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Abstract
In this paper we deal with quasilinear elliptic equations of the form

—div (19ulP2Vu + a(e0) |Vl Vu) + a2 + a(ex)|ul'2u = ()

in R, where 0 < a(-) € C(RY) N L™ (RY), 1 < p < N,p < q < p* = 35,
e > 0 is a parameter, and f: R — R is a continuous function that grows super-
linearly and subcritically which does not need to fulfill the Ambrosetti-Rabinowitz
condition. Based on the Lusternik-Schnirelmann category we prove several existence
results of constant-sign and sign-changing solutions to the problem above provided
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1 Introduction and main result

In this paper we study quasilinear elliptic equations with unbalanced growth in the
whole RY given by

Te(u) + [ul”2u + a(ex)|ul?*u = f(u) inRY,

(1.
u e WherN),
where T¢(u) is the double phase operator given by
T.(u) = — div (|Vu|p_2Vu +a(8x)|Vu|q_2Vu) (1.2)

with & > 0 being a parameter, W' 7 (RV) is the related Musielak-Orlicz Sobolev
space depending on ¢ and we suppose the following assumptions:

(H0) 0 <a() e C(RY)NL®(RN),l <p<Nandp <q < p* = NN—_’;withthe
critical exponent p* of p.
(H1) The weight function a(-) satisfies the following conditions:
(i) inf a(x) =0;
xeRN
(ii) there exists an open bounded set 2 C RY such that 0 < mélslz a(x);
xe
(iii) inf a(x) = 0 with  from (ii);
xeQ
(iv) a(-) is radially symmetric, that is, a(x) = a(|x|) for a.a.x € RN

Remark 1.1 Let A = {x € Q: a(x) = 0} with  from (H1)(ii). Then (H1)(iii) implies
that A # @.

(H2) f: R — Risacontinuous and odd function satisfying the following conditions:

(i) there existr € (¢, p*) and a constant C > 0 such that
[fs)<C (1 + |S|r_l> forall s > 0;

o S
(i) slg% Is|P—2s o
N 1)
1 = ;
(iii) \s\—lﬂoo 51125 +00

@iv) Ls_)l is strictly increasing on (—o0, 0) and on (0, c0).

s[4
The corresponding energy functional E, : whHe(RV) — R for problem (1.1) is
given by

1o,
Ecu) = —|ull{ , +~ [ —a(ex) (IVal? +[ul?) dx — | F(u) dx,
pr ’ q JRN Q
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where F(s) = [y f(t) dt. A function u € WM (RV) is said to be a weak solution
of (1.1) if

/ (IVu|p_2Vu +a(8x)|Vu|q_2Vu) - Vv dx +/ (|u|p_2u +a(8x)|u|q_2u)v dx
Q Q
—/ fwvdx =0

Q

is satisfied for all v € W1 He (RV).
Our first result reads as follows. Note that y stands for the genus, see its Definition
in Section 2.

Theorem 1.2 Let hypotheses (HO), (H1) and (H2) be satisfied and let A be given as
in Remark 1.1. Then there exists € > 0 such that, for any 0 < ¢ < &, problem (1.1)
has at least

(i) Y (A\A{O}) pairs (u™, (—u)t) of positive weak solutions;
(ii) y(A\ {0}) pairs (u_, (—u)™) of negative weak solutions;
(iii) y(A\ {0}) pairs (u+ +u, (—u)t + (—u)_) of odd weak solutions with pre-
cisely two nodal domains.

Furthermore, for &, — 0, if u,, is one of these solutions and p, € RY is a global
maximum point of ug,, then we have

limoa (enpn) = 0.

En—>

Next, we are interested in positive solutions of problem (1.1) under the following
hypotheses on the right-hand side:

(H3) f: R — Ris acontinuous function satisfying the following conditions:

(i) there existr € (¢, p*) and a constant C > 0 such that
lfHl=C (1 + |S|r_1> for all s > 0;

N O
(ii) SIE}}) 525 0;
S f(s)
(i) ABI}’IOO |s|q_zs

(iv) f(s)

= is strictly increasing on (0, 00).
s
V) f(s)=0fors <0.

= +o00;

The second result in this paper is given as follows, whereby cat stands for the
category of a set, see its precise Definition in Section 2.

Theorem 1.3 Let hypotheses (HO), (H1)(i)—(iii) and (H3) be satisfied. Then there exists
& > 0 such that for every 0 < ¢ < & problem (1.1) has at least cat(A) positive
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solutions. Furthermore, for €, — 0, if u,, is one of these solutions and p, € RN isa
global maximum point of us,, then we have

lim a (8,113,,) =0.

en—0

The proofs of Theorems 1.2 and 1.3 are mainly based on the Lusternik-Schnirel-
mann category theory along with appropriate subsets of the Nehari manifold. In
particular, the proof of Theorem 1.2 relies on the properties of the odd symmetry
invariant Nehari submanifold. To the best of our knowledge, the result of Theorem 1.2
is new in the literature and has not been published before. The main novelties in our
work is the combination of an elliptic equation with unbalanced growth on the whole
of RN and a parameter ¢ inside of the weight function in order to control the number
of solutions of problem (1.1).

The application of the Lusternik-Schnirelmann category to elliptic equations began
with the work of Benci-Cerami [11], who studied the existence of positive solution of
the problem

—Au+ru=uP"" InQ, u=0 ond, pe2,2%. (1.3)

The authors proved that if p is close to 2*, problem (1.3) has at least cat(2) solutions,
where cat(£2) denotes the Lusternik-Schnirelmann category of €2. In 2000, Bartsch-
Wang [9] considered nonlinear Schrodinger equations defined by

—Au+ Gax)+Du=u?, u>0 inRY, 1<p<2-—1 (1.4)

and proved existence of at least cat(£2) solutions of (1.4) provided A > 0 is sufficiently
large. We also refer to the paper by Bartsch-Wang [8]. Note that Theorem 1.3 is
motivated by the works of Figueiredo-Furtado [26] and Alves-Figueiredo-Furtado
[3]. Indeed, in [26] the authors studied the multiplicity of positive solutions for the
equation

—eP div(a(0)|VulP72Vu) +u?~ ' = fu) inRY, ue whP@®RN),

while in [26] the existence of nontrivial solutions of
€ 2 2y, i N
(?V . A(z)) U+ V@u=f(uPu inR

has been shown. In both papers the number of solutions depend on the Lusternik-
Schnirelmann category theory provided the parameter is sufficiently small. In general,
the Lusternik-Schnirelmann category became a very powerful tool over the years
and has been used in different models and equations to get multiplicity of solutions.
We refer, for example, to the papers of Alves [1], Alves-Ding [2], Benci-Bonanno-
Micheletti [10], Cingolani [15], Cingolani-Lazzo [16], Figueiredo-Pimenta-Siciliano
[27], Figueiredo-Siciliano [28], see also the references therein.
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In all of the aforementioned works, the existence of constant sign solutions has
been demonstrated. In 2003, Castro-Clapp [14] studied the problem

Au+ru+u?2u=0 inQ, u=0 ondQ, u(rx)=—u(x)

forall x € @ with t being a nontrivial orthogonal involution and proved the existence
of pairs of sign-changing solutions provided A > 0 is small enough. An improvement
of their results has been done in the work of Cano-Clapp [13]. Recently, Liu-Dai-
Winkert [37] obtained y (25 \ {0}) pairs (£u) of odd weak solutions with precisely
two nodal domains for the (p, g)-problem

—Apu — pAgu = f(u) — |u|p_2u in;, u=0 ond,, u(—x)=—u(x)

fora.a.x € Q, provided A > 0 is sufficiently small, where €2, := A€ is an expanding
domain for Q@ € R¥ to be bounded and symmetric.

In our paper we extend some of the results of [37] to parameter dependent weight
functions of double phase type as given in (1.1) and (1.2). It is worth noting that the
issue addressed in problem (1.1) arises in the context of the study of certain non-
Newtonian fluids, where |Vu|?~2 + a(x)|Vu|?~? stands for the viscosity coefficient
of the fluid and f(u) — |u|P~>u — a|u|?"%u is the divergence of shear stress. Then
the solutions of (1.1) denote the speed of the fluid, see Liu-Dai [34]. Note that the
operator in (1.2) is related to the energy functional

Ru) = / (|Vu|p+a(x)|Vu|q) dx, (1.5)

which was first introduced by Zhikov [48] in order to describe models for strongly
anisotropic materials in the context of homogenization and elasticity. In fact, the
hardening properties of strongly anisotropic materials change point by point and the
modulating coefficient a(-) helps to describe the mixture of two different materi-
als with hardening powers p and g. We point out that functionals of the form (1.5)
belong to the class of the integral functionals with nonstandard growth condition
according to Marcellini’s terminology [39, 40]. Over the past 10 years several regu-
larity results for local minimizers of (1.5) have been developed, we mention just the
most famous ones by Baroni-Colombo-Mingione [5-7], De Filippis-Mingione [22]
and Colombo-Mingione [18, 19], see also the references therein. Concerning exis-
tence and multiplicity results of double phase problems, lots of works for bounded or
unbounded domains with different right-hand sides and various techniques have been
published in the last decade. We mention the papers of Biagi-Esposito-Vecchi [12],
Colasuonno-Squassina [17], Crespo-Blanco-Gasirniski-Winkert [21], Farkas-Winkert
[25], Gasiniski-Papageorgiou [29], Gasiiski-Winkert [30, 31], Liu-Dai [33-35], Liu-
Papageorgiou [36], Papageorgiou-Rddulescu-Repovs [41, 42] Perera-Squassina [43]
and Zeng-Bai-Gasiriski-Winkert [46], see also the references therein.

As far as we know the only papers for double phase problems using the Lusternik-
Schnirelmann category have been published by Liu-Dai-Winkert-Zeng [38] and
Zhang-Zuo-Rédulescu [47]. In [38] the authors prove the existence of at least
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cat(€2,) + 1 positive solutions for problems as in (1.1) with ¢ = 1 where 2, := AQ is
an expanding domain with A to be positive. In [47] only the existence of nonnegative
solutions to problem (1.1) has been shown for small values of ¢ in the situation of an
unbounded potential V' and under stronger assumptions as in our paper, for example,
their nonlinearity has to fulfill the Ambrosetti-Rabinowitz condition. Since working
on weighted Musielak-Orlicz-Sobolev spaces which are different from ours, there is
no need to suppose condition (H1) (iv). We emphasize that we obtain the positive
solutions of problem (1.1) as stated in Theorem 1.3 without relying on the unbounded
potential V and without assuming condition (H1) (iv). To the best of our knowledge,
no papers exist which prove the existence of sign-changing solutions for problem (1.1)
depending on the weight function a(-).

The paper is organized as follows. In Section 2 we present the involved function
space, recall a penalization technique due to del Pino-Felmer and introduce two aux-
iliary problems. Section 3 presents the mappings between the unit sphere and related
Nehari manifolds while Section 4 discussed the limit problem when ¢ goes to zero. In
Section 5 we give existence results for our auxiliary problems introduced in Section
2 and finally, Section 6 gives the proofs of our main Theorems 1.2 and 1.3.

2 Preliminaries and the penalization method

In this section we first recall some facts about the underlying function spaces and
the properties of the operator. Then we introduce a penalization method due to del
Pino-Felmer [23].

To this end, for 1 < r < oo, by L"(2) and L"(RY; RY) we denote the usual
Lebesgue spaces endowed with the norm || - ||, and WL RN) (1 < r < c0) stands
for the usual Sobolev space equipped with the norm

1
lullr = (IVally + llully) "

Let hypothesis (HO) be satisfied, ¢ > 0 and let M (R") be the set of all measurable
functions u: RN — R. We define the nonlinear mapping H, : RY x [0, co) — [0, 00)
by

He(x,t) =tP +a(ex)td.

