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Abstract
We study a double phase problem with mixed boundary value conditions with reaction terms
that resonate at the first eigenvalue of the related eigenvalue problem. Based on the maximum
principle and homological local linking, we are going to prove the existence of at least two
bounded nontrivial solutions for this problem.
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1 Introduction

In this paper, we study the following double phase problemswithmixed boundary conditions

A(u) + |u|p−2 u + a(x) |u|q−2 u = f (x, u) in �,

u = 0 on σ,
(|∇u|p−2∇u + a(x)|∇u|q−2∇u

) · ν = g(x, u) on �,

(1.1)
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where

A(u) := − div
(|∇u|p−2∇u + a(x)|∇u|q−2∇u

)

is the double phase operator, � is a bounded domain of RN , N ≥ 2, with a C1 boundary ∂�

such that ∂� = σ ∪ � and σ ∩ � = ∅, ν(x) denotes the outer unit normal of � at x ∈ �,

1 < p < N , p < q < p∗ = (N − 1)p

N − p
and 0 < a(·) ∈ L∞(�). (1.2)

Clearly, q < p∗ implies q < p∗ = Np
N−p . The nonlinearities f and g satisfy the following

hypotheses:

(H) f : � ×R → R and g : � ×R → R are Carathéodory functions such that the following
hold:

(i) There exist constants C1,C2 > 0 such that

| f (x, t)| ≤ C1
(
1 + |t |r1−1) for a.a. x ∈ �,

|g(x, t)| ≤ C2
(
1 + |t |r2−1) for a.a. x ∈ �,

for all t ∈ R, where q < r1 < p∗ and q < r2 < p∗, respectively.
(ii)

lim
t→±∞

qF(x, t)

|t |q ≤ λ1(q) uniformly for a.a. x ∈ �,

lim
t→±∞

qG(x, t)

|t |q ≤ λ1(q) uniformly for a.a. x ∈ �,

where F(x, t) = ∫ t
0 f (x, s) ds and G(x, t) = ∫ t

0 g(x, s) ds;
(iii)

lim|t |→+∞[ f (x, t)t − qF(x, t)] = +∞ uniformly for a.a. x ∈ �;
lim|t |→+∞[g(x, t)t − qG(x, t)] = +∞ uniformly for a.a. x ∈ �;

(iv) There exist δ > 0, θ > λ̃1(p) and 0 < λ̃ < λ̃2(p) such that

θ |t |p ≤ pF(x, t) ≤ λ̃ |t |p for a.a. x ∈ � and for all |t | ≤ δ,

θ |t |p ≤ pG(x, t) ≤ λ̃ |t |p for a.a. x ∈ � and for all |t | ≤ δ,

where λ1(q) stands for the first eigenvalue of the weighted q-Laplace mixed boundary con-
dition problem while λ̃1(p) and λ̃2(p) represent the first and the second eigenvalues of the
p-Laplace mixed boundary condition problem, respectively, see Sect. 2 for more details.

The solutions of problem (1.1) are understood in the weak sense, that is, u ∈ X is a
solution of (1.1) if

∫

�

(|∇u|p−2∇u + a(x)|∇u|q−2∇u
) · ∇v dx

+
∫

�

(|u|p−2u + a(x)|u|q−2u
)
v dx

=
∫

�

f (x, u)v dx +
∫

�

g(x, u)v dS,
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is satisfied for all v ∈ X , where X = {u ∈ W 1,H(�) : u|σ = 0} is a closed subspace of
W 1,H(�), which will be defined in Sect. 2.

The differential operator

div
(|∇u|p−2∇u + a(x)|∇u|q−2∇u

)
, u ∈ W 1,H(�) (1.3)

involved in problem (1.1) is the so-called double phase operator. The integral form of it is
denoted by

∫

�

(|∇u|p + a(x)|∇u|q) dx, (1.4)

which was first introduced by Zhikov [40] to describe the phenomenon that hardening prop-
erties of strongly anisotropic materials drastically change with the point in the domain. The
function a(·) was used as an aid to regulating the mixture between two different materials,
with power hardening of rates p and q, respectively, see for instance the works of Zhikov
[40–42]. The energy density of (1.4) exhibits ellipticity in the gradient of order q on the
points x where a(x) is positive and of order p on the points x where a(x) vanishes. This
is the reason why we call (1.3) as the double phase operator. Both theoretical and applica-
tions aspects of functionals of type (1.4) have been intensively studied by many researchers,
see for example, Baroni–Colombo–Mingione [2–4], Baroni–Kuusi–Mingione [5], Byun–
Oh [6], Colombo–Mingione [8, 9], De Filippis–Mingione [11], De Filippis–Palatucci [12],
Gasiński–Winkert [14, 15], Liu–Dai [18–20], Liu–Dai–Papageorgiou–Winkert [21], Liu–
Winkert [22], Marcellini [24, 25], Ok [27, 28], Papageorgiou–Rădulescu–Repovš [30, 31],
Perera–Squassina [36], Ragusa–Tachikawa [37], Zeng–Bai–Gasiński–Winkert [38, 39] and
the references therein.

