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Abstract We consider a nonlinear parametric Dirichlet equation driven by a nonho-
mogeneous differential operator involving a reaction exhibiting the competing effects
of concave and convex terms. Using variational methods combined with truncation
and comparison techniques we prove a bifurcation near zero theorem describing the
dependence of the positive solutions on the parameter λ > 0.
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1 Introduction

Let � ⊆ R
N be a bounded domain with a C1,α-boundary ∂�, α ∈ (0, 1). In this

paper, we study the existence, nonexistence, and multiplicity of positive solutions to
the following nonhomogeneous parametric Dirichlet problem

B Patrick Winkert
winkert@math.tu-berlin.de

Nikolaos S. Papageorgiou
npapg@math.ntua.gr

1 Department of Mathematics, National Technical University, Zografou Campus, 15780 Athens,
Greece

2 Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin,
Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s11117-015-0395-8&domain=pdf


946 N. S. Papageorgiou, P. Winkert

− div a(∇u) = f (x, u, λ) in �,

u = 0 on ∂�,
(Pλ)

where a : R
N → R

N is a continuous and strictly monotone mapping satisfying
appropriate regularity and growth conditions listed in hypotheses H(a) below. These
hypotheses are general enough to incorporate many differential operators of interest in
our framework such as the p-Laplacian (1 < p < ∞), the (p, q)-differential operator
(1 < q < p < ∞) and the generalized p-mean curvature differential operator
(1 < p < ∞). The reaction of the problem depends on a parameter λ > 0 and is
Carathéodory in the variables (x, s) ∈ �×R (that is, x → f (x, s, λ) ismeasurable for
all s ∈ R, for all λ > 0 and s → f (x, s, λ) is continuous for a.a. x ∈ �, for all λ > 0).
We assume that f (x, ·, λ) is (p − 1)-superlinear near +∞ but without satisfying the
usual in such cases Ambrosetti–Rabinowitz condition (AR-condition for short). Near
zero, the reaction f (x, ·, λ) exhibits a concave term (that is, s → f (x, s, λ) is (p−1)-
superlinear near 0+). So, we have in problem (Pλ) the competing effects of concave
and convex terms. Such problemswere studied byAmbrosetti–Brezis–Cerami [2], Li–
Wu–Zhou [23] (semilinear equations driven by the Laplace differential operator), and
by Filippakis–Kristály–Papageorgiou [10], Gasiński–Papageorgiou [16,17], García
Azorero–Peral Alonso–Manfredi [12], Guo–Zhang [18], Hu–Papageorgiou [19], and
Marano–Papageorgiou [24] (nonlinear problems driven by the p-Laplace differential
operator). In the aforementioned works, the reaction has the form λsq−1+g(x, s)with
g(x, ·) being (p − 1)-superlinear. With the exception of Marano–Papageorgiou [24],
in all the other works the (p − 1)-superlinearity of g(x, ·) is expressed by employing
the AR-condition. Moreover, in the works of García Azorero–Peral Alonso–Manfredi
[12] and Guo–Zhang [18], g(x, s) = g(s) = sr−1 for all s ≥ 0 with p < r < p∗ ={

N p
N−p if p < N

+∞ if N ≤ p
(see also [2,23]). We mention that the p-Laplacian is a (p − 1)-

homogeneous differential operator and this fact is exploited in the methods used in
the aforementioned works. The differential operator here is not homogeneous and this
is source of difficulties in the analysis of problem (Pλ). To overcome these difficulties
we need a different approach and new techniques. We prove a bifurcation result for
λ > 0 near zero which describes the variation of the set of positive solutions as the
parameter λ > 0 varies. Our theorem contains as special cases the main theorems
of [12,16,17,19], and [24]. Recently, a similar bifurcation theorem was proved for
Robin problems by Papageorgiou–Rădulescu [26] under stronger conditions on the
nonlinearity f : � × R × (0,∞) → R.

Our approach is variational based on critical point theory combined with suitable
truncation and comparison techniques. In the next section we develop the necessary
mathematical background material which will help to follow the arguments in this
paper.

2 Mathematical background

Let X be a Banach space and X∗ its topological dual while 〈·, ·〉 denotes the duality
brackets to the pair (X∗, X). We have the following definition.
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Definition 2.1 The functional ϕ ∈ C1(X) fulfills the Cerami condition (the C-
condition for short) if the following holds: every sequence (un)n≥1 ⊆ X such that
(ϕ(un))n≥1 is bounded in R and (1 + ‖un‖X )ϕ′(un) → 0 in X∗ as n → ∞, admits a
strongly convergent subsequence.

This is a compactness-type condition on the functional ϕ which compensates for
the fact that the ambient space X does not need to be locally compact (X is in general
infinite dimensional). TheC-condition is one of themain tools in proving a deformation
theoremwhich in turn leads to theminimax theory of the critical values ofϕ. One of the
basic results in this theory is the so-called mountain pass theorem due to Ambrosetti–
Rabinowitz [3] which we state here in a slightly more general form (see, for example,
Gasiński–Papageorgiou [13]).

Theorem 2.2 Let ϕ ∈ C1(X) be a functional satisfying the C-condition and let
u1, u2 ∈ X, ‖u2 − u1‖X > ρ > 0,

max{ϕ(u1), ϕ(u2)} < inf{ϕ(u) : ‖u − u1‖X = ρ} =: mρ

and c = infγ∈	 max0≤t≤1 ϕ(γ (t)) with 	 = {γ ∈ C ([0, 1], X) : γ (0) = u1, γ (1) =
u2}. Then c ≥ mρ with c being a critical value of ϕ.

By L p(�)
(
or L p

(
�;RN

))
and W 1,p

0 (�) we denote the usual Lebesgue and
Sobolev spaces with their norms ‖ · ‖p and ‖ · ‖

W 1,p
0 (�)

. Thanks to the Poincaré

inequality we have

‖u‖
W 1,p

0 (�)
= ‖∇u‖p for all u ∈ W 1,p

0 (�).

The norm ofRN is denoted by ‖ · ‖RN and (·, ·)RN stands for the inner product inRN .
For s ∈ R, we set s± = max{±s, 0} and for u ∈ W 1,p

0 (�) we define u±(·) = u(·)±.
It is well known that

u± ∈ W 1,p
0 (�), |u| = u+ + u−, u = u+ − u−.

The Lebesgue measure on R
N is denoted by | · |N and for a measurable function

h : � × R → R (for example, a Carathéodory function), we define the Nemytskij
operator corresponding to the function h by

Nh(u)(·) = h(·, u(·)) for all u ∈ W 1,p
0 (�).

Evidently, x �→ Nh(u)(x) is measurable.
In addition to the Sobolev space W 1,p

0 (�) we will also use the ordered Banach
space

C1
0(�) =

{
u ∈ C1(�) : u

∣∣
∂�

= 0
}
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and its positive cone

C1
0(�)+ =

{
u ∈ C1

0(�) : u(x) ≥ 0 for all x ∈ �
}

.

This cone has a nonempty interior given by

int
(

C1
0(�)+

)
=
{

u ∈ C1
0(�)+ : u(x) > 0 for all x ∈ �,

∂u

∂n
(x)< 0 for all x ∈ ∂�

}
,

where n(·) stands for the outward unit normal on ∂�.
Now let ϑ ∈ C1(0,+∞) be a function satisfying

0 < ĉ ≤ tϑ ′(t)
ϑ(t)

≤ c0 and c1t p−1 ≤ ϑ(t) ≤ c2
(
1 + t p−1

)
(2.1)

for all t > 0 and with some constants ĉ, c0, c1, c2 > 0. The hypotheses on a : RN →
R

N read as follows.

H(a): a(ξ) = a0
(‖ξ‖RN

)
ξ for all ξ ∈ R

N with a0(t) > 0 for all t > 0 and
(i) a0 ∈ C1(0,∞), t → ta0(t) is strictly increasing in (0,∞), limt→0+ ta0(t) =

0, and limt→0+
ta′

0(t)

a0(t)
= c > −1;

(ii) ‖∇a(ξ)‖RN ≤ c3
ϑ
(‖ξ‖RN

)
‖ξ‖RN

for all ξ ∈ R
N \{0} and for some c3 > 0;

(iii) (∇a(ξ)y, y)RN ≥ ϑ
(‖ξ‖RN

)
‖ξ‖RN

‖y‖2
RN for all ξ ∈ R

N \{0} and all y ∈ R
N ;

(iv) if G0(t) = ∫ t
0 sa0(s)ds for all t > 0, then there exists d, ν ∈ (1, p), 1 < μ <

min{d, ν}, and ξ > 0 such that

(1) t �→ G0

(
t
1
d

)
is convex in (0,+∞);

(2) lim supt→0+
G0(t)

tν
< +∞;

(3) t2a0(t) − μG0(t) ≥ c̃t p for all t > 0 and for some c̃ > 0;
(4) pG0(t) − t2a0(t) ≥ −ξ̂ for all t > 0 and for some ξ̂ > 0.

Remark 2.3 Wepoint out that the assumptionH(a)(iii) is equivalent to ‖∇a(ξ)‖
RN2 ≥

ϑ
(‖ξ‖

RN
)

‖ξ‖
RN

since a(ξ) = a0(‖ξ‖RN )ξ which gives that ∇a(ξ) is symmetric. Therefore,

one also could write conditions H(a)(ii),(iii) together in the form

ϑ
(‖ξ‖RN

)
‖ξ‖RN

≤ ‖∇a(ξ)‖
RN2 ≤ c3

ϑ
(‖ξ‖RN

)
‖ξ‖RN

.

HypothesesH(a)(i), (ii), (iii) allow theusageof the nonlinear global regularity results of
Lieberman [22]. Hypothesis H(a)(iv) is dictated by the needs of our problem.However,
as we will see in the examples that follow, it is satisfied in many cases of interest.
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Note that the primitive G0(·) is strictly convex and strictly increasing. Let G(ξ) =
G0

(‖ξ‖RN

)
for all ξ ∈ R

N . Then G(·) is convex and differentiable. We have

∇G(ξ) = G ′
0

(‖ξ‖RN

) ξ

‖ξ‖RN
= a0

(‖ξ‖RN

)
ξ = a(ξ) for all ξ ∈ R

N .

