptic equations of the form

− div
(
|∇u|p−2∇u + a(εx)|∇u|q−2∇u

)
+ |u|p−2u + a(εx)|u|q−2u = f (u)

in R
N , where 0 ≤ a(·) ∈ C

(
R

N
) ∩ L∞ (

R
N
)
, 1 < p < N , p < q < p∗ = Np

N−p ,
ε > 0 is a parameter, and f : R → R is a continuous function that grows super-
linearly and subcritically which does not need to fulfill the Ambrosetti-Rabinowitz
condition. Based on the Lusternik-Schnirelmann category we prove several existence
results of constant-sign and sign-changing solutions to the problem above provided
the parameter ε > 0 is sufficiently small.
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1 Introduction andmain result

In this paper we study quasilinear elliptic equations with unbalanced growth in the
whole R

N given by

Tε(u) + |u|p−2u + a(εx)|u|q−2u = f (u) in R
N ,

u ∈ W 1,Hε (RN ),
(1.1)

where Tε(u) is the double phase operator given by

Tε(u) = − div
(
|∇u|p−2∇u + a(εx)|∇u|q−2∇u

)
(1.2)

with ε > 0 being a parameter, W 1,Hε (RN ) is the related Musielak-Orlicz Sobolev
space depending on ε and we suppose the following assumptions:

(H0) 0 ≤ a(·) ∈ C
(
R

N
)∩ L∞ (

R
N
)
, 1 < p < N and p < q < p∗ = Np

N−p with the
critical exponent p∗ of p.

(H1) The weight function a(·) satisfies the following conditions:

(i) inf
x∈RN

a(x) = 0;

(ii) there exists an open bounded set � ⊂ R
N such that 0 < min

x∈∂�
a(x);

(iii) inf
x∈�

a(x) = 0 with � from (ii);

(iv) a(·) is radially symmetric, that is, a(x) = a(|x |) for a.a. x ∈ R
N .

Remark 1.1 Let A = {x ∈ � : a(x) = 0}with� from (H1)(ii). Then (H1)(iii) implies
that A 
= ∅.
(H2) f : R → R is a continuous and odd function satisfying the following conditions:

(i) there exist r ∈ (q, p∗) and a constant C > 0 such that

| f (s)| ≤ C
(
1 + |s|r−1

)
for all s > 0;

(ii) lim
s→0

f (s)

|s|p−2s
= 0;

(iii) lim|s|→+∞
f (s)

|s|q−2s
= +∞;

(iv)
f (s)

|s|q−1 is strictly increasing on (−∞, 0) and on (0,∞).

The corresponding energy functional Eε : W 1,Hε (RN ) → R for problem (1.1) is
given by

Eε(u) = 1

p
‖u‖p

1,p + 1

q

∫

RN
a(εx)

(|∇u|q + |u|q) dx −
∫

�

F(u) dx,
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The effect of the weight function on the number of solutions…

where F(s) = ∫ s0 f (t) dt . A function u ∈ W 1,Hε (RN ) is said to be a weak solution
of (1.1) if

∫

�

(|∇u|p−2∇u + a(εx)|∇u|q−2∇u
) · ∇v dx +

∫

�

(|u|p−2u + a(εx)|u|q−2u
)
v dx

−
∫

�

f (u)v dx = 0

is satisfied for all v ∈ W 1,Hε (RN ).
Our first result reads as follows. Note that γ stands for the genus, see its Definition

in Section 2.

Theorem 1.2 Let hypotheses (H0), (H1) and (H2) be satisfied and let A be given as
in Remark 1.1. Then there exists ε̃ > 0 such that, for any 0 < ε ≤ ε̃, problem (1.1)
has at least

(i) γ (A \ {0}) pairs (u+, (−u)+
)
of positive weak solutions;

(ii) γ (A \ {0}) pairs (u−, (−u)−
)
of negative weak solutions;

(iii) γ (A \ {0}) pairs (u+ + u−, (−u)+ + (−u)−
)
of odd weak solutions with pre-

cisely two nodal domains.

Furthermore, for εn → 0, if uεn is one of these solutions and p̃n ∈ R
N is a global

maximum point of uεn , then we have

lim
εn→0

a (εn p̃n) = 0.

Next, we are interested in positive solutions of problem (1.1) under the following
hypotheses on the right-hand side:

(H3) f : R → R is a continuous function satisfying the following conditions:

(i) there exist r ∈ (q, p∗) and a constant C > 0 such that

| f (s)| ≤ C
(
1 + |s|r−1

)
for all s > 0;

(ii) lim
s→0

f (s)

|s|p−2s
= 0;

(iii) lim
s→+∞

f (s)

|s|q−2s
= +∞;

(iv)
f (s)

sq−1 is strictly increasing on (0,∞).

(v) f (s) = 0 for s ≤ 0.

The second result in this paper is given as follows, whereby cat stands for the
category of a set, see its precise Definition in Section 2.

Theorem 1.3 Let hypotheses (H0), (H1)(i)–(iii) and (H3) be satisfied. Then there exists
ε̂ > 0 such that for every 0 < ε < ε̂ problem (1.1) has at least cat(A) positive
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solutions. Furthermore, for εn → 0, if uεn is one of these solutions and p̂n ∈ R
N is a

global maximum point of uεn , then we have

lim
εn→0

a
(
εn p̂n
) = 0.

The proofs of Theorems 1.2 and 1.3 are mainly based on the Lusternik-Schnirel-
mann category theory along with appropriate subsets of the Nehari manifold. In
particular, the proof of Theorem 1.2 relies on the properties of the odd symmetry
invariant Nehari submanifold. To the best of our knowledge, the result of Theorem 1.2
is new in the literature and has not been published before. The main novelties in our
work is the combination of an elliptic equation with unbalanced growth on the whole
of R

N and a parameter ε inside of the weight function in order to control the number
of solutions of problem (1.1).

The application of the Lusternik-Schnirelmann category to elliptic equations began
with the work of Benci-Cerami [11], who studied the existence of positive solution of
the problem

− �u + λu = u p−1 in �, u = 0 on ∂�, p ∈ (2, 2∗). (1.3)

The authors proved that if p is close to 2∗, problem (1.3) has at least cat(�) solutions,
where cat(�) denotes the Lusternik-Schnirelmann category of �. In 2000, Bartsch-
Wang [9] considered nonlinear Schrödinger equations defined by

−�u + (λa(x) + 1)u = u p, u > 0 in R
N , 1 < p < 2∗ − 1 (1.4)

and proved existence of at least cat(�) solutions of (1.4) provided λ > 0 is sufficiently
large. We also refer to the paper by Bartsch-Wang [8]. Note that Theorem 1.3 is
motivated by the works of Figueiredo-Furtado [26] and Alves-Figueiredo-Furtado
[3]. Indeed, in [26] the authors studied the multiplicity of positive solutions for the
equation

−ε p div(a(x)|∇u|p−2∇u) + u p−1 = f (u) in R
N , u ∈ W 1,p(RN ),

while in [26] the existence of nontrivial solutions of

(ε
i
∇ − A(z)

)2
u + V (z)u = f (|u|2)u in R

N

has been shown. In both papers the number of solutions depend on the Lusternik-
Schnirelmann category theory provided the parameter is sufficiently small. In general,
the Lusternik-Schnirelmann category became a very powerful tool over the years
and has been used in different models and equations to get multiplicity of solutions.
We refer, for example, to the papers of Alves [1], Alves-Ding [2], Benci-Bonanno-
Micheletti [10], Cingolani [15], Cingolani-Lazzo [16], Figueiredo-Pimenta-Siciliano
[27], Figueiredo-Siciliano [28], see also the references therein.
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In all of the aforementioned works, the existence of constant sign solutions has
been demonstrated. In 2003, Castro-Clapp [14] studied the problem

�u + λu + |u|2∗−2u = 0 in �, u = 0 on ∂�, u(τ x) = −u(x)

for all x ∈ � with τ being a nontrivial orthogonal involution and proved the existence
of pairs of sign-changing solutions provided λ > 0 is small enough. An improvement
of their results has been done in the work of Cano-Clapp [13]. Recently, Liu-Dai-
Winkert [37] obtained γ (�λ \ {0}) pairs (±u) of odd weak solutions with precisely
two nodal domains for the (p, q)-problem

−�pu − μ�qu = f (u) − |u|p−2u in �λ, u = 0 on ∂�λ, u(−x) = −u(x)

for a. a. x ∈ �λ provided λ > 0 is sufficiently small, where�λ := λ� is an expanding
domain for � ⊆ R

N to be bounded and symmetric.
In our paper we extend some of the results of [37] to parameter dependent weight

functions of double phase type as given in (1.1) and (1.2). It is worth noting that the
issue addressed in problem (1.1) arises in the context of the study of certain non-
Newtonian fluids, where |∇u|p−2 + a(x)|∇u|q−2 stands for the viscosity coefficient
of the fluid and f (u) − |u|p−2u − a|u|q−2u is the divergence of shear stress. Then
the solutions of (1.1) denote the speed of the fluid, see Liu-Dai [34]. Note that the
operator in (1.2) is related to the energy functional

R(u) =
∫ (|∇u|p + a(x)|∇u|q) dx, (1.5)

which was first introduced by Zhikov [48] in order to describe models for strongly
anisotropic materials in the context of homogenization and elasticity. In fact, the
hardening properties of strongly anisotropic materials change point by point and the
modulating coefficient a(·) helps to describe the mixture of two different materi-
als with hardening powers p and q. We point out that functionals of the form (1.5)
belong to the class of the integral functionals with nonstandard growth condition
according to Marcellini’s terminology [39, 40]. Over the past 10 years several regu-
larity results for local minimizers of (1.5) have been developed, we mention just the
most famous ones by Baroni-Colombo-Mingione [5–7], De Filippis-Mingione [22]
and Colombo-Mingione [18, 19], see also the references therein. Concerning exis-
tence and multiplicity results of double phase problems, lots of works for bounded or
unbounded domains with different right-hand sides and various techniques have been
published in the last decade. We mention the papers of Biagi-Esposito-Vecchi [12],
Colasuonno-Squassina [17], Crespo-Blanco-Gasiński-Winkert [21], Farkas-Winkert
[25], Gasiński-Papageorgiou [29], Gasiński-Winkert [30, 31], Liu-Dai [33–35], Liu-
Papageorgiou [36], Papageorgiou-Rădulescu-Repovš [41, 42] Perera-Squassina [43]
and Zeng-Bai-Gasiński-Winkert [46], see also the references therein.

As far as we know the only papers for double phase problems using the Lusternik-
Schnirelmann category have been published by Liu-Dai-Winkert-Zeng [38] and
Zhang-Zuo-Rădulescu [47]. In [38] the authors prove the existence of at least
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cat(�λ)+1 positive solutions for problems as in (1.1) with ε = 1 where �λ := λ� is
an expanding domain with λ to be positive. In [47] only the existence of nonnegative
solutions to problem (1.1) has been shown for small values of ε in the situation of an
unbounded potential V and under stronger assumptions as in our paper, for example,
their nonlinearity has to fulfill the Ambrosetti-Rabinowitz condition. Since working
on weighted Musielak-Orlicz-Sobolev spaces which are different from ours, there is
no need to suppose condition (H1) (iv). We emphasize that we obtain the positive
solutions of problem (1.1) as stated in Theorem 1.3 without relying on the unbounded
potential V and without assuming condition (H1) (iv). To the best of our knowledge,
no papers exist which prove the existence of sign-changing solutions for problem (1.1)
depending on the weight function a(·).

The paper is organized as follows. In Section 2 we present the involved function
space, recall a penalization technique due to del Pino-Felmer and introduce two aux-
iliary problems. Section 3 presents the mappings between the unit sphere and related
Nehari manifolds while Section 4 discussed the limit problem when ε goes to zero. In
Section 5 we give existence results for our auxiliary problems introduced in Section
2 and finally, Section 6 gives the proofs of our main Theorems 1.2 and 1.3.

2 Preliminaries and the penalizationmethod

In this section we first recall some facts about the underlying function spaces and
the properties of the operator. Then we introduce a penalization method due to del
Pino-Felmer [23].

To this end, for 1 ≤ r < ∞, by Lr (�) and Lr (RN ; R
N ) we denote the usual

Lebesgue spaces endowed with the norm ‖ · ‖r and W 1,r (RN ) (1 < r < ∞) stands
for the usual Sobolev space equipped with the norm

‖u‖1,r = (‖∇u‖rr + ‖u‖rr
) 1
r .

Let hypothesis (H0) be satisfied, ε > 0 and let M(RN ) be the set of all measurable
functions u : R

N → R.We define the nonlinearmappingHε : R
N ×[0,∞) → [0,∞)

by

Hε(x, t) = t p + a(εx)tq .

Then, by LHε (RN ) we denote the Musielak-Orlicz Lebesgue space given by

LHε (RN ) =
{
u ∈ M(RN ) :

∫

�

Hε(x, |u|) dx < +∞
}

,

which is endowed with the Luxemburg norm

‖u‖Hε
= inf

{
τ > 0 :

∫

�

Hε

(
x,

|u|
τ

)
dx ≤ 1

}
.
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From Liu-Dai [34, Theorem 2.7 (i)] we know that the space LHε (RN ) is a reflexive
Banach space. The Musielak-Orlicz Sobolev space W 1,Hε (RN ) is defined by

W 1,Hε (RN ) =
{
u ∈ LHε (RN ) : |∇u| ∈ LHε (RN )

}

equipped with the norm

‖u‖ε = ‖∇u‖Hε
+ ‖u‖Hε

,

where ‖∇u‖Hε
= ‖ |∇u| ‖Hε

. As before, W 1,Hε (RN ) is a reflexive Banach space,
see Liu-Dai [34, Theorem 2.7 (ii)]. Write

Aε =
{
x ∈ R

N : εx ∈ A
}

with A given in Remark 1.1. Note that if x ∈ Aε then a(εx) = 0. Consequently
W 1,Hε (Aε) coincides with W 1,p(Aε). If x ∈ R

N \ Aε then a(εx) > 0. In this case,
we know that the embedding

W 1,Hε (RN \ Aε) ↪→ W 1,p(RN \ Aε)

is continuous. Therefore, we have

W 1,Hε (RN ) ↪→ Ls(RN ) continuously for all s ∈ [p, p∗];
W 1,Hε (RN ) ↪→ Ls

loc(R
N ) compactly for all s ∈ (p, p∗).

For more details on the spaces, we refer to the papers of Crespo-Blanco-Gasiński-
Harjulehto-Winkert [20], Liu-Dai [34] and Perera-Squassina [43].

Let


ε(u) =
∫

RN

(
|∇u|p + a(εx)|∇u|q + |u|p + a(εx)|u|q

)
dx . (2.1)

It is easy to see that


ε(u) = ‖u‖p
1,p +

∫

RN

(
a(εx)

(|∇u|q + |u|q)
)
dx ≥ ‖u‖p

1,p.

The norm ‖·‖ε and the modular function 
ε are related as follows, see Crespo-Blanco-
Gasiński-Harjulehto-Winkert [20, Proposition 2.15] or Liu-Dai [33, Proposition 2.1].

Proposition 2.1 Let (H0) be satisfied, let y ∈ W 1,Hε (RN ) and let 
ε be defined by
(2.1). Then the following hold:

(i) If y 
= 0, then ‖y‖ε = λ if and only if 
ε(
y
λ
) = 1;

(ii) ‖y‖ε < 1 (resp.> 1, = 1) if and only if 
ε(y) < 1 (resp.> 1, = 1);
(iii) If ‖y‖ε < 1, then ‖y‖qε ≤ 
ε(y) ≤ ‖y‖p

ε ;
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(iv) If ‖y‖ε > 1, then ‖y‖p
ε ≤ 
ε(y) ≤ ‖y‖qε ;

(v) ‖y‖ε → 0 if and only if 
ε(y) → 0;
(vi) ‖y‖ε → +∞ if and only if 
ε(y) → +∞.