Then, by L™ (RY) we denote the Musielak-Orlicz Lebesgue space given by
LT (RY) = {u e M(RV): / He (x, |ul) dx < +oo},
Q

which is endowed with the Luxemburg norm

[zl %, :inf{r > 0: / He (x, M) dx < 1}.
Q T
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From Liu-Dai [34, Theorem 2.7 (i)] we know that the space LH:(RN) is a reflexive
Banach space. The Musielak-Orlicz Sobolev space W7t (RV) is defined by

wlHe (RY) = {u e LM RN): |Vul € LHS(RN)}
equipped with the norm
lulle = IVullp, + llullx,

where ||Vully, = || IVul|l,. As before, wlHe(RN) is a reflexive Banach space,
see Liu-Dai [34, Theorem 2.7 (ii)]. Write

Asz{xeRstxeA}

with A given in Remark 1.1. Note that if x € A, then a(e¢x) = 0. Consequently
W1He (A,) coincides with WP (A,). If x € RV \ A, then a(ex) > 0. In this case,
we know that the embedding

W @Y\ Ap) > WP RN\ A,)
is continuous. Therefore, we have

wlHe (RY) — LS(RY) continuously for all s € [p, p*];
whHeRY) < LS (RY) compactly forall s € (p, p*).

For more details on the spaces, we refer to the papers of Crespo-Blanco-Gasinski-
Harjulehto-Winkert [20], Liu-Dai [34] and Perera-Squassina [43].
Let

0 (i) :/ (|vu|1’ Fa(ex)|Vul? + [u]? +a(8x)|u|q) dx. 2.1
RN

It is easy to see that

0: = alf, + [ (ate0) (Vutt + i) ) dx = fulf,.
RN

The norm || - || and the modular function g, are related as follows, see Crespo-Blanco-
Gasiniski-Harjulehto-Winkert [20, Proposition 2.15] or Liu-Dai [33, Proposition 2.1].

Proposition 2.1 Let (HO) be satisfied, let y € W Te(RN) and let o, be defined by
(2.1). Then the following hold:

(i) If y # 0, then ||y|le = A if and only if 0:(3) = 1;
(ii) lylle < 1 (resp.> 1, = 1) if and only if 0 (y) < 1 (resp. > 1, = 1);
(iii) If |ylle <1, then |ly|E < 0c(y) < IVIIE;
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(i) IFIylle > 1, then 12 < 0:() < Iy lE;
(v) Iylle — 0 if and only if ge (y) — O;
i) lylle = +oo if and only if 0c(y) — +o0.

Moreover, let B,: W1 He(RN) — w!.He(RN)* be the nonlinear operator given
by

(Be(u), v)3, =/ (IVulP =2V + a(ex)|Vu|?*Vu) - Vo dx
Q
(2.2)
—{—/ (|u|p_2u +a(£x)|u|q_2u)v dx
Q

for all u, v € WhHe (RV) where (-, - )7, is the duality pairing between W17t (RV)
and its dual space wl-He(RN)* The operator By : WLHRNY — wlHe(RV)*
has the following properties, see Crespo-Blanco-Gasifiski-Harjulehto-Winkert [20,
Proposition 3.4].

Proposition 2.2 The operator B, defined by (2.2) is bounded (that is, it maps bounded
sets into bounded sets), continuous, strictly monotone (hence maximal monotone) and

it is of type (S4).

Let X be a Banach space and let .4 be the class of all closed subsets B of X \ {0}
which are symmetric, that is, u € B implies —u € B.

Definition 2.3 Let B € A. The genus y (B) of B is defined as the least integer n such
that there exists ¢ € C (X, R") such that ¢ is odd and ¢(x) # O for all x € B. We set
y (B) = +oo if there are no integers with the above property and y (¢) = 0.

Remark 2.4 An equivalent way to define y (B) is to take the minimal integer n such
that there exists an odd map ¢ € C(B,R" \ {0}).

We denote by catp (A) the category of A with respect to B, namely the least integer
ksuchthat A C AjU---UA; with A; (i =1, -+, k) being closed and contractible
in B. We set catp () = 0 and catp(A) = oo if there is no integer with the above
property. Furthermore, we set cat(B) := catg(B).

In the second part of this section we construct an auxiliary problem for which we
use the construction idea due to del Pino-Felmer [23], who found a positive standing
wave solution for the classical Schrodinger equation under local condition of potential.
The auxiliary problem is used to overcome the lack of compactness of problem (1.1).

First, we suppose that f fulfills (H2). We set k > 0 with k > ¢ and take 7 > 0
such that f(7)/t7~! = 1/k. We define

f(s) if |s| <,
fs) = %Spfl if s > 1,

—LsiP=lifs < —1,
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and

2(x,5) = xa() f(s) + (1 = xa(x)) f(),
where €2 is given in the assumption (H1)(ii) and xg is its characteristic function, that

is

@) 1, x e Q,
X) =
X0 0, xeQr.

By hypothesis (H2), it is clear that g has the following properties:

(H4) g: RY x R — Ris a continuous and odd function with respect to s, satisfying
the following conditions:

(i) there exist r € (g, p*) and a constant C > 0 such that

13(x, $)| < C (1 n |s|r—1) forall s > 0:

(i) lim g(x—’;) — 0 uniformly in x € RV
s—0 |s|P7 K
g(x,s)

@iii) (a) lim

—— = +00 uniformly in x € €2;
Is|=+oo |s|977 s

) 0 < ‘G(x, s)) < |s|? /kand 0 < |3(x, s)| < |s|P~" /k forall |s| > O and
x € Q°, where G(x, s) = Jo &(x, 1) dr.

@iv) (a) ﬁ,(;’_sl) is strictly increasing for all |s|] > O and x € Q or |s| < T and
s
x € Q°;
g(x,s)
(b) =——— = —forall |s| > t and x € Q°.
Is|P=2s Kk

Next, we suppose that hypothesis (H3) holds and define

f(s) if0<s<r,
%sp’l ifs > 1,

fls)=
and

8(x,8) = xo(X) f(s) + (1 — xa(x) f(s).

Then, due to (H3), the function g fulfills the following conditions:

(H5) g: RY x R — R is a Carathéodory function with primitive G(x,s) =
fos &(x, t) dt satisfying the following assumptions:
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(i) there exist r € (¢, p*) and a constant C > 0 such that
g9l = C(1+1s171) foralls > 0;

(i) lim g(x—,;) = 0 uniformly in x € R";
s—=0 |s|P™“s

o 8(x,s)
) @ i

(b) 0 < G(x, s) <sP/kand0 < g(x,s) < sp’l/k forall s > Oand x € QF.

= 400 uniformly in x € Q;

(iv) (a) |g|(;c—i2s) is strictly increasing for all s > O and x € Q ors < t and
s s
x € Q°;
gx,s) 1
(b) =——— = —foralls > t and x € Q°.
Is|P=2s Kk

(v) g(x,s) =0fors <0.

By (H4) (i), (ii) and (H5) (i), (ii), we can find for any § > 0 a number C¢ > 0 such
that

’G(x, s)| < &|s|P + Cg |s|” forall x € RN and forall s € R,
. (2.3)

‘G(x, s)‘ <&|s|” +Cs|s|” forallx € RY and forall s € R.

Now we consider the auxiliary problems
To(u) + |ul?"2u + a(ex)|u|?%u = g(ex,u) inRY,
ey (2.4)
u e whHe®N)
and

To(u) + |ul”"2u + a(ex)|ul?%u = g(ex,u) inRY, 2.5)

u e whHe Ny,

It is easy to see that, if u, is a solution of the auxiliary problem (2.4) (resp.(2.5))
such that u, < 7 for x € Q¢ := {x e RN: ex € Q}, then g(ex,us) = f(ue)
(resp. g(ex, ue) = f(ue) ) and consequently u, is also a solution of (1.1). Therefore,
we will look for solutions u of the problems (2.4) and (2.5) satisfying

u, <t forallx € Q.

Finally, we denote the corresponding energy functional E.: W7 (RV) — R for
problem (2.4) by

- 1 1
By = —lf, > [ atex) (9l + ) ax— [
4 ’ q JRN

G(sx, u) dx
RN
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and the energy functional for (2.5) by E¢: WiHe(RN) > R defined by

G(ex, u) dx.
]RN

. 1 1
E.(u) = — ||u||fp + —/ a(ex) (|Vu|q + |u|‘1) dx —/
p ' q JRN

3 The mapping between the unit sphere and the Nehari manifold

From now on, for a function u: RV — R, we denote by ut and u~ the positive and
negative part of u, respectively, that is

uT =max (u,0), u~ =min(u,0).

Let
Wi @) = fu e W @Yz u(—x) = —u()|.
The Nehari manifold corresponding to (2.4) is defined by
N, = {u e WhHe RN\ {0} (E;(u), u> — o}

while the odd symmetry invariant Nehari submanifold is given by

/\~/'g° = [u eN,:u(—x) = —u(x)} .
Note that

./\N/;;o — ./\N/'g N Wl,'Hg(RN)o.
We point out that]?s : Wh-He(RV)e - R is an even functional with (E, (—u)) = —
E!(u).Hence,if E, € C 2 then the nontrivial solutions of (2.4) are the critical points of
the restriction of the functional E to the odd symmetry invariant Nehari submanifold
N?. But we only suppose that g is continuous and so we just have E, € C ! which
implies, in general, the nondifferentiability of J\N/'SO. The same holds for the auxiliary
problem in (2.5) with g instead of g, respectively. The next results will overcome these
difficulties.
We write

50 = {ue W @")e: jul =1}

and
Sy ={ut:ues, Ni:{u“L:ue./\N/:}.

In the next lemma we can define a one-to-one correspondence between S§ and N5.
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Proposition 3.1 Letr hypotheses (HO0), (H1)(1)-(iii) and (H4) be satisfied. Then the
following hold:

(i) For each w € Wl-He(RN)° \ {0}, set @+ (1) = E.(tw™) fort > 0. Then there
exists a unique t,+ > 0 such thatgi) +(@) >0if0 <t < ty+ andé) +(@® <0if

t > ty+, thatis, max @+ (1) is achzeved att = ty+ and ty+wt € N°
t€[0,+00)

(ii) There exists 8 > O such that t,+ > 8 for w™ € 89 and for each compact subset
We C Sj_ there exists a constant CWi such that t,+ < CWi forallw e WS.
(iii) Let us denote by

s Jutswe W @M o) - N,

wt - ﬁlj_(er) =tyrwT.

Then the mapping m¢_ is continuous.
(iv) Letm§ := ’711|SE;- Then m<._ is a homeomorphism between S5 and N_ﬁ and the
inverse of m<. is given by

(mi)_l wh = forallu € N3.

|I e

Proof (i) It is clear that ¢,,+(0) = 0. We deduce from (2.3) that

p q
a2 w1+ [ aten) ([Vurt o+ ) as

1
_/ (zptp}w+|"+c.t ywﬂ)

> ”wﬂH’p—f—*/Na(sx) (‘Vwﬂq—{— ’w+|q) dx—Citr/N ’w+|r dx
’ q JR 2p R

> 2p
= C1tP + Cyt? — Cst",

which implies that ¢,,+ () > 0 for 7 small enough. It follows from (H4)(iii) that, for
any M > 0, there exists Ty > O such that G(ex,t) > M |t|? for |t| > Ty and
x € Q. Thus

p q
Gt (1) < % [t 7+ %/RN a(ex) |Vt |7 + [wt]?) dv
—Mtq/ ¢ dx—i—ltp/ lw*|? dx
Q. ko Jac
=Cit! + Cpt? — C3M 1
2C,

<Cit?P —Crt? when M > —=
C3'
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which implies that ¢,,+ (#) < O for ¢ large enough. Hence there exists #,,+ > 0 such
that ¢,  (f,,+) = 0. We also note that

0=, (1) :/ (7= (V] + [0 ]7) + agen)t ™ [Vt | 4+ [wt]7) ) dx
RN
—/ glex, twHw™ dx
RN
implies tw™ € N3,

We claim that E := {x € Q¢: rwt > 7t foraa.x € RN} = @. Suppose E # 0.