Hence, G(·) is the primitive of a(·) and the convexity of G(·) along with G(0) = 0
imply

G(ξ) ≤ (a(ξ), ξ)RN for all ξ ∈ R
N . (2.2)

Using hypotheses H(a) as well as (2.1) and (2.2) we have the following lemma
summarizing the main properties of the map a(·).
Lemma 2.4 Under the hypotheses H(a)(i)–(iii) there holds

(i) ξ → a(ξ) is maximal monotone and strictly monotone;

(ii) ‖a(ξ)‖RN ≤ c4
(
1 + ‖ξ‖p−1

RN

)
for all ξ ∈ R

N and for some c4 > 0;

(iii) (a(ξ), ξ)RN ≥ c1
p−1 ‖ξ‖p

RN for all ξ ∈ R
N .

From this lemmaweeasily deduce the followinggrowth restrictions for the primitive
G(·).
Corollary 2.5 If hypotheses H(a)(i)–(iii) hold, then

c1
p(p − 1)

‖ξ‖p
RN ≤ G(ξ) ≤ c5

(
1 + ‖ξ‖p

RN

)
for all ξ ∈ R

N and for some c5 > 0.

Example 2.6 The following maps satisfy hypotheses H(a).

(i) Let 1 < p < ∞ and let a(ξ) = ‖ξ‖p−2
RN ξ . Then a(·) represents the well-known

p-Laplace differential operator defined by


pu = div
(
‖∇u‖p−2

RN ∇u
)

for all u ∈ W 1,p
0 (�).

(ii) Let 1 < q < p < ∞ and let a(ξ) = ‖ξ‖p−2
RN ξ + ‖ξ‖q−2

RN ξ . Then a(·) becomes
the (p, q)-differential operator defined by


pu + 
qu = div
(
‖∇u‖p−2

RN ∇u
)

+ div
(
‖∇u‖q−2

RN ∇u
)

for all u ∈ W 1,p
0 (�). Such differential operators arise in many physical applica-

tions (see Cherfils–Il′yasov [5] and the references therein).

(iii) Let 1 < p < ∞ and let a(ξ) =
(
1 + ‖ξ‖2

RN

) p−2
2

ξ . In this case a(·) represents
the generalized p-mean curvature differential operator which is defined by

div

[(
1 + ‖∇u‖2

RN

) p−2
2 ∇u

]
for all u ∈ W 1,p

0 (�).
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(iv) Let 1 < p < ∞ and leta(ξ) = ‖ξ‖p−2ξ+‖ξ‖p−2ξ
1+‖ξ‖p . In this case the corresponding

differential operator is


pu + div

( ‖∇u‖p−2
RN ∇u

1 + ‖∇u‖p
RN

)
for all u ∈ W 1,p(�),

which arises in plasticity theory (see Fuchs–Gongbao [11]).

Now, let A : W 1,p
0 (�) → W −1,p′

(�) =
(

W 1,p
0 (�)

)∗ (
1
p + 1

p′ = 1
)
be the

nonlinear map defined by

〈A(u), v〉 =
∫

�

(a(∇u),∇v)RN dx for all u, v ∈ W 1,p
0 (�). (2.3)

The next proposition gives the main properties of A (see, for example, Gasiński–
Papageorgiou [14]).

Proposition 2.7 Let hypotheses H(a)(i)–(iii) be satisfied. Then A : W 1,p
0 (�) →

W −1,p′
(�) defined by (2.3) is bounded (that is, it maps bounded sets to bounded sets),

demicontinuous, strictly monotone (hence maximal monotone), and of type (S)+, that
is, if un ⇀ u in W 1,p

0 (�) and lim supn→∞ 〈A(un), un − u〉 ≤ 0, then un → u in

W 1,p
0 (�).

Now, let f0 : � × R → R be a Carathéodory function satisfying the subsequent
growth condition

| f0(x, s)| ≤ a0(x)
(
1 + |s|r−1

)
for a.a. x ∈ � and for all s ∈ R,

with a0 ∈ L∞(�)+ and 1 < r < p∗. Setting F0(x, s) = ∫ s
0 f0(x, t)dt we define the

C1-functional ϕ0 : W 1,p
0 (�) → R through

ϕ0(u) =
∫

�

G(∇u)dx −
∫

�

F0(x, u)dx .

From Gasiński–Papageorgiou [15] we have the following result.

Proposition 2.8 Let the assumptions in H(a)(i)–(iii) be satisfied. If u0 ∈ W 1,p
0 (�) is

a local C1
0(�)-minimizer of ϕ0, that is, there exists ρ0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1
0(�) with ‖h‖C1

0 (�) ≤ ρ0,

then u0 ∈ C1,α
0 (�) for some α ∈ (0, 1) and u0 is also a local W 1,p

0 (�)-minimizer of
ϕ0, that is, there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ W 1,p
0 (�) with ‖h‖

W 1,p
0 (�)

≤ ρ1.
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Let g, h ∈ L∞(�). We write g ≺ h if for every compact set K ⊆ � there exists
ε = ε(K ) > 0 such that g(x) + ε ≤ h(x) for a.a. x ∈ K . Clearly, if g, h ∈ C(�) and
g(x) < h(x) for all x ∈ �, then g ≺ h.

Using this order ≺ we can have the following strong comparison result which
extends Proposition 2.6 of Arcoya–Ruiz [4] where the case of the p-Laplacian is
considered.

Proposition 2.9 Let hypotheses H(a)(i)—(iii) be satisfied, ξ ≥ 0, g, h ∈ L∞(�),
g ≺ h, and let u, v ∈ W 1,p

0 (�) be solutions of the following Dirichlet problems

− div(∇u) + ξ |u|p−2u = g in �, u
∣∣
∂�

= 0

− div(∇v) + ξ |v|p−1 = h in �, v
∣∣
∂�

= 0

with v ∈ int
(
C1
0(�)+

)
. Then v − u ∈ int

(
C1
0(�)+

)
.

Proof FromLadyzhenskaya–Ural′tseva [20, p. 286] we know that u ∈ L∞(�). Invok-
ing the regularity results of Lieberman [22, p. 320] we have that u ∈ C1

0(�). Note
that

A(u) + ξ |u|p−2u = g ≤ h = A(v) + ξv p−1 in W −1,p′
(�).

Acting with (u − v)+ ∈ W 1,p
0 (�) we obtain

〈
A(u) − A(v), (u − v)+

〉 + ξ

∫
�

(
|u|p−2u − v p−1

)
(u − v)+dx ≤ 0,

which gives∫
{u>v}

(a(∇u) − a(∇v),∇u − ∇v)RN dx+ξ

∫
{u>v}

(
u p−1 − v p−1

)
(u − v)dx ≤ 0.

Therefore, |{u > v}|N = 0 and consequently, u ≤ v.
First, we are going to show that u(x) < v(x) for all x ∈ �. For this purpose, we

introduce the following two sets

E0 = {x ∈ � : u(x) = v(x)} , E1 = {x ∈ � : ∇u(x) = ∇v(x) = 0} .

Claim E0 ⊆ E1
Letting x0 ∈ E0, the function x �→ y(x) = (u − v)(x) attains its maximum at x0.

Hence, ∇u(x0) = ∇v(x0). If ∇u(x0) �= 0, then we can find Bρ(x0) ⊆ � such that

|∇u(x)| > 0, |∇v(x)| > 0, (∇u(x),∇v(x))RN > 0 for all x ∈ Bρ(x0),

where Bρ(x0) is the closed ball with center x0 and radius ρ > 0. Setting w =
v − u ∈ C1

0(�)\{0}, we point out that this function satisfies the following linear
elliptic equation
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−
N∑

i, j=1

∂

∂xi

(
βi j (x)

∂w

∂x j

)
= −ξ

(
v p−1 − |u|p−2u

)
+ h − g (2.4)

whereby the coefficients βi j (·) of the differential operator are given by

βi j (x) =
∫ 1

0

∂ai

∂y j
((1 − t)∇u(x) + t∇v(x)) dx

(see Arcoya–Ruiz [4], Cuesta–Takáč [6]). Therefore, βi j ∈ Cβ
(
Bρ(x0)

)
for some

β ∈ (0, 1) and they form a uniformly elliptic differential operator in (2.4). Moreover,
by taking ρ > 0 even smaller if necessary we can show, using g ≺ h, that the right-
hand side in (2.4) is positive on Bρ(x0). Invoking the strong maximum principle (see,
for example, Pucci–Serrin [27, p. 111]) there holds

w(x) > 0 for all x ∈ Bρ(x0),

or equivalently

u(x) < v(x) for all x ∈ Bρ(x0),

which contradicts the fact that x0 ∈ E0. This proves the claim.
Owing to v ∈ int

(
C1
0(�)+

)
, we have E1 ⊆ � and E1 is closed, that is, E1 ⊂⊂ �.

Now, because of E0 ⊆ E1 and the closedness of E1, it follows that E0 is compact as
well. Hence, we can find a smooth open set �1 such that

E0 ⊆ �1 ⊆ �1 ⊆ �.

Then, we can find a number ε ∈ (0, 1) such that

u(x) + ε ≤ v(x) for all x ∈ ∂�1 and g(x) + ε ≤ h(x) for a.a. x ∈ �1.

Now, let δ ∈ (0, ε) such that

ξ

∣∣∣|s|p−2s − |τ |p−2τ

∣∣∣ < ε for all s, τ ∈ [−η, η], |s − τ | < 2δ,

where η = max{‖u‖∞, ‖v‖∞}. We get

− div a(∇(u + δ)) + ξ |u + δ|p−2(u + δ) = − div a(∇u) + ξ |u + δ|p−2(u + δ)

= ξ
[
|u + δ|p−2(u + δ) − |u|p−2u

]
+ g

≤ g + ε

≤ h

= − div a(∇v) + ξv p−1 for a.a. x ∈ �.
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Then, due to Damascelli [7, p. 495] it follows that u + δ ≤ v in �1. Since E0 ⊆ �1
we infer that E0 = ∅ and

u(x) < v(x) for all x ∈ �.