Moreover, let Bε : W 1,Hε (RN ) → W 1,Hε (RN )∗ be the nonlinear operator given
by

〈Bε(u), v〉Hε
=
∫

�

(|∇u|p−2∇u + a(εx)|∇u|q−2∇u
) · ∇v dx

+
∫

�

(|u|p−2u + a(εx)|u|q−2u
)
v dx

(2.2)

for all u, v ∈ W 1,Hε (RN ) where 〈 ·, · 〉Hε
is the duality pairing between W 1,Hε (RN )

and its dual space W 1,Hε (RN )∗. The operator Bε : W 1,Hε (RN ) → W 1,Hε (RN )∗
has the following properties, see Crespo-Blanco-Gasiński-Harjulehto-Winkert [20,
Proposition 3.4].

Proposition 2.2 The operator Bε defined by (2.2) is bounded (that is, it maps bounded
sets into bounded sets), continuous, strictly monotone (hence maximal monotone) and
it is of type (S+).

Let X be a Banach space and let A be the class of all closed subsets B of X \ {0}
which are symmetric, that is, u ∈ B implies −u ∈ B.

Definition 2.3 Let B ∈ A. The genus γ (B) of B is defined as the least integer n such
that there exists ϕ ∈ C(X , R

n) such that ϕ is odd and ϕ(x) 
= 0 for all x ∈ B. We set
γ (B) = +∞ if there are no integers with the above property and γ (∅) = 0.

Remark 2.4 An equivalent way to define γ (B) is to take the minimal integer n such
that there exists an odd map ϕ ∈ C(B, R

n \ {0}).
We denote by catB(A) the category of A with respect to B, namely the least integer

k such that A ⊆ A1 ∪ · · · ∪ Ak with Ai (i = 1, · · · , k) being closed and contractible
in B. We set catB(∅) = 0 and catB(A) = +∞ if there is no integer with the above
property. Furthermore, we set cat(B) := catB(B).

In the second part of this section we construct an auxiliary problem for which we
use the construction idea due to del Pino-Felmer [23], who found a positive standing
wave solution for the classical Schrödinger equation under local condition of potential.
The auxiliary problem is used to overcome the lack of compactness of problem (1.1).

First, we suppose that f fulfills (H2). We set k > 0 with k > q and take τ > 0
such that f (τ )/τ p−1 = 1/k. We define

f̃ (s) =

⎧
⎪⎨
⎪⎩

f (s) if |s| ≤ τ,
1
k s

p−1 if s > τ,

− 1
k |s|p−1 if s < −τ,
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and

g̃(x, s) = χ�(x) f (s) + (1 − χ�(x)) f̃ (s),

where � is given in the assumption (H1)(ii) and χ� is its characteristic function, that
is

χ�(x) =
{
1, x ∈ �,

0, x ∈ �c.

By hypothesis (H2), it is clear that g̃ has the following properties:

(H4) g̃ : R
N × R → R is a continuous and odd function with respect to s, satisfying

the following conditions:

(i) there exist r ∈ (q, p∗) and a constant C > 0 such that

|g̃(x, s)| ≤ C
(
1 + |s|r−1

)
for all s > 0;

(ii) lim
s→0

g̃(x, s)

|s|p−2 s
= 0 uniformly in x ∈ R

N ;

(iii) (a) lim|s|→+∞
g̃(x, s)

|s|q−2 s
= +∞ uniformly in x ∈ �;

(b) 0 ≤
∣∣∣G̃(x, s)

∣∣∣ ≤ |s|p /k and 0 ≤ |g̃(x, s)| ≤ |s|p−1 /k for all |s| > 0 and

x ∈ �c, where G̃(x, s) = ∫ s0 g̃(x, t) dt .

(iv) (a)
g̃(x, s)

|s|q−1 is strictly increasing for all |s| > 0 and x ∈ � or |s| ≤ τ and

x ∈ �c;

(b)
g̃(x, s)

|s|p−2 s
= 1

k
for all |s| > τ and x ∈ �c.

Next, we suppose that hypothesis (H3) holds and define

f̂ (s) =
{
f (s) if 0 < s ≤ τ,
1
k s

p−1 if s > τ,

and

ĝ(x, s) = χ�(x) f (s) + (1 − χ�(x)) f̂ (s).

Then, due to (H3), the function ĝ fulfills the following conditions:

(H5) ĝ : R
N × R → R is a Carathéodory function with primitive Ĝ(x, s) =∫ s

0 ĝ(x, t) dt satisfying the following assumptions:
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(i) there exist r ∈ (q, p∗) and a constant C > 0 such that

|ĝ(x, s)| ≤ C
(
1 + |s|r−1

)
for all s > 0;

(ii) lim
s→0

ĝ(x, s)

|s|p−2 s
= 0 uniformly in x ∈ R

N ;

(iii) (a) lim
s→+∞

ĝ(x, s)

|s|q−2 s
= +∞ uniformly in x ∈ �;

(b) 0 ≤ Ĝ(x, s) ≤ s p/k and 0 ≤ ĝ(x, s) ≤ s p−1/k for all s > 0 and x ∈ �c.

(iv) (a)
ĝ(x, s)

|s|q−2 s
is strictly increasing for all s > 0 and x ∈ � or s ≤ τ and

x ∈ �c;

(b)
ĝ(x, s)

|s|p−2 s
= 1

k
for all s > τ and x ∈ �c.

(v) ĝ(x, s) = 0 for s ≤ 0.

By (H4) (i), (ii) and (H5) (i), (ii), we can find for any ξ > 0 a number Cξ > 0 such
that

∣∣∣G̃(x, s)
∣∣∣ ≤ ξ |s|p + Cξ |s|r for all x ∈ R

N and for all s ∈ R,
∣∣∣Ĝ(x, s)

∣∣∣ ≤ ξ |s|p + Cξ |s|r for all x ∈ R
N and for all s ∈ R.

(2.3)

Now we consider the auxiliary problems

Tε(u) + |u|p−2u + a(εx)|u|q−2u = g̃(εx, u) in R
N ,

u ∈ W 1,Hε (RN )
(2.4)

and

Tε(u) + |u|p−2u + a(εx)|u|q−2u = ĝ(εx, u) in R
N ,

u ∈ W 1,Hε (RN ).
(2.5)

It is easy to see that, if uε is a solution of the auxiliary problem (2.4) (resp. (2.5))
such that uε ≤ τ for x ∈ �c

ε := {x ∈ R
N : εx ∈ �

}
, then g̃(εx, uε) = f (uε)

(resp. ĝ(εx, uε) = f (uε) ) and consequently uε is also a solution of (1.1). Therefore,
we will look for solutions uε of the problems (2.4) and (2.5) satisfying

uε ≤ τ for all x ∈ �c
ε.

Finally, we denote the corresponding energy functional Ẽε : W 1,Hε (RN ) → R for
problem (2.4) by

Ẽε(u) = 1

p
‖u‖p

1,p + 1

q

∫

RN
a(εx)

(|∇u|q + |u|q) dx −
∫

RN
G̃(εx, u) dx
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and the energy functional for (2.5) by Êε : W 1,Hε (RN ) → R defined by

Êε(u) = 1

p
‖u‖p

1,p + 1

q

∫

RN
a(εx)

(|∇u|q + |u|q) dx −
∫

RN
Ĝ(εx, u) dx .

3 Themapping between the unit sphere and the Nehari manifold

From now on, for a function u : R
N → R, we denote by u+ and u− the positive and

negative part of u, respectively, that is

u+ = max (u, 0) , u− = min (u, 0) .

Let

W 1,Hε (RN )◦ :=
{
u ∈ W 1,Hε (RN ) : u(−x) = −u(x)

}
.

The Nehari manifold corresponding to (2.4) is defined by

Ñε :=
{
u ∈ W 1,Hε (RN ) \ {0} :

〈
Ẽ ′

ε(u), u
〉
= 0
}

while the odd symmetry invariant Nehari submanifold is given by

Ñ ◦
ε :=

{
u ∈ Ñε : u(−x) = −u(x)

}
.

Note that

Ñ ◦
ε = Ñε ∩ W 1,Hε (RN )◦.

We point out that Ẽε : W 1,Hε (RN )◦ → R is an even functional with (Ẽε(−u))′ = −
Ẽ ′

ε(u). Hence, if Ẽε ∈ C2, then the nontrivial solutions of (2.4) are the critical points of
the restriction of the functional Ẽε to the odd symmetry invariant Nehari submanifold
Ñ ◦

ε . But we only suppose that g̃ is continuous and so we just have Ẽε ∈ C1 which
implies, in general, the nondifferentiability of Ñ ◦

ε . The same holds for the auxiliary
problem in (2.5) with ĝ instead of g̃, respectively. The next results will overcome these
difficulties.

We write

S◦ =
{
u ∈ W 1,Hε (RN )◦ : ‖u‖ε = 1

}

and

S◦+ = {u+ : u ∈ S◦} , N ◦+ =
{
u+ : u ∈ Ñ ◦

ε

}
.

In the next lemma we can define a one-to-one correspondence between S◦+ and N ◦+.
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Proposition 3.1 Let hypotheses (H0), (H1)(i)–(iii) and (H4) be satisfied. Then the
following hold:

(i) For each w ∈ W 1,Hε (RN )◦ \ {0}, set ϕ̃w+(t) = Ẽε(tw+) for t ≥ 0. Then there
exists a unique tw+ > 0 such that ϕ̃′

w+(t) > 0 if 0 < t < tw+ and ϕ̃′
w+(t) < 0 if

t > tw+ , that is, max
t∈[0,+∞)

ϕ̃w+(t) is achieved at t = tw+ and tw+w+ ∈ N ◦+.

(ii) There exists δ > 0 such that tw+ ≥ δ for w+ ∈ S◦+ and for each compact subset
W◦+ ⊆ S◦+ there exists a constant CW◦+ such that tw+ ≤ CW◦+ for all w ∈ W◦+.

(iii) Let us denote by

m̃◦+ :
{
w+ : w ∈ W 1,Hε (RN )◦ \ {0}

}
→ N ◦+,

w+ �→ m̃◦+(w+) := tw+w+.

Then the mapping m̃◦+ is continuous.
(iv) Let m◦+ := m̃◦+|S◦+ . Then m◦+ is a homeomorphism between S◦+ and N ◦+ and the

inverse of m◦+ is given by

(
m◦+
)−1

(u+) = u+

‖u+‖ε

for all u ∈ N ◦+.

Proof (i) It is clear that ϕ̃w+(0) = 0. We deduce from (2.3) that

ϕ̃w+(t) ≥ t p

p

∥∥w+∥∥p
1,p + tq

q

∫

RN
a(εx)

(∣∣∇w+∣∣q + ∣∣w+∣∣q) dx

−
∫

RN

(
1

2p
t p
∣∣w+∣∣p + C 1

2p
tr
∣∣w+∣∣r

)
dx

≥ t p

2p

∥∥w+∥∥p
1,p + tq

q

∫

RN
a(εx)

(∣∣∇w+∣∣q + ∣∣w+∣∣q) dx − C 1
2p
tr
∫

RN

∣∣w+∣∣r dx

= C1t
p + C2t

q − C3t
r ,

which implies that ϕ̃w+(t) > 0 for t small enough. It follows from (H4)(iii) that, for
any M > 0, there exists TM > 0 such that G̃(εx, t) ≥ M |t |q for |t | > TM and
x ∈ �ε. Thus

ϕ̃w+(t) ≤ t p

p

∥∥w+∥∥p
1,p + tq

q

∫

RN
a(εx)

(∣∣∇w+∣∣q + ∣∣w+∣∣q) dx

− Mtq
∫

�ε

∣∣w+∣∣q dx + 1

k
t p
∫

�c
ε

∣∣w+∣∣p dx

= C1t
p + C2t

q − C3Mtq

≤ C1t
p − C2t

q when M ≥ 2C2

C3
,
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which implies that ϕ̃w+(t) < 0 for t large enough. Hence there exists tw+ > 0 such
that ϕ̃′

w+(tw+) = 0. We also note that

0 = ϕ̃′
w+(t) =

∫

RN

(
t p−1 (∣∣∇w+∣∣p + ∣∣w+∣∣p)+ a(εx)tq−1 (∣∣∇w+∣∣q + ∣∣w+∣∣q)) dx

−
∫

RN
g̃(εx, tw+)w+ dx

implies tw+ ∈ N ◦+.
We claim that E := {x ∈ �c

ε : tw+ > τ for a.a. x ∈ R
N } = ∅. Suppose E 
= ∅.

Then
〈
Ẽ ′

ε(tw
+), tw+χE

〉
= 0, where χE is the characteristic function of E . However,

we have

〈
Ẽ ′

ε(tw
+), tw+χE

〉

=
∫

E

(
t p−1 (∣∣∇w+∣∣p + ∣∣w+∣∣p)+ a(εx)tq−1 (∣∣∇w+∣∣q + ∣∣w+∣∣q)) dx

−
∫

E
g̃(εx, tw+)w+ dx

≥
∫

E

(
t p−1 (∣∣∇w+∣∣p + ∣∣w+∣∣p)+ a(εx)tq−1 (∣∣∇w+∣∣q + ∣∣w+∣∣q)) dx

− 1

k
t p−1
∫

E

∣∣w+∣∣p dx

≥
(
1 − 1

k

)
t p−1
∫

E

∣∣w+∣∣p dx ≥ σ > 0,

for some positive constant σ which is a contradiction and so the claim holds true.
Consequently, we deduce from tw+ ∈ N ◦+ that

∫

RN
a(εx)

(∣∣∇w+∣∣q + ∣∣w+∣∣q) dx

=
∫

RN

g̃(εx, tw+)w+

tq−1 dx − 1

tq−p

∫

RN

(∣∣∇w+∣∣p + ∣∣w+∣∣p) dx

=
∫

�ε

g̃(εx, tw+)w+

tq−1 dx +
∫

{�c
ε, tw

+≤τ }
g̃(εx, tw+)w+

tq−1 dx

− 1

tq−p

∫

RN

(∣∣∇w+∣∣p + ∣∣w+∣∣p) dx .

By (H4)(iv), the right-hand side of the last equality is strictly increasing in t . It follows
that ϕ̃w+(t) has a unique critical point. Therefore max

t∈[0,+∞)
ϕ̃w+(t) is achieved at a

unique t = tw+ > 0 so that h′
w+(tw+) = 0 and tw+w+ ∈ N ◦+.
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(ii) First, we prove that there exists δ > 0 such that tw+ > δ for w+ ∈ S◦+. If
tw+ ≥ 1 we are done. If tw+ < 1, we deduce from tw+w+ ∈ N ◦+ and (2.3) that

∫

RN

(
t p
w+
(∣∣∇w+∣∣p + ∣∣w+∣∣p)+ tq

w+a(x)
(∣∣∇w+∣∣q + ∣∣w+∣∣q)) dx

≤ 1

2
t p
w+

∫

RN

∣∣w+∣∣p dx + C 1
2
tr
w+

∫

RN

∣∣w+∣∣r dx

or

1

2
tq
w+ ≤ C 1

2
tr
w+ .

Clearly, we can take δ =
(

1
2C1/2

) 1
r−q

> 0 in this case.