The purpose of this paper is to study the multiplicity of solutions for problem (1.1). There
are two main characteristics of this problem: one is that the reaction terms resonate at the
corresponding eigenvalues; the other one is the appearance of nonlinear boundary conditions
and mixed boundary conditions.

The main result in this paper is the following theorem.

Theorem 1.1 Let hypotheses (1.2) and (H) be satisfied, then problem (1.1) has at least two
nontrivial solutions u1, u2 ∈ X ∩ L∞(�).

Theorem 1.1 is related to the recent results obtained in Liu–Zeng–Gasiński–Kim
[23], Papageorgiou–Rădulescu–Repovš [31] and Papageorgiou–Rădulescu–Zhang [33].
Papageorgiou–Rădulescu–Repovš [31] investigated the existence of multiple solutions to
a double phase Robin problem when resonating at the first eigenvalue of the weighted p-
Laplace Robin problem, applying the local linking of theMorse theory to derive the existence
of at least two bounded solutions. Papageorgiou–Rădulescu–Zhang [33] considered the exis-
tence of multiple solutions to the Dirichlet double phase problem when resonating at the first
eigenvalue of the weighted p-Laplace Dirichlet equation, using variational methods together
with Morse theory to yield the existence of at least two bounded nontrivial solutions. Liu–
Zeng–Gasiński–Kim [23] studied a nonlinear complementarity problem (NCP)with a double
phase differential operator and a generalized multivalued boundary condition. By using the
Moreau–Yosida approximation method, the regularization problem corresponding to NCP
was introduced, and finally, the properties of the solution set of NCP were obtained. Inspired
by the above papers, we are going to study the resonant double phase equations under mixed
boundary conditions given in (1.1) in the present paper. The reaction terms resonate at the
first eigenvalue of the weighted q-Laplace equation with the mixed boundary, which is differ-
ent from Papageorgiou–Rădulescu–Repovš [31] and Papageorgiou–Rădulescu–Zhang [33].
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The mixed boundary conditions are divided into two parts, one is the Dirichlet boundary
condition and the other is the nonlinear boundary condition, which is different from Liu–
Zeng–Gasiński–Kim [23]. These differences bring new challenges. In order to overcome
these difficulties, we need to require more elaborate calculations to get the compactness
condition and the homological local linking.

The proof of Theorem 1.1 is based on variational methods and Morse theoretic aspects,
especially the homological local linking. First, by the hypotheses (H)(i) and (H)(iii), we show
that the corresponding energy functional J of (1.1) satisfies the Cerami condition. Second, by
(H)(ii) and (H)(iii), we prove that J is coercive, and then by theWeierstrass–Tonelli theorem,
it is concluded that there exists u1 �= 0 such that J ′(u1) = 0. Finally, in order to obtain the
second solution u2, we verify that J has a local (1, 1)-linking at 0 by hypothesis (H)(ii). In
addition, we study the eigenvalue problem of the weighted q-Laplace equation with mixed
boundary conditions.

The rest of this paper is organized as follows. In Sect. 2 we recall some main variational
tools and introduce the Musielak–Orlicz spaces LH(�) and W 1,H(�) including some of its
properties. We also present some properties of the weighted q-Laplace equation with mixed
boundary conditions and the related first eigenvalue and its eigenfunction. The proof of the
Theorem 1.1 is then given in Sect. 3.

2 Preliminaries

In this section, we first recall the main properties on the theory of Musielak–Orlicz spaces
LH(�) andW 1,H(�), respectively.We refer to Colasuonno–Squassina [7], Crespo–Blanco–
Gasiński–Harjulehto–Winkert [10], Harjulehto–Hästö [16] and Musielak [26] for the main
results in this direction.

Suppose (1.2) and let H : � × [0,∞) → [0,∞) be the function defined by

H(x, t) = t p + a(x)tq .

Then, the Musielak–Orlicz space LH(�) is defined by

LH(�) =
{
u

∣∣∣ u : � → R is measurable and ρH(u) < +∞
}

equipped with the Luxemburg norm

‖u‖H = inf
{
τ > 0 ρH

(u
τ

)
≤ 1

}
,

where the modular function ρH(·) is given by

ρH(u) :=
∫

�

H(x, |u|) dx =
∫

�

(|u|p + a(x)|u|q) dx .