Then (E L(wh), twtx E> = 0, where xf is the characteristic function of E. However,
we have

<E;(tw+), tw+XE>
= [ (77wt ) + atenn ! (V] + fut])) d
E
—/ gex, twHwt dx
E

[ (7 (7 P ) + et (9 )
E

—llp_lf |w+|p dx
k E

2(1—1>t1’1/ |w+|p dx >0 >0,
k E

for some positive constant o which is a contradiction and so the claim holds true.
Consequently, we deduce from rw™ € N5 that

/ a(ex) (|[Vw™|? + [w*|?) dx
RN

o ,t + + l
_f seermwwT g L (vt 4 Jwt]?) de
RN td 1 t4—p RN
glex, twHw™ glex, twHw™
= — g dx + T
. 1l {Q¢. rwt <t} 14
1

— L 19w )

By (H4)(iv), the right-hand side of the last equality is strictly increasing in ¢. It follows

that @,,+(¢) has a unique critical point. Therefore Fgax @+ () is achieved at a
t€[0,4-00)

unique t = f,,+ > 0 so that &/ . (1,,+) = 0 and 1,,+w™* € N.
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(i) First, we prove that there exists 8§ > 0 such that t,,+ > § for w™ € Se.If
t,+ > 1 we are done. If £,,+ < 1, we deduce from f,,+w™ € N and (2.3) that

[0 (07 4 [0 7)1 a0 (9] + [ [9) d
RN

1
< §t£+ /RN |w+|1’ dx+C%t;+ /RN |w+|r dx

or

Clearly, we can take § = <2C11/2 ) "™ < 0 in this case.

Next, if W$ <€ &7 is compact, and suppose by contradiction that there is
{w:[}neN C W2 with #, = 1,+ — +00. By (i), we see that

E(tyw)) = max E:(tw]) > 0.

On the other hand, by (H4)(iii), we deduce that

0=

dx - —o00 asn — oo,

Ee(tnw;f) <1+1_/ G (ex. tywyf)
1 T p ok . o

which yields a contradiction. Thus there exists Cyy: such that #,,+ < Cyys.

(iii) Suppose that w — w in W17 (RY)\ {0}. It follows from (ii) that {t,+ Inen
is uniformly bounded. Therefore, there exist a subsequence of {twn+ }nen, which we
still denote by {tw;}nEN, converging to a limit fy. It follows from the uniqueness of
ty+ that fo = t,,+. But then t,, — #,,+. Thus 7 is continuous.

(iv) By (i), we can easily see that m3 (S%) is a bounded set in wl-He (RV) and
for any wt e mj_(Sj_), there exists § > 0 such that ||w+||8 > §, that is, for any
wt € N°, we can find § > 0 such that“w*‘”(8 > §. The argument is similar to
the proof of (ii). By the continuity of /S and its definition, we know that the map
ms : S?r — /\/'ji is continuous and one-to-one. Clearly, the inverse function of m$.
is m%) " H(w™) = W for any w™ € N%. We only have to prove that (mj’r)_1 is
continuous. Indeed, it holds

[n) ™ @ty = ms) ™ ]

_’ wh vt et et (o, et | 2wt e
(70 PR A 0 O I L [ 1 T T Jw ],
< 3wt = o],
8 &
which shows that (mﬁr)_1 is Lipschitz continuous. O
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Now we can define

+ol

: { we WI’HS(RN)"\{O}} — RV,
wt = TS wh) = E.(mS (wh)), (3.1

\1

=JS |s2 -
A direct consequence of Proposition 3.1 and by Szulkin-Weth [45, Proposition 9 and
Corollary 10] is the following proposition.
Proposition 3.2 Let hypotheses (HO0), (H1)(1)-(iii) and (H4) be satisfied. Then the
following hold:

(i) Jy € C' (S, R) and

(75w, 2) = (ELon @), 2l 1)

forall wt € 8 andfor all 7 € Tyy+(S3), where T,,+ (S%) denotes the tangent
space to 83 at w™

(ii) If {w, }nen € S% is a (PS)c-sequence for Jo., then {m(w;Hlen € NS isa
(PS).- sequencefor E,. If {uf hnen € No is a bounded (PS).-sequence for E.,
then {(m3)~ (un)},,eN C 83 is a (PS).-sequence for J+

(iii) wt € 89 is a critical point of J+ lfand only 1fm+(w+) € N2 is a nontrivial
critical point of Es. Moreover, 1nfgo J+ = 1nf/\/o E..

(iv) IfE is even, then so is J+.

Next, we write
Si:{u‘:u68°}, Nf:{u‘:ue]\l"}.

Then we can set up a one-to-one correspondence between S° and A° as follows.

Proposition 3.3 Letr hypotheses (HO0), (H1)(i)-(iii) and (H4) be satisfied. Then the
following hold:

(i) For each w € Wl-He(@RN)° \ {0}, set ¢, (1) = Eg(twf)fort > 0. Then there
exists a unique t,~ > 0 such that@ _() >0if0 <t <ty and@ _() <0if

t > t,-, that is, tefnax )(pw (t) is achzeved att =t,- and t,-w~ € N°

(ii) There exists § > O such that t,,—~ > & for w~ € S° and for each compact subset
W? C S° there exists a constant Cyye such that t,,— < Cyye forall w € W?°.
(iii) Let us denote by

o {w—: w e WhHe®N)o \ {0}} = N,
w- > m (W) i=t,-w

Then the mapping m°_ is continuous.
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(iv) Let m® := m° |so. Then m® is a homeomorphism between S° and N° and the
inverse of m°_is given by

forallu= € N°.

()=

“lle
Proof The proof can be done as the proof of Proposition 3.1. O

Now we can define

,_,._

—w e WhHe RNy \ {o}} S RV,
Jo(w™) = Ec(m° (w™)), 3.2)
j— = 3|33.

As before, as a consequence of Proposition 3.3 and of Szulkin-Weth [45, Proposition
9 and Corollary 10] we have the following proposition.

Proposition 3.4 Let hypotheses (HO), (H1)(i)-(iii) and (H4) be satisfied. Then the
following hold:

(i) J_ e C! (Si,R) and
(7@, 2) = (ELonz o)), 2llme )l

forallw™ € 8° foralland z € T~ (S°), where T, (S°) stands for the tangent
space to 8° at w™.

(ii) If {w, }peny C S° is a (PS).-sequence for J_, then {m® (w; )Ineny S N°isa
(PS).-sequence for Eg. If {u;; }hen € N? is a bounded (PS).-sequence for Eg,
then {(m° )_1(u_)}neN C 8° is a (PS).-sequence for J_.

(iii) w™ € S is a critical point of J_ tfand only tfm (w™) € N° is a nontrivial
critical point of E.. Moreover, inf g0 J_ =inf Ne E

(iv) IfE,; is even, then so is J_.

Now, we write

N {u e WhH: ®N)\ {0}: <E;(u),u>=o}
S ={uew M @"): jul =1},
Sy={ut:ues},

Ny =1u :ueNg}.

Then we can set up a one-to-one correspondence between Sy and NV in the following
way.
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Proposition 3.5 Let hypotheses (HO0), (H1)(1)-(iii) and (HS) be satisfied. Then the
following hold:

(i) For eachw € W1i-He(®RN) \ {0}, set @+ (1) = Eg(tw“‘)fort > 0. Then there
exists a unique t,+ > 0 such that ! . (t) > 0if0 <t < ty,+ and @ (1) <0 if

t > ty+, thatis, max @, +(t) is achieved att = t,+ and ty,+w™ € N.
te[0,+00)

(ii) There exists § > 0 such that t,,+ > 8 for wt € Sy and for each compact subset
W, C 8y there exists a constant Cyy, such that t,,+ < Cyy, forall w € W,.
(iii) Let us denote by

s {w+: w e wlﬁs(RN)\{O}} S Ny

wt = (wh) =rrwt.

Then the mapping M 4 is continuous.
(iv) Let m := my|s,. Then m is a homeomorphism between Sy and N and the
inverse of m is given by

ut

1+
m—(u") =
llut e

forallu™ e N.

Now we can define

Jo {w+: w e WhHe RNy \ {0}} - RV,
wh > Jp ™) = EOhy (wh)), 3.3)
J=1Jils,.
Proposition 3.6 Let hypotheses (HO), (H1)(1)-(iii) and (HS) be satisfied. Then the
following hold:
(i) J e C'(S4,R) and

(J @), 2) = (ELomw ), 2l

forallwt € Sy and for all 7 € Ty+(Sy), with Ty+ (Sy) being the tangent space
to Sy atw™. X
(ii) If {w, }hen C Sy is a (PS)c-sequence for J, then {m(w;)}yen € Ny is a (PS),-
sequence for Ee. If{u,‘f}neN C N, is a bounded (PS).-sequence for EE, then
{m™! (u;)}nen € Sy is a (PS).-sequence for J.
(iii) wt € S, is a critical point off ifand only if m(w™) € Ny is a nontrivial critical
point ofé‘g. Moreover, infg, J = infpr, E,.

Remark 3.7
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(1) If we set
¢S = inf E.(uh),
i = inf, B

then it follows from Proposition 3.2 (iii) that

o

¢ = inf Jo(w™).
Tt eSS
From Proposition 3.1 it is easy to see that ¢ has the following minimax charac-

terization:

cl = inf max E,(fwt) = inf max E.(rw™).
weW, P (@e\{o) >0 wresy >0

We know from the proof of Proposition 3.1 that there exists a unique #,,+ > 0
such that max E.(tw") = E, (t,+w™) forw™ € S3. Proposition 3.1 (ii) implies

that there ex1sts 8 > 0 such that #,,+ > § uniformly for wt € 89. Thus, for any
* e 89, we have

E; (tyrw') = max E.(twh) > o,
1>

for some o > 0 independent of w™ and consequently

inf max E.(twh) > o,
wteS§ 1>

that is

If we set

c® = meu
2o (™),

u—e

then, similarly, From Proposition 3.3, It can show that
c¢® > 0.

We also note that E. (1) = Eo(u™) + Es(u™). If we set

¢® = inf E.(u),
ueN?

then it is clear that ¢® > ¢§ +¢2 . In our case, ¢§ = ¢? since u is an odd function.
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(i) Set

c= inf E.uh).
A e(u™)

By an argument similar to that of (i), we can show that ¢ > 0 and c° > 2c.

4 Limiting problem

We consider the limiting problem associated to (1.1), that is, the following p-Laplacian
problem:

—Apu+ ulP~>u = f(u) inRY,

4.1
ue wWhP@®RY). @D

Since we are interested in the existence of positive solutions, we consider the functional
1 P +
Eo(u) = —lully , — F(u™) dx.
p RN

First, we consider the radially symmetric ground state solutions of (4.1). It is similar
to the proof of Liu-Dai [34, Theorem 1.9] and we can show that there exists a positive
radially symmetric ground state solution w of (4.1). Moreover, we define

5= {ue WHPRY\(0): (Ep), u)=0] and ¢ = inf Eo(w),

ueN}
where er PRNY = {u e WLPRN): u is radially symmetric}. Then, we have
Eo(w) = .