Next, if W◦+ ⊆ S◦+ is compact, and suppose by contradiction that there is{
w+
n

}
n∈N

⊂ W◦+ with tn := tw+
n

→ +∞. By (i), we see that

Ẽε(tnw
+
n ) = max

t∈[0,+∞)
Ẽε(tw

+
n ) ≥ 0.

On the other hand, by (H4)(iii), we deduce that

0 ≤ Ẽε(tnw+
n )

tqn
≤ 1

p
+ 1

k
−
∫

�ε

G̃(εx, tnw+
n )

tqn
dx → −∞ as n → ∞,

which yields a contradiction. Thus there exists CW◦+ such that tw+ ≤ CW◦+ .

(iii) Suppose thatw+
n → w+ inW 1,Hε (RN )\{0}. It follows from (ii) that {tw+

n
}n∈N

is uniformly bounded. Therefore, there exist a subsequence of {tw+
n
}n∈N, which we

still denote by {tw+
n
}n∈N, converging to a limit t0. It follows from the uniqueness of

tw+ that t0 = tw+ . But then twn → tw+ . Thus m̃◦+ is continuous.
(iv) By (i), we can easily see that m◦+(S◦+) is a bounded set in W 1,Hε (RN ) and

for any w+ ∈ m◦+(S◦+), there exists δ > 0 such that
∥∥w+∥∥

ε
≥ δ, that is, for any

w+ ∈ N ◦+, we can find δ > 0 such that
∥∥w+∥∥

ε
≥ δ. The argument is similar to

the proof of (ii). By the continuity of m̃◦+ and its definition, we know that the map
m◦+ : S◦+ → N ◦+ is continuous and one-to-one. Clearly, the inverse function of m◦+
is (m◦+)−1(w+) = w+

‖w+‖ε

for any w+ ∈ N ◦+. We only have to prove that
(
m◦+
)−1 is

continuous. Indeed, it holds
∥∥∥(m◦+

)−1
(w+) − (m◦+

)−1
(v+)

∥∥∥
ε

=
∥∥∥∥∥

w+
∥∥w+∥∥

ε

− v+
∥∥v+∥∥

ε

∥∥∥∥∥
ε

=
∥∥∥∥∥

w+ − v+
∥∥w+∥∥

ε

+ v+ (∥∥v+∥∥
ε
− ∥∥w+∥∥

ε

)
∥∥w+∥∥

ε

∥∥v+∥∥
ε

∥∥∥∥∥
ε

≤ 2
∥∥w+ − v+∥∥

ε∥∥w+∥∥
ε

≤ 2

δ

∥∥w+ − v+∥∥
ε
,

which shows that (m◦+)−1 is Lipschitz continuous. ��
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Now we can define

J̃ ◦+ :
{
w+ : w ∈ W 1,Hε (RN )◦ \ {0}

}
→ R

N ,

w+ �→ J̃ ◦+(w+) = Ẽε(m̃
◦+(w+)),

J̃+ := J̃ ◦+|S◦+ .

(3.1)

A direct consequence of Proposition 3.1 and by Szulkin-Weth [45, Proposition 9 and
Corollary 10] is the following proposition.

Proposition 3.2 Let hypotheses (H0), (H1)(i)–(iii) and (H4) be satisfied. Then the
following hold:

(i) J̃+ ∈ C1
(S◦+, R

)
and

〈
J̃ ′+(w+), z

〉
=
〈
Ẽ ′

ε(m
◦+(w+)), z‖m◦+(w+)‖ε

〉

for all w+ ∈ S◦+ and for all z ∈ Tw+(S◦+), where Tw+(S◦+) denotes the tangent
space to S◦+ at w+.

(ii) If {w+
n }n∈N ⊆ S◦+ is a (PS)c-sequence for J̃+, then {m◦+(w+

n )}n∈N ⊆ N ◦+ is a
(PS)c-sequence for Ẽε. If {u+

n }n∈N ⊆ N ◦+ is a bounded (PS)c-sequence for Ẽε,
then {(m◦+)−1(un)}n∈N ⊆ S◦+ is a (PS)c-sequence for J̃+.

(iii) w+ ∈ S◦+ is a critical point of J̃+ if and only if m◦+(w+) ∈ N ◦+ is a nontrivial
critical point of Ẽε. Moreover, infS◦+ J̃+ = infN ◦+ Ẽε.

(iv) If Ẽε is even, then so is J̃+.

Next, we write

S◦− = {u− : u ∈ S◦} , N ◦− =
{
u− : u ∈ Ñ ◦

ε

}
.

Then we can set up a one-to-one correspondence between S◦− and N ◦− as follows.

Proposition 3.3 Let hypotheses (H0), (H1)(i)–(iii) and (H4) be satisfied. Then the
following hold:

(i) For each w ∈ W 1,Hε (RN )◦ \ {0}, set ϕ̃w−(t) = Ẽε(tw−) for t ≥ 0. Then there
exists a unique tw− > 0 such that ϕ̃′

w−(t) > 0 if 0 < t < tw− and ϕ̃′
w−(t) < 0 if

t > tw− , that is, max
t∈[0,+∞)

ϕ̃w−(t) is achieved at t = tw− and tw−w− ∈ N ◦−.

(ii) There exists δ > 0 such that tw− ≥ δ for w− ∈ S◦− and for each compact subset
W◦− ⊆ S◦− there exists a constant CW◦− such that tw− ≤ CW◦− for all w ∈ W◦−.

(iii) Let us denote by

m̃◦− :
{
w− : w ∈ W 1,Hε (RN )◦ \ {0}

}
→ N ◦−,

w− �→ m̃◦−(w−) := tw−w−.

Then the mapping m̃◦− is continuous.
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(iv) Let m◦− := m̃◦−|S◦− . Then m◦− is a homeomorphism between S◦− and N ◦− and the
inverse of m◦− is given by

(
m◦−
)−1

(u−) = u−

‖u−‖ε

for all u− ∈ N ◦−.

Proof The proof can be done as the proof of Proposition 3.1. ��
Now we can define

J̃ ◦− :
{
w− : w ∈ W 1,Hε (RN )◦ \ {0}

}
→ R

N ,

w− �→ J̃ ◦−(w−) = Eε(m̃
◦−(w−)),

J̃− := J̃ ◦−|S◦− .

(3.2)

As before, as a consequence of Proposition 3.3 and of Szulkin-Weth [45, Proposition
9 and Corollary 10] we have the following proposition.

Proposition 3.4 Let hypotheses (H0), (H1)(i)–(iii) and (H4) be satisfied. Then the
following hold:

(i) J̃− ∈ C1
(S◦−, R

)
and

〈
J̃ ′−(w−), z

〉
=
〈
Ẽ ′

ε(m
◦−(w−)), z‖m◦−(w−)‖ε

〉

for allw− ∈ S◦− for all and z ∈ Tw−(S◦−), where Tw−(S◦−) stands for the tangent
space to S◦− at w−.

(ii) If {w−
n }n∈N ⊆ S◦− is a (PS)c-sequence for J̃−, then {m◦−(w−

n )}n∈N ⊆ N ◦− is a
(PS)c-sequence for Ẽε. If {u−

n }n∈N ⊆ N ◦− is a bounded (PS)c-sequence for Ẽε,
then {(m◦−)−1(u−

n )}n∈N ⊆ S◦− is a (PS)c-sequence for J̃−.
(iii) w− ∈ S◦− is a critical point of J̃− if and only if m◦−(w−) ∈ N ◦− is a nontrivial

critical point of Ẽε. Moreover, infS◦− J̃− = infN ◦− Ẽε.

(iv) If Ẽε is even, then so is J̃−.

Now, we write

N̂ε : =
{
u ∈ W 1,Hε (RN ) \ {0} :

〈
Ê ′

ε(u), u
〉
= 0
}

S =
{
u ∈ W 1,Hε (RN ) : ‖u‖ε = 1

}
,

S+ = {u+ : u ∈ S} ,
N+ =

{
u+ : u ∈ N̂ε

}
.

Then we can set up a one-to-one correspondence between S+ andN+ in the following
way.
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Proposition 3.5 Let hypotheses (H0), (H1)(i)–(iii) and (H5) be satisfied. Then the
following hold:

(i) For each w ∈ W 1,Hε (RN ) \ {0}, set ϕ̂w+(t) = Êε(tw+) for t ≥ 0. Then there
exists a unique tw+ > 0 such that ϕ̂′

w+(t) > 0 if 0 < t < tw+ and ϕ̂′
w+(t) < 0 if

t > tw+ , that is, max
t∈[0,+∞)

ϕ̂w+(t) is achieved at t = tw+ and tw+w+ ∈ N+.

(ii) There exists δ > 0 such that tw+ ≥ δ for w+ ∈ S+ and for each compact subset
W+ ⊆ S+ there exists a constant CW+ such that tw+ ≤ CW+ for all w ∈ W+.

(iii) Let us denote by

m̂+ :
{
w+ : w ∈ W 1,Hε (RN ) \ {0}

}
→ N+,

w+ �→ m̂+(w+) := tw+w+.

Then the mapping m̂+ is continuous.
(iv) Let m := m̂+|S+ . Then m is a homeomorphism between S+ and N+ and the

inverse of m is given by

m−1(u+) = u+

‖u+‖ε

for all u+ ∈ N+.

Now we can define

Ĵ+ :
{
w+ : w ∈ W 1,Hε (RN ) \ {0}

}
→ R

N ,

w+ �→ Ĵ+(w+) = Êε(m̂+(w+)),

Ĵ = Ĵ+|S+ .

(3.3)

Proposition 3.6 Let hypotheses (H0), (H1)(i)–(iii) and (H5) be satisfied. Then the
following hold:

(i) Ĵ ∈ C1 (S+, R) and

〈
Ĵ ′(w+), z

〉
=
〈
Ê ′

ε(m(w+)), z‖m(w+)‖ε

〉

for all w+ ∈ S+ and for all z ∈ Tw+(S+), with Tw+(S+) being the tangent space
to S+ at w+.

(ii) If {w+
n }n∈N ⊆ S+ is a (PS)c-sequence for Ĵ , then {m(w+

n )}n∈N ⊆ N+ is a (PS)c-
sequence for Êε. If {u+

n }n∈N ⊆ N+ is a bounded (PS)c-sequence for Êε, then
{m−1(u+

n )}n∈N ⊆ S+ is a (PS)c-sequence for Ĵ .
(iii) w+ ∈ S+ is a critical point of Ĵ if and only if m(w+) ∈ N+ is a nontrivial critical

point of Êε. Moreover, infS+ Ĵ = infN+ Êε.

Remark 3.7
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(i) If we set

c◦+ = inf
u+∈N ◦+

Ẽε(u
+),

then it follows from Proposition 3.2 (iii) that

c◦+ = inf
w+∈S◦+

J̃+(w+).

From Proposition 3.1 it is easy to see that c◦+ has the following minimax charac-
terization:

c◦+ = inf
w∈W 1,p

0 (�)◦\{0}
max
t>0

Ẽε(tw
+) = inf

w+∈S◦+
max
t>0

Ẽε(tw
+).

We know from the proof of Proposition 3.1 that there exists a unique tw+ > 0
such that max

t>0
Ẽε(tw

+) = Ẽε

(
tw+w+) for w+ ∈ S◦+. Proposition 3.1 (ii) implies

that there exists δ > 0 such that tw+ ≥ δ uniformly for w+ ∈ S◦+. Thus, for any
w+ ∈ S◦+, we have

Ẽε

(
tw+w+) = max

t>0
Ẽε(tw

+) ≥ σ,

for some σ > 0 independent of w+ and consequently

inf
w+∈S◦+

max
t>0

Ẽε(tw
+) ≥ σ,

that is

c◦+ ≥ σ > 0.

If we set

c◦− = inf
u−∈N ◦−

Ẽε(u
−),

then, similarly, From Proposition 3.3, It can show that

c◦− > 0.

We also note that Ẽε(u) = Ẽε(u+) + Ẽε(u−). If we set

c◦ = inf
u∈Ñ ◦

ε

Ẽε(u),

then it is clear that c◦ ≥ c◦+ + c◦−. In our case, c◦+ = c◦− since u is an odd function.
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(ii) Set

c = inf
u+∈N+

Êε(u
+).

By an argument similar to that of (i), we can show that c > 0 and c◦ ≥ 2c.

4 Limiting problem

Weconsider the limiting problem associated to (1.1), that is, the following p-Laplacian
problem:

−�pu + |u|p−2u = f (u) in R
N ,

u ∈ W 1,p(RN ).
(4.1)

Sincewe are interested in the existence of positive solutions,we consider the functional

E0(u) = 1

p
‖u‖p

1,p −
∫

RN
F(u+) dx .

First, we consider the radially symmetric ground state solutions of (4.1). It is similar
to the proof of Liu-Dai [34, Theorem 1.9] and we can show that there exists a positive
radially symmetric ground state solution ω of (4.1). Moreover, we define

N r
0 :=

{
u ∈ W 1,p

r (RN ) \ {0} : 〈E ′
0(u), u

〉 = 0
}

and cr0 = inf
u∈N r

0

E0(u),

where W 1,p
r (RN ) := {u ∈ W 1,p(RN ) : u is radially symmetric

}
. Then, we have

E0(ω) = cr0.

Next, we consider positive ground state solutions of (4.1), not necessarily radially
symmetric. For this purpose, as in Section 3, we define:

N0 =
{
u ∈ W 1,p(RN ) \ {0} : 〈E ′

0(u), u
〉 = 0, u+ 
= 0

}
,

S0 =
{
u ∈ W 1,p(RN ) \ {0} : ‖u‖1,p = 1, u+ 
= 0

}
,

m0 : S0 → N0, ω0 �→ m0(ω0),

J0(ω0) = E0 (m0(ω0)) , 0 < c0 = inf
u∈N0

E0(u).

Similarly, we also know that for each w0 ∈ W 1,p(RN ) \ {0} there exists a unique
t0 := tw0 such that t0w0 ∈ N0.
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Lemma 4.1 Let {ωn}n∈N ⊂ S0 be such that J0(ωn) → c0 and ωn⇀ω0 in W 1,p(RN ).
Then there exists a sequence {yn}n∈N ⊂ R

N such that vn := ωn(· + yn) → v0 ∈ S0
with J0(v0) = c0. Moreover, if ω0 
= 0, then {yn}n∈N can be taken identically zero
and thus ωn → ω0 in W 1,p(RN ).

Proof If ω0 = 0, then there exist R, σ > 0 and {yn}n∈N ⊂ R
N such that

lim sup
n→∞

∫

BR(yn)
|ωn|p dx ≥ σ.

Suppose by contradiction that

lim sup
n→∞

sup
y∈RN

∫

BR(y)
|ωn|p dx = 0.

Then it follows from Lemma I.1 of Lions [32] that

lim
n→∞

∫

RN
|ωn|α dx = 0 for all α ∈ (p, p∗).

Consequently

lim
n→∞

∫

RN
|m0(ωn)|α dx = 0 for all α ∈ (p, p∗).

By (H3) (i) and (H3) (ii), we have

| f (m0(ωn))| ≤ ξ |m0(ωn)|p−1 + Cξ |m0(ωn)|r−1

and

|F (m0(ωn))| ≤ ξ |m0(ωn)|p + Cξ |m0(ωn)|r .

Thus

lim
n→∞

∫

RN
f (m0(ωn))m0(ωn) dx = 0

and

lim
n→∞

∫

RN
F (m0(ωn)) dx = 0.