Moreover, by virtue of Proposition 2.4 of Cuesta–Takáč [6], we obtain

∂v

∂n
<

∂u

∂n
on ∂�,

which implies v − u ∈ int
(
C1
0(�)+

)
. ��

From Filippakis–Kristály–Papageorgiou [10, Lemma 3.3] we borrow the following
lemma.

Lemma 2.10 Let X be an ordered Banach space, K+ is an order cone of X, int K+ �=
∅, and e ∈ int K+. Then, for every u ∈ K+, there exists t = t (u) > 0 such that

te − u ∈ int K+.

3 Bifurcation theorem

Our hypotheses on the nonlinearity f : � × R × (0,∞) → R are the following.

H: f : � × R × (0,∞) → R is a function such that (x, s) → f (x, s, λ) is
a Carathéodory mapping for all λ > 0, λ → f (x, s, λ) is nondecreasing,
f (x, 0, λ) = 0 for a.a. x ∈ �, for all λ > 0, and
(i) for every ρ > 0 and every λ > 0, there exists aρ(λ) ∈ L∞(�)+ such that

(1) λ �→ ∥∥aρ(λ)
∥∥∞ is bounded on bounded sets;

(2) | f (x, s, λ)| ≤ aρ(λ)(x) for a.a. x ∈ � and for all s ∈ [0, ρ];
(ii) if F(x, s, λ) = ∫ s

0 f (x, t, λ)dt , then, for all λ > 0,

lim
s→+∞

F(x, s, λ)

s p
= +∞ uniformly for a.a. x ∈ �

and there exist r(λ) ∈ (p, p∗) with λ → r(λ) nondecreasing, r(λ) → r0 ∈
(p, p∗) as λ → 0+, and functions η̂∞(λ), η∞(λ) ∈ L∞(�) such that
(1) λ → ∥∥η̂∞(λ)

∥∥∞ and λ → ‖η∞(λ)‖∞ are bounded on bounded sets;

(2) η̂∞(λ)(x) ≤ lim infs→+∞
f (x, s, λ)

sr(λ)−1
≤ lim sups→+∞

f (x, s, λ)

sr(λ)−1
≤

η∞(λ)(x) uniformly for a.a. x ∈ �;

(iii) for everyλ > 0, there exist τ(λ) ∈
(
max

{
(r(λ) − p) N

p , 1
}

, p∗
)
andβ0(λ) >

0 such that
(1) λ → τ(λ) and λ → β0(λ) are nondecreasing;

(2) β0(λ) ≤ lim infs→+∞
f (x, s, λ)s − pF(x, s, λ)

sτ(λ)
uniformly for a.a. x ∈

�;
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(iv) for every λ > 0 there exist q(λ), θ ∈ (1, μ) [see hypothesis H(a)(iv)] with
q(λ) ≤ θ and δ0(λ) ∈ (0, 1), ĉ0(λ) > 0 such that
(1) q(λ) → q0 ∈ (1, p) as λ → 0+;
(2) λ → ĉ0(λ) is strictly increasing and ĉ0(λ) → +∞ as λ → +∞;
(3) ĉ0(λ)sθ ≤ f (x, s, λ)s ≤ q(λ)F(x, s, λ) for a.a. x ∈ � and for all s ∈

[0, δ0(λ)];
and there exists a function η0(·, λ) ∈ L∞(�)+ such that
(4) ‖η0(·, λ)‖∞ → 0 as λ → 0+;
(5) lim sups→0+

F(x, s, λ)

sq(λ)
≤ η0(x, λ) uniformly for a.a. x ∈ �;

(v) there exist r∗ ∈ (p, p∗] and c∗
0 > 0 such that

f (x, s, λ) ≥ −c∗
0sr∗−1 for a.a. x ∈ �, for all s ≥ 0, and for all λ > 0.

Remark 3.1 Since we are looking for positive solutions and the above hypotheses
concern the positive semiaxis R+ = [0,+∞), we may assume, without loss of gen-
erality, that f (x, s, λ) = 0 for a.a. x ∈ �, for all s ≤ 0, and for all λ > 0. Note that
hypotheses H(ii),(iii) imply that, for all λ > 0,

lim
s→+∞

f (x, s, λ)

s p−1 = +∞ uniformly for a.a. x ∈ �.

This means that f (x, ·, λ) is (p −1)-superlinear near+∞. Such problems are usually
treated using the AR-condition (unilateral version) which says that there exist τ =
τ(λ) > 0 and M = M(λ) > 0 such that

0 < τ F(x, s, λ) ≤ f (x, s, λ)s for a.a. x ∈ � and for all s ≥ M; (3.1)

0 < ess inf� F(·, M, λ), (3.2)

(see Ambrosetti–Rabinowitz [3] and Mugnai [25]). Integrating (3.1) and using (3.2)
we reach a weaker condition, namely that

c6sτ ≤ F(x, s, λ) for a.a. x ∈ �, for all s ≥ M , with c6 = c6(λ) > 0. (3.3)

From (3.3) follows the much weaker condition (recall that τ > p)

lim
s→+∞

F(x, s, λ)

s p
= +∞ uniformly for a.a. x ∈ �. (3.4)

In the present work we employ (3.4) together with condition H(iii) which are weaker
than the AR-condition and permit the consideration of superlinear reactions with
slower growth near +∞ which fail to satisfy the AR-condition. If the AR-condition is

satisfied, then we may assume that τ = τ(λ) > max
{
(r(λ) − p) N

p , 1
}
. Hence, (3.1)

and (3.3) imply
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f (x, s, λ)s − pF(x, s, λ)

sτ

= f (x, s, λ)s − τ F(x, s, λ)

sτ
+ (τ − p)

F(x, s, λ)

sτ

≥ (τ − p)c6 for a.a. x ∈ � and for all s ≥ M.

In consequence, hypotheses H(iii)(2) is fulfilled.

Example 3.2 The following functions satisfy hypotheses H (for the sake of simplicity
we drop the x-dependence).

(i) f1(s) = λsq−1 + sr−1 for all s ≥ 0 and with 1 < q < p < r < p∗.
This is the nonlinearity considered in Ambrosetti–Brezis–Cerami [2] where p =
2 (semilinear equations driven by the Laplacian) and in García Azorero–Peral
Alonso–Manfredi [12], Guo-Zhang [18] where 1 < p < ∞ (nonlinear equations
driven by the p-Laplacian).

(ii) A reaction which does not satisfy the AR-condition can be given by

f2(s) = λsq−1 + s p−1
[
ln(s) + 1

p

]
for all s ≥ 0 with 1 < q < p.

(iii) Other admissible reactions are the following.
(1) f3(s) = ξ(λ)

(
sq−1 + sr−1

)
for all s ≥ 0 with 1 < q < p < r < p∗,

ξ(λ) > 0, λ → ξ(λ) is increasing, ξ(λ) → 0+ as λ → 0+, and ξ(λ) → +∞
as λ → +∞.

(2) f4(s) =
{

λsq−1 if s ∈ [0, ρ(λ)],
sr−1 + λρ(λ)q−1 − ρ(λ)r−1 if ρ(λ) < s

with 1 < q < p < r < p∗, ρ(λ) ∈ [0, 1], λ → ρ(λ) is nondecreasing,
ρ(λ) → 0+ as λ → 0+, and ρ(λ) → 1− as λ → +∞.

First, we introduce the following sets

L = {λ > 0 : problem (Pλ) admits a positive solution} ,

S(λ) = the set of positive solutions of problem (Pλ).

We define, for every λ > 0, the corresponding C1-energy functional ϕλ : W 1,p
0 (�) →

R to problem (Pλ) by

ϕλ(u) =
∫

�

G(∇u)dx −
∫

�

F(x, u, λ)dx .

We start with an observation concerning the solution set S(λ).

Proposition 3.3 If hypotheses H(a)(i)–(iii) and H(i),(iv) hold, then S(λ) ⊆
int

(
C1
0(�)+

)
for every λ > 0.

Proof We may assume that λ ∈ L, otherwise S(λ) = ∅. Therefore, there exists
u ∈ W 1,p

0 (�), u ≥ 0, u �= 0 such that

− div a(∇u) = f (x, u, λ) for a.a. x ∈ �. (3.5)
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From Ladyzhenskaya–Ural′tseva [20, p. 286] it follows that u ∈ L∞(�) and the
regularity results of Lieberman [22, p. 320] imply u ∈ C1

0(�)+\{0}.
Owing to hypotheses H(i),(iv), for a given ρ > 0, we can find ξλ

ρ > 0 such that

f (x, s, λ) + ξλ
ρ s p−1 ≥ 0 for a.a. x ∈ � and for all 0 ≤ s ≤ ρ. (3.6)

Let ρ = ‖u‖∞ > 0 and let ξλ
ρ > 0 be as in (3.6). Combining (3.5) and (3.6) gives

− div a(∇u) + ξλ
ρ u p−1 ≥ 0 for a.a. x ∈ �,

equivalently

div a(∇u) ≤ ξλ
ρ u p−1 for a.a. x ∈ �. (3.7)

Letting χ(t) = ta0(t) for all t > 0, hypothesis H(a)(iii) and (2.1) ensure that

tχ ′(t) = t2a′
0(t) + ta0(t) ≥ c1t p−1.

Integrating by parts leads to

∫ t

0
sχ ′(s)ds = tχ(t) −

∫ t

0
χ(s)ds = t2a0(t) − G0(t) ≥ c1

p
t p. (3.8)

We set H(t) = t2a0(t) − G0(t) and H0(t) = c1
p t p for all t ≥ 0. Let δ ∈ (0, 1) and

s > 0. We introduce the sets

C1 = {t ∈ (0, 1) : H(t) ≥ s} and C2 = {t ∈ (0, 1) : H0(t) ≥ s} .

It is easy to see that C2 ⊆ C1 [see (3.8)] and so inf C1 ≤ inf C2. Therefore, due to
Leoni [21, p. 6],

H−1(s) ≤ H−1
0 (s).

Hence

∫ δ

0

1

H−1

(
ξλ
ρ

p
s p

)ds ≥
∫ δ

0

1

H−1
0

(
ξλ
ρ

p
s p

)ds = ξλ
ρ

c1

∫ δ

0

ds

s
= +∞.