Next, we consider positive ground state solutions of (4.1), not necessarily radially
symmetric. For this purpose, as in Section 3, we define:

No = {u e WhP@N)\ {0} : (Ej(u), u) =0, u™ # 0},
So={ue WP @)\ (0): i, =1, u* £0},

mo: Sy — Ny, wo — mo(wop),
Jo(wo) = Eo (mo(wp)), 0 <co= inf Eo(u).
ueNy

Similarly, we also know that for each wg € wlp(RN) \ {0} there exists a unique
10 := ty, such that fowg € Np.
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Lemma 4.1 Let {w,},en C So be such that Jy(w,) — co and w,—wq in Wl’p(RN).
Then there exists a sequence {y,}nen C RN such that v, ‘= w,(- + y,) = vo € So
with Jo(vg) = co. Moreover, if wy # O, then {y,},en can be taken identically zero
and thus w, — wg in WHP(RN).

Proof Tf wy = 0, then there exist R, o > 0 and {J,},en € RY such that

n—o0

lim sup/ |w,|? dx > o.
BR@n)

Suppose by contradiction that

lim sup sup / |wp|? dx = 0.
Br(y)

n—oo yERN
Then it follows from Lemma 1.1 of Lions [32] that
|Ol

lim lwp|* dx =0 foralla € (p, p*).

n—oo RN

Consequently

lim Imo(wp)|* dx =0 forall o € (p, p*).
N

n—oo R
By (H3) (i) and (H3) (ii), we have

Lf (mo(@n))| < & Imo(w)|P~" + Cg Imo(wn) ™!

and
|F (mo(wn))] < & [mo(@n)|” + Cg Imo(wn)]” .
Thus
Jim o f (mo(@y)) mo(wy,) dx =0
and
Jim ox F (mo(w,)) dx = 0.
Therefore,

lim [Imo(@y)lly., = 0
n—>0oo
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and consequently
lim Jo(w,) =0,
n—o0

which is a contradiction to Jo(w,) — ¢co > 0 as n — oo.

Now we define v, (x) = w,(x +,), then Jo(v,) — co and there exists 0 # vy €
WP (RNY such that v, (x)—vy. By the Sobolev embedding theorem, we have that
|§n| — 00. Note that mq(v,)—mq(vg) in WP (RN). Forany s € [p, p*) and R > 0,
we have that

lim |mo(v,)|° dx = lim |mo(v,)|° dx
R— 400 BICQ(O) R—+o00 RN\BR(O)
=f Imo(vy)|* dx — lim Imo(vy)|* dx
RN R— 400 Br(0)

=0.

Thus there exists R} > 0 large enough such that
[ mowr ar=o,0n.
B, (0)
By (H3) (i) and (H3) (ii), we know that

<o,(1). 4.2)

/ f (mo(vn)) mo(vn) dx
B, (0)

From the compact embedding W!? (Bg, (0)) < L* (Bg,(0)) and the subcritical
growth of f, we deduce that

/ f (mo(vp)) mo(v,) dx — f (mo(vo)) mo(vo) dx (4.3)
Br, (0) B, (0)

as n — +oo. Combining (4.2) with (4.3) yields

/ f (mo(vp)) mo(v,) dx — / S (mo(vo)) mo(vo) dx 4.4)
RN RN

as n — +o0. By definition of mo and (4.4), we conclude that |mo(v.)lly,, —
llmo(vo)lly, p- And consequently ||no(v,) — mo(vo)lly,, — O since WLP(RN) is uni-
formly convex. Therefore, v, — vg in W2 (RY) and vy € Sy with Jo(vo) = co.

If wy # 0, the proof is similar to the proof of v,, — vo. We omit it here. O

Theorem 4.2 Problem (4.1) has a positive ground state solution.
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Proof Let {wy},eny C Sp be a minimizing sequence for Jy, that is, Jo(w,) — co. By
Ekeland’s variational principle (see Ekeland [24]), we may assume that Jé(a)n) — 0.
Then {u, := mo(wy)lnen C Ny is a (PS).-sequence for Ey. First we claim that
{un}nen is bounded. Suppose not, then there exists a subsequence (still denoted by
{ttn}nen) such that [lu, |1, — +00. Set v, = uy/|lunll1,p, then {v,},en is bounded.
Thus, after passing to a subsequence if necessary, we may assume that v,—vg in
wlr (RN ) asn — +o00.If vyp = 0, then, by an argument similar to that of Proposition
3.5 and Remark 3.7, for any ¢ > 0, we have

co+o(l) = Eo(uy) = EO(tv,,Un) > Eo(tvy)

and

1
Eo(tv,) > —t? —/
p

1
F(tv,) dx > —1t?.
RN p

1
This yields a contradiction by choosing # > max {1, 2 (pco)? } If vg # 0, then we
know from (H3) (iii) that

Eo(u 1 F(luy|lv
LTINS W (T T P
”un”l’p p RN ||un||1’p

as n — 00, again a contradiction. Hence {u,},en is bounded and so {wy},eN is
bounded as well. Therefore, we may assume that w,, —wq for some wgy € wlr(RN).
From Lemma 4.1 it follows that there exists w € Sy such that Jop(w) = c¢o and
Jj(w) = 0. Consequently u := mq(w) satisfies Eq(u) = co and Ej(u) = 0, which is
our desired ground state solution. It is standard to prove that u is positive, we omit it.

O

5 Multiple solutions of the auxiliary problem

In this section we are going to solve our auxiliary problems (2.4) and (2.5), respectively.
We start with some important lemmas in order to get the desired results.

Lemma 5.1 Let hypotheses (HO), (H1)(1)—(iii) and (H4) be satisfied and let f+ be
given in (3.1). Then the following hold:

(i) If {w;}, _ C S% is a sequence such that dist (w;}, 05%) — 0 asn — +oo,
then Hm°+ (w,‘f)”g — oo and J (wF) = +ocasn — +oo.

(ii) L_ satisfies the (PS)-condition on 8%, i.e. every sequence {w,‘f}neN in 8$ such
that, for any ¢ > 0, J~+(w,‘f) — cand fjr(w:[) — 0 asn — 400 contains a
subsequence which converges strongly to some wt € 89 and dist (w+, 881) >
0.
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Proof (i) Let {w;[},en € S3 be a sequence such that dist(w;", 0S3) — 0 asn —
+00. Then, for any v € 3S$ and n € N, itholds w;| < |w,} —v| a.e.in RY . From the
embedding theorem, for any y € [p, p*], it follows

+ : + : + : + o
w < inf |w' —v|, <C, inf ||w' —vl|=C, dist(w], dS?})
lw, Ily vk w, lly v, lw, lle y w051

for all n € N. Moreover, for every ¢ > 0, by (2.3), we have

/ G(ex, tw;r) dx
RN

S%-IPA;NW);W dx+CgtrAN|w:|r dx

< C (1" dist? (w;}, 982) + 1" dist’ (w;F, 952)) — 0

as n — +oo. Note that for any r > 1, we have

1 .
“lrwa 1L + / G(ex, tw,) dx
P RN

~ 1 ~
= Ee(twy) = —ltwn ~ VRN Glex, tw,)) dx|.

Therefore, we obtain

1 ~ ~ CtP
. . + . . + . . +
}fglilg ;Ilmi(wn g = L@ﬂg Ji(wy) > L@igﬁ Ec(tw,) > =

for every t > 1, and hence ||m3r(w,j‘)||g — 400 and J~+(w;f) — 400 asn — +00.

(i) For any ¢ > 0, let {w; },en € S5 be a (PS).-sequence for J.. It follows from
Proposition 3.2 that {u;} := mS (w;)}seny € N3 is a (PS).-sequence for E,. First
we will prove that {u;"},cn is a bounded sequence. Assuming not, we can find a sub-
sequence of {u,}},en, not relabeled, such that ||lu; || — +o0o. Set v\ = u}/llu;l e,
then {v;/ },en is bounded. Thus, after passing to a subsequence if necessary, we may
assume that v;F —~v* in WlHeRN) as n — +o0. If v = 0, from Proposition 3.1,
we get

cto(l) = Ec(u)) = Ec(t,3v;)) = Ec(tv;)) forallz > 0.

In case r > 1, we have

. 1 - 1 . .
Ee(tv))) > ?P - [RN Glex,tv)) dx = ;ﬂ’ —/Q G(ex, tv,) dx —/Q G(ex,tv,) dx
&

c
&

v

1 - 1
—tP —/ G(ex, tv;l) dx — 41’/ o [P dx
q Q: ko Jac

1 1 ~ 1 1
z<f—7)tp—/ G(sx,tv;:')dx—><f—f>tp,
qa k Q q k
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1
which is a contradiction if we take r > max { 1, 2 (%) P } If vt # 0, then by (H4)

(iii), one has

_EwhH _c _/ Gex, ufllevid)
RN

T utlll T op lluest 112
C Gex, |ul||.v Gex, ||uf | v
:__/ ( ,||+nq||s ")dx—/ ( ,||+nq||s ”)dx—>—oo
p Q llun e Qc llen e

as n — oo. This is again a contradiction. Thus, the sequence {u,'},cn is bounded
and so we can find a subsequence of {u,},en, not relabeled, such that u,;f —u™ in
wlHe (R™). Note that there exists Rg > 0 such that , C Bg,(0). Then, applying
hypothesis (H4) (iii), for any R > Ry, we obtain that

/ g (ex,uf)ut dx < l/ ‘u,ﬂp dx. (5.1)
BS(0) k B (0)

Obviously, we have that

lim |u;f|p dx = lim |u;l"|p dx
r—+00 B,"(O) r——+00 IRN\B,(O)
— P qy T +|P
= ./RN |u;F|” dx im o) w7 " dx
=0.

So there exists Ry > Ry such that for any R > R
f || dx = 0, (1), (5.2)
B%(0)
that is,
/ g(ex,u;,") u,’f dx < o0,(1).
B3 (0)

From the compact embedding wlHe (Br(0)) < L? (Bgr(0)) and (H4) (i), we deduce
that

/ g (ex, u;f) u;lF dx — glex, uMu™ dx (5.3)
Br(0) Br(0)

as n — +o00. Combining (5.3) with (5.1) and (5.2) yields
/ g (ex,uf)u) dx = <I€;(u;ﬁ'), uj,‘> — <I€;(u+), u+> = / glex, uMut dx
RN RN
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as n — +oo. Similarly, we can obtain that K/(u;}) — K.(u"). Since E.(u}) =
B.(u)) — K.(u}) — 0, one has that B.(u;}) — K.(u™) as n — +o00, where
B is given in (2.2). Therefore, we conclude that u;t — u? in W17 (RY) as
n — 400, since B, is a mapping of type (S+) (see Proposition 2.2). Consequently
(m) " (u,5) — (mS)~'(u™) by Proposition 3.2, that is, w;” — w™. Therefore, E.
satisfies the (PS)-condition on S . O

The next lemmas can be shown in a similar way as Lemma 5.1.

Lemma 5.2 Let hypotheses (HO), (H1)(1)—(iii) and (H4) be satisfied and let J_ be
given in (3.2). Then the following hold:

n 883)—>Oasn—>+oo.

(i) If {wn_ }neN C 8° is a sequence such that dist (w
Then ||m_ (wn_)”‘S — 4ooand J_ (w;) — +ooasn — +oo.

(i) J_ satisfies the (PS)-condition on S8°, i.e. every sequence {w;}neN in 8° such
that, for any ¢ > 0, J_(w,;) — c and J_ (w;) — 0asn — 400 contains a

subsequence which converges strongly to some w~ € §8° and dist (w_, 883) >

0.

Lemma 5.3 Let hypotheses (HO), (H1)(1)—(iii) and (HS) be satisfied and let J be given
in (3.3). Then the following hold:

(i) If {wy}nen C Sy is a sequence such that dist(w,, 0S+) — 0 asn — +o00. Then
[lm(wy)|le = +o0 and f(wn) — 400 asn — +oo.