Therefore,

lim
n→∞ ‖m0(ωn)‖1,p = 0

123



The effect of the weight function on the number of solutions…

and consequently

lim
n→∞ J0(ωn) = 0,

which is a contradiction to J0(ωn) → c0 > 0 as n → ∞.
Now we define vn(x) = ωn(x + yn), then J0(vn) → c0 and there exists 0 
= v0 ∈

W 1,p(RN ) such that vn(x)⇀v0. By the Sobolev embedding theorem, we have that∣∣yn
∣∣→ ∞. Note thatm0(vn)⇀m0(v0) inW 1,p(RN ). For any s ∈ [p, p∗) and R > 0,

we have that

lim
R→+∞

∫

Bc
R(0)

|m0(vn)|s dx = lim
R→+∞

∫

RN \BR(0)
|m0(vn)|s dx

=
∫

RN
|m0(vn)|s dx − lim

R→+∞

∫

BR(0)
|m0(vn)|s dx

= 0.

Thus there exists R1 > 0 large enough such that

∫

Bc
R1

(0)
|m0(vn)|s dx = on(1).

By (H3) (i) and (H3) (ii), we know that

∣∣∣∣∣
∫

Bc
R1

(0)
f (m0(vn))m0(vn) dx

∣∣∣∣∣ ≤ on(1). (4.2)

From the compact embedding W 1,p
(
BR1(0)

)
↪→ Ls

(
BR1(0)

)
and the subcritical

growth of f , we deduce that

∫

BR1 (0)
f (m0(vn))m0(vn) dx →

∫

BR1 (0)
f (m0(v0))m0(v0) dx (4.3)

as n → +∞. Combining (4.2) with (4.3) yields

∫

RN
f (m0(vn))m0(vn) dx →

∫

RN
f (m0(v0))m0(v0) dx (4.4)

as n → +∞. By definition of m0 and (4.4), we conclude that ‖m0(vn)‖1,p →
‖m0(v0)‖1,p. And consequently ‖m0(vn) − m0(v0)‖1,p → 0 sinceW 1,p(RN ) is uni-
formly convex. Therefore, vn → v0 in W 1,p(RN ) and v0 ∈ S0 with J0(v0) = c0.

If ω0 
= 0, the proof is similar to the proof of vn → v0. We omit it here. ��
Theorem 4.2 Problem (4.1) has a positive ground state solution.
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Proof Let {ωn}n∈N ⊂ S0 be a minimizing sequence for J0, that is, J0(ωn) → c0. By
Ekeland’s variational principle (see Ekeland [24]), we may assume that J ′

0(ωn) → 0.
Then {un := m0(ωn)}n∈N ⊂ N0 is a (PS)c-sequence for E0. First we claim that
{un}n∈N is bounded. Suppose not, then there exists a subsequence (still denoted by
{un}n∈N) such that ‖un‖1,p → +∞. Set vn = un/‖un‖1,p, then {vn}n∈N is bounded.
Thus, after passing to a subsequence if necessary, we may assume that vn⇀v0 in
W 1,p(RN ) as n → +∞. If v0 = 0, then, by an argument similar to that of Proposition
3.5 and Remark 3.7, for any t > 0, we have

c0 + o(1) ≥ E0(un) = E0(tvnvn) ≥ E0(tvn)

and

E0(tvn) ≥ 1

p
t p −
∫

RN
F(tvn) dx ≥ 1

p
t p.

This yields a contradiction by choosing t > max
{
1, 2 (pc0)

1
p

}
. If v0 
= 0, then we

know from (H3) (iii) that

0 ≤ E0(un)

‖un‖p
1,p

≤ 1

p
−
∫

RN

F(‖un‖vn)
‖un‖p

1,p

dx → −∞

as n → ∞, again a contradiction. Hence {un}n∈N is bounded and so {ωn}n∈N is
bounded as well. Therefore, we may assume that ωn⇀ω0 for some ω0 ∈ W 1,p(RN ).
From Lemma 4.1 it follows that there exists ω ∈ S0 such that J0(ω) = c0 and
J ′
0(ω) = 0. Consequently u := m0(ω) satisfies E0(u) = c0 and E ′

0(u) = 0, which is
our desired ground state solution. It is standard to prove that u is positive, we omit it.

��

5 Multiple solutions of the auxiliary problem

In this sectionwe are going to solve our auxiliary problems (2.4) and (2.5), respectively.
We start with some important lemmas in order to get the desired results.

Lemma 5.1 Let hypotheses (H0), (H1)(i)–(iii) and (H4) be satisfied and let J̃+ be
given in (3.1). Then the following hold:

(i) If
{
w+
n

}
n∈N

⊂ S◦+ is a sequence such that dist
(
w+
n , ∂S◦+

) → 0 as n → +∞,

then
∥∥m◦+
(
w+
n

)∥∥
ε

→ +∞ and J̃+
(
w+
n

)→ +∞ as n → +∞.

(ii) J̃+ satisfies the (PS)-condition on S◦+, i.e. every sequence
{
w+
n

}
n∈N

in S◦+ such

that, for any c > 0, J̃+(w+
n ) → c and J̃ ′+(w+

n ) → 0 as n → +∞ contains a
subsequence which converges strongly to some w+ ∈ S◦+ and dist

(
w+, ∂S◦+

)
>

0.
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Proof (i) Let {w+
n }n∈N ⊆ S◦+ be a sequence such that dist(w+

n , ∂S◦+) → 0 as n →
+∞. Then, for any v ∈ ∂S◦+ and n ∈ N, it holds w+

n ≤ |w+
n − v| a.e. in R

N . From the
embedding theorem, for any γ ∈ [p, p∗], it follows

‖w+
n ‖γ ≤ inf

v∈∂S◦+
‖w+

n − v‖γ ≤ Cγ inf
v∈∂S◦+

‖w+
n − v‖ε = Cγ dist(w+

n , ∂S◦+)

for all n ∈ N. Moreover, for every t > 0, by (2.3), we have

∣∣∣∣
∫

RN
G̃(εx, tw+

n ) dx

∣∣∣∣ ≤ ξ t p
∫

RN
|w+

n |p dx + Cξ t
r
∫

RN
|w+

n |r dx

≤ C
(
t p dist p(w+

n , ∂S◦+) + tr distr (w+
n , ∂S◦+)

)→ 0

as n → +∞. Note that for any t > 1, we have

1

p
‖twn‖qε +

∣∣∣∣
∫

RN
G̃(εx, tw+

n ) dx

∣∣∣∣ ≥ Ẽε(tw
+
n ) ≥ 1

q
‖twn‖pε −

∣∣∣∣
∫

RN
G̃(εx, tw+

n ) dx

∣∣∣∣ .

Therefore, we obtain

lim inf
n→+∞

1

p
‖m◦+(w+

n )‖qε ≥ lim inf
n→+∞ J̃+(w+

n ) ≥ lim inf
n→+∞ Ẽε(tw

+
n ) ≥ C1t p

q
,

for every t > 1, and hence ‖m◦+(w+
n )‖ε → +∞ and J̃+(w+

n ) → +∞ as n → +∞.
(ii) For any c > 0, let {w+

n }n∈N ⊆ S◦+ be a (PS)c-sequence for J̃+. It follows from
Proposition 3.2 that {u+

n := m◦+(w+
n )}n∈N ⊆ N ◦+ is a (PS)c-sequence for Ẽε. First

we will prove that {u+
n }n∈N is a bounded sequence. Assuming not, we can find a sub-

sequence of {u+
n }n∈N, not relabeled, such that ‖u+

n ‖ε → +∞. Set v+
n = u+

n /‖u+
n ‖ε,

then {v+
n }n∈N is bounded. Thus, after passing to a subsequence if necessary, we may

assume that v+
n ⇀v+ in W 1,Hε (RN ) as n → +∞. If v+ = 0, from Proposition 3.1,

we get

c + o(1) ≥ Ẽε(u
+
n ) = Ẽε(tv+

n
v+
n ) ≥ Ẽε(tv

+
n ) for all t > 0.

In case t > 1, we have

Ẽε(tv
+
n ) ≥ 1

q
t p −

∫

RN
G̃(εx, tv+

n ) dx = 1

q
t p −

∫

�ε

G̃(εx, tv+
n ) dx −

∫

�c
ε

G̃(εx, tv+
n ) dx

≥ 1

q
t p −

∫

�ε

G̃(εx, tv+
n ) dx − 1

k
t p
∫

�c
ε

∣∣v+
n
∣∣p dx

≥
(
1

q
− 1

k

)
t p −

∫

�ε

G̃(εx, tv+
n ) dx →

(
1

q
− 1

k

)
t p,
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which is a contradiction if we take t > max

{
1, 2
(

cqk
k−q

) 1
p
}
. If v+ 
= 0, then by (H4)

(iii), one has

0 ≤ Ẽε(u+
n )

‖u+
n ‖qε

≤ C

p
−
∫

RN

G̃(εx, ‖u+
n ‖εv

+
n )

‖u+
n ‖qε

dx

= C

p
−
∫

�ε

G̃(εx, ‖u+
n ‖εv

+
n )

‖u+
n ‖qε

dx −
∫

�c
ε

G̃(εx, ‖u+
n ‖εv

+
n )

‖u+
n ‖qε

dx → −∞

as n → ∞. This is again a contradiction. Thus, the sequence {u+
n }n∈N is bounded

and so we can find a subsequence of {u+
n }n∈N, not relabeled, such that u+

n ⇀u+ in
W 1,Hε (RN ). Note that there exists R0 > 0 such that �ε ⊂ BR0(0). Then, applying
hypothesis (H4) (iii), for any R ≥ R0, we obtain that

∫

Bc
R(0)

g̃
(
εx, u+

n

)
u+
n dx ≤ 1

k

∫

Bc
R(0)

∣∣u+
n

∣∣p dx . (5.1)

Obviously, we have that

lim
r→+∞

∫

Bc
r (0)

∣∣u+
n

∣∣p dx = lim
r→+∞

∫

RN \Br (0)
∣∣u+

n

∣∣p dx

=
∫

RN

∣∣u+
n

∣∣p dx − lim
r→+∞

∫

Br (0)

∣∣u+
n

∣∣p dx

= 0.

So there exists R1 ≥ R0 such that for any R ≥ R1

∫

Bc
R(0)

∣∣u+
n

∣∣p dx = on(1), (5.2)

that is,

∫

Bc
R(0)

g̃
(
εx, u+

n

)
u+
n dx ≤ on(1).

From the compact embeddingW 1,Hε (BR(0)) ↪→ L p (BR(0)) and (H4) (i), we deduce
that

∫

BR(0)
g̃
(
εx, u+

n

)
u+
n dx →

∫

BR(0)
g̃(εx, u+)u+ dx (5.3)

as n → +∞. Combining (5.3) with (5.1) and (5.2) yields

∫

RN
g̃
(
εx, u+

n

)
u+
n dx =:

〈
K̃ ′

ε(u
+
n ), u+

n

〉
→
〈
K̃ ′

ε(u
+), u+〉 :=

∫

RN
g̃(εx, u+)u+ dx
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as n → +∞. Similarly, we can obtain that K̃ ′
ε(u

+
n ) → K̃ ′

ε(u
+). Since Ẽ ′

ε(u
+
n ) =

Bε(u+
n ) − K̃ ′

ε(u
+
n ) → 0, one has that Bε(u+

n ) → K̃ ′
ε(u

+) as n → +∞, where
Bε is given in (2.2). Therefore, we conclude that u+

n → u+ in W 1,Hε (RN ) as
n → +∞, since Bε is a mapping of type (S+) (see Proposition 2.2). Consequently
(m◦+)−1(u+

n ) → (m◦+)−1(u+) by Proposition 3.2, that is, w+
n → w+. Therefore, Ẽε

satisfies the (PS)-condition on S◦+. ��
The next lemmas can be shown in a similar way as Lemma 5.1.

Lemma 5.2 Let hypotheses (H0), (H1)(i)–(iii) and (H4) be satisfied and let J̃− be
given in (3.2). Then the following hold:

(i) If
{
w−
n

}
n∈N

⊂ S◦− is a sequence such that dist
(
w−
n , ∂S◦−

) → 0 as n → +∞.

Then
∥∥m−
(
w−
n

)∥∥
ε

→ +∞ and J̃−
(
w−
n

)→ +∞ as n → +∞.

(ii) J̃− satisfies the (PS)-condition on S◦−, i.e. every sequence
{
w−
n

}
n∈N

in S◦− such

that, for any c > 0, J̃−(w−
n ) → c and J̃ ′−(w−

n ) → 0 as n → +∞ contains a
subsequence which converges strongly to some w− ∈ S◦− and dist

(
w−, ∂S◦−

)
>

0.

Lemma 5.3 Let hypotheses (H0), (H1)(i)–(iii) and (H5) be satisfied and let Ĵ be given
in (3.3). Then the following hold:

(i) If {wn}n∈N ⊆ S+ is a sequence such that dist(wn, ∂S+) → 0 as n → +∞. Then
‖m(wn)‖ε → +∞ and Ĵ (wn) → +∞ as n → +∞.

(ii) Ĵ satisfies the (PS)-condition on S+, that is, every sequence {wn}n∈N in S+ such
that, for any c > 0, Ĵ (wn) → c and Ĵ ′(wn) → 0 as n → +∞ contains a
subsequence which converges strongly to some w ∈ S+ and dist(w, ∂S+) > 0.

In what follows, without any loss of generality, we shall assume that 0 ∈ A, where
A is given in Remark 1.1. Moreover, we choose δ > 0 such that the set

A−
δ := {x ∈ A : dist (x, ∂A ∪ {0}) ≥ δ}

is homotopically equivalent to A. Next, we choose a function ζ ∈ C∞
c

(
R

+) such that
0 ≤ ζ ≤ 1 and

ζ(s) =
{
1, if 0 ≤ s ≤ δ/2,

0, if s ≥ δ.

For each y ∈ A−
δ and ε > 0, we define the function

[�ε(y)] (x) = ζ (|εx − y|) ω

( |εx − y|
ε

)
,

where ω is the positive radially symmetric ground state solution of equation (4.1). It
can be proved that [�ε(y)] (·) ∈ W 1,p(RN ). By definition of ζ and A−

δ , we also know
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that [�ε(y)] (·) ∈ W 1,Hε (RN ). We define �ε : A−
δ → Ñ ◦

ε by

[�ε(y)] (x) = tε {[�ε(y)] (x) − [�ε(−y)] (x)} ,

where tε > 0 is such that �ε(y) ∈ Ñ ◦
ε . Propositions 3.1 and 3.3 show that �ε(y) is

well defined. Note that

[�ε(y)] (−x) = − [�ε(y)] (x) and �ε(−y) = −�ε(y).

Hence �ε(y)+ ∈ N ◦+ and �ε(y)− ∈ N ◦−.
Then we have the following lemmas:

Lemma 5.4 Let hypotheses (H0), (H1) and (H4) be satisfied. Then we have

lim
ε→0+ Ẽε

(
�ε(y)

+) = cr0 uniformly in y ∈ A−
δ .

Proof First, we note that �ε(y)+ = tε�ε(y). We argue by contradiction and assume
that there exist σ > 0, {yn}n∈N ⊂ A−

δ and εn → 0+ such that

∣∣∣Ẽεn

(
�εn (y)

+)− cr0

∣∣∣ ≥ σ > 0. (5.4)

By changing the variables z = (εnx − y)/εn , we deduce from Lebesgue’s dominated
convergence theorem that

∥∥�εn (y)
∥∥p
1,p

=
∫

RN

(∣∣∇�εn (y)
∣∣p + ∣∣�εn (y)

∣∣p) dx

=
∫

RN

(∣∣∣∣∇
(

ζ (|εnx − y|) ω

( |εnx − y|
εn

))∣∣∣∣
p)

dx

+
∫

RN

(∣∣∣∣ζ (|εnx − y|) ω

( |εnx − y|
εn

)∣∣∣∣
p)

dx

=
∫

RN

(∣∣εnω (|z|)∇ζ (|εnz|) + ζ (|εnz|)∇ω (|z|)∣∣p + ∣∣ζ (|εnz|) ω (|z|)∣∣p) dz
→ ‖ω(|z|)‖p

1,p .