Then, because of (3.7), we may apply the strong maximum principle of Pucci–Serrin
[27, p. 111] which ensures that u(x) > 0 for all x ∈ �. The boundary point lemma of
Pucci–Serrin [27, p. 120] implies then u ∈ int

(
C1
0(�)+

)
. We conclude that S(λ) ⊆

int
(
C1
0(�)+

)
. ��
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Proposition 3.4 If hypotheses H(a) and H(i)–(iv) hold, then the energy functional ϕλ

satisfies the C-condition for every λ > 0.

Proof Let (un)n≥1 ⊆ W 1,p
0 (�) be a sequence such that

|ϕλ(un)| ≤ M1 for some M1 > 0, for all n ≥ 1, (3.9)(
1 + ‖un‖

W 1,p
0 (�)

)
ϕ′

λ(un) → 0 in W −1,p′
(�) as n → ∞. (3.10)

Thanks to (3.10) there holds

∣∣〈ϕ′
λ(un), h

〉∣∣ ≤
εn‖h‖

W 1,p
0 (�)

1 + ‖un‖
W 1,p

0 (�)

for all h ∈ W 1,p
0 (�) with εn → 0+,

that is

∣∣∣∣〈A(un), h〉 −
∫

�

f (x, un, λ)hdx

∣∣∣∣ ≤
εn‖h‖

W 1,p
0 (�)

1 + ‖un‖
W 1,p

0 (�)

for all n ≥ 1. (3.11)

Taking h = −u−
n ∈ W 1,p

0 (�) in (3.11) gives

∫
�

(
a
(−∇u−

n

)
,−∇u−

n

)
RN dx ≤ εn for all n ≥ 1,

which results in, due to Lemma 2.4(iii),

c1
p − 1

∥∥∇u−
n

∥∥p
p ≤ εn for all n ≥ 1.

Hence,

u−
n → 0 in W 1,p

0 (�) as n → ∞. (3.12)

Moreover, combining (3.9) and (3.12), yields

∫
�

pG
(∇u+

n

)
dx −

∫
�

pF
(
x, u+

n , λ
)

dx ≤ M2 for all n ≥ 1, (3.13)

for some M2 > 0. In (3.11) we choose h = u+
n ∈ W 1,p

0 (�) to obtain

−
∫

�

(
a
(∇u+

n

)
,∇u+

n

)
RN dx +

∫
�

f
(
x, u+

n , λ
)

u+
n dx ≤ εn for all n ≥ 1. (3.14)
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Adding (3.13) and (3.14) gives

∫
�

[
pG

(∇u+
n

) − (
a
(∇u+

n

)
,∇u+

n

)
RN

]
dx

+
∫

�

[
f
(
x, u+

n , λ
)

u+
n − pF

(
x, u+

n , λ
)]

dx ≤ M3 for all n ≥ 1,

for some M3 > 0. Taking into account hypothesis H(a)(iv)(4) we get

∫
�

[
f
(
x, u+

n , λ
)

u+
n − pF

(
x, u+

n , λ
)]

dx ≤ M4 for all n ≥ 1, (3.15)

for some M4 > 0. By virtue of hypotheses H(i)–(iii) we can find β1 ∈ (0, β0(λ)) and
c7 = c7(λ) > 0 such that

f (x, s, λ)s − pF(x, s, λ) ≥ β1sτ(λ) − c7 for a.a. x ∈ � and for all s ≥ 0. (3.16)

Using (3.16) in (3.15) we infer that

(u+
n )n≥1 ⊆ Lτ(λ)(�) is bounded. (3.17)

First we assume that N �= p. Having regard to hypothesis H(iii), without loss of
generality, we may assume that τ(λ) < r(λ) < p∗. Therefore, there exists t ∈ (0, 1)
such that

1

r(λ)
= 1 − t

τ(λ)
+ t

p∗ . (3.18)

Invoking the interpolation theory (see, for example, Gasiński–Papageorgiou [13, p.
905]) in combination with (3.17) and the Sobolev embedding theorem we have

∥∥u+
n

∥∥
r(λ)

≤ ∥∥u+
n

∥∥1−t
τ(λ)

∥∥u+
n

∥∥t
p∗ ≤ c8

∥∥u+
n

∥∥t
W 1,p

0 (�)
for all n ≥ 1 (3.19)

and for some c8 > 0.
Hypotheses H(i),(ii) imply that

f (x, s, λ) ≤ c9
(
1 + sr(λ)

)
for a.a. x ∈ �, for all s ≥ 0, (3.20)

and for some c9 > 0. Now we choose h = u+
n ∈ W 1,p

0 (�) in (3.11) to get

∫
�

(
a
(∇u+

n

)
,∇u+

n

)
RN dx −

∫
�

f
(
x, u+

n , λ
)

u+
n dx ≤ εn for all n ≥ 1.
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From this, by applying Lemma 2.4(iii), (3.20), and (3.19) we conclude that

c1
p − 1

∥∥∇u+
n

∥∥p
p ≤ c10

(
1 + ∥∥u+

n

∥∥r(λ)

r(λ)

)
≤ c11

(
1 + ∥∥u+

n

∥∥r(λ)t

W 1,p
0 (�)

)
(3.21)

for all n ≥ 1 and for some c10, c11 > 0.
The hypotheses on τ(λ) [see H(iii)] and (3.18) imply that tr(λ) < p. Hence, from

(3.21) it follows that

(u+
n )n≥1 ⊆ W 1,p

0 (�) is bounded. (3.22)

If N = p, then by definition p∗ = ∞ while from the Sobolev embedding theorem
we know that W 1,p

0 (�) is compactly embedded in Lη(�) for all η ∈ [1,∞). So, for
the previous argument to work, we need to replace p∗ by η > r(λ) large enough such
that

tr(λ) = η(r(λ) − τ(λ))

η − τ(λ)
< p.

Then we reach again (3.22).
From (3.12) and (3.22) we know that (un)n≥1 ⊆ W 1,p

0 (�) is bounded and so by
passing to a suitable subsequence if necessary we may assume that

un ⇀ u in W 1,p
0 (�) and un → u in Lr(λ)(�). (3.23)

In (3.11) we choose h = un − u ∈ W 1,p
0 (�), pass to the limit as n → ∞, and apply

(3.23). This gives

lim
n→∞ 〈A(un), un − u〉 = 0,

which by the (S)+-property of A (see Proposition 2.7) results in

un → u in W 1,p
0 (�).

This proves that the functional ϕλ satisfies the C-condition for every λ > 0. ��
Next we prove the nonemptiness and a structural property of L.

Proposition 3.5 If hypotheses H(a) and H hold, then L �= ∅ and for every λ ∈ L we
have (0, λ] ⊆ L.

Proof Weare going to show that the functionalϕλ satisfies themountain pass geometry
(see Theorem 2.2) for λ > 0 small enough. This fact in conjunction with Proposition
3.4 will permit the usage of the mountain pass theorem (see Theorem 2.2) which will
show that, for λ > 0 small enough, the solution set S(λ) is nonempty and so L �= ∅.
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Claim There exists λ̂ > 0 such that, for all λ ∈ (0, λ̂), we can find �λ > 0 such that

inf
[
ϕλ(u) : ‖u‖

W 1,p
0 (�)

= �λ

]
= mλ > 0 = ϕλ(0).

For every λ > 0, by virtue of hypotheses H(i), (ii), and (iv), we can find c12(λ) >

0, c13(λ) > 0 such that

c12(λ) → 0+ as λ → 0+, λ → c13(λ) is bounded on bounded sets,

and

F(x, s, λ) ≤ c12(λ)sq(λ) + c13(λ)sr(λ) for a.a. x ∈ � and for all s ≥ 0. (3.24)

Taking into account Corollary 2.5, (3.24), and the Sobolev embedding theorem we
derive

ϕλ(u) =
∫

�

G(∇u)dx −
∫

�

F(x, u, λ)dx

≥ c1
p(p − 1)

‖∇u‖p
p −

∫
�

F(x, u, λ)dx

≥ c14‖u‖p

W 1,p
0 (�)

− c15(λ)‖u‖q(λ)

W 1,p
0 (�)

− c16(λ)‖u‖r(λ)

W 1,p
0 (�)

with c14 = c1
p(p−1) , c15(λ) > 0 satisfying c15(λ) → 0+ as λ → 0+, and c16(λ) > 0

with λ → c16(λ) being bounded on bounded sets. Therefore,

ϕλ(u) ≥
[

c14 − c15(λ)‖u‖q(λ)−p

W 1,p
0 (�)

− c16(λ)‖u‖r(λ)−p

W 1,p
0 (�)

]
‖u‖p

W 1,p
0 (�)

. (3.25)

Now, let ξλ(t) = c15(λ)tq(λ)−p + c16(λ)tr(λ)−p for all t > 0. Clearly, ξλ ∈
C1(0,∞) and since q(λ) < p < r(λ) for all λ > 0, we see that

ξλ(t) → +∞ as t → 0+ and as t → +∞.

Thus, we can find a number t0 ∈ (0,+∞) such that ξλ(t0) = inf t>0 ξλ(t), that is,
ξ ′
λ(t0) = 0. This gives

(p − q(λ))c15(λ)tq(λ)−p−1
0 = (r(λ) − p)c16(λ)tr(λ)−p

0 ,

respectively

t0 = t0(λ) =
[
(p − q(λ))c15(λ)

(r(λ) − p)c16(λ)

] 1
r(λ)−q(λ)

.
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The hypotheses on λ → q(λ) and on λ → r(λ) [see H(iii), (iv)] and the properties
of λ → c15(λ) as well as λ → c16(λ) imply that

ξλ(t0) → 0+ as λ → 0+.

So, we can find a number λ̂ > 0 small enough such that

ξλ(t0) < c14 for all λ ∈ (0, λ̂).

Then, from (3.25) we see that

ϕλ(u) ≥ mλ > 0 = ϕλ(0) for all ‖u‖
W 1,p

0 (�)
= t0(λ) = �λ.