(ii) J satisfies the (PS)-condition on Sy, that is, every sequence {wy}nenN in Sy such
that, for any ¢ > 0, f(w,,) — ¢ and f’(wn) — 0 asn — —+oo contains a
subsequence which converges strongly to some w € Sy and dist(w, S4) > 0.

In what follows, without any loss of generality, we shall assume that 0 € A, where
A is given in Remark 1.1. Moreover, we choose § > 0 such that the set

Ay = {x € A: dist(x, dA U{0}) > &}

is homotopically equivalent to A. Next, we choose a function ¢ € C° (R™) such that
0<¢ <1land

1, if0<s <4§/2,
g(s)_{o, ifs > 6.

Foreach y € Ay and ¢ > 0, we define the function

lex — |
Ve (x) =¢ (Jlex —yD o — )

where w is the positive radially symmetric ground state solution of equation (4.1). It
can be proved that [V, (y)] (-) € wlr(RN). By definition of £ and Ay, we also know
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that [V, ()] () € wl-He (RV). We define @, : Ay — J\~/'8° by
[P (x) = 1e {[We ()] (x) = [We (=) ] (0)},

where ¢, > 0 is such that ®.(y) € ./\7'8". Propositions 3.1 and 3.3 show that ®.(y) is
well defined. Note that

[P (—x) = =[P (V] (x) and De(—y) = —Pe(y).

Hence ®,(y)™ € N and @,(y)~ € N°.
Then we have the following lemmas:

Lemma 5.4 Let hypotheses (HO), (H1) and (H4) be satisfied. Then we have

lim E, (CDS(y)Jr) =cq uniformlyiny € Ay .
e—>01

Proof First, we note that ®.(y)™ = . W, (y). We argue by contradiction and assume
that there exist & > 0, {y,}neny C Ay and &, — 07 such that

>0 > 0. 5.4

Een (q>s,1 (.V)+) - c(r)

By changing the variables z = (¢,x — y)/&,, we deduce from Lebesgue’s dominated
convergence theorem that

[we, WY,

= [ (99,0 + v, 0 ]") a

_ p
=/ (‘v (z (len —y|>w<—'8”x y')) ) dx
RN &n (5.5)
lenx — | P
+/ (‘( (lenx =y w <—> ) dx
RN en

=/ (|enw (121) V& (lenz)) + ¢ (enzl) Vo (12D]” + |¢ (enzh) @ (12D)|") dz

RN
)4
— llo(zDIf -

Similarly, we can check that

/R | alenx) (v, 0| + W, (]7) dx

— /RN a(y) (Vo (z)|* + o (1z)|*) dz=0
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since y € Ay C A and so a(y) = 0. Consequently

Qc¢, (lpa,, (y))

- ||\vg,1<y>||fp+/ a(ens) (|99, [ + %0, 0)]7) dx = T (DI,
.
(5.6)

By the definition of 7, and the change of variables z = (¢,x — y)/e,, we get
0= <Eén (te,, Ve, (y)) s le, Ve, ()’))
= Q¢, (ten W, (.V)) - /N g (Snxs te, e, (.Y)) te, Ve, (¥) dx
R

= 00, (1 ¥, 0) = [ (o0 301,82 1) 1,8 ez ()

Note that if ¢,z € Bs(0) then g,z +y € Bs(y) C A C Q. If t,, — 400, it follows
from the above expression that

¢ (lenz) @ (12D]7 dz

&n

q >f §(8nz+y,la,,§(|8nZ|)w(|Z|))
TIRY (16,2 (enzl) @ (12))*

since

O¢, (tsn \IJS,, (y)) =< ’ tg, en

Then from (H4)(iii) we deduce that | W,, (y) Hq — 400 and 50 g¢, (W, (¥)) = +00
by Proposition 2.1 (vi), which contradicts (5. 6) Thus, we conclude that {f;, },en 1S
bounded. Then there exists a subsequence {tgnk }een such that l,, — o = 0. We claim
that #p > 0. Indeed, if 79 = 0, then we can use (2.3) and

(B4, (ten Wer, ) ey W ) = 0

to get that, for any § > 0,

p
t&;zk lpe,,k ()’)Hl’p =< Qen, (ts,,k "I’s,,k (y))
= /;{N 8 <8nkxs ts,,k ‘Ijsnk (y)) ts,,k lI/a,,k (y) dx

5&/
RN

.
dx,

P
tﬁnk \Ij&'nk (y)‘ dx + Cg /RN

tank \I’snk
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that is,

p p _ r
[, 0 e [ e, 0 axrcarr [ o, 0] ax

p
Similar to the above proof, we can deduce that H \Ilsnk (y) H ' — 0, contradicting (5.5).
.p

Thus 7y > 0. Letting &,, — 07 in the following equality

Qe,,k (ts,,k "Ije,,k (Y)) = /RN g (Snkx’ te,,k “Ijenk (y)) tsnk \Ijs,,k (y) dx,

similar to above again, we can obtain that

o (1zDIT , = / f (oo (1z) tow (Iz]) dz,
RN

from which we conclude that fow € ./\fg. Therefore, it follows from the uniqueness of
fo and w € N} that fo = 1. Finally, letting &,, — 07 in

Eé‘nk <q)8nk (y)+>

7

n tgn q q
= = w0l + /R L aten) (v, 0 + [, 0]') dx

- [I.QN G (5nkxa ta,,k \ysnk (y)) dx,

together with

/ G(snkx,tgnk v, (y)) dx — / F(o) dz,
RN RN
we obtain that
E + Loor? — _ _
Ee, (P, M7 ) = — oIy p F(w) dz = Ep(w) = cp,
p ’ RN

which contradicts (5.4). This shows the assertion of the lemma. m]

Lemma 5.5 Let hypotheses (HO), (H1) and (H4) be satisfied.
lim E. (®:(y)") =c uniformlyiny € Aj.
e—0F

Proof By the definition of ®.(y), we know that ®.(y)™ = —r,W.(—y). Suppose
there exist 0 > 0, {y,}nen C Ay and &, — 0% such that

‘Es,, (@6, (7)) — | =0 > 0. (5.7)
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Applying Lebesgue’s dominated convergence theorem along with changing the vari-
ables with z = (g,x 4+ y)/¢&, yields
p
e, =7,

= [ (V¥ + o -]") ax

p
:/ (‘V ({(Ienx+y|)w<—|8"x+y|>> )dx
RN &n
P
+/ <‘§(|8nx+y|)w<w> >dx
RN En

= / (Jene (12) VE (lenz]) + ¢ (Ienz]) Vo (121) |” + [¢ (enzl) @ (1) |?) dz

RN
P
= llo(zDl} , -

(5.8)

Since a(-) is radially symmetric (see (H1)(iv)), that is, a(x) = a(|x|) fora.a.x € RV,
the set Ay is invariant to rotation. In particular, A is symmetric with respect to the
origin, thatis, A; = —Aj . Hence,if y € Ay, then —y € Ay as well. Similar to (5.8),
we can check that

fR @) (Ve (=T + [ W, (—y)]?) dx

- /RN a(=y) (IVo (12D1? + |w (1z)|7) dz =0

since —y € Ay and so a(—y) = 0. Consequently

0, (Ve, (=)
= | qjgn(—y)”{’m + A;N a(enx) (|VW,, (—9)|7 + |, (—3)[7) dx (5.9)

— llw(zDI7 -

Changing again the variables z = (g,x + y)/e, together with the definition of f,, it
follows that

0= (L, (~te, Ve, (=) , ~1e, We, (~))
= Q¢, (_tgn \I/gn (—y)) - AN § (8nx» _t&‘n \I’Sn(_y)) (_tfn \I'lfn(_y)) dx

= 00, (=10, ) = [ 8 (002 =31 Qen) 02D) 1, ez ol .
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As before, if ¢,z € Bs(0) then g,z —y € Bs(—y) C A C Q. Letting t,, — +00
gives

/ g (enz — y. 16, (lenzh) @ (I2]))
IR (10,2 (enzl) 0 (I2D) 7

” \psn -

1Z (lenz) @ (12D|7 dz,

because

Os, ( te, We, (— Y)) = H_ta,, W, (—=y) ” g” W (v) ”Zn .

From (H4)(iii) it follows that || W, (=) “q — +00 and so g, (\Ilgn( y)) — 400
due to Proposition 2.1 (vi), this contradicts (5.9). Hence, we see that the sequence
{t:, }nen 1s bounded and so there exists a subsequence {tgnk }ken of {tg, }nen such that
le,, —> 0 = 0. Let us show that 7y > 0 and suppose that #yp = 0. Using (2.3) and

(B, (<ten, Weny =30) .~ ey, (=) =
yield that, for any & > 0,

P
ol

=< Qe <_t5"k q"sﬂk (_)’)>

= /N g <8nk'x’ _tsnk \Ijenk (_y)) (_tgnk qjé‘nk (_y)) dx
R

<é [RN )—tg,lk ‘I’snk (_y)‘p dx + C¢ [RN )_t‘gnk \Ifsnk (—y)‘r dx.

Hence
p P e r
H v, (=) H <& )wsnk (—y)’ dx + Cet! ‘wgnk (—y)( dx.
1,p RN "k JRN

P
In the same way, we can prove that H Y, (=) H X — 0 which contradicts (5.8). Then
.p

we have 7o > 0. Next, letting &, — 0T in the equality

0cr, (—teny Yoo (1)) = A 8 (s oy Wy, (=) (e Wy (=) v

gives
low (2Dl , = /RN [ (oo (1z]) oo (12]) dz.
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This implies that fpw € Ng and so, from the uniqueness of 7y and w € N}, we obtain
to = 1. Then, for &,, — 07 in

Eep (e, 0)7)

ten, b o i 4
= 2w, (o], + = [ aten) (|99, (0| + |9, 0[) dx
p » g Jpy
_ / G (enx, —te, We,, (=) dx,
RN
along with
[, 6 (et 0, 0) @ [ FGo e
RN RN
we arrive at

- _ 1
E,, (<bs,1k(y) )ﬁ 5 leoll? , — /R | Fl@) dz = Eg(@) = ¢,

contradicting (5.7). m]
Now we can prove our existence result for problem (2.4).

Theorem 5.6 Let hypotheses (HO), (H1) and (H4) be satisfied. Then there exists € > 0

such that, for any 0 < & < &, problem (2.4) has at least y (A \ {0}) pairs (u™, (—u)*)

of positive weak solutions.

Proof Taking Lemma 5.4 and Proposition 3.1 into account we have
lim J, ((m°+)—1 (qag(y)+)) = lim E, (0,(n") =c}
e—0F e—0F
uniformly in y € Ay . Foreach y € Ay, we set

h(e) =

Es (®e(y)+) - C6 .

Then /(e) — 0 as e — 0. Now we write
& = {u+ eS8 Tt <d —i—h(e)} .

It is clear that gj‘; # ) since (mj’r)’](CDS(y)*) € S’E Then, by Lemma 5.1 and
Krasgosel’skii’s genus theory (see Ambrosetti-Malchiodi [4, Theorem 10.9]), we know
that J4 has at least y (S5 pairs (u™, (—u)™) of critical points on S5.