(5.5)

Similarly, we can check that

∫

RN
a(εnx)

(∣∣∇�εn (y)
∣∣q + ∣∣�εn (y)

∣∣q) dx

→
∫

RN
a(y)
(∣∣∇ω (|z|)∣∣q + ∣∣ω (|z|)∣∣q) dz = 0
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since y ∈ A−
δ ⊂ A and so a(y) = 0. Consequently


εn

(
�εn (y)

)

= ∥∥�εn (y)
∥∥p
1,p +

∫

RN
a(εnx)

(∣∣∇�εn (y)
∣∣q + ∣∣�εn (y)

∣∣q) dx → ‖ω(|z|)‖p
1,p .

(5.6)

By the definition of tεn and the change of variables z = (εnx − y)/εn , we get

0 =
〈
Ẽ ′

εn

(
tεn�εn (y)

)
, tεn�εn (y)

〉

= 
εn

(
tεn�εn (y)

)−
∫

RN
g̃
(
εnx, tεn�εn (y)

)
tεn�εn (y) dx

= 
εn

(
tεn�εn (y)

)−
∫

RN
g̃
(
εnz + y, tεn ζ (|εnz|) ω (|z|)) tεnζ (|εnz|) ω (|z|) dz.

Note that if εnz ∈ Bδ(0) then εnz + y ∈ Bδ(y) ⊂ A ⊂ �. If tεn → +∞, it follows
from the above expression that

∥∥�εn (y)
∥∥q

εn
≥
∫

RN

g̃
(
εnz + y, tεn ζ (|εnz|) ω (|z|))
(
tεnζ (|εnz|) ω (|z|))q−1

|ζ (|εnz|) ω (|z|)|q dz

since


εn

(
tεn�εn (y)

) ≤ ∥∥tεn�εn (y)
∥∥q

εn
= tqεn

∥∥�εn (y)
∥∥q

εn
.

Then from (H4)(iii) we deduce that
∥∥�εn (y)

∥∥q
εn

→ +∞ and so 
εn

(
�εn (y)

)→ +∞
by Proposition 2.1 (vi), which contradicts (5.6). Thus, we conclude that {tεn }n∈N is
bounded. Then there exists a subsequence {tεnk }k∈N such that tεnk → t0 ≥ 0.We claim
that t0 > 0. Indeed, if t0 = 0, then we can use (2.3) and

〈
Ẽ ′

εnk

(
tεnk �εnk

(y)
)

, tεnk �εnk
(y)
〉
= 0

to get that, for any ξ > 0,

∥∥∥tεnk �εnk
(y)
∥∥∥
p

1,p
≤ 
εnk

(
tεnk �εnk

(y)
)

=
∫

RN
g̃
(
εnk x, tεnk �εnk

(y)
)
tεnk �εnk

(y) dx

≤ ξ

∫

RN

∣∣∣tεnk �εnk
(y)
∣∣∣
p
dx + Cξ

∫

RN

∣∣∣tεnk �εnk
(y)
∣∣∣
r
dx,
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that is,

∥∥∥�εnk
(y)
∥∥∥
p

1,p
≤ ξ

∫

RN

∣∣∣�εnk
(y)
∣∣∣
p
dx + Cξ t

r−p
εnk

∫

RN

∣∣∣�εnk
(y)
∣∣∣
r
dx .

Similar to the above proof, we can deduce that
∥∥∥�εnk

(y)
∥∥∥
p

1,p
→ 0, contradicting (5.5).

Thus t0 > 0. Letting εnk → 0+ in the following equality


εnk

(
tεnk �εnk

(y)
)

=
∫

RN
g̃
(
εnk x, tεnk �εnk

(y)
)
tεnk �εnk

(y) dx,

similar to above again, we can obtain that

‖t0ω(|z|)‖p
1,p =

∫

RN
f (t0ω (|z|)) t0ω (|z|) dz,

from which we conclude that t0ω ∈ N r
0 . Therefore, it follows from the uniqueness of

t0 and ω ∈ N r
0 that t0 = 1. Finally, letting εnk → 0+ in

Ẽεnk

(
�εnk

(y)+
)

= t pεnk
p

∥∥�εn (y)
∥∥p
1,p + tqεnk

q

∫

RN
a(εnk x)

(∣∣∣∇�εnk
(y)
∣∣∣
q +
∣∣∣�εnk

(y)
∣∣∣
q)

dx

−
∫

RN
G̃
(
εnk x, tεnk �εnk

(y)
)
dx,

together with

∫

RN
G̃
(
εnk x, tεnk �εnk

(y)
)
dx →

∫

RN
F(ω) dz,

we obtain that

Ẽεnk

(
�εnk

(y)+
)

→ 1

p
‖ω‖p

1,p −
∫

RN
F(ω) dz = E0(ω) = cr0,

which contradicts (5.4). This shows the assertion of the lemma. ��
Lemma 5.5 Let hypotheses (H0), (H1) and (H4) be satisfied.

lim
ε→0+ Ẽε

(
�ε(y)

−) = cr0 uniformly in y ∈ A−
δ .

Proof By the definition of �ε(y), we know that �ε(y)− = −tε�ε(−y). Suppose
there exist σ > 0, {yn}n∈N ⊂ A−

δ and εn → 0+ such that

∣∣∣Ẽεn

(
�εn (y)

−)− cr0

∣∣∣ ≥ σ > 0. (5.7)
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Applying Lebesgue’s dominated convergence theorem along with changing the vari-
ables with z = (εnx + y)/εn yields

∥∥�εn (−y)
∥∥p
1,p

=
∫

RN

(∣∣∇�εn (−y)
∣∣p + ∣∣�εn (−y)

∣∣p) dx

=
∫

RN

(∣∣∣∣∇
(

ζ (|εnx + y|) ω

( |εnx + y|
εn

))∣∣∣∣
p)

dx

+
∫

RN

(∣∣∣∣ζ (|εnx + y|) ω

( |εnx + y|
εn

)∣∣∣∣
p)

dx

=
∫

RN

(∣∣εnω (|z|) ∇ζ (|εnz|) + ζ (|εnz|) ∇ω (|z|) ∣∣p + ∣∣ζ (|εnz|) ω (|z|) ∣∣q) dz
→ ‖ω(|z|)‖p

1,p .

(5.8)

Since a(·) is radially symmetric (see (H1)(iv)), that is, a(x) = a(|x |) for a.a. x ∈ R
N ,

the set A−
δ is invariant to rotation. In particular, A is symmetric with respect to the

origin, that is, A−
δ = −A−

δ . Hence, if y ∈ A−
δ , then−y ∈ A−

δ as well. Similar to (5.8),
we can check that

∫

RN
a(εnx)

(∣∣∇�εn (−y)
∣∣q + ∣∣�εn (−y)

∣∣q) dx

→
∫

RN
a(−y)

(|∇ω (|z|)|q + |ω (|z|)|q) dz = 0

since −y ∈ A−
δ and so a(−y) = 0. Consequently


εn

(
�εn (−y)

)

= ∥∥�εn (−y)
∥∥p
1,p +

∫

RN
a(εnx)

(∣∣∇�εn (−y)
∣∣q + ∣∣�εn (−y)

∣∣q) dx
→ ‖ω(|z|)‖p

1,p .

(5.9)

Changing again the variables z = (εnx + y)/εn together with the definition of tεn it
follows that

0 =
〈
Ẽ ′

εn

(−tεn�εn (−y)
)
,−tεn�εn (−y)

〉

= 
εn

(−tεn�εn (−y)
)−
∫

RN
g̃
(
εnx,−tεn�εn (−y)

) (−tεn�εn (−y)
)
dx

= 
εn

(−tεn�εn (−y)
)−
∫

RN
g̃
(
εnz − y, tεn ζ (|εnz|) ω (|z|)) tεnζ (|εnz|) ω (|z|) dz.
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As before, if εnz ∈ Bδ(0) then εnz − y ∈ Bδ(−y) ⊂ A ⊂ �. Letting tεn → +∞
gives

∥∥�εn (−y)
∥∥q

εn
≥
∫

RN

g̃
(
εnz − y, tεnζ (|εnz|) ω (|z|))
(
tεnζ (|εnz|) ω (|z|))q−1

|ζ (|εnz|) ω (|z|)|q dz,

because


εn

(−tεn�εn (−y)
) ≤ ∥∥−tεn�εn (−y)

∥∥q
εn

= tqεn
∥∥�εn (y)

∥∥q
εn

.

From (H4)(iii) it follows that
∥∥�εn (−y)

∥∥q
εn

→ +∞ and so 
εn

(
�εn (−y)

) → +∞
due to Proposition 2.1 (vi), this contradicts (5.9). Hence, we see that the sequence
{tεn }n∈N is bounded and so there exists a subsequence {tεnk }k∈N of {tεn }n∈N such that
tεnk → t0 ≥ 0. Let us show that t0 > 0 and suppose that t0 = 0. Using (2.3) and

〈
Ẽ ′

εnk

(
−tεnk �εnk

(−y)
)

,−tεnk �εnk
(−y)
〉
= 0

yield that, for any ξ > 0,

∥∥∥−tεnk �εnk
(−y)
∥∥∥
p

1,p

≤ 
εnk

(
−tεnk �εnk

(−y)
)

=
∫

RN
g̃
(
εnk x,−tεnk �εnk

(−y)
) (

−tεnk �εnk
(−y)
)
dx

≤ ξ

∫

RN

∣∣∣−tεnk �εnk
(−y)
∣∣∣
p
dx + Cξ

∫

RN

∣∣∣−tεnk �εnk
(−y)
∣∣∣
r
dx .

Hence

∥∥∥�εnk
(−y)
∥∥∥
p

1,p
≤ ξ

∫

RN

∣∣∣�εnk
(−y)
∣∣∣
p
dx + Cξ t

r−p
εnk

∫

RN

∣∣∣�εnk
(−y)
∣∣∣
r
dx .

In the sameway, we can prove that
∥∥∥�εnk

(−y)
∥∥∥
p

1,p
→ 0 which contradicts (5.8). Then

we have t0 > 0. Next, letting εnk → 0+ in the equality


εnk

(
−tεnk �εnk

(−y)
)

=
∫

RN
g̃
(
εnk x,−tεnk �εnk

(−y)
) (

−tεnk �εnk
(−y)
)
dx,

gives

‖t0ω(|z|)‖p
1,p =

∫

RN
f (t0ω (|z|)) t0ω (|z|) dz.
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This implies that t0ω ∈ N r
0 and so, from the uniqueness of t0 and ω ∈ N r

0 , we obtain
t0 = 1. Then, for εnk → 0+ in

Ẽεnk

(
�εnk

(y)−
)

= t pεnk
p

∥∥�εn (−y)
∥∥p
1,p + tqεnk

q

∫

RN
a(εnk x)

(∣∣∣∇�εnk
(−y)
∣∣∣
q +
∣∣∣�εnk

(−y)
∣∣∣
q)

dx

−
∫

RN
G̃
(
εnk x,−tεnk �εnk

(−y)
)
dx,

along with

∫

RN
G̃
(
εnk x,−tεnk �εnk

(−y)
)
dx →

∫

RN
F(ω) dz,

we arrive at

Ẽεnk

(
�εnk

(y)−
)

→ 1

p
‖ω‖p

1,p −
∫

RN
F(ω) dz = E0(ω) = cr0,

contradicting (5.7). ��
Now we can prove our existence result for problem (2.4).

Theorem 5.6 Let hypotheses (H0), (H1) and (H4) be satisfied. Then there exists ε̃ > 0
such that, for any 0 < ε ≤ ε̃, problem (2.4) has at least γ (A \ {0}) pairs (u+, (−u)+

)
of positive weak solutions.

Proof Taking Lemma 5.4 and Proposition 3.1 into account we have

lim
ε→0+ J̃+

(
(m◦+)−1 (�ε(y)

+)) = lim
ε→0+ Ẽε

(
�ε(y)

+) = cr0

uniformly in y ∈ A−
δ . For each y ∈ A−

δ , we set

h(ε) :=
∣∣∣Ẽε

(
�ε(y)

+)− cr0

∣∣∣ .

Then h(ε) → 0 as ε → 0+. Now we write

S̃◦+ :=
{
u+ ∈ S◦+ : J̃+(u+) ≤ cr0 + h(ε)

}
.

It is clear that S̃◦+ 
= ∅ since (m◦+)−1(�ε(y)+) ∈ S̃◦+. Then, by Lemma 5.1 and
Krasnosel’skii’s genus theory (seeAmbrosetti-Malchiodi [4, Theorem10.9]),weknow
that J̃+ has at least γ (S̃◦+) pairs

(
u+, (−u)+

)
of critical points on S̃◦+.

Claim: γ (S̃◦+) ≥ γ (A \ {0}).
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Assume that γ (S̃◦+) = n and note that for a setAwewriteA∗ = {(x,−x) : x ∈ A}.
We deduce that

γ (S̃◦+) = cat(W 1,Hε (RN )\{0})∗ S̃◦+
∗
,

see Rabinowitz [44, Theorem 3.9]. Hence, we can find a smallest positive integer n
such that

S̃◦+
∗ ⊆ D∗

1 ∪ D∗
2 ∪ · · · ∪ D∗

n,

whereD∗
i , i = 1, 2, · · · , n are closed and contractible in (W 1,Hε (RN ) \ {0})∗, which

means that there are

h∗
i ∈ C

(
[0, 1] × D∗

i ,
(
W 1,Hε (RN ) \ {0}

)∗)
for i = 1, 2, · · · , n

such that

h∗
i (0, u

+) = (u+, (−u)+) for all (u+, (−u)+) ∈ D∗
i ,

h∗
i (1, u

+) = (ωi ,−ωi ) ∈
(
W 1,Hε (RN ) \ {0}

)∗
for all (u+, (−u)+) ∈ D∗

i .

Let

Di =
{
u+ ∈ W 1,Hε (RN ) : (u+, (−u)+) ∈ D∗

i

}
.

Then there exists a homotopy

hi ∈ C
(
[0, 1] × Di ,

(
W 1,Hε (RN ) \ {0}

))

such that hi (0, ·) = id, hi (1, ·) = ωi or −ωi and hi (t, u+) = −hi (t, (−u)+).
We define

�∗
ε = (�+

ε , (−�ε)
+) : (A−

δ

)∗ → (N ◦+
)∗

,[
�∗

ε(y,−y)
]
(x) = ([�ε(y)]

+ (x), [�ε(−y)]+ (x)
)
.

Now we choose R ≥ diam(A), where diam(A) denotes the diameter of A. For u ∈
W 1,Hε (RN ) with compact support in BR(0), we define the barycenter map

β+ : W 1,Hε (RN ) \ {0} → R
N , β+(u) =

∫

RN
x |u+(x)|p dx

∫

RN
|u+(x)|p dx

.
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We observe that for any (y,−y) ∈ (A−
δ

)∗
we have

β+
(
�ε(y)

+) = y and β+
(
�ε(−y)+

) = −y.

Next, we write β∗(·, ·) = (β+(·), β+(·)) and obtain

β∗ (�ε(y)
+, [−�ε(y)]

+) = (β+
(
�ε(y)

+) , β+ [�ε(−y)]+
) = (y,−y).