Weknow that the space LH(�) is a reflexiveBanach space.Moreover, we define theweighted
Lebesgue space Lq

a(�)

Lq
a(�) =

{
u

∣∣∣ u : � → R is measurable and
∫

�

a(x)|u|q dx < +∞
}

,

which is endowed with the seminorm

‖u‖q,a =
(∫

�

a(x)|u|q dx
) 1

q

.
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It is not easy to check the validity of the following continuous embeddings

Lq(�) ↪→ LH(�) ↪→ Lq
a(�) ∩ L p(�).

The Musielak–Orlicz Sobolev space W 1,H(�) is defined by

W 1,H(�) = {
u ∈ LH(�) : |∇u| ∈ LH(�)

}

equipped with the norm

‖u‖1,H = ‖∇u‖H + ‖u‖H,

where ‖∇u‖H = ‖ |∇u| ‖H.

Similarly, we define

W 1,K(�) = {
u ∈ Lq

a(�) : |∇u| ∈ Lq
a(�)

}
,

which is endowed with the norm

‖u‖1,K = ‖∇u‖q,μ + ‖u‖q,μ.

We know that W 1,H(�) and W 1,K(�) are reflexive Banach spaces. Moreover, we have the
following embedding results, see for exampleCrespo–Blanco–Gasiński–Harjulehto–Winkert
[10, Proposition 2.16] or Gasiński–Winkert [15, Proposition 2.2].

Proposition 2.1 Let (1.2) be satisfied and let

p∗ := Np

N − p
and p∗ := (N − 1)p

N − p
.

Then the following embedding hold:

(i) W 1,H(�) ↪→ Lr (�) is continuous for all r ∈ [1, p∗] and compact for all r ∈ [1, p∗);
(ii) W 1,H(�) ↪→ Lr (∂�) is continuous for all r ∈ [1, p∗] and compact for all r ∈ [1, p∗);
(iii) W 1,H(�) ↪→ W 1,K(�) is continuous.

Let


(u) =
∫

�

(
|∇u|p + a(x)|∇u|q + |u|p + a(x)|u|q

)
dx . (2.1)

The norm ‖·‖ and themodular function 
 are related as follows, see Liu–Dai [18, Proposition
2.1] or Crespo–Blanco–Gasiński–Harjulehto–Winkert [10, Proposition 2.14].

Proposition 2.2 Let (1.2) be satisfied, let u ∈ W 1,H(�) and let 
 be defined by (2.1). Then
the following hold:
(i) If u �= 0, then ‖u‖ = λ if and only if 
( u

λ
) = 1;

(ii) ‖u‖ < 1 (resp. > 1, = 1) if and only if 
(u) < 1 (resp. > 1, = 1);
(iii) If ‖u‖ < 1, then ‖u‖q ≤ 
(u) ≤ ‖u‖p;
(iv) If ‖u‖ > 1, then ‖u‖p ≤ 
(u) ≤ ‖y‖q ;
(v) ‖u‖ → 0 if and only if 
(u) → 0;
(vi) ‖u‖ → +∞ if and only if 
(u) → +∞.

Let L : W 1,H(�) → W 1,H(�)∗ be the nonlinear operator given by
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〈L(u), v〉H =
∫

�

(|∇u|p−2∇u + a(x)|∇u|q−2∇u
) · ∇v dx

+
∫

�

(|u|p−2u + a(x)|u|q−2u
)
v dx (2.2)

for all u, v ∈ W 1,H(�). Here, 〈 ·, · 〉H stands for the duality pairing between W 1,H(�)

and its dual space W 1,H(�)∗. The operator L : W 1,H(�) → W 1,H(�)∗ has the fol-
lowing properties, see Liu–Dai [18] or Crespo–Blanco–Gasiński–Harjulehto–Winkert [10,
Proposition 3.5].

Proposition 2.3 The operator L defined by (2.2) is bounded (that is, it maps bounded sets
into bounded sets), continuous, strictly monotone (hence maximal monotone) and it is of
type (S+).

Next, we recall some definitions and tools that will be used in this paper.

Definition 2.4 Let X be a real Banach space and let X∗ be its dual space. We say that
J ∈ C1(X) satisfies the Cerami-condition (C-condition for short), if for any {un}n∈N ⊆ X
such that {J (un)}n∈N ⊆ R is bounded and (1 + ‖un‖)J ′(un) → 0 in X∗, admits a strongly
convergent subsequence.