Claim: y (59) > y(A\ {0}).
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Assume that y(§§F) = n and note that for a set A we write A* = {(x, —x) : x € A}
We deduce that

_ ~ %
y(89) = cat (1. ey o) 53

see Rabinowitz [44, Theorem 3.9]. Hence, we can find a smallest positive integer n
such that

ST CcDiuDsU---UDE,

where Df,i =1,2,--- , nare closed and contractible in (WhHe (RN \ {0})*, which
means that there are

*
hteC ([0, 1] x D, (WI*HE‘(]RN) \ {0}) ) fori=1,2,---,n
such that

REO,ut) = ™, (—u)™) forall u™, (—u)") € Df,
R ut) = (0, —or) € (WLHS(]RN) \ {0})* forall (™, (—u)*) € D

Let
D; = [u+ e WIHe@®N) ¢ (ut, (—u)h) e D?‘}.
Then there exists a homotopy
hieC ([o, 11x D;, (WLHS(RN) \ {0}))

such that /; (0, -) = id, h; (1, -) = w; or —w; and h; (t, ut) = —h; (¢, (—u)™).
We define

OF = (0, (—0)"): (A7) — (VD)",
[@F(y, =] @) = ([P (), [Pe(—=1)]T (1))

Now we choose R > diam(A), where diam(A) denotes the diameter of A. For u €
wl-He (RN with compact support in Bg(0), we define the barycenter map

/ xluT(x)|? dx
RN

Bi: WEH@®N)\ {0} — RY,  Br(u) = .
/ 't (x)]” dx
RN
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We observe that for any (y, —y) € (A;)" we have

B (®()T) =y and By (Pe(-0)") =—y.

Next, we write 8*(-, -) = (B+(-), B+(-)) and obtain

B (PN [=Pe]T) = (B () F), B [P (=) = (v, —y).
Let

ki = (®7)" (m* (D).

1 &

where m*(-, ) = (m3.(-), m3.(+)). Obviously the sets IC?‘ are closed subsets of (Aa_)*
and (A;)" € KjU- - UK. Defining the deformation b; : [0, 1]x K} — (RV \ {0})"
by

bt x) = (80 ) (1. (m*) ™ (@20, =)«
we see that k¥ is contractible in (R" \ {0})". Indeed, we have

hi € C ([o, 1] x K, (RN \ {0})*) ,
b:(0,x) = (8" 0 7) (0, (m") ™ (@20, =) ) = (=) forall (v, =) € K7,
bi(1,x) = (80 ) (1. ()~ (@(v. )
= B* (o, —w;) = (y?, —y?) c (RN \ {0})* for all (y, —y) € K}
Thus

y (A\{0)) = cat(gm (o) (A \ on* = cat gy (o)) (Ag)* <n,

which implies that §i contains at least y (A \ {0}) pairs of critical points of J, . Thus
we conclude from Proposition 3.2 that there exist at least y (A \ {0}) pairs (u™, (—u)™)
of critical points of E,, that is, problem (2.4) has at least y (A \ {0}) pairs of positive
weak solutions. O

Next, we are going to prove the existence of negative solutions for problem (2.4).
Theorem 5.7 Let hypotheses (HO), (H1) and (H4) be satisfied. Then there exists € > 0

such that, for any 0 < ¢ < &, problem (2.4) has at least y (A \ {0}) pairs (u‘, (—u)_)
of negative weak solutions.
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Proof As before, using Lemma 5.5 and Proposition 3.3, we know that

lim J_ ((m‘:)‘1 (<I>g(y)‘)) = lim, E. (:(0)7) = ¢}

e—>071

uniformly in y € Ay . Foreach y € Ay, we set

h(e) =

Es (cbe(Y)_) - C(r)‘ .
This gives h(¢) — 0 as ¢ — 0T. Setting
S° = {u‘ €S J ()< e —i—h(e)}.

We easily see that S # () because (m° )~ (P, (y)7) € S°. Then, from Lemma 5.2
and Ambrosetti-Malchiodi [4, Theorem 10.9], it follows that J_ has at least y(S°)
pairs (1™, (—u)~) of critical points on S°.
Claim: y(S°) > y(A \ {0}).

Suppose that ¥ (S°) = n and recall that we write A* = {(x, —x) : x € A} for a
set A. From [44, Theorem 3.9] it follows that

)/(Si) - Cat(wl,Hg(RN)\{O})*Si*s

which guarantees the existence of a smallest positive integer n such that

oo X
ST CDjUDIU---UDE,

with D¥,i = 1,2, -, n being closed and contractible in (W'*: (RV) \ {0})*, e.g.,
there exist

*
neeC (10,11 Dy, (W @M\ (0})) fori = 1,2,
such that

R0, u™) = (™, (—u)™) forall (u™, (—u)") € D,
RE(Lu™) = (w7, —w;) € (Wl’HE(RN) \ {0})* for all (u™, (—u)~) € D,

We define
D ={u" e W ®RY): @, (-0 e DF}.
Then we can find a homotopy

hi € C ([o, 11 x D;, (WI’HE(RN) \ {0}))
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satisfying h; (0, -) = id, h; (1, -) = w; or —w; and h;(t,u™) = —h; (¢, (—u)~). Next
we define

O = (O, (=P)7): (A7) — (N2,
[@F(, =] @) = ([P(N)]™ (x), [Pe(—=)]™ (1))

Taking R > diam(A), we define the barycenter map, for u € wlHe (RN ) with
compact support in Bg(0), by

f xlu” (x)|P dx
po: WHTE@RV)\ (0} > RN, po(u) = =B :
/ lu= (x)|P dx
RN

Clearly, for any (y, —y) € (Aj)”, we have
B (Pc(»7) =y and B_ (Pe(—y)7) = —.
As before, we write (-, -) = (B_(-), B_(-)) and get
B (Pe(0) ", [=Pe]7) = (B (P 7). B [Pe(=)]7) = (v, =¥).
Note that the sets
Kt = (@) (m* (D7),

are closed subsets of (Aa_)>k and it holds (Aa_)>k C KjuU.-- UK}, where m*(-,-) =
(m° (), m° (). Also, the sets KF,i =1,..., n, are contractible in (RV \ {O})* due
to the deformation b; : [0, 1] x K} — (]RN \ {0})* defined by

bi(t.x) = (8" 0 ) (1. (n) " (920, ) ).
Indeed, we have
b e € (10,11 x K7 (R (01)).
;(0.) = (8% o ) (0. (m) ™" (@2, =) = (v, =y) forall (v, —y) € K,
bi (1) = (8% 0 7) (1. (n) " (#20,-))
=" @~ = (3. -0) € (RY\(0}) " forall (v, —y) € K7,
which implies

v (A\{0)) = cat(gu (o) (A \{OD* = catgny (o)) (45 \ {0})" < n.
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Hence, S® contains at least y (A\ {0}) pairs of critical points of J_. From Proposition
3.4 we deduce that there are at least (A \ {0}) pairs (u~, (—u) ™) of critical points
of E,. This means that problem (2.4) has at least y (A \ {0}) pairs of negative weak
solutions. m|

Finally we give the existence result for odd weak solutions with precisely two nodal
domains for (2.4).

Theorem 5.8 Let hypotheses (HO), (H1) and (H4) be satisfied. Then there exists
& > 0 such that, for any 0 < ¢ < &, problem (2.4) has at least y(A \ {0}) pairs
(u+ +u, (—u)t + (—u)_) of odd weak solutions with precisely two nodal domains.

Proof Note that E, (1) = E, (ut+u")= E, (ut) + E. (u™). Hence if u™* and u~
are the critical points of E,, then is so u = ut 4+ u~ as well. Consequently, Theorem
5.8 follows from Theorems 5.6 and 5.7. O

Now we will prove an existence result for problem (2.5). We choose § > 0 such
that A; = {x € RV : dist (x, A) < 8} is homotopically equivalent to A and A5 C <.
Define a function ¢ € CZ° (R"’) such that 0 < ¢ < 1 and

1, if0<r<$/2,
1) =
¢@® {O, ift >36.

For each y € A and ¢ > 0, we define the function

Wy (x) = ¢ (lex — y)o (”8_ y) ,
with w being the positive ground state solution of equation (4.1). We define
Qi A= Ney, De(y) =1V y,
where ¢, is the unique positive number such that
max e (1We,y (1)) = Ee (t:We, (1))
that is,
1:We e € Ne.

It follows from Proposition 3.5 that ®.(y) is well defined since ¢ (Jex — y|) = 1 for
all x € Bsjoe (y/¢) and y/e € A == {x e RV : ex € A}.

Lemma 5.9 Let hypotheses (HO), (H1)(1)—(iii) and (HS) be satisfied. Then we have

lim Ee (®:(y)) =co uniformlyiny € A.
e—0F
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Proof We argue by contradiction and assume that there exist o > 0, {y,},en C A and
en — 07T such that

ey (90,0) = co| 2 0 > 0 (5.10)

Using Lebesgue’s dominated convergence theorem with a change of variables via
7 = (epx — y)/é&y, it follows that

” We, () ” f,p

[ et sty

_ P
=f (‘V(c <|enx—y|)w(—8”x y)) )dx
RY o (5.11)
EnX — Yy
+/ (‘§(|Snx —yl)a)<—) ) dx
RN En

= f (|enw (2) VE (lenz]) + ¢ (lenz]) Vo ()| + [¢ (lenz)) @ (2)]7) dz

RN
p
= lo@I] .

In a similar way, we can obtain that
[ 0t (990,07 + e, 0)fY) dx > [ a) (V@1 + o @)11) bz =0

asy € A and so a(y) = 0. Therefore,

Qc¢, (‘I’E,, (y))

— v, [, + / a(ens) (|99, 0] + |96, 0)]7) dx = lo@IF, -
L
(5.12)

Again by changing the variables by z = (¢,x — y)/¢, and the definition of #,, leads
to

0 = <Eén (tgn "I’Is,, ()’)) s t€n \Ijsn (y)>
= O¢, (lsn W, (y)) N ,A];N g (8nx’ te, Ve, (y)) te, We, () dx

= 04, (te, Ve, () — fRN 8 (enz 4y, 16,¢ (l6nz]) @ (2)) 16, (I€nz]) @ () dz.

@ Springer



W. Liu, P. Winkert

If £,z € Bs(0) then e,z + y € Bs(y) C As C Q. Letting t,, — +00 gives

/ §(8n1+y’t8n§(|5nz|)w(z))
En RN

(12, Genzh o (@)™ ¢ (lenzh @ ()1 dz,
én EnZl) w (2

” W, (.V)

due to the fact that

e (6,90, 0) = e, Ve, E, =, |9, O,

From (H5)(ii) we deduce that | W,, (y) ||q — 00 and $0 g, (W, (y)) — +oo by
Proposition 2.1 (vi), which contradicts (5 12) Hence, {f;, }1en is bounded and so we
can find a subsequence {tgnk }ken such that le,, = lo = 0. Suppose that #y = 0, then
we get from (2.3) and

<E;3n (tgnk \Ilsnk (y)) ’ tgnk \Ilgnk (y)> =

for any £ > 0,

p
tey, Ve, (V) Hl’p = Qe (tenk Ve, (y))
= /;QN g (Enkx’ tgnk "pgnk (y)) t€nk \Ijé‘nk (y) d'x

5§/RN

which results in

p
tsnklllgnk(y)‘ dx+c§ /I;N

,
fon Ve, )],

p P r—p "
Jwe, 0] =6 |we,, )| dx + Cert N ., 0] ax.

p
Using similar arguments, we are able to show that H Ve, (y) Hl — 0, contradicting
P

(5.11). We conclude that 79 > 0. Letting &,, — 07 in

Ocy, (tank \ysnk ()’)) = /;{N g (Snkx, te,,k “Ijsnk (.V)) tenk \Ijank (y) dx,
it follows that

low @17, = AN f (0w (2) fow (2) dz.
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This yields fow € Np and so from the uniqueness of 1y as well as w € Ny we arrive at
fo = 1. Finally, letting &,, — 07 in

L, (®, )
té, b o 4 4
== Yl + /RNa(snkx)(]vwg,,k(w\ + |, 0] ax

— /RN G (Enkxv tsnk \Ila,,k (y)) dx,

by using

f é(snkx,ts,,k%nk(y)) dx — / F() dz,
RN RN

this leads to
n 1 »
Eepy (®e,, ) = — 10l , = | F(@) dz = Eo(w) = co,
p ' RV

which contradicts (5.10). O

Now, we choose R > 0 such that A; C Bg(0) and let k : RY — RN be defined by

@) x, if|x] <R,
K(X) =
%,HMER.