Let

K∗
i = (�∗

ε

)−1 (
m∗ (D∗

i

))
,

where m∗(·, ·) = (m◦+(·),m◦+(·)). Obviously the sets K∗
i are closed subsets of

(
A−

δ

)∗
and
(
A−

δ

)∗ ⊆ K∗
1∪· · ·∪K∗

n . Defining the deformation hi : [0, 1]×K∗
i → (RN \ {0})∗

by

hi (t, x) = (β∗ ◦ h∗
i

) (
t,
(
m∗)−1 (

�∗
ε(y,−y)

))
,

we see that K∗
i is contractible in

(
R

N \ {0})∗. Indeed, we have

hi ∈ C
(
[0, 1] × K∗

i ,
(
R

N \ {0}
)∗)

,

hi (0, x) = (β∗ ◦ h∗
i

) (
0,
(
m∗)−1 (

�∗
ε(y,−y)

)) = (y,−y) for all (y,−y) ∈ K∗
i ,

hi (1, x) = (β∗ ◦ h∗
i

) (
1,
(
m∗)−1 (

�∗
ε(y,−y)

))

= β∗ (ωi ,−ωi ) =
(
y0i ,−y0i

)
∈
(
R

N \ {0}
)∗

for all (y,−y) ∈ K∗
i .

Thus

γ (A \ {0}) = cat(RN \{0})∗ (A \ {0})∗ = cat(RN \{0})∗
(
A−

δ

)∗ ≤ n,

which implies that S̃◦+ contains at least γ (A \ {0}) pairs of critical points of J̃+. Thus
we conclude from Proposition 3.2 that there exist at least γ (A\{0}) pairs (u+, (−u)+)

of critical points of Ẽε, that is, problem (2.4) has at least γ (A \ {0}) pairs of positive
weak solutions. ��

Next, we are going to prove the existence of negative solutions for problem (2.4).

Theorem 5.7 Let hypotheses (H0), (H1) and (H4) be satisfied. Then there exists ε̃ > 0
such that, for any 0 < ε ≤ ε̃, problem (2.4) has at least γ (A \ {0}) pairs (u−, (−u)−

)
of negative weak solutions.
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Proof As before, using Lemma 5.5 and Proposition 3.3, we know that

lim
ε→0+ J̃−

(
(m◦−)−1 (�ε(y)

−)) = lim
ε→0+ Ẽε

(
�ε(y)

−) = cr0

uniformly in y ∈ A−
δ . For each y ∈ A−

δ , we set

h(ε) :=
∣∣∣Ẽε

(
�ε(y)

−)− cr0

∣∣∣ .

This gives h(ε) → 0 as ε → 0+. Setting

S̃◦− :=
{
u− ∈ S◦− : J̃−(u−) ≤ cr0 + h(ε)

}
.

We easily see that S̃◦− 
= ∅ because (m◦−)−1(�ε(y)−) ∈ S̃◦−. Then, from Lemma 5.2
and Ambrosetti-Malchiodi [4, Theorem 10.9], it follows that J̃− has at least γ (S̃◦−)

pairs
(
u−, (−u)−

)
of critical points on S̃◦−.

Claim: γ (S̃◦−) ≥ γ (A \ {0}).
Suppose that γ (S̃◦−) = n and recall that we write A∗ = {(x,−x) : x ∈ A} for a

set A. From [44, Theorem 3.9] it follows that

γ (S̃◦−) = cat(W 1,Hε (RN )\{0})∗ S̃◦−
∗
,

which guarantees the existence of a smallest positive integer n such that

S̃◦−
∗ ⊆ D∗

1 ∪ D∗
2 ∪ · · · ∪ D∗

n,

with D∗
i , i = 1, 2, · · · , n being closed and contractible in (W 1,Hε (RN ) \ {0})∗, e.g.,

there exist

h∗
i ∈ C

(
[0, 1] × D∗

i ,
(
W 1,Hε (RN ) \ {0}

)∗)
for i = 1, 2, · · · , n

such that

h∗
i (0, u

−) = (u−, (−u)−) for all (u−, (−u)−) ∈ D∗
i ,

h∗
i (1, u

−) = (ωi ,−ωi ) ∈
(
W 1,Hε (RN ) \ {0}

)∗
for all (u−, (−u)−) ∈ D∗

i .

We define

Di =
{
u− ∈ W 1,Hε (RN ) : (u−, (−u)−) ∈ D∗

i

}
.

Then we can find a homotopy

hi ∈ C
(
[0, 1] × Di ,

(
W 1,Hε (RN ) \ {0}

))
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satisfying hi (0, ·) = id, hi (1, ·) = ωi or −ωi and hi (t, u−) = −hi (t, (−u)−). Next
we define

�∗
ε = (�−

ε , (−�ε)
−) : (A−

δ

)∗ → (N ◦−
)∗

,[
�∗

ε(y,−y)
]
(x) = ([�ε(y)]

− (x), [�ε(−y)]− (x)
)
.

Taking R ≥ diam(A), we define the barycenter map, for u ∈ W 1,Hε (RN ) with
compact support in BR(0), by

β− : W 1,Hε (RN ) \ {0} → R
N , β−(u) =

∫

RN
x |u−(x)|p dx

∫

RN
|u−(x)|p dx

.

Clearly, for any (y,−y) ∈ (A−
δ

)∗
, we have

β−
(
�ε(y)

−) = y and β−
(
�ε(−y)−

) = −y.

As before, we write β∗(·, ·) = (β−(·), β−(·)) and get

β∗ (�ε(y)
−, [−�ε(y)]

−) = (β−
(
�ε(y)

−) , β− [�ε(−y)]−
) = (y,−y).

Note that the sets

K∗
i = (�∗

ε

)−1 (
m∗ (D∗

i

))
,

are closed subsets of
(
A−

δ

)∗
and it holds

(
A−

δ

)∗ ⊆ K∗
1 ∪ · · · ∪ K∗

n , where m
∗(·, ·) =

(m◦−(·),m◦−(·)). Also, the sets K∗
i , i = 1, . . . , n, are contractible in

(
R

N \ {0})∗ due
to the deformation hi : [0, 1] × K∗

i → (RN \ {0})∗ defined by

hi (t, x) = (β∗ ◦ h∗
i

) (
t,
(
m∗)−1 (

�∗
ε(y,−y)

))
.

Indeed, we have

hi ∈ C
(
[0, 1] × K∗

i ,
(
R

N \ {0}
)∗)

,

hi (0, x) = (β∗ ◦ h∗
i

) (
0,
(
m∗)−1 (

�∗
ε(y,−y)

)) = (y,−y) for all (y,−y) ∈ K∗
i ,

hi (1, x) = (β∗ ◦ h∗
i

) (
1,
(
m∗)−1 (

�∗
ε(y,−y)

))

= β∗ (ωi ,−ωi ) =
(
y0i ,−y0i

)
∈
(
R

N \ {0}
)∗

for all (y,−y) ∈ K∗
i ,

which implies

γ (A \ {0}) = cat(RN \{0})∗ (A \ {0})∗ = cat(RN \{0})∗
(
A−

δ \ {0})∗ ≤ n.
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Hence, S̃◦− contains at least γ (A \ {0}) pairs of critical points of J̃−. From Proposition
3.4 we deduce that there are at least γ (A \ {0}) pairs (u−, (−u)−) of critical points
of Ẽε. This means that problem (2.4) has at least γ (A \ {0}) pairs of negative weak
solutions. ��

Finally we give the existence result for odd weak solutions with precisely two nodal
domains for (2.4).

Theorem 5.8 Let hypotheses (H0), (H1) and (H4) be satisfied. Then there exists
ε̃ > 0 such that, for any 0 < ε ≤ ε̃, problem (2.4) has at least γ (A \ {0}) pairs(
u+ + u−, (−u)+ + (−u)−

)
of odd weak solutions with precisely two nodal domains.

Proof Note that Ẽε (u) = Ẽε

(
u+ + u−) = Ẽε

(
u+)+ Ẽε

(
u−). Hence if u+ and u−

are the critical points of Ẽε, then is so u = u+ + u− as well. Consequently, Theorem
5.8 follows from Theorems 5.6 and 5.7. ��

Now we will prove an existence result for problem (2.5). We choose δ > 0 such
that Aδ = {x ∈ R

N : dist (x, A) < δ
}
is homotopically equivalent to A and Aδ ⊂ �.

Define a function ζ ∈ C∞
c

(
R

+) such that 0 ≤ ζ ≤ 1 and

ζ(t) =
{
1, if 0 ≤ t ≤ δ/2,

0, if t ≥ δ.

For each y ∈ A and ε > 0, we define the function

�ε,y(x) = ζ (|εx − y|) ω

(
εx − y

ε

)
,

with ω being the positive ground state solution of equation (4.1). We define

�ε : A → Nε, �ε(y) = tε�ε,y,

where tε is the unique positive number such that

max
t≥0

Êε

(
t�ε,y(x)

) = Êε

(
tε�ε,y(x)

)
,

that is,

tε�ε,ξ ∈ Nε.

It follows from Proposition 3.5 that �ε(y) is well defined since ζ (|εx − y|) = 1 for
all x ∈ Bδ/2ε (y/ε) and y/ε ∈ Aε := {x ∈ R

N : εx ∈ A
}
.

Lemma 5.9 Let hypotheses (H0), (H1)(i)–(iii) and (H5) be satisfied. Then we have

lim
ε→0+ Êε (�ε(y)) = c0 uniformly in y ∈ A.
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Proof We argue by contradiction and assume that there exist σ > 0, {yn}n∈N ⊂ A and
εn → 0+ such that

∣∣∣Êεn

(
�εn (y)

)− c0
∣∣∣ ≥ σ > 0. (5.10)

Using Lebesgue’s dominated convergence theorem with a change of variables via
z = (εnx − y)/εn , it follows that

∥∥�εn (y)
∥∥p
1,p

=
∫

RN

(∣∣∇�εn (y)
∣∣p + ∣∣�εn (y)

∣∣p) dx

=
∫

RN

(∣∣∣∣∇
(

ζ (|εnx − y|) ω

(
εnx − y

εn

))∣∣∣∣
p)

dx

+
∫

RN

(∣∣∣∣ζ (|εnx − y|) ω

(
εnx − y

εn

)∣∣∣∣
p)

dx

=
∫

RN

(∣∣εnω (z)∇ζ (|εnz|) + ζ (|εnz|) ∇ω (z)
∣∣p + ∣∣ζ (|εnz|) ω (z)

∣∣q) dz
→ ‖ω(z)‖p

1,p .

(5.11)

In a similar way, we can obtain that

∫

RN
a(εnx)

(∣∣∇�εn (y)
∣∣q + ∣∣�εn (y)

∣∣q) dx →
∫

RN
a(y)
(|∇ω (z)|q + |ω (z)|q) dz = 0

as y ∈ A and so a(y) = 0. Therefore,


εn

(
�εn (y)

)

= ∥∥�εn (y)
∥∥p
1,p +

∫

RN
a(εnx)

(∣∣∇�εn (y)
∣∣q + ∣∣�εn (y)

∣∣q) dx → ‖ω(z)‖p
1,p .

(5.12)

Again by changing the variables by z = (εnx − y)/εn and the definition of tεn leads
to

0 =
〈
Ê ′

εn

(
tεn�εn (y)

)
, tεn�εn (y)

〉

= 
εn

(
tεn�εn (y)

)−
∫

RN
ĝ
(
εnx, tεn�εn (y)

)
tεn�εn (y) dx

= 
εn

(
tεn�εn (y)

)−
∫

RN
ĝ
(
εnz + y, tεnζ (|εnz|) ω (z)

)
tεnζ (|εnz|) ω (z) dz.
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If εnz ∈ Bδ(0) then εnz + y ∈ Bδ(y) ⊂ Aδ ⊂ �. Letting tεn → +∞ gives

∥∥�εn (y)
∥∥q

εn
≥
∫

RN

ĝ
(
εnz + y, tεn ζ (|εnz|) ω (z)

)
(
tεnζ (|εnz|) ω (z)

)q−1
|ζ (|εnz|) ω (z)|q dz,

due to the fact that


εn

(
tεn�εn (y)

) ≤ ∥∥tεn�εn (y)
∥∥q

εn
= tqεn

∥∥�εn (y)
∥∥q

εn
.

From (H5)(ii) we deduce that
∥∥�εn (y)

∥∥q
εn

→ +∞ and so 
εn

(
�εn (y)

) → +∞ by
Proposition 2.1 (vi), which contradicts (5.12). Hence, {tεn }n∈N is bounded and so we
can find a subsequence {tεnk }k∈N such that tεnk → t0 ≥ 0. Suppose that t0 = 0, then
we get from (2.3) and

〈
Ê ′

εnk

(
tεnk �εnk

(y)
)

, tεnk �εnk
(y)
〉
= 0,

for any ξ > 0,

∥∥∥tεnk �εnk
(y)
∥∥∥
p

1,p
≤ 
εnk

(
tεnk �εnk

(y)
)

=
∫

RN
ĝ
(
εnk x, tεnk �εnk

(y)
)
tεnk �εnk

(y) dx

≤ ξ

∫

RN

∣∣∣tεnk �εnk
(y)
∣∣∣
p
dx + Cξ

∫

RN

∣∣∣tεnk �εnk
(y)
∣∣∣
r
dx,

which results in

∥∥∥�εnk
(y)
∥∥∥
p

1,p
≤ ξ

∫

RN

∣∣∣�εnk
(y)
∣∣∣
p
dx + Cξ t

r−p
εnk

∫

RN

∣∣∣�εnk
(y)
∣∣∣
r
dx .

Using similar arguments, we are able to show that
∥∥∥�εnk

(y)
∥∥∥
p

1,p
→ 0, contradicting

(5.11). We conclude that t0 > 0. Letting εnk → 0+ in


εnk

(
tεnk �εnk

(y)
)

=
∫

RN
ĝ
(
εnk x, tεnk �εnk

(y)
)
tεnk �εnk

(y) dx,

it follows that

‖t0ω(z)‖p
1,p =

∫

RN
f (t0ω (z)) t0ω (z) dz.
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This yields t0ω ∈ N0 and so from the uniqueness of t0 as well as ω ∈ N0 we arrive at
t0 = 1. Finally, letting εnk → 0+ in

Êεnk

(
�εnk

(y)
)

= t pεnk
p

∥∥�εn (y)
∥∥p
1,p + tqεnk

q

∫

RN
a(εnk x)

(∣∣∣∇�εnk
(y)
∣∣∣
q +
∣∣∣�εnk

(y)
∣∣∣
q)

dx

−
∫

RN
Ĝ
(
εnk x, tεnk �εnk

(y)
)
dx,

by using

∫

RN
Ĝ
(
εnk x, tεnk �εnk

(y)
)
dx →

∫

RN
F(ω) dz,

this leads to

Êεnk

(
�εnk

(y)
)

→ 1

p
‖ω‖p

1,p −
∫

RN
F(ω) dz = E0(ω) = c0,

which contradicts (5.10). ��
Now, we choose R > 0 such that Aδ ⊂ BR(0) and let κ : R

N → R
N be defined by

κ(x) =
{
x, if |x | < R,
Rx
|x | , if |x | ≥ R.

Next, we define βε : Nε → R
N by

βε(u) =
∫

RN κ(εx)|u(x)|p dx∫
RN |u(x)|p dx

.