This proves the Claim.
Hypothesis H(ii) implies that, for all u ∈ int

(
C1
0(�)+

)
, there holds

ϕλ(tu) → −∞ as t → +∞ and for all λ > 0. (3.26)

Then, the Claim, (3.26), and Proposition 3.4 permit the usage of the mountain pass
theorem (see Theorem 2.2) to find an element uλ ∈ W 1,p

0 (�) (for λ ∈ (0, λ̂)) such
that

ϕ′
λ (uλ) = 0 and ϕλ(0) = 0 < mλ ≤ ϕλ (uλ) . (3.27)

The second assertion in (3.27) gives uλ �= 0 and the first one reads as

A (uλ) = N fλ (uλ) , (3.28)

where fλ(x, s) = f (x, s, λ). Acting on (3.28) with −u−
λ ∈ W 1,p

0 (�) we directly
obtain, using Lemma 2.4(iii), that

c1
p − 1

∥∥∇u−
λ

∥∥p
p ≤ 0

implying uλ ≥ 0, uλ �= 0. Therefore, uλ ∈ S(λ) ⊆ int
(
C1
0(�)+

)
(see Proposition

3.3) and so
(
0, λ̂

)
⊆ L, henceL �= ∅. This proves the first assertion of the proposition.

Next, let λ ∈ L and take γ ∈ (0, λ). Since λ ∈ L there exists uλ ∈ S(λ) ⊆
int

(
C1
0(�)+

)
. Thus,

− div a (∇uλ) = f (x, uλ, λ) ≥ f (x, uλ, γ ) for a.a. x ∈ �, (3.29)

because γ < λ and the fact that λ → f (x, s, λ) is nondecreasing (see H).
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We introduce the following Carathéodory function

f̂γ (x, s) =
{

f (x, s, γ ) if s ≤ uλ(x),

f (x, uλ(x), γ ) if uλ(x) < s.
(3.30)

Setting F̂γ (x, s) = ∫ s
0 f̂γ (x, t)dt we define the C1-functional ψ̂γ : W 1,p

0 (�) → R

through

ψ̂γ (u) =
∫

�

G(∇u)dx −
∫

�

F̂γ (x, u)dx .

From Corollary 2.5 and the truncation defined in (3.30) it is clear that ψ̂γ is coercive.
Moreover, the convex integral u → ∫

�
G(∇u)dx is sequentially weakly lower semi-

continuous (follows fromMazur’s lemma) while, by applying the Sobolev embedding
theorem, the same property can be shown for the functional u → ∫

�
F̂γ (x, u)dx . It

follows that the functional u → ψ̂γ (u) is sequentially weakly lower semicontinuous

on W 1,p
0 (�). Then, by the Weierstrass theorem, we find uγ ∈ W 1,p

0 (�) such that

ψ̂γ

(
uγ

) = inf
[
ψ̂γ (u) : u ∈ W 1,p

0 (�)
]
. (3.31)

Owing to hypothesis H(a)(iv)(2) we find numbers η̃ > 0 and δ1 ∈ (0, δ0(γ )
]
such

that

G0(t) ≤ η̃tν for all t ∈ (0, δ1]. (3.32)

Let u ∈ int
(
C1
0(�)+

)
and recall that uλ ∈ int

(
C1
0(�)+

)
. By Lemma 2.10 there

exists a number t̃ ∈ (0, 1) small enough such that

t̃u(x), t̃ |∇u(x)| ∈ [0, δ1] for all x ∈ � and t̃u ≤ uλ. (3.33)

Applying (3.32) and (3.33) as well as hypothesis H(iv)(3) yields

ψ̂γ

(
t̃u
) =

∫
�

G
(
t̃∇u

)
dx −

∫
�

F̂γ

(
x, t̃u

)
dx

≤ η̃
(
t̃
)ν ‖∇u‖ν

ν − ĉ0(λ)
(
t̃
)θ ‖u‖θ

θ . (3.34)

Since θ < ν [see hypotheses H(a)(iv) and H(iv)] we see that by taking t̃ ∈ (0, 1) even
smaller if necessary we will have from (3.34)

ψ̂γ

(
t̃u
)

< 0

which gives, due to (3.31),

ψ̂γ

(
uγ

)
< 0 = ψ̂γ (0).
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Hence, uγ �= 0. As uγ is a critical point of ψ̂γ there holds
(
ψ̂γ

)′ (
uγ

) = 0, that is

A
(
uγ

) = N f̂γ

(
uγ

)
. (3.35)

Acting on (3.35) with −u−
γ ∈ W 1,p

0 (�) gives

c1
p − 1

∥∥∥∇u−
γ

∥∥∥p

p
≤ 0,

thanks to the truncation in (3.30) and Lemma 2.4(iii). Hence, uγ ≥ 0, uγ �= 0.

Now, taking
(
uγ − uλ

)+ ∈ W 1,p
0 (�) as test function in (3.35) results in, due to

(3.29) and (3.30),

〈
A
(
uγ

)
,
(
uγ − uλ

)+〉 =
∫

�

f̂γ
(
x, uγ

) (
uγ − uλ

)+
dx

=
∫

�

f (x, uλ, γ )
(
uγ − uλ

)+
dx

≤
〈
A (uλ) ,

(
uγ − uλ

)+〉
.

Therefore ∫
{uγ >uλ}

(
a
(∇uγ

) − a (∇uλ) ,∇uγ − ∇uλ

)
RN dx ≤ 0,

which means that
∣∣{uγ > uλ

}∣∣
N = 0 and so uγ ≤ uλ.

To sum up we have proved that

uγ ∈ [0, uλ] =
{

u ∈ W 1,p
0 (�) : 0 ≤ u(x) ≤ uλ(x) for a.a. x ∈ �

}
.

Then according to (3.30), Eq. (3.35) becomes

A
(
uγ

) = N fγ

(
uγ

)
with fγ (x, s) = f (x, s, γ ).

Hence, uγ ∈ S(γ ) ⊆ int
(
C1
0(�)+

)
and so γ ∈ L.

Therefore, we can say that if λ ∈ L, then (0, λ] ⊆ L. ��
Remark 3.6 The above structural property of the admissible set L means that L is in
fact an interval in (0,+∞).

Hypotheses H(iv), (v) imply that, for all λ > 0,

f (x, s, λ) ≥ ĉ0(λ)sθ−1 − c∗
0sr∗−1 for a.a. x ∈ � and for all s ≥ 0. (3.36)

This unilateral growth estimate on f (x, ·, λ) leads to the following auxiliary Dirichlet
problem
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− div a(∇u) = ĉ0(λ)uθ−1 − c∗
0ur∗−1 in �, (Auλ)

u = 0 on ∂�,

We have the following existence and uniqueness result for (Auλ).

Proposition 3.7 Let hypotheses H(a) be satisfied and let θ < μ < d < p < r∗ <

p∗ as well as λ > 0. Then, problem (Auλ) has a unique positive solution ũλ ∈
int

(
C1
0(�)+

)
and the map λ → ũλ is increasing, that is, if λ < γ , then ũγ − ũλ ∈

int
(
C1
0(�)+

)
.

Proof First, we establish the existence of a positive solution to (Auλ) for all λ > 0.
To this end, let ξλ : W 1,p

0 (�) → R be the C1-functional defined by

ξλ(u) =
∫

�

G(∇u)dx − ĉ0(λ)

θ

∥∥u+∥∥θ

θ
+ c∗

0

r∗
∥∥u+∥∥r∗

r∗ .

Since r∗ > p and because of Corollary 2.5 we easily verify that ξλ is coercive. Similar
to the arguments in the proof of Proposition 3.5 we can conclude that ξλ is sequentially
weakly lower semicontinuous. Hence, we find ũλ ∈ W 1,p

0 (�) such that

ξλ (ũλ) = inf
[
ξλ(u) : u ∈ W 1,p

0 (�)
]
. (3.37)

As in the proof of Proposition 3.5 and since θ < μ < p < r∗ < p∗ we infer that if
u ∈ int

(
C1
0(�)+

)
and t ∈ (0, 1) sufficiently small, then ξλ(tu) < 0, which implies,

because ũλ is the global minimizer of ξλ [see (3.37)], that

ξλ (ũλ) < 0 = ξλ(0).

Thus, ũλ �= 0. Furthermore, (3.37) gives ξ ′
λ (ũλ) = 0, that is

A (ũλ) = ĉ0
(
(ũλ)

+)θ−1 − c∗
0

(
(ũλ)

+)r∗−1
. (3.38)

Taking− (ũλ)
− ∈ W 1,p

0 (�) as test function in (3.38) yields, owing to Lemma 2.4(iii),

c1
p − 1

∥∥∇ (ũλ)
−∥∥p

p ≤ 0.

So, ũλ ≥ 0, ũλ �= 0. Then, (3.38) becomes

A (ũλ) = ĉ0 (ũλ)
θ−1 − c∗

0 (ũλ)
r∗−1

meaning that ũλ is a positive solution of (Auλ). As before (see the proof of Proposition
3.3), the nonlinear regularity theory (see Ladyzhenskaya–Ural′tseva [20] and Lieber-
man [22]) and the nonlinear maximum principle (see Pucci–Serrin [27, pp. 111, 120])
imply that ũλ ∈ int

(
C1
0(�)+

)
.
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Now, we are going to prove the uniqueness of ũλ. To this end, let T : L1(�) →
R ∪ {∞} be the integral functional defined by

T (u) =
⎧⎨
⎩
∫

�

G
(
∇u

1
d

)
dx if u ≥ 0, u

1
d ∈ W 1,p

0 (�),

+∞ otherwise.

Let u1, u2 be in the domain of T , i.e. u1, u2 ∈ dom(T ) = {
u ∈ L1(�) : T (u) < +∞}

and let further y = ((1 − t)u1 + tu2)
1
d with t ∈ [0, 1]. Let y1 = u

1
d
1 , y2 = u

1
d
2 , then

y1, y2 ∈ W 1,p
0 (�). Now, we apply Lemma 1 in Díaz–Saá [8] to obtain

‖∇ y(x)‖RN ≤
(
(1 − t) ‖∇ y1(x)‖d

RN + t ‖∇ y2(x)‖d
RN

) 1
d

a.e. in �.