Next, we define 8. : N, — RY by

Sy K (€x)|u(x)|? dx

Pelt) = T O dx

Since A C As C Br(0) we have that

Sy K (ex) [P ()P dx
Jrn [@:()]P dx
Jav k() [te¢ (ex — yh o (22)|” dx
Jan 1t (lex = yD) o (222) |7 dx
vk ez + )¢ (Jezh) w ()17 dz
B Jen 12 (JezD) @ (2)IP dz
- Jen (ke (e2+ ) = ») ¢ (lez) @ (2)|P dz
Jen 1€ (ezD) @ (2) |7 dz

Be (Pe(y)) =

=y+o(D),
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as ¢ — 0, uniformly for y € A.

Lemma 5.10 Let hypotheses (HO), (H1)(1)—(iii) and (H4) be satisfied and let €,, — 0
asn — +00 and {up},eny C ./\N/'gn be such that Ee,, (up) — ciasn — +o0o. Then
there exists a subsequence {3n},eny C RN such that e,5, = y, — y € A as
n — 400. Moreover, up to a subsequence, vy, (-) ‘= uy (- + y,) converges strongly
in WhHe (RN,

The proof of Lemma 5.10 is similar to the proof of the following lemma.

Lemma 5.11 Let hypotheses (HQ), (H1)(1)—(1i1) arzd (HS) be satisfied and let ¢, — 0
asn — 400 and {up},en C N, be such that Ee, (u,) — co as n — +o00. Then

there exists a subsequence {fzn}n N C RN such that €,5, =: yo» — y € A as
n — +o00. Moreover, up to a subsequence, vy, (+) = up ( + j/,,) converges strongly
in WhHe (RN,

Proof As in the proof of Lemma 5.1 we can show that {u,},cn is bounded. We first
claim that there is a sequence { In }n ey C RY and constants R, o > 0 such that

liminf/ lup|? dx > o > 0. (5.13)
BR(}A'VL)

n—oo

Suppose this is not true. Then the boundedness of {u,}, <y together with Lemma 1.1
of Lions [32] imply that u,, — 0in L*(RY) forall p < s < p*. Since {tntpeny C NG,
and due to (2.3) we have

lunlll, < /N (IVun|? + a(enx) | Vun|? + lun|? + a(enx)|u,|?) dx
R

= /Ng'(xaun)un dx
R

sé/ | dx+C§/ " dx.
RN RN

We conclude that ||uy ||, — O due to the arbitrariness of ¢ and u,, — 0in L" (RN)Y. We
also know that /]RN é(x, u,) dx — 0. Therefore, Ee,, (u,) — 0, which contradicts
co > 0, and (5.13) is proved.

Letv, = u, ( + 51,1). Up to a subsequence, we can assume that v,—v # 0 in
wlHe(RN). Since W!7e(RY) < w7 (RV), we can choose ,,, > 0 to be such
that w, := 1, v, € No.
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Note that max;>g Ean (tu,) is obtained at r = 1. Using the translation invariance
of the Lebesgue integral and u,, € /\/:;,,, we have

co = EO (wy)

1
- IIwnllfp —/ F(w,) dx
P P Jry

p

t
= invnn{’,,—f F(tyvy) dx
P ’ RN

l
=], ~ [ F ) a
[) RN

t? 1 N
<, i/ a (ex) (IVal? + Jul?) dx —/ G (ex. tyitn) dx
)4 q JRN RN
=< Ee,, (thun) < r}'lf-(;( Ee,, (tuy) = Esn (un) = co +o(1),

(5.14)

which implies that lim Eo(wn) = ¢p. As in the proof of Theorem 4.2 we can show
n— o0

that {w;, },en is bounded. This together with the boundedness of {v, },cn yields that
{ty, }nen 1s bounded as well. Thus, up to a subsequence, we can assume that 1, —
to > 0asn — +oo.

If 1o = 0, then [Jwy|l;, p = 0, and consequently Eo (w,) — 0, which contradicts
that ¢g > 0. Therefore t9 > 0, and {w, }, <y satisfies

Eo(wn) — co, wy—w :=tyv # 0.
Similar to the argument in the proof of Lemma 4.1 we can show that w, — w as
n — 400 which implies v, — v asn — +00.

We claim now that { Vi = &nn }neN is bounded. Suppose this is not the case, then
there is a subsequence of {y,}, <, not relabeled, such that |y,| — +o0oasn — +oo0.
We take R > Osuchthat 2 C Bg(0). Suppose |y,| > 2R. Then, forany x € Bg/e,(0),
we have

lenx + yul = lynl — lenx| > R.

Because of {uy},en C ./\A/gn, (H1) (i), the definition of g, after the change of variable
X =z + y, we get that

”Un”] p = /N§(5n1+Yn’ V) Uy dz
R

= / §(8nZ+ym Up) Un dZ+/ §(€nZ+yn,Un) v, dz
BR/&,; ) R/E\n 0)

< / f (va) v, dz + f f (vn) vy dz.
BRrye, (0) B Jen ©)
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From v, — v and the definition of f we conclude that

1
(1 - %) loall}, < / £ @n) vn dz = 0,(1).
B;’e/gn(())

Letting n — 400 we deduce that v = 0, which contradicts v # 0. Therefore {y, },en
is bounded. Up to a subsequence, we may assume that y, — y € RV asn — +o0. If
y ¢ $, then we can apply the above argument again to obtain a contradiction. Hence
we have y € Q.

It remains to check that y € A, that is, we should prove a(y) = 0. Suppose by
contradiction that a(y) > 0. Then we have

» 1
< —lwly , + - a(y) |Vw|? dx
p ’ q JRN
1
—|——/ a(y) |lw|? dx—/ F(w) dx
qJ% RN

. 1 1
< lim inf [— lwallf, + —/ a(enz + yn) [V, |7 dx
p ' q JRN

n—-+o0o

1
+—/ a(enz + y) [wnl? dx—/ F(w) dx}
q JRN RN

<liminf E,, (tvn v,,) <liminf E;  (4,) = co,
n——+00 n—00

a contradiction, and thus a(y) = 0. The condition (H1)(ii) implies y ¢ 9$2. Hence
y e A. O

Foreach y € A, we set

h(e) =

E: (@) —co|.

Then we deduce from Lemma 5.9 that 2(¢) — 0 as ¢ — 0F. We define the sublevel
set

N ={ue s Bew) < o+ he .
Note that & (y) € ./\//\g, and SOJ\/Z # ) for any ¢ > 0.
Lemma 5.12 Let hypotheses (HO), (H1)(1)—-(iii) and (H5) be satisfied. Then we have
lim+ sup dist (8. (u), As) = 0.

e—0 ueN,
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Proof Let ¢, — 0 as n — -+o00. By the definition of the supremum, there exists
u, € N, such that

dist (Be, (), As) = sup_dist (Be, (), As) + on(1),

where we denote by 0, (1) the quantity that tends to 0 as n — oo. Therefore, it is
sufficient to prove that there exists a sequence {y,},cny C As such that

lim |Be, (un) — yn| = 0. (5.15)
n— 400

Since {1, }yeny C Ne, C N, , we note that

co < max Eq(tu,) < max Eg, (tu,) = Ee, (4y) < co + h(en),
>0 >0

which implies that E ¢, () — co. Then, from Lemma 5.11, it follows that there exists
a sequence {)A/n}neN C RY such that &, 9, =: y, — y € A as n — +oo. Hence

Jrw € (EnX) |un (X)|P dx
Jrw lun ()17 dx
o Genz ) [ (2 4 30)|” dz
- S [n (24 30)|" dz
_ 4 ezt ) — ) ln @I dz
Jrn lvn (217 dz

ﬁen (un) =

Note that ¢,z + y, — y € A, and 50 B¢, (n) = yn + 0n(1), thatis, {y,},c satisfies
(5.15) and the lemma is proved. ]

Now we can state and prove our existence result for problem (2.5).

Theorem 5.13 Let hypotheses (HO), (H1)(i)-(iii) and (HS) be satisfied. Then there
exists a small positive number & such that for every 0 < ¢ < & problem (2.5) has at
least cat(A) positive solutions.

Proof From Lemma 5.9 and Proposition 3.5 we conclude that

lim Jn ™! (@c(y) = lim E(@:(y) =co

e—0t

uniformly in y € A. For each y € A, we set
h(e) == | Ex (9:(») — co| -
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Then h(e) — 0as e — 0. Now we write
S = {u+ €S, Jwt) < e —i—h(s)} .

It is clear that 3: Z# (), since m~! (®:.(y)) € 3: From Lemma 5.3 and the Lusternik-
Schnirelmann theory (see Szulkin-Weth [45, Theorem 27]), it follows that J has at
least cat (3’;) critical points on 3; Lemmas 5.9 and 5.12 imply that there exists € > 0
such that, for any 0 < ¢ < &, the diagram

¢5A71A <7 Pe
A N s & 1 NP

is well defined and B; o m o m~! o ®, is homotopic to the inclusion id: A — Aj.
We claim that

cat (S1) > cata, (A). (5.16)

We assume that cat(S‘:) = n, that is, there exists a smallest positive integer n such
that

S, CDIUD,U---UD,,
where D;,i = 1,2, -, n are closed and contractible in 3’:, that is, there exist
hi € C([0,11 x D;,8;), i=1,2,---,n
such that

hi(0O,u) =u forallu € D;,

hi(l,u) = w; € 8y forallu € D;.
We set
Ki = @, (m(Dy)).

As before, IC; are closed subsets of A and A € Ky U --- U K,. Furthermore, K;,
i = 1,---,n are contractible in A using the deformation h;: [0, 1] x K; — As
defined by

bi(t,x) = (Bomohi)(t,m™ " (®e(x))).
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Indeed, we conclude from Lemmas 5.9 and 5.12 that

b € C([0, 1] x K;, As),
h; (0, x) = (B om o h;)(O0, m_l(®5(x))) =x forall x € K;,
hi(1,x) = (Bomoh;)(1, m71(®x(x))) = B(m(w;)) = x; € Ag forall x € K;.

Hence
caty;(A) = n,
that is, (5.16) holds. We also note that
caty, (A) = cat(A),

since Ajs is homotopically equivalent to A. Thus, 3’1 contains at least cat(A) critical
points of J. Proposition 3.6 implies that these critical points are also the critical points
of the functional E,. Thus we show that the problem (2.5) has cat(A) positive solutions.

O

6 Proof of the main results

In this section we are going to proof our main results in this paper. A key lemma in
our proofs is the following one.

Lemma 6.1 Let hypotheses (HO), (H1) and (H4) be satisfied and &, — 0% and u, €

N be a positive weak solution of (2.4). Then Egn (uy) — c( and for any o > 0, there
exist R > 0 and ny € N such that

”un”L"O(BR(SJ,,)(') <O fOI" alln > no,

where y, is given by Lemma 5.10.

Remark 6.2 The results of Lemma 6.1 holds true for negative solutions of the auxiliary
problem (2.4) since E;, (-) is even under our hypotheses.

Remark 6.3 The results of Lemma 6.1 holds true for positive solution of the auxiliary
problem (2.5) under the hypothesis (HO), (H1)(i)—(iii) and (HS). The proof is similar.