The following result can be found in Ambrosetti–Malchiodi [1, Theorem 5.5].

Proposition 2.5 Suppose that X is a reflexive Banach space. If J : X → R is coercive and
sequentially weakly lower semi-continuous on X , then I is bounded from below on X and
has a minimum in X .

Let X be a Banach space, J ∈ C1(X ,R) and c ∈ R. We introduce the following sets

J c = {u ∈ X : J (u) ≤ c},
KJ = {

u ∈ X : J ′(u) = 0
}
,

Kc
J = {u ∈ KJ : J (u) = c} ,

where KJ is the set of all critical points of J .

Consider a topological pair (A, B) such that B ⊆ A ⊆ X . For every k ∈ N0 we denote
by Hk(A, B) the kth-relative singular homology group with integer coefficients for the pair
(A, B). If u ∈ Kc

J is isolated, the critical groups of J at u are defined by

Ck(J , u) = Hk(J
c ∩U , J c ∩U\{u}) for all k ≥ 0,

with U being a neighborhood of u such that KJ ∩ J c ∩ U = {u}. The excision property of
singular homology implies that this definition is independent of the choice of the isolating
neighborhood U .

If J ∈ C1(X ,R) satisfies the C-condition (see Definition 2.4), inf J (KJ ) > −∞ and
c < inf J (KJ ), then the critical groups of J at infinity are defined by

Ck(J ,∞) = Hk(X , J c) for all k ≥ 0.

Taking Corollary 5.3.12 of Papageorgiou–Rădulescu–Repovš [32] into account, this
definition is independent of the choice of the level c < inf J (KJ ).

We use the local (m, n)-linking method to prove the existence of a solution of problem
(1.1). The following definition is originally due to Perera [35] (see also Papageorgiou–
Rădulescu–Repovš [32, Definition 6.6.13]).
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Definition 2.6 Let X be a Banach space, J ∈ C1(X ,R), and 0 an isolated critical point of
J with J (0) = 0. Let m, n ∈ N. Suppose there exist a neighborhood U of 0 and nonempty
sets E0 ⊆ E ⊆ U , D ⊆ X such that E0 ∩ D = ∅ and

(a) J 0 ∩U ∩ KJ = {0};
(b) dim im i∗ − dim im j∗ ≥ n, where

i∗ : Hm−1(E0) → Hm−1(X\D) and j∗ : Hm−1(E0) → Hm−1(E)

are the homomorphisms induced by the inclusion map i : E0 → X\D and j : E0 → E;
(c) J |E ≤ 0 < J |U∩D\{0}.
Then we say that J has a “local (m, n)-linking” near the origin.

A very helpful result is the following corollary, see Papageorgiou–Rădulescu–Repovš [32,
Corollary 6.7.10].

Proposition 2.7 If X is a Banach space, J ∈ C1(X) is bounded below and satisfies the
C-condition, J has a local (m, n)-linking at 0 with m, n ∈ N and 0 is not a global minimizer
of J , then J has at least three critical points.

Next, we want to study an appropriate eigenvalue problem following the ideas of
Papageorgiou–Rădulescu–Repovš [31] and Li–Liu–Cheng [17]. We consider the following
weighted q-Laplacian eigenvalue problem with mixed boundary conditions

− div
(
a(x)|∇u|q−2∇u

) + a(x)|u|q−2u = λ|u|q−2u in �,

u = 0 on σ,
(
a(x)|∇u|q−2∇u

) · ν = λ|u|q−2u on �,

(2.3)

where q and a(·) satisfy the hypothesis (1.2). The first eigenvalue λ1(q) > 0 of (2.3) has the
following variational characterization

λ1(q) = inf

⎧
⎪⎪⎨

⎪⎪⎩

∫

�

a(x)
(|∇u|q + |u|q) dx

∫

�

|u|q dx +
∫

�

|u|q dS
: u ∈ W 1,K(�)\ {0}

⎫
⎪⎪⎬

⎪⎪⎭
. (2.4)

The corresponding eigenfunction u1 ∈ W 1,K(�) to the first eigenvalue λ1 > 0 satisfies
u1 ∈ L∞(�) and u1(x) > 0 for a.a. x ∈ � which can be shown similar to Proposition 3 of
Papageorgiou–Rădulescu–Zhang [33].

Furthermore, let λ̃1(p) be the first eigenvalue of the following p-Laplacian mixed
boundary value problem

− div
(|∇u|p−2∇u

) = λ|u|p−2u in �,

u = 0 on σ,
(|∇u|p−2∇u

) · ν = λ|u|p−2u on �.