Since G0 is increasing and thanks to hypotheses H(a)(iv)(1) we obtain

G0
(‖∇u(x)‖RN

)
≤ G0

((
(1 − t) ‖∇ y1(x)‖d

RN + t ‖∇ y2(x)‖d
RN

) 1
d
)

≤ (1 − t)G0
(‖∇ y1(x)‖RN

) + tG0
(‖∇ y2(x)‖RN

)
a.e. in �.

In view of G(ξ) = G0(‖ξ‖) for all ξ ∈ R
N it follows

G(∇u(x)) ≤ (1 − t)G (∇ y1(x)) + tG (∇ y2(x)) a.e. in �.

Therefore, T is convex. In addition, via Fatou’s lemma, we see that T is lower semi-
continuous.

Suppose that uλ is another positive solution of (Auλ). As done for ũλ, via the
nonlinear regularity theory and the nonlinear maximum principle, we have uλ ∈
int

(
C1
0(�)+

)
. Therefore, if h ∈ C1

0(�) and t ∈ (−1, 1) is small enough in its absolute
value, then

(ũλ)
d + th ∈ dom(T ) and (uλ)

d + th ∈ dom(T ).

So, the Gateaux derivative of T at (ũλ)
d and (uλ)

d in the direction h exists and
using the chain rule it follows

T ′ ((ũλ)
d
)

(h) = 1

d

∫
�

− div a(∇ũλ)

(ũλ)
d−1 hdx,

T ′ ((uλ)
d
)

(h) = 1

d

∫
�

− div a(∇uλ)

(uλ)
d−1 hdx .
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The convexity of T implies the monotonicity of T ′. This leads to

0 ≤
〈
T ′ ((ũλ)

d
)

− T ′ ((uλ)
d
)

, (ũλ)
d − (uλ)

d
〉

L1(�)

= 1

d

∫
�

(− div a(∇ũλ)

(ũλ)
d−1 − − div a(∇uλ)

(uλ)
d−1

)(
(ũλ)

d − (uλ)
d
)

dx

= 1

d

∫
�

(
ĉ0(λ) (ũλ)

θ−1 − c∗
0 (ũλ)

r∗−1

(ũλ)
d−1 − ĉ0(λ)uθ−1

λ − c∗
0ur∗−1

λ

(uλ)
d−1

)

×
(
(ũλ)

d − (uλ)
d
)

dx

= 1

d

∫
�

(
ĉ0(λ)

[
1

(ũλ)
d−θ

− 1

(uλ)
d−θ

]
+ c∗

0

[
(uλ)

r∗−d − (ũλ)
r∗−d

])

×
(
(ũλ)

d − (uλ)
d
)

dx .

Since θ < μ < d < p < r∗ < p∗, the last inequality implies ũλ = uλ. This proves
the uniqueness of the positive solution of (Auλ) for all λ > 0.

Next, we examine the monotonicity of the map λ → ũλ from (0,∞) into
C1
0(�)+\{0}. Letting 0 < λ < γ , we first observe, due to hypothesis H(iv)(2), that

− div a
(∇ũγ

) = ĉ0(γ )ũθ−1
γ − c∗

0 ũr∗−1
γ

≥ ĉ0(λ)ũθ−1
γ − c∗

0 ũr∗−1
γ for a.a. x ∈ �. (3.39)

Introducing the Carathéodory function

vλ(x, s) =

⎧⎪⎨
⎪⎩
0 if s < 0,

ĉ0(λ)sθ−1 − c∗
0sr∗−1 if 0 ≤ s ≤ ũγ (x),

ĉ0(λ)
(
ũγ (x)

)θ−1 − c∗
0

(
ũγ (x)

)r∗−1 if ũγ (x) < s,

(3.40)

and setting Vλ(x, s) = ∫ s
0 vλ(x, t)dt , we consider theC1-functional σλ : W 1,p

0 (�) →
R defined by

σλ(u) =
∫

�

G(∇u)dx −
∫

�

Vλ(x, u)dx .

Applying Corollary 2.5 and the truncation defined in (3.40) we conclude that σλ is
coercive. In addition, it is sequentially weakly lower semicontinuous. Therefore, we
find an element ûλ ∈ W 1,p

0 (�) such that

σλ

(
ûλ

) = inf
[
σλ(u) : u ∈ W 1,p

0 (�)
]
. (3.41)

As in the proof of Proposition 3.5 and since θ < μ < r∗, for u ∈ int
(
C1
0(�)+

)
and t ∈ (0, 1) small enough (at least such that tu ≤ ũγ , see Lemma 2.10), we have
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σλ(tu) < 0 implying

σλ

(
ûλ

)
< 0 = σλ(0).

Thus, ûλ �= 0. The assertion in (3.41) gives σ ′
λ

(
ûλ

) = 0 and so

A
(
ûλ

) = Nvλ

(
ûλ

)
. (3.42)

Acting on (3.42) with − (
ûλ

)− ∈ W 1,p
0 (�) and applying Lemma 2.4(iii) as well as

(3.40) gives

c1
p − 1

∥∥∥∇ (
ûλ

)−∥∥∥p

p
≤ 0.

Hence, ûλ ≥ 0, ûλ �= 0. Now, we choose
(
ûλ − ũγ

)+ ∈ W 1,p
0 (�) in (3.42). By

means of (3.39) and (3.40) we obtain

〈
A
(
ûλ

)
,
(
ûλ − ũγ

)+〉 =
∫

�

vλ

(
x, ûλ

) (
ûλ − ũγ

)+
dx

=
∫

�

[
ĉ0(λ)

(
ûλ

)θ−1 − c∗
0

(
ûλ

)r∗−1
] (

ûλ − ũγ

)+
dx

≤
〈
A
(
ũγ

)
,
(
ûλ − ũγ

)+〉
,

which implies

∫
{ûλ>ũγ }

(
a
(∇ûλ

) − a
(∇ũγ

)
,∇ûλ − ∇ũγ

)
RN ≤ 0.

Taking into account Lemma 2.4(i) we conclude that
∣∣{ûλ > ũγ

}∣∣
N = 0 and hence,

ûλ ≤ ũγ . So, we have proved

ûλ ∈ [
u, ũγ

] =
{

u ∈ W 1,p
0 (�) : 0 ≤ u(x) ≤ ũγ for a.a. x ∈ �

}
. (3.43)

Then, Eq. (3.42) becomes

A
(
ûλ

) = ĉ0(λ)
(
ûλ

)θ−1 − c∗
0

(
ûλ

)r∗−1
,

due to the truncation function defined in (3.40). Therefore, ûλ is a positive solution of
(Auλ) and because of the uniqueness of the positive solutions of (Auλ) we infer that
ûλ = ũλ. In particular, we conclude that

ũλ ≤ ũγ (3.44)

[see (3.43)].
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Note that, for a given ρ > 0, we can find ξρ > 0 such that

s → ξρs p−1 − c∗
0sr−1 is nondecreasing on [0, ρ]. (3.45)

Let ρ = ∥∥ũγ

∥∥∞ and let ξρ be as in (3.45). Then, by applying (3.44), (3.45), and
hypothesis H(iv)(2), we obtain

− div a (∇ũλ) + ξρ (ũλ)
p−1 = ĉ0(λ) (ũλ)

θ−1 − c∗
0 (ũλ)

r∗−1 + ξρ (ũλ)
p−1

≤ ĉ0(λ) (ũλ)
θ−1 − c∗

0

(
ũγ

)r∗−1 + ξρ

(
ũγ

)p−1

≤ ĉ0(γ )
(
ũγ

)θ−1 − c∗
0

(
ũγ

)r∗−1 + ξρ

(
ũγ

)p−1

= − div a
(∇ũγ

) + ξρ

(
ũγ

)p−1 for a.a. x ∈ �.

Now, let

g(x) = ĉ0(λ) (ũλ(x))θ−1 − c∗
0 (ũλ(x))r∗−1 + ξρ (ũλ(x))p−1 ,

ĥ(x) = ĉ0(λ) (ũλ(x))θ−1 − c∗
0

(
ũγ (x)

)r∗−1 + ξρ

(
ũγ (x)

)p−1
,

h(x) = ĉ0(γ )
(
ũγ (x)

)θ−1 − c∗
0

(
ũγ (x)

)r∗−1 + ξρ

(
ũγ (x)

)p−1
.

Evidently, g(x) ≤ ĥ(x) ≤ h(x) for a.a. x ∈ �. Note that, by means of (3.44),

h(x) − ĥ(x) = (
ĉ0(γ ) − ĉ0(λ)

) (
ũγ (x)

)θ−1 + ĉ0(γ )
((

ũγ (x)
)θ−1 − (ũλ(x))θ−1

)
≥ (

ĉ0(γ ) − ĉ0(λ)
) (

ũγ (x)
)θ−1

.

Since ũλ ∈ int
(
C1
0(�)+

)
and ĉ0(γ ) > ĉ0(λ) [see H(iv)(2)], it follows that ĥ ≺ h

which implies g ≺ h. Then, Proposition 2.9 gives ũγ − ũλ ∈ int
(
C1
0(�)+

)
. Therefore,

λ → ũλ is increasing. ��
Proposition 3.8 Let hypotheses H(a) and H be satisfied and let λ ∈ L. Then, ũλ ≤ u
for all u ∈ S(λ), where ũλ ∈ int

(
C1
0(�)+

)
is the unique positive solution of (Auλ)

obtained in Proposition 3.7.

Proof Let u ∈ S(λ) ⊆ int
(
C1
0(�)+

)
(see Proposition 3.3) and consider the following

Carathéodory function

k(x, s) =

⎧⎪⎨
⎪⎩
0 if s < 0,

ĉ0(λ)sθ−1 − c∗
0sr∗−1 if 0 ≤ s ≤ u(x),

ĉ0(λ)u(x)θ−1 − c∗
0u(x)r∗−1 if u(x) < s.

(3.46)

Let K (x, s) = ∫ s
0 k(x, t)dt and consider the C1-functional σ̂ : W 1,p

0 (�) → R

defined by
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σ̂ (u) =
∫

�

G(∇u)dx −
∫

�

K (x, u)dx .