Proof (Proof of Lemma 6.1) By an argument similar to that of (5.14), we can show
that E;, (u,) — co-Let R > 1, 1g € C®([RN) such that 0 < ng < 1, ng = 0 in
Bgr2(0), ng = 1in Bg(0)° and |[Vng| < C/R. We set n,(x) = nr(x — y,). Let
h > 0 and define u, , := min{u,, h}. Choose v, ; = r],fu,,uxl as test function in
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(2.4) with k > 0 to be determined later. A direct calculation yields

/N a(enx) <|Vun|q72 Vuy, - an,h + |un|q72 unvn,h) dx
R

_ -1
= a(enx) (|Vun|q 2 Vuy, - V77np77rlz7 unlt), h + | Vun |y . :l;l
RN

+Kp|Vu,,|‘17 Vuy, - Vuy, hnnun nh +|un|q nn nh) dx

3 -1 (6.1)
a(gnx)lvun|q Vuy - Vnupnn  uyu dx

/I;R Om\Br/2(n)

+/ aen) (1Vunl? a8, + lua ¥ nfush, ) dx
RV
+Kp/ a(epx) |Vu,|? n,[,’unuzlzl_l dx.
{un=<h) ’
Applying Young’s inequality, we have

1 _ 1
p ‘g [Vu, | 2V"in : Vnnnr[z7 upé

and so

/ a(enx) |v“n|q_2 Vuy, - V??npnff_lun p dx
BR(3n)\BRr/2(¥n)

> R C I A
q Br(Yn)\Br/2(¥n)

—1). _a
+ ME q-1 C/ a(e,x)nk |Vu,|4 uzph dx.
q BRr(¥)\BR/2(Yn) '

Substituting this expression into the formula (6.1) yields

_/N a(epx) (lvun|q72 Vuy - an,h + |un|q72 unvn,h) dx
R
=C f aenx) |Vun|? ity dx + f a(en) lun|? i, dx
(6.2)
- C/ a(enx) |un|? |Vn,)? uyh) dx
RN ’

> C [ atenn) (Vualnffy ax = € [ aten) a1V,
R R

@ Springer



The effect of the weight function on the number of solutions. ..

since
Kp/ a(enx) |V, |? nnun Kp : dx >0
{up<h}
and
/ a(ex) lu,|? n,’fuzl;l dx > 0.
RN ’
Next, we calculate
/ Vi [P~ Vu, - Vv, dx
RN

ZfN<|Vun|p_2vun V’lnl”?p 1Mn h—|—|Vun|p AT
R

n h
+1p |Vt P72 Vu, - Vun,hn{l’unqu;l_l) dx
> /RN (IVM,,|P—2 Vu, - Vnnpﬂr[,)_lun D Vg lP » Kp) 0
since
/RN kp VP72 Vu, - Vun,hnfunuZﬁl_l dx

= Kp/ nFup? |Vu,|P dx = 0.
{up<h}

Holder’s and Young’s inequalities yield

_ -1
p/N [Vup|? Zvun : Vnnnf Upt nh dx
R

_ 1 1
SP/RN Vunl? 1™ 7 1V,

p—1

1
o 1-p v
= (péf Vunl? i,y dx) (1’5 P ./]RN V1P g uy dx)

1=p
sé(p—l)/ Vil dx—i—éEP/ (VP uulSh dx
RN ' RN '
and so

/ Vi, |P~2 Vu, - Vo, dx
RY (6.3)
> c/ |Vun)? niuy, dx — c/ V| uhu,t, dx.

RN RN
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We have <Eén (un), vn’h> = 0, that is,

/N <|Vun|p_2 vunvvn,h + |un|p_2 unvn,h) dx
R

+ /N a(epx) <|Vurz|(172 Vunvvn,h + |"4rt|[172 unvn,h) dx
R

= f g(enx, un)vn,h dx.
RN
This together with (2.3) yields
/ Vi |P~2 Vi, Vo, p, dx
RN
+ /N a(epx) (|Vun|q72 Vanvn,h + |un|q72 unvn,h) dx
R
Z/ g(SnX, un)vn,h dx _/ 77)11) |Mn|p MZI; dx
RN RN ’

< [ (el 4 Cetd ™) nfufy ax = [ ol bl
RN ' RN

gcf nEuiu?, dx.
RN

Then, from (6.2) and (6.3), we conclude that

/ [Viun|P ny )ty dx +/ a(enx) |Vun|? nhulh dx
RN ! RN ,
5C</ AT dx+/ IV P uhuy, dx
RN
+/ a(enx) |un)? |V, MZI;l dx) .
RV :

On the other hand, denoting by wy, , = n,u,uj, ,, we have

funally = € [ Vwal” v = [ |19 )| a
RN RN
_ K K k—1 p
=C N Vnnunun’h+nnVunun’h+Knnunun’h Vup dx
R
p p p.,Kkp
SC/ [Vl unu dx—i—C/ N |Vup|P u,’, dx
RN RN ’
~|—CK”/ nbulu 5(;1( D’Vun,h’p dx
RN
= C/ |Vn,,|pu5uz’;l dx +C/ nt |Vun|PuZ’;l dx
RN ’ RN ’
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—i—C/cp/ nk Kp |Vu,,|p dx

{un

<C(k+1? (/ IV |? uhuy ), dx +/ \Vuun|? nfu,t, dx)
RN ’ RN ’

<C(k+ 1P (f |Vnn|pu5u21;l dx+/ |Vu,,|pn,1;u21;l dx
RN ’ RN ’

+ [ atewn 1V 0, dx)
RN ’

< Clk +1)7 (/ Val? b, dx+/ a(en) lunl? 1917 1) dx
RN

+/R LT dx) (6.5)

where we have used (6.4). Then we estimate

r—p P
/ nnunun 5 dx —/ u, (nnunuz’h) dx
RN RN

—p pr=—p)
P

.
* P pp*
=< (/ I/lrI: dx) </ (nnl/lnlft;’h)p*f(rfp) dx>
RN RN
P
—_ *
P
¥

o
=C / (unuﬁ’h)a dx ,
Bry2 ()¢

where p < o® = pp*/(p* — (r — p)) < p*. Further, we have

/R |V77n|pun nh dx

/ |V1,l? u,,u h dx
BR(n)\BRr/2(Yn)

=2 &
M P . o o
< |Vn,|—r dx (”n”n,h) dx .
Br(Yn)\Br2(¥n) BRr(Yn)\BRry2(¥n)
Since r < p*, we have > N. Therefore,

w* c
f [Vl 7=P dx < o = C
BR(&n)\BR/Z(fn) R’_P_N
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and

K
/RN a(epx) Iun|q |V77n|q un,[;l dx

K
alenx) [unl? [Vl ), dx

/BR(in)\BR/z (Fn)

=g ap
ar* P o 4
<llallg= V|7 dx uy dx
BR(n)\BRr/2(Yn) BR(Yn)\BRr/2(n)

»
X / (unuﬁ’h)a dx .
Br (5n)\BR/2(y)l)

* qp* pp*
Moreover, as g < r < p*,itholds -~ > = > N and so
r—q r—p

a*
/ IVn,|7=4 dx < ———r
BR(,ﬁn)\BR/Z(yn) RH_N

Substituting the above estimations into (6.5) yields

P
¥

([ i o) < funall,
BR(&n)C
<Cle+ 1)’ ( / (ntes )" dx)
Brya(n)© '

)4
<Clkc+ 1P f ulte” gy
BR/Z(&M)E

Using Fatou’s lemma in the variable i gives

&)

a¥

)4

3 &
(/ u’(lK—H)p* dx) P < Cle + l)p / M£LK+1)O(* dac
Br(yn)*© BRry2(yn)©

or

1 |
i .
”un”L<"+UP*(BR(§1,1)") = C]KJr (ke + 1)<t ||un||L(K+1)ot* (Brpp(Gw)) *

Sety ==k + 1= p*/a* > 1. We rewrite

L
lnll v (Brey = €T Y7 Ntnll Ly (Brniye) -
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Then we iterate, beginning with y, yz, y3, ..., ¥, to obtain

Z'."zl yf'. ’_’ﬂ_ s =l
lanll om e gaey < €U ¥ 2= Nl Lot (g 500 -

Letting m — oo, we get

”un”LOO(BR(y,,)C) < Co lunllp (Br2Gn)¥)

By the change of variables z = x — ¥,,, we obtain

1
¥

”un”L@Q(BR(j;n)f) < G llup ”LP*(BR/Q(,%,)") = (/B lun (z + yn)lp dZ)

R/2(Fn)¢

It follows from Lemma 5.10 that v, (z) = u,, (z + ;) strongly converges in L7 (RM).
Thus, for R > 0 and n large enough, we have

el oo (B Gy = O

Now, we are able to give the proofs of Theorems 1.2—1.3.

Proof (Proof of Theorems 1.2 and 1.3) We choose § > 0 small enough such that
As C Q2 and the sets Ay, As are homotopically equivalent to A. We claim that there

exists &€ > 0 such that, for any 0 < ¢ < & and any solution u € N of the problem
(2.4), there holds

lull oo (e) < T- (6.6)

Indeed, suppose by contradiction that for ¢, — 0 asn — +oo and u, € ./\78,1 such
that E; (u,) = 0 and

lnllzoo (e ) > T (6.7)
From Lemma 6.1 it follows that E;, () — c(- Then we can use Lemma 5.10 to get

a sequence {y},en C RY suchthate,y, — y € Aasn — 400. We choose Ry > 0
such that Bg,(y) C Bag,(y) C 2. Then we have

1
BRrose, (y/€n) = S_BRO(y) C Qg,.
n

Furthermore, for any x € Bg, ¢, (J,), when n is large enough, we have

Ro 1 2Ro
< — 4+ —ou(]) < )
&n  En &n

~ y
Yn — —

&n

y
x—_
&n

<I|x—ul+
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which implies that Bg, /e, (J2) C €2¢,. Consequently Bgy/s, (ya)© D €2, . Then by
Lemma 6.1 with 0 = t and n > ng large enough such that Ry/e,, > R, we have

||un||L90(an) = ”u””L&(BRO/s,l(in)”) < Nunllp=(BgGoe) < T

which contradicts (6.7) and our claim is true. The same holds for solutions of (2.5),
see Remark 6.3.

By (6.6) and the definition of g (resp.g) we conclude that g(sx,u) = f(u)
(resp.g(ex,u) = f(u)). Thus solutions of the auxiliary problems (2.4) and (2.5)
are also solutions of (1.1). Hence the existence results in Theorems 1.2 and 1.3 follow
from Theorems 5.6-5.8 and 5.13.

In the last part, we want to study the concentration behavior of the solutions of
the equation (1.1). Let e, — Oasn — +oo and u, € wi-He (RM) be a solution of
equation (2.4). As in the beginning of this proof, we can see that u, (x + y,) — 0 as
n — +oo and |x| — +oo. Thus, for any 7 > 0 and some large fixed R > 0, there
exists N; such that

||L{n||Loo(B%()’;n)) <t foralln > N;. (6.8)
We claim that
lttnll Loo(BR(5y) = 0 forsome o’ > 0, (6.9)
where R is given in (6.8). Indeed, suppose not, for any T > 0, by (6.8) we have that

”Mn“Loo(RN) < 1 for n large enough.

From Eén (un) — 0 (resp. E;n (un) — 0) asn — +o0 and (H4) (ii) (resp. (HS) (ii)),
we have

Lp =

= ./RN 8(x, up)uy, dx <resp. A&N g(x, uy)uy dx)

1
5—/ up dx,
k Jan

which implies u, = 0, but this does not occur.

From (6.8) and (6.9) we conclude that the maximum point j, € RV of u, belongs
to Bg (). Write p, = y, + g, for some g, € Bg(0). We now apply Lemma 5.10
again to obtain ¢,y, — y € A as n — 400. We note that ¢, is bounded. Hence we
conclude

luallf , < ||Mn||f,p +f a(enx) [Vuy|? dx +/ a(enx) Jun|? dx
RN RN

lim_a (e, ) = a(y) = 0.
n— 400
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The same holds for solutions of (2.5) by Lemma 5.11 and Remark 6.3. O
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