Since A ⊂ Aδ ⊂ BR(0) we have that

βε (�ε(y)) =
∫

RN κ(εx) |�ε(y)|p dx∫
RN |�ε(y)|p dx

=
∫

RN κ(εx)
∣∣tεζ (|εx − y|) ω

( εx−y
ε

)∣∣p dx∫
RN

∣∣tεζ (|εx − y|) ω
( εx−y

ε

)∣∣p dx

=
∫

RN κ (εz + y) |ζ (|εz|) ω (z)|p dz∫
RN |ζ (|εz|) ω (z)|p dz

= y +
∫

RN (κ (εz + y) − y) |ζ (|εz|) ω (z)|p dz∫
RN |ζ (|εz|) ω (z) |p dz

= y + o(1),
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as ε → 0, uniformly for y ∈ A.

Lemma 5.10 Let hypotheses (H0), (H1)(i)–(iii) and (H4) be satisfied and let εn → 0
as n → +∞ and {un}n∈N ⊂ Ñεn be such that Ẽεn (un) → cr0 as n → +∞. Then
there exists a subsequence {ỹn}n∈N ⊂ R

N such that εn ỹn =: yn → y ∈ A as
n → +∞. Moreover, up to a subsequence, vn (·) := un (· + ỹn) converges strongly
in W 1,Hε (RN ).

The proof of Lemma 5.10 is similar to the proof of the following lemma.

Lemma 5.11 Let hypotheses (H0), (H1)(i)–(iii) and (H5) be satisfied and let εn → 0
as n → +∞ and {un}n∈N ⊂ N̂εn be such that Êεn (un) → c0 as n → +∞. Then
there exists a subsequence

{
ŷn
}
n∈N

⊂ R
N such that εn ŷn =: yn → y ∈ A as

n → +∞. Moreover, up to a subsequence, vn (·) := un
(· + ŷn

)
converges strongly

in W 1,Hε (RN ).

Proof As in the proof of Lemma 5.1 we can show that {un}n∈N is bounded. We first
claim that there is a sequence

{
ŷn
}
n∈N

⊂ R
N and constants R, σ > 0 such that

lim inf
n→∞

∫

BR(ŷn)
|un|p dx ≥ σ > 0. (5.13)

Suppose this is not true. Then the boundedness of {un}n∈N together with Lemma I.1
of Lions [32] imply that un → 0 in Ls(RN ) for all p < s < p∗. Since {un}n∈N ⊂ N̂εn

and due to (2.3) we have

‖un‖qεn ≤
∫

RN

(|∇un|p + a(εnx)|∇un|q + |un|p + a(εnx)|un|q
)
dx

=
∫

RN
ĝ(x, un)un dx

≤ ξ

∫

RN
|un|p dx + Cξ

∫

RN
|un|r dx .

We conclude that ‖un‖εn → 0 due to the arbitrariness of ξ and un → 0 in Lr (RN ). We

also know that
∫

RN Ĝ(x, un) dx → 0. Therefore, Êεn (un) → 0, which contradicts
c0 > 0, and (5.13) is proved.

Let vn = un
(· + ŷn

)
. Up to a subsequence, we can assume that vn⇀v 
= 0 in

W 1,Hε (RN ). Since W 1,Hε (RN ) ↪→ W 1,p
(
R

N
)
, we can choose tvn > 0 to be such

that wn := tvnvn ∈ N0.
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Note that maxt≥0 Êεn (tun) is obtained at t = 1. Using the translation invariance
of the Lebesgue integral and un ∈ N̂εn , we have

c0 ≤ Ê0 (wn)

= 1

p
‖wn‖p

1,p −
∫

RN
F(wn) dx

= t pn
p

‖vn‖p
1,p −

∫

RN
F(tnvn) dx

= t pn
p

‖un‖p
1,p −

∫

RN
F(tnun) dx

≤ t pn
p

‖un‖p
1,p + tqn

q

∫

RN
a (εx)

(|∇u|q + |u|q) dx −
∫

RN
Ĝ(εx, tnun) dx

≤ Êεn (tnun) ≤ max
t≥0

Êεn (tun) = Êεn (un) = c0 + o(1),

(5.14)

which implies that lim
n→∞ Ê0(wn) = c0. As in the proof of Theorem 4.2 we can show

that {wn}n∈N is bounded. This together with the boundedness of {vn}n∈N yields that
{tvn }n∈N is bounded as well. Thus, up to a subsequence, we can assume that tvn →
t0 ≥ 0 as n → +∞.

If t0 = 0, then ‖wn‖1,p → 0, and consequently Ê0 (wn) → 0, which contradicts
that c0 > 0. Therefore t0 > 0, and {wn}n∈N satisfies

Ê0(wn) → c0, wn⇀w := t0v 
≡ 0.

Similar to the argument in the proof of Lemma 4.1 we can show that wn → w as
n → +∞ which implies vn → v as n → +∞.

We claim now that
{
yn := εn ŷn

}
n∈N

is bounded. Suppose this is not the case, then
there is a subsequence of {yn}n∈N, not relabeled, such that |yn| → +∞ as n → +∞.
We take R > 0 such that� ⊂ BR(0). Suppose |yn| > 2R. Then, for any x ∈ BR/εn (0),
we have

|εnx + yn| ≥ |yn| − |εnx | > R.

Because of {un}n∈N ⊂ N̂εn , (H1) (i), the definition of ĝ, after the change of variable
x = z + ŷn we get that

‖vn‖p
1,p ≤

∫

RN
ĝ (εnz + yn, vn) vn dz

=
∫

BR/εn (0)
ĝ (εnz + yn, vn) vn dz +

∫

Bc
R/εn

(0)
ĝ (εnz + yn, vn) vn dz

≤
∫

BR/εn (0)
f̂ (vn) vn dz +

∫

Bc
R/εn

(0)
f (vn) vn dz.
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From vn → v and the definition of f̂ we conclude that

(
1 − 1

k

)
‖vn‖p

1,p ≤
∫

Bc
R/εn

(0)
f (vn) vn dz = on(1).

Letting n → +∞ we deduce that v ≡ 0, which contradicts v 
≡ 0. Therefore {yn}n∈N

is bounded. Up to a subsequence, we may assume that yn → y ∈ R
N as n → +∞. If

y /∈ �, then we can apply the above argument again to obtain a contradiction. Hence
we have y ∈ �.

It remains to check that y ∈ A, that is, we should prove a(y) = 0. Suppose by
contradiction that a(y) > 0. Then we have

c0 = E0(w)

<
1

p
‖w‖p

1,p + 1

q

∫

RN
a(y) |∇w|q dx

+ 1

q

∫

�

a(y) |w|q dx −
∫

RN
F(w) dx

≤ lim inf
n→+∞

[
1

p
‖wn‖p

1,p + 1

q

∫

RN
a(εnz + yn) |∇wn|q dx

+ 1

q

∫

RN
a(εnz + yn) |wn|q dx −

∫

RN
F(wn) dx

]

≤ lim inf
n→+∞ Êεn

(
tvnvn
) ≤ lim inf

n→∞ Êεn (un) = c0,

a contradiction, and thus a(y) = 0. The condition (H1)(ii) implies y /∈ ∂�. Hence
y ∈ A. ��

For each y ∈ A, we set

h(ε) :=
∣∣∣Êε (�ε(y)) − c0

∣∣∣ .

Then we deduce from Lemma 5.9 that h(ε) → 0 as ε → 0+. We define the sublevel
set

N̂ε =
{
u ∈ N̂ε : Êε(u) ≤ c0 + h(ε)

}
.

Note that �ε(y) ∈ N̂ε, and so N̂ε 
= ∅ for any ε > 0.

Lemma 5.12 Let hypotheses (H0), (H1)(i)–(iii) and (H5) be satisfied. Then we have

lim
ε→0+ sup

u∈N̂ε

dist (βε(u), Aδ) = 0.
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Proof Let εn → 0 as n → +∞. By the definition of the supremum, there exists
un ∈ N̂εn such that

dist
(
βεn (un), Aδ

) = sup
u∈̂Nεn

dist
(
βεn (u), Aδ

)+ on(1),

where we denote by on(1) the quantity that tends to 0 as n → ∞. Therefore, it is
sufficient to prove that there exists a sequence {yn}n∈N ⊂ Aδ such that

lim
n→+∞

∣∣βεn (un) − yn
∣∣ = 0. (5.15)

Since {un}n∈N ⊂ N̂εn ⊂ N̂εn , we note that

c0 ≤ max
t≥0

Ê0(tun) ≤ max
t≥0

Êεn (tun) = Êεn (un) ≤ c0 + h(εn),

which implies that Êεn (un) → c0. Then, from Lemma 5.11, it follows that there exists
a sequence

{
ŷn
}
n∈N

⊂ R
N such that εn ŷn =: yn → y ∈ A as n → +∞. Hence

βεn (un) =
∫

RN κ (εnx) |un(x)|p dx∫
RN |un(x)|p dx

=
∫

RN κ (εnz + yn)
∣∣un
(
z + ŷn

)∣∣p dz∫
RN

∣∣un
(
z + ŷn

)∣∣p dz

= yn +
∫

RN (κ (εnz + yn) − yn) |vn (z)|p dz∫
RN |vn (z)|p dz

.

Note that εnz + yn → y ∈ A, and so βεn (un) = yn + on(1), that is, {yn}n∈N satisfies
(5.15) and the lemma is proved. ��

Now we can state and prove our existence result for problem (2.5).

Theorem 5.13 Let hypotheses (H0), (H1)(i)–(iii) and (H5) be satisfied. Then there
exists a small positive number ε̂ such that for every 0 < ε < ε̂ problem (2.5) has at
least cat(A) positive solutions.

Proof From Lemma 5.9 and Proposition 3.5 we conclude that

lim
ε→0+ Ĵ (m−1(�ε(y))) = lim

ε→0+ Êε(�ε(y)) = c0

uniformly in y ∈ A. For each y ∈ A, we set

h(ε) :=
∣∣∣Êε (�ε(y)) − c0

∣∣∣ .
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Then h(ε) → 0 as ε → 0+. Now we write

Ŝ+ =
{
u+ ∈ S+ : Ĵ (u+) ≤ c0 + h(ε)

}
.

It is clear that Ŝ+ 
= ∅, since m−1(�ε(y)) ∈ Ŝ+. From Lemma 5.3 and the Lusternik-
Schnirelmann theory (see Szulkin-Weth [45, Theorem 27]), it follows that Ĵ has at
least cat

(Ŝ+
)
critical points on Ŝ+. Lemmas 5.9 and 5.12 imply that there exists ε̂ > 0

such that, for any 0 < ε < ε̂, the diagram

A
�ε−−−→ N̂ε

m−1−−−−→ Ŝ+
m−−→ N̂ε

βε−−−→ Aδ

is well defined and βε ◦ m ◦ m−1 ◦ �ε is homotopic to the inclusion id : A → Aδ .
We claim that

cat
(Ŝ+
) ≥ catAδ (A). (5.16)

We assume that cat(Ŝ+) = n, that is, there exists a smallest positive integer n such
that

Ŝ+ ⊆ D1 ∪ D2 ∪ · · · ∪ Dn,

where Di , i = 1, 2, · · · , n are closed and contractible in Ŝ+, that is, there exist

hi ∈ C([0, 1] × Di , Ŝ+), i = 1, 2, · · · , n

such that

hi (0, u) = u for all u ∈ Di ,

hi (1, u) = ωi ∈ Ŝ+ for all u ∈ Di .

We set

Ki = �−1
ε (m(Di )).

As before, Ki are closed subsets of A and A ⊆ K1 ∪ · · · ∪ Kn . Furthermore, Ki ,
i = 1, · · · , n are contractible in A using the deformation hi : [0, 1] × Ki → Aδ

defined by

hi (t, x) = (β ◦ m ◦ hi )(t,m
−1(�ε(x))).
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Indeed, we conclude from Lemmas 5.9 and 5.12 that

hi ∈ C([0, 1] × Ki , Aδ),

hi (0, x) = (β ◦ m ◦ hi )(0,m
−1(�ε(x))) = x for all x ∈ Ki ,

hi (1, x) = (β ◦ m ◦ hi )(1,m
−1(�λ(x))) = β(m(ωi )) = xi ∈ Aδ for all x ∈ Ki .

Hence

catAδ (A) ≤ n,

that is, (5.16) holds. We also note that

catAδ (A) = cat(A),

since Aδ is homotopically equivalent to A. Thus, Ŝ+ contains at least cat(A) critical
points of Ĵ . Proposition 3.6 implies that these critical points are also the critical points
of the functional Êε. Thuswe show that the problem (2.5) has cat(A) positive solutions.

��

6 Proof of themain results

In this section we are going to proof our main results in this paper. A key lemma in
our proofs is the following one.

Lemma 6.1 Let hypotheses (H0), (H1) and (H4) be satisfied and εn → 0+ and un ∈
Ñεn be a positive weak solution of (2.4). Then Ẽεn (un) → cr0 and for any σ > 0, there
exist R > 0 and n0 ∈ N such that

‖un‖L∞(BR(ỹn)c) < σ for all n ≥ n0,

where ỹn is given by Lemma 5.10.

Remark 6.2 The results of Lemma 6.1 holds true for negative solutions of the auxiliary
problem (2.4) since Ẽεn (·) is even under our hypotheses.

Remark 6.3 The results of Lemma 6.1 holds true for positive solution of the auxiliary
problem (2.5) under the hypothesis (H0), (H1)(i)–(iii) and (H5). The proof is similar.

Proof (Proof of Lemma 6.1) By an argument similar to that of (5.14), we can show
that Ẽεn (un) → cr0. Let R > 1, ηR ∈ C∞(RN ) such that 0 ≤ ηR ≤ 1, ηR ≡ 0 in
BR/2(0), ηR ≡ 1 in BR(0)c and |∇ηR | ≤ C/R. We set ηn(x) = ηR(x − ỹn). Let
h > 0 and define un,h := min{un, h}. Choose vn,h = η

p
n unu

κ p
n,h as test function in
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(2.4) with κ > 0 to be determined later. A direct calculation yields

∫

RN
a(εnx)

(
|∇un|q−2 ∇un · ∇vn,h + |un|q−2 unvn,h

)
dx

=
∫

RN
a(εnx)

(
|∇un|q−2 ∇un · ∇ηn pη

p−1
n unu

κ p
n,h + |∇un|q η

p
n u

κ p
n,h

+κ p |∇un|q−2 ∇un · ∇un,hη
p
n unu

κ p−1
n,h + |un|q η

p
n u

κ p
n,h

)
dx

=
∫

BR(ỹn)\BR/2(ỹn)
a(εnx) |∇un|q−2 ∇un · ∇ηn pη

p−1
n unu

κ p
n,h dx

+
∫

RN
a(εnx)

(
|∇un|q η

p
n u

κ p
n,h + |un|q η

p
n u

κ p
n,h

)
dx

+ κ p
∫

{un≤h}
a(εnx) |∇un|q η

p
n unu

κ p−1
n,h dx .

(6.1)

Applying Young’s inequality, we have

p

∣∣∣∣
1

ξ
|∇un|q−2 ∇un · ∇ηnη

p−1
n unξ

∣∣∣∣

≤ p ·
(
1

q

1

ξq
|un|q |∇ηn|q + q − 1

q
ξ

q
q−1 η

q· p−1
q−1

n |∇un|q
)

= p

q

1

ξq
|un|q |∇ηn|q + p(q − 1)

q
ξ

q
q−1 η

q· p−1
q−1

n |∇un|q

and so
∫

BR(ỹn)\BR/2(ỹn)
a(εnx) |∇un|q−2 ∇un · ∇ηn pη

p−1
n unu

κ p
n,h dx

≤ p

q

1

ξq

∫

BR(ỹn)\BR/2(ỹn)
a(εnx) |un|q |∇ηn|q uκ p

n,h dx

+ p(q − 1)

q
ξ

q
q−1C

∫

BR(ỹn)\BR/2(ỹn)
a(εnx)η

p
n |∇un|q uκ p

n,h dx .