It is clear that σ̂ is coercive and sequentially weakly lower semicontinuous which
implies the existence of û ∈ W 1,p

0 (�) such that

σ̂
(
û
) = inf

[
σ̂ (u) : u ∈ W 1,p

0 (�)
]
. (3.47)

As before, exploiting the fact that θ < μ < p < r∗, for u ∈ int
(
C1
0(�)+

)
and t ∈

(0, 1) small enough, we can show that σ̂ (tu) < 0, which implies σ̂
(
û
)

< 0 = σ̂ (0).
Hence, û �= 0.

From (3.47) we have
(
σ̂
)′ (

û
) = 0, that is

A
(
û
) = Nk

(
û
)
. (3.48)

As before, acting on (3.48) with − (
û
)− ∈ W 1,p

0 (�) and using (3.46) as well as

Lemma 2.4(iii) we have û ≥ 0, û �= 0. Next, we choose
(
û − u

)+ ∈ W 1,p
0 (�) as test

function in (3.48). Based on (3.36), (3.46) and since u ∈ S(λ), we obtain

〈
A
(
û
)
,
(
û − u

)+〉 =
∫

�

k
(
x, û

) (
û − u

)+
dx

=
∫

�

[
ĉ0(λ)uθ−1 − c∗

0ur∗−1
] (

û − u
)+

dx

≤
∫

�

f (x, u, λ)
(
û − u

)+
dx

=
〈
A(u),

(
û − u

)+〉
.

Consequently,

∫
{û>u}

(
a
(∇û

) − a (∇u) ,∇û − ∇u
)
RN dx ≤ 0.

Therefore,
∣∣{û > u

}∣∣
N = 0 [see Lemma 2.4(i)] and so, û ≤ u. We have proved

that

û ∈ [0, u] =
{
v ∈ W 1,p

0 (�) : 0 ≤ v(x) ≤ u(x) for a.a. x ∈ �
}

.

Having regard to (3.46) and (3.48) we see that û is a positive solution of (Auλ). Taking
into account Proposition 3.7 we easily verify that û = ũλ which implies ũλ ≤ u for
all u ∈ S(λ). ��

Let λ∗ = supL.
Proposition 3.9 If hypotheses H(a) and H hold, then λ∗ < ∞.
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Proof Arguing by contradiction, suppose we can find a sequence (λn)n≥1 ⊆ L such
that λn ↗ +∞ as n → ∞. For every n ≥ 1 we find un ∈ S(λn) ⊆ int

(
C1
0(�)+

)
satisfying

ϕλn (un) < 0 (3.49)

(see the proof of Proposition 3.5). Inequality (3.49) reads as∫
�

pG(∇un)dx −
∫

�

pF (x, un, λn) dx < 0 for all n ≥ 1. (3.50)

Moreover, there holds

A(un) = N fλn
(un) for all n ≥ 1.

Taking un ∈ W 1,p
0 (�) as test function gives

−
∫

�

(a(∇un),∇un)RN dx +
∫

�

f (x, un, λn) undx = 0 for all n ≥ 1. (3.51)

Adding both (3.50) and (3.51) and making use of hypothesis H(a)(iv)(3) results in∫
�

[ f (x, un, λn) un − pF (x, un, λn)] dx ≤ M5 for all n ≥ 1, (3.52)

and for some M5 > 0.
By virtue of hypotheses H(i), (iv) there exist β̂ ∈ (0, β (λ1)) and c17 > 0 such that

β̂sτ(λ1) − c17 ≤ f (x, s, λn) − pF(x, s, λn) for a.a. x ∈ �, for all s ≥ 0, (3.53)

and for all n ≥ 1. Applying (3.53) in (3.52) shows that

(un)n≥1 ⊆ Lτ(λ1)(�) is bounded. (3.54)

Now, applying (3.54) and reasoning as in the proof of Proposition 3.4 [see the part
of the proof after (3.17)], we obtain that

(un)n≥1 ⊆ W 1,p
0 (�) is bounded. (3.55)

From (3.51), (3.55), and Lemma 2.4(ii), we see that there exists M6 > 0 such that∫
�

f (x, un, λn)undx ≤ M6 for all n ≥ 1.

This gives, due to (3.36),

ĉ0(λn) ‖un‖θ
θ − c∗

0 ‖un‖r∗
r∗ ≤ M6 for all n ≥ 1.
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Recall that r∗ ∈ (p, p∗] [see hypothesis H(v)]. Then, from the last inequality and
the Sobolev embedding theorem combined with (3.55) it follows

ĉ0(λn) ‖un‖θ
θ ≤ M7 for all n ≥ 1 and with some M7 > 0.

Now, we may apply Propositions 3.8 and 3.7 to obtain

ĉ0(λn)
∥∥ũλ1

∥∥θ

θ
≤ M7 for all n ≥ 1,

which contradicts the fact that ĉ0(λn) → +∞ as n → ∞ [see hypothesis H(iv)(2)].
This proves that λ∗ < ∞. ��

Proposition 3.5 implies that (0, λ∗) ⊆ L.
Next, we establish a multiplicity result if λ ∈ (0, λ∗). To do this, we need to

strengthen the conditions on f (x, ·, λ).

H’: f : � × R × (0,∞) → R is a function such that (x, s, λ) → f (x, s, λ) is a
Carathéodory mapping on � × [R × (0,∞)], λ → f (x, s, λ) is nondecreasing,
f (x, 0, λ) = 0 for a.a. x ∈ �, for all λ > 0, hypotheses H’(i)–(v) are the same
as the corresponding hypotheses H(i)–(v) and

(vi) for every ρ > 0 and every λ > 0, there exists ξλ
ρ > 0 such that

s → f (x, s, λ) + ξλ
ρ s p−1 is nondecreasing on [0, ρ]

for a.a. x ∈ � and for λ > μ > 0 there holds

ess inf� [ f (x, s, λ) − f (x, s, μ) : s ≥ ρ] ≥ mρ > 0.

Remark 3.10 The examples of functions f presented after hypotheses H still satisfy
the new conditions stated in H’.

Proposition 3.11 Let hypotheses H(a) and H’ be satisfied and let λ ∈ (0, λ∗). Then,
problem (Pλ) admits at least two positive solutions

u0, û ∈ int
(

C1
0(�)+

)
with u0 ≤ û and u0 �= û.

Proof Let γ ∈ (λ, λ∗) and let uγ ∈ S(γ ) ⊆ int
(
C1
0(�)+

)
. We have

− div a
(∇uγ

) = f (x, uγ , γ ) ≥ f (x, uγ , λ) for a.a. x ∈ �. (3.56)

We introduce the following Carathéodory function

f̂λ(x, s) =
{

f (x, s, λ) if s ≤ uγ (x),

f (x, uγ (x), λ) if uγ (x) < s.
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Setting F̂λ(x, s) = ∫ s
0 f̂λ(x, t)dt , we define the C1-functional ψ̂λ : W 1,p

0 (�) → R

through

ψ̂λ(u) =
∫

�

G(∇u)dx −
∫

�

F̂λ(x, u)dx .

Reasoning as in the proof of Proposition 3.5 [see the part of the proof after (3.30)] and
using (3.56), we can show the existence of a solution u0 ∈ S(λ) such that

u0 ∈ [
0, uγ

] =
{

u ∈ W 1,p
0 (�) : 0 ≤ u(x) ≤ uγ (x) for a.a. x ∈ �

}
.

In fact we can say more. Let ρ = ∥∥uγ

∥∥∞ and let ξλ
ρ , ξ

γ
ρ be as postulated by hypothesis

H’(vi). Choosing ξ̂ρ > max
{
ξλ
ρ , ξ

γ
ρ

}
and using H’(vi), u0 ≤ uγ , and the fact that

uγ ∈ S(γ ) we derive

− div a (∇u0) + ξ̂ρu p−1
0 = f (x, u0, λ) + ξ̂ρu p−1

0

= f (x, u0, γ ) + ξ̂ρu p−1
0 − [

f (x, u0, γ ) − f (x, u0, λ)
]

≤ f
(
x, uγ , γ

) + ξ̂ρu p−1
γ

= − div a
(∇uγ

) + ξ̂ρu p−1
γ for a.a. x ∈ �.

Note that, if σ(x) = f (x, u0(x), γ ) − f (x, u0(x), λ), then since u0 ∈
int

(
C1
0(�)+

)
and owing to hypotheses H’(vi) we have 0 ≺ σ and so we may apply

Proposition 2.9 to conclude that uγ − u0 ∈ int
(
C1
0(�)+

)
. Therefore, we have

u0 ∈ intC1
0 (�)[0, uγ ]. (3.57)

Applying u0 we introduce the following truncation of the mapping s → f (x, s, λ)

eλ(x, s) =
{

f (x, u0(x), λ) if s ≤ u0(x),

f (x, s, λ) if u0(x) < s,
(3.58)

which is known to be a Carathéodory function. We set Eλ(x, s) = ∫ s
0 eλ(x, t)dt and

consider the C1-functional wλ : W 1,p
0 (�) → R defined by

wλ(u) =
∫

�

G(∇u)dx −
∫

�

Eλ(x, u)dx .

Claim Kwλ =
{

u ∈ W 1,p
0 (�) : w′

λ(u) = 0
}

⊆ [u0)

with [u0) =
{

u ∈ W 1,p
0 (�) : u0(x) ≤ u(x) for a.a. x ∈ �

}
Let u ∈ Kwλ , that is, w

′
λ(u) = 0 and so

A(u) = Neλ(u). (3.59)
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Acting on (3.59) with (u0 − u)+ ∈ W 1,p
0 (�) yields

〈
A(u), (u0 − u)+

〉 =
∫

�

eλ(x, u) (u0 − u)+ dx

=
∫

�

f (x, u0, λ) (u0 − u)+ dx

= 〈
A (u0) , (u0 − u)+

〉
due to the truncation defined in (3.58) and the fact that u0 ∈ S(λ). Therefore

∫
{u0>u}

(a (∇u0) − a (∇u) ,∇u0 − ∇u)RN dx = 0

implying |{u0 > u}|N = 0 [see Lemma 2.4(i)] and thus, u0 ≤ u. This proves the
Claim.

By virtue of the Claim and (3.57) we see that the critical points of wλ are positive
solutions of problem (Pλ). So, we may assume that

Kwλ ∩
[ [

u0, uγ

] \{u0}
]

= ∅ (3.60)

[see (3.57)], otherwise we would already have a second solution û ≥ u0, û �= u0.
Now, we introduce the following truncation of eλ(x, ·)

êλ(x, s) =
{

eλ(x, s) if s ≤ uγ (x),

eλ(x, uγ (x)) if uγ (x) < s,
(3.61)

being again a Carathéodory function. We set Êλ(x, s) = ∫ s
0 êλ(x, t)dt and consider

the C1-functional ŵλ : W 1,p
0 (�) → R defined by

ŵλ(u) =
∫

�

G(∇u)dx −
∫

�

Êλ(x, u)dx .

Bymeans of (3.61) and Corollary 2.5 we see that ŵλ is coercive. As before, it is also
sequentially weakly lower semicontinuous. Then, theWeierstrass theorem implies the
existence of ũ0 ∈ W 1,p

0 (�) such that

ŵλ (ũ0) = inf
[
ŵλ(u) : u ∈ W 1,p

0 (�)
]
,

that is,
(
ŵλ

)′
(ũ0) = 0, hence

A (ũ0) = Nêλ
(ũ0) . (3.62)
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As before, acting on (3.62) with
(
ũ0 − uγ

)+ ∈ W 1,p
0 (�) and using the Claim, we

derive that

ũ0 ∈ [
u0, uγ

] =
{

u ∈ W 1,p
0 (�) : u0(x) ≤ u(x) ≤ uγ (x) for a.a. x ∈ �

}
.

Then, from (3.60) (3.61) we see that ũ0 = u0.
Note that ŵλ

∣∣[0,uγ ] = wλ

∣∣[0,uγ ] which follows from the definition of the truncations

in (3.58) and (3.61). Recall that uγ − u0 ∈ int
(
C1
0(�)+

)
[see (3.57)]. Therefore, we

know that u0 is a local C1
0(�)-minimizer of wλ and taking into account Proposition

2.8 we have that u0 is a local W 1,p
0 (�)-minimizer of wλ as well.

Let us assume that Kwλ is finite, otherwise we would have infinity distinct positive
solutions u of (Pλ) with u ≥ u0 (see the Claim). Hence, there exists ρ ∈ (0, 1) small
enough such that

wλ(u0) < inf
[
wλ(u) : ‖u − u0‖W 1,p

0 (�)
= ρ

]
= mρ (3.63)

(see Aizicovici–Papageorgiou–Staicu [1, Proof of Proposition 29]). Note that, due to
(3.58),

wλ = ϕλ + ξλ with ξλ ∈ R. (3.64)

From (3.26) and (3.64) it follows, for u ∈ int
(
C1
0(�)+

)
,

wλ(tu) → −∞ as t → +∞. (3.65)

Furthermore, owing to (3.64) and Proposition 3.4, we have that

wλ satisfies the C-condition. (3.66)

Now, based on (3.63), (3.65), and (3.66), we may apply the mountain pass theorem
stated in Theorem 2.2. Hence, there exists û ∈ W 1,p

0 (�) such that

û ∈ Kwλ and wλ(u0) < mρ ≤ wλ

(
û
)
. (3.67)

The first assertion in (3.67) in combination with the Claim and Proposition 3.3 says
that

û ∈ S(λ) ⊆ int
(

C1
0(�)+

)
and u0 ≤ û.

The second assertion gives u0 �= û. ��
Next, we examine what happens at the critical case λ = λ∗ (bifurcation point).

Proposition 3.12 If hypotheses H(a) and H’ hold, then λ∗ ∈ L and so L = (0, λ∗].
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Proof Let (λn)n≥1 ⊆ L be a sequence such that λn ↗ λ∗ as n → ∞. Then we can
find un ∈ S (λn) such that

ϕλn (un) < 0 for all n ≥ 1. (3.68)

Since un ∈ S(λn), there holds

A (un) = N fλn
(un) for all n ≥ 1. (3.69)

From (3.68) and (3.69), as in the proof of Proposition 3.9, we obtain that

(un)n≥1 ⊆ W 1,p
0 (�) is bounded.

So, we may assume that

un ⇀ u∗ in W 1,p
0 (�) and un → u∗ in Lr(λ∗)(�). (3.70)

Acting on (3.69) with un − u∗ ∈ W 1,p
0 (�), passing to the limit as n → ∞, and

using (3.70) (recall that r (λ∗) ≥ r (λn) for all n ≥ 1, see H’(ii)), we obtain

lim
n→∞〈A(un), un − u∗〉 = 0,

which by the (S)+-property of the operator A (see Proposition 2.7) results in

un → u∗ in W 1,p
0 (�). (3.71)

So, if we pass in (3.69) to the limit as n → ∞ and apply (3.71), we get

A (u∗) = N fλ∗ (u∗) .

Additionally, Propositions 3.7 and 3.8 imply that

ũλ1 ≤ ũλn ≤ un for all n ≥ 1.

Therefore, ũλ1 ≤ u∗. From this we see that u∗ ∈ S (λ∗) and so λ∗ ∈ L, that is
L = (0, λ∗]. ��

Next, we show the existence of a smallest positive solution to problem (Pλ) for
every λ ∈ L = (0, λ∗]
Proposition 3.13 Let hypotheses H(a) and H’ be satisfied and let λ ∈ L = (0, λ∗].
Then, problem (Pλ) admits a smallest positive solution uλ ∈ S(λ) ⊆ int

(
C1
0(�)+

)
and the map λ → uλ from (0,∞) into C1

0(�)+\{0} is increasing, that is, if λ < γ ,
then uγ − uλ ∈ int

(
C1
0(�)+

)
.
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Proof As done in Filippakis–Kristály–Papageorgiou [10], due to the monotonicity of
the operator A (see Proposition 2.7), we can check that S(λ) is downward directed,
that is, if u, û ∈ S(λ), then there exists ũ ∈ S(λ) such that ũ ≤ u and ũ ≤ û. Since
we are looking for the smallest positive solution of problem (Pλ), we may assume,
without loss of generality, that there exists M8 > 0 such that

‖u‖∞ ≤ M8 for all u ∈ S(λ). (3.72)

From Dunford–Schwartz [9, p. 336] we know that there exists a sequence (un)n≥1
⊆ S(λ) such that

inf S(λ) = inf
n≥1

un .

Moreover, since un ∈ S(λ), we have

A (un) = N fλ (un) for all n ≥ 1. (3.73)

From (3.72) and (3.73) it follows that

(un)n≥1 ⊆ W 1,p
0 (�) is bounded.

Then, as in the proof of Proposition 3.12, by applying Proposition 2.7, we have (for a
subsequence if necessary) that

un → uλ in W 1,p
0 (�) as n → ∞.

Hence, (3.73) implies

A (uλ) = N fλ (uλ) for all n ≥ 1.

Moreover, due to Proposition 3.8, ũλ ≤ un for all n ≥ 1, hence ũλ ≤ uλ and so
uλ ∈ S(λ). Evidently, uλ = inf S(λ).

Finally, if γ ∈ (λ, λ∗], then, as in the proof of Proposition 3.11, we can prove the
existence of

uλ ∈ S(λ) such that uλ ∈ intC1
0 (�)

[
0, uγ

]
.

Thus, uγ − uλ ∈ int
(
C1
0(�)+

)
. ��

We can also prove a continuity property of the map λ → uλ from (0, λ∗] into
C1
0(�).

Proposition 3.14 If hypotheses H(a) and H’ hold, then λ → uλ from (0, λ∗] into
C1
0(�) is left continuous.
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Proof Let (λn)n≥1 ⊆ L be a sequence such that λn ↗ λ as n → ∞. By means of
Proposition 3.13 we know that

(
uλn

)
n≥1 is increasing and uλn ≤ uλ for all n ≥ 1. We

have

A
(
uλn

) = N fλn

(
uλn

)
for all n ≥ 1,

that is

− div a
(∇uλn

) = f
(
x, uλn , λn

)
in �,

u = 0 on ∂�.

The regularity results of Lieberman [22] imply the existence of α ∈ (0, 1) and
M9 > 0 such that

uλn ∈ C1,α
0 (�) and

∥∥uλn

∥∥
C1,α
0 (�)

≤ M9 for all n ≥ 1.

Exploiting the compact embedding of C1,α
0 (�) into C1

0(�) gives, due to the
monotonicity of the sequence

(
uλn

)
n≥1,

uλn ↗ ũ∗ in C1
0(�), ũ∗ ∈ S (

λ∗) . (3.74)

Suppose that ũ∗ is not the minimal positive solution of problem (Pλ). Then we can
find x0 ∈ � such that

uλ(x0) < ũ∗(x0).

Moreover, taking into account (3.74), we find a number n0 ≥ 1 such that

uλ(x0) < uλn (x0) for all n ≥ n0,

which is a contradiction to Proposition 3.13. Hence, ũ∗ = uλ and we have proved the
desired continuity of λ → uλ. ��

Summarizing the situation for problem (Pλ), we can state the following bifurca-
tion-type theorem.

Theorem 3.15 If hypotheses H(a) and H’ hold, then there exists λ∗ > 0 such that

(i) for all λ ∈ (0, λ∗), problem (Pλ) admits at least two positive solutions

u0, û ∈ int
(

C1
0(�)+

)
, u0 ≤ û, u0 �= û;

(ii) for λ = λ∗, problem (Pλ) has at least one positive solution

u∗ ∈ int
(

C1
0(�)+

)
;
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(iii) for all λ > λ∗, problem (Pλ) has no positive solution.

Furthermore, for every λ ∈ (0, λ∗], problem (Pλ) has a smallest positive solution
uλ ∈ int

(
C1
0(�)+

)
and the map λ → uλ from (0, λ∗] into C1

0(�) is

• increasing, that is, if λ < γ , then uγ − uλ ∈ int
(
C1
0(�)+

)
;

• λ → uλ is left continuous, that is, if λn ↗ λ, then uλn → uλ in C1
0(�).
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