Substituting this expression into the formula (6.1) yields

∫

RN
a(εnx)

(
|∇un|q−2 ∇un · ∇vn,h + |un|q−2 unvn,h

)
dx

≥ C
∫

RN
a(εnx) |∇un|q η

p
n u

κ p
n,h dx +

∫

RN
a(εnx) |un|q η

p
n u

κ p
n,h dx

− C
∫

RN
a(εnx) |un|q |∇ηn|q uκ p

n,h dx

≥ C
∫

RN
a(εnx) |∇un|q η

p
n u

κ p
n,h dx − C

∫

RN
a(εnx) |un|q |∇ηn|q uκ p

n,h dx,

(6.2)
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since

κ p
∫

{un≤h}
a(εnx) |∇un|q η

p
n unu

κ p−1
n,h dx ≥ 0

and
∫

RN
a(εnx) |un|q η

p
n u

κ p
n,h dx ≥ 0.

Next, we calculate

∫

RN
|∇un|p−2 ∇un · ∇vn,h dx

=
∫

RN

(
|∇un|p−2 ∇un · ∇ηn pη

p−1
n unu

κ p
n,h + |∇un|p η

p
n u

κ p
n,h

+κ p |∇un|p−2 ∇un · ∇un,hη
p
n unu

κ p−1
n,h

)
dx

≥
∫

RN

(
|∇un|p−2 ∇un · ∇ηn pη

p−1
n unu

κ p
n,h + |∇un|p η

p
n u

κ p
n,h

)
dx,

since
∫

RN
κ p |∇un|p−2 ∇un · ∇un,hη

p
n unu

κ p−1
n,h dx

= κ p
∫

{un≤h}
η
p
n u

κ p
n |∇un|p dx ≥ 0.

Hölder’s and Young’s inequalities yield

p
∫

RN
|∇un|p−2 ∇un · ∇ηnη

p−1
n unu

κ p
n,h dx

≤ p
∫

RN
|∇un|p−1 η

p−1
n u(p−1)κ

n,h un |∇ηn| uκ
n,h dx

≤
(
pξ
∫

RN
|∇un|p η

p
n u

κ p
n,h dx

) p−1
p
(
pξ

1−p
p

∫

RN
|∇ηn|p u p

n u
κ p
n,h dx

) 1
p

≤ ξ(p − 1)
∫

RN
|∇un|p η

p
n u

κ p
n,h dx + ξ

1−p
p

∫

RN
|∇ηn|p u p

n u
κ p
n,h dx

and so
∫

RN
|∇un|p−2 ∇un · ∇vn,h dx

≥ C
∫

RN
|∇un|p η

p
n u

κ p
n,h dx − C

∫

RN
|∇ηn|p u p

n u
κ p
n,h dx .

(6.3)
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We have
〈
Ẽ ′

εn
(un), vn,h

〉
= 0, that is,

∫

RN

(
|∇un|p−2 ∇un∇vn,h + |un|p−2 unvn,h

)
dx

+
∫

RN
a(εnx)

(
|∇un|q−2 ∇un∇vn,h + |un|q−2 unvn,h

)
dx

=
∫

RN
g̃(εnx, un)vn,h dx .

This together with (2.3) yields

∫

RN
|∇un|p−2 ∇un∇vn,h dx

+
∫

RN
a(εnx)

(
|∇un|q−2 ∇un∇vn,h + |un|q−2 unvn,h

)
dx

=
∫

RN
g(εnx, un)vn,h dx −

∫

RN
η
p
n |un|p uκ p

n,h dx

≤
∫

RN

(
ξ |un|p−1 + Cξ |un|r−1

)
η
p
n unu

κ p
n,h dx −

∫

RN
η
p
n |un|p uκ p

n,h dx

≤ C
∫

RN
η
p
n u

r
nu

κ p
n,h dx .

Then, from (6.2) and (6.3), we conclude that

∫

RN
|∇un|p η

p
n u

κ p
n,h dx +

∫

RN
a(εnx) |∇un|q η

p
n u

κ p
n,h dx

≤ C

(∫

RN
η
p
n u

r
nu

κ p
n,h dx +

∫

RN
|∇ηn|p u p

n u
κ p
n,h dx

+
∫

RN
a(εnx) |un|q |∇ηn|q uκ p

n,h dx

)
.

(6.4)

On the other hand, denoting by wn,h = ηnunuκ
n,h , we have

∥∥wn,h
∥∥p
p∗ ≤ C

∫

RN

∣∣∇wn,h
∣∣p dx = C

∫

RN

∣∣∇ (ηnunuκ
n,h

)∣∣p dx

= C
∫

RN

∣∣∣
(
∇ηnunu

κ
n,h + ηn∇unu

κ
n,h + κηnunu

κ−1
n,h ∇un,h

)∣∣∣
p
dx

≤ C
∫

RN
|∇ηn|p u p

n u
κ p
n,h dx + C

∫

RN
η
p
n |∇un|p uκ p

n,h dx

+ Cκ p
∫

RN
η
p
n u

p
n u

p(κ−1)
n,h

∣∣∇un,h
∣∣p dx

= C
∫

RN
|∇ηn|p u p

n u
κ p
n,h dx + C

∫

RN
η
p
n |∇un|p uκ p

n,h dx
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+ Cκ p
∫

{un≤h}
η
p
n u

κ p
n,h |∇un|p dx

≤ C(κ + 1)p
(∫

RN
|∇ηn|p u p

n u
κ p
n,h dx +

∫

RN
|∇un|p η

p
n u

κ p
n,h dx

)

≤ C(κ + 1)p
(∫

RN
|∇ηn|p u p

n u
κ p
n,h dx +

∫

RN
|∇un|p η

p
n u

κ p
n,h dx

+
∫

RN
a(εnx) |∇un|q η

p
n u

κ p
n,h dx

)

≤ C(κ + 1)p
(∫

RN
|∇ηn|p u p

n u
κ p
n,h dx +

∫

RN
a(εnx) |un|q |∇ηn|q uκ p

n,h dx

+
∫

RN
η
p
n u

r
nu

κ p
n,h dx

)
, (6.5)

where we have used (6.4). Then we estimate

∫

RN
η
p
n u

r
nu

κ p
n,h dx =

∫

RN
ur−p
n
(
ηnunu

κ
n,h

)p dx

≤
(∫

RN
u p∗
n dx

) r−p
p∗
(∫

RN

(
ηnunu

κ
n,h

) pp∗
p∗−(r−p) dx

) p∗−(r−p)
p∗

≤ C
∥∥wn,h

∥∥p
α∗

= C

(∫

BR/2(ỹn)c

(
unu

κ
n,h

)α∗
dx

) p
α∗

,

where p < α∗ = pp∗/(p∗ − (r − p)) < p∗. Further, we have

∫

RN
|∇ηn|p u p

n u
κ p
n,h dx

=
∫

BR(ỹn)\BR/2(ỹn)
|∇ηn|p u p

n u
κ p
n,h dx

≤
(∫

BR(ỹn)\BR/2(ỹn)
|∇ηn|

pp∗
r−p dx

) r−p
p∗
(∫

BR(ỹn)\BR/2(ỹn)

(
unu

κ
n,h

)α∗
dx

) p
α∗

.

Since r < p∗, we have pp∗
r−p > N . Therefore,

∫

BR(ỹn)\BR/2(ỹn)
|∇ηn|

pp∗
r−p dx ≤ C

R
pp∗
r−p −N

≤ C
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and

∫

RN
a(εnx) |un|q |∇ηn|q uκ p

n,h dx

=
∫

BR(ỹn)\BR/2(ỹn)
a(εnx) |un|q |∇ηn|q uκ p

n,h dx

≤ ‖a‖L∞

(∫

BR(ỹn)\BR/2(ỹn)
|∇ηn|

qp∗
r−q dx

) r−q
p∗
(∫

BR(ỹn)\BR/2(ỹn)
u p∗
n dx

) q−p
p∗

×
(∫

BR(ỹn)\BR/2(ỹn)

(
unu

κ
n,h

)α∗
dx

) p
α∗

.

Moreover, as q < r < p∗, it holds qp∗
r−q >

pp∗
r−p > N and so

∫

BR(ỹn)\BR/2(ỹn)
|∇ηn|

qp∗
r−q dx ≤ C

R
qp∗
r−q −N

≤ C .

Substituting the above estimations into (6.5) yields

(∫

BR(ỹn)c

(
unu

κ
n,h

)p∗
dx

) p
p∗ ≤ ∥∥wn,h

∥∥p
p∗

≤ C(κ + 1)p
(∫

BR/2(ỹn)c

(
unu

κ
n,h

)α∗
dx

) p
α∗

≤ C(κ + 1)p
(∫

BR/2(ỹn)c
u(κ+1)α∗
n dx

) p
α∗

.

Using Fatou’s lemma in the variable h gives

(∫

BR(ỹn)c
u(κ+1)p∗
n dx

) p
p∗ ≤ C(κ + 1)p

(∫

BR/2(ỹn)c
u(κ+1)α∗
n dx

) p
α∗

or

‖un‖L(κ+1)p∗ (BR(ỹn)c)
≤ C

1
κ+1
1 (κ + 1)

1
κ+1 ‖un‖L(κ+1)α∗

(BR/2(ỹn)c) .

Set γ := κ + 1 = p∗/α∗ > 1. We rewrite

‖un‖Lγ p∗ (BR(ỹn)c)
≤ C

1
γ

1 γ
1
γ ‖un‖Lγα∗

(BR/2(ỹn)c) .
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Then we iterate, beginning with γ , γ 2, γ 3, . . ., γm , to obtain

‖un‖Lγm p∗ (BR(ỹn)c)
≤ C

∑m
i=1 γ −i

1 γ
∑m

i=1 iγ
−i ‖un‖L p∗(BR/2(ỹn)c) .

Letting m → ∞, we get

‖un‖L∞(BR(ỹn)c) ≤ C2 ‖un‖L p∗(BR/2(ỹn)c) .

By the change of variables z = x − ỹn , we obtain

‖un‖L∞(BR(ỹn)c) ≤ C2 ‖un‖L p∗(BR/2(ỹn)c) = C2

(∫

BR/2(ỹn)c
|un (z + ỹn)|p∗

dz

) 1
p∗

.

It follows from Lemma 5.10 that vn(z) = un (z + ỹn) strongly converges in L p∗
(RN ).

Thus, for R > 0 and n large enough, we have

‖un‖L∞(BR(ỹn)c) ≤ σ.

��
Now, we are able to give the proofs of Theorems 1.2–1.3.

Proof (Proof of Theorems 1.2 and 1.3) We choose δ > 0 small enough such that
Aδ ⊂ � and the sets A−

δ , Aδ are homotopically equivalent to A. We claim that there
exists ε̃ > 0 such that, for any 0 < ε < ε̃ and any solution u ∈ Ñε of the problem
(2.4), there holds

‖u‖L∞(�c
ε)

≤ τ. (6.6)

Indeed, suppose by contradiction that for εn → 0 as n → +∞ and un ∈ Ñεn such
that Ẽ ′

εn
(un) = 0 and

‖un‖L∞(�c
εn

) > τ. (6.7)

From Lemma 6.1 it follows that Ẽεn (un) → cr0. Then we can use Lemma 5.10 to get
a sequence {ỹn}n∈N ⊂ R

N such that εn ỹn → y ∈ A as n → +∞. We choose R0 > 0
such that BR0(y) ⊂ B2R0(y) ⊂ �. Then we have

BR0/εn (y/εn) = 1

εn
BR0(y) ⊂ �εn .

Furthermore, for any x ∈ BR0/εn (ỹn), when n is large enough, we have

∣∣∣∣x − y

εn

∣∣∣∣ ≤ |x − ỹn| +
∣∣∣∣ỹn − y

εn

∣∣∣∣ ≤
R0

εn
+ 1

εn
on(1) <

2R0

εn
,
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which implies that BR0/εn (ỹn) ⊂ �εn . Consequently BR0/εn (ỹn)
c ⊃ �c

εn
. Then by

Lemma 6.1 with σ = τ and n ≥ n0 large enough such that R0/εn > R, we have

‖un‖L∞(�c
εn

) ≤ ‖un‖L∞(BR0/εn (ỹn)c
) ≤ ‖un‖L∞(BR(ỹn)c) < τ,

which contradicts (6.7) and our claim is true. The same holds for solutions of (2.5),
see Remark 6.3.

By (6.6) and the definition of g̃ (resp. ĝ) we conclude that g̃(εx, u) = f (u)

(resp. ĝ(εx, u) = f (u)). Thus solutions of the auxiliary problems (2.4) and (2.5)
are also solutions of (1.1). Hence the existence results in Theorems 1.2 and 1.3 follow
from Theorems 5.6–5.8 and 5.13.

In the last part, we want to study the concentration behavior of the solutions of
the equation (1.1). Let εn → 0 as n → +∞ and un ∈ W 1,Hε (RN ) be a solution of
equation (2.4). As in the beginning of this proof, we can see that un (x + ỹn) → 0 as
n → +∞ and |x | → +∞. Thus, for any τ > 0 and some large fixed R > 0, there
exists Nτ such that

‖un‖L∞(Bc
R(ỹn)) < τ for all n > Nτ . (6.8)

We claim that

‖un‖L∞(BR(ỹn)) � σ ′ for some σ ′ > 0, (6.9)

where R is given in (6.8). Indeed, suppose not, for any τ > 0, by (6.8) we have that

‖un‖L∞(RN ) < τ for n large enough.

From Ẽ ′
εn

(un) → 0 (resp. Ê ′
εn

(un) → 0) as n → +∞ and (H4) (ii) (resp. (H5) (ii)),
we have

‖un‖p
1,p ≤ ‖un‖p

1,p +
∫

RN
a(εnx) |∇un|q dx +

∫

RN
a(εnx) |un|q dx

=
∫

RN
g̃(x, un)un dx

(
resp.

∫

RN
ĝ(x, un)un dx

)

≤ 1

k

∫

RN
u p
n dx,

which implies un = 0, but this does not occur.
From (6.8) and (6.9) we conclude that the maximum point p̃n ∈ R

N of un belongs
to BR (ỹn). Write p̃n = ỹn + qn for some qn ∈ BR(0). We now apply Lemma 5.10
again to obtain εn ỹn → y ∈ A as n → +∞. We note that qn is bounded. Hence we
conclude

lim
n→+∞ a (εn p̃n) = a(y) = 0.

123



The effect of the weight function on the number of solutions…

The same holds for solutions of (2.5) by Lemma 5.11 and Remark 6.3. ��
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42. Papageorgiou, N..S., Rădulescu, V..D., Repovš, D..D.: Ground state and nodal solutions for a class of
double phase problems. Z. Angew. Math. Phys 71(1), 15 (2020). (Paper No. 15)

43. Perera, K., Squassina, M.: Existence results for double-phase problems via Morse theory, Commun.
Contemp. Math 20(2), 14 (2018). (1750023)

44. Rabinowitz, P.H.: Some aspects of nonlinear eigenvalue problems. Rocky Mountain J. Math. 3, 161–
202 (1973)

45. Szulkin, A., Weth, T.: The method of Nehari manifold, Handbook of nonconvex analysis and applica-
tions, 597–632. Int. Press, Somerville, MA (2010)
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