(2.5)

Based on the results of Li–Liu–Cheng [17] we know that the first eigenvalue λ̃1(p) of (2.5)
is positive, simple and isolate. Let ũ1 be the positive eigenfunction associated with λ̃1(p),
then ũ1 ∈ L∞(�). Moreover, the second eigenvalue λ̃2(p) of (2.5) can be written as

λ̃2(p) = inf
{
λ̃(p) : λ̃(p) is an eigenvalue of (2.5) with λ̃(p) > λ̃1(p)

}
,

see Li–Liu–Cheng [17, Proposition 5.2].
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3 Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1. Recall that X = {u ∈ W 1,H(�) :
u|σ = 0} and let ‖u‖ = ‖u‖1,H for all u ∈ X be the norm of X . The corresponding energy
functional J : X → R related to problem (1.1) is given by

J (u) = 1

p

∫

�

(|∇u|p + |u|p) dx + 1

q

∫

�

a(x)
(|∇u|q + |u|q) dx

−
∫

�

F(x, u) dx −
∫

�

G(x, u) dS.

Under our assumptions, it is standard to check that J : X → R is well-defined and of class
C1 and the solutions of problem (1.1) are the critical points of J : X → R. First, we will
show that J : X → R satisfies the C-condition.

Proposition 3.1 Let hypotheses (1.2) and (H) be satisfied, then the energy functional J : X →
R satisfies the C-condition.

Proof Let {un}n∈N ⊆ X be a sequence such that

|J (un)| ≤ M1 for some M1 > 0 (3.1)

and

(1 + ‖un‖)J ′(un) → 0 in X∗ for n → ∞. (3.2)

By (3.2) and (2.2), we have

∣∣〈J ′(un), v〉∣∣ =
∣∣∣∣〈L(un), v〉H −

∫

�

f (x, un)v dx −
∫

�

g(x, un)v dS

∣∣∣∣

≤ εn‖v‖
1 + ‖un‖ (3.3)

for all v ∈ X with εn → 0+, which implies that

− εn‖v‖
1 + ‖un‖ ≤ 〈J ′(un), v〉 ≤ εn‖v‖

1 + ‖un‖ . (3.4)

Taking v = un in (3.3), it follows from (3.3) and (3.4) that,

−
∫

�

[
(|∇un |p + |un |p) + a(x)(|∇un |q + |un |q)

]
dx

+
∫

�

f (x, un)un dx +
∫

�

g(x, un)un dS ≤ εn, (3.5)

for all n ∈ N. Moreover, by (3.1) we obtain
∫

�

(
q

p
(|∇un |p + |un |p) + a(x)(|∇un |q + |un |q)

)
dx

−
∫

�

qF(x, un) dx −
∫

�

qG(x, un) dS ≤ qM1. (3.6)

Adding (3.5) and (3.6) we have
(
q

p
− 1

) ∫

�

(|∇un |p + |un |p) dx +
∫

�

( f (x, un)un − qF(x, un)) dx
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+
∫

�

(g(x, un)un − qG(x, un)) dS ≤ M2, (3.7)

for some M2 > 0. Since p < q, we get in particular that
∫

�

( f (x, un)un − qF(x, un)) dx +
∫

�

(g(x, un)un − qG(x, un)) dS ≤ M2. (3.8)

Claim: {un}n∈N ⊆ X is bounded.
Suppose that ‖un‖ → ∞. We take vn = un‖un‖ which implies that ‖vn‖ = 1. Then we may

assume that

vn⇀v in X and vn → v in Lr1(�) and Lr2(∂�)

for some v ∈ X , see Proposition 2.1(ii), (iv).

Suppose v = 0. Let μ ≥ 1 and put ṽn = (qμ)
1
q vn for all n ∈ N. So we have ṽn → 0 in

Lr1(�) and Lr2(∂�), which implies that
∫

�

F(x, ṽn) dx +
∫

�

G(x, ṽn) dS → 0 as n → ∞.

Thus, for all ε > 0 we can find n0 ∈ N such that
∫

�

F(x, ṽn) dx +
∫

�

G(x, ṽn) dS < ε, (3.9)

for all n ≥ n0. Now we choose tn ∈ [0, 1] such that
J (tnun) = max{J (tun) : 0 ≤ t ≤ 1} for all n ∈ N. (3.10)

Recalling ‖un‖ → ∞ as n → ∞, we can find n1 ∈ N such that

0 <
(qμ)

1
q

‖un‖ ≤ 1 for all n ≥ n1. (3.11)

Taking ε = 1
2 min

{
q

p
q

p , 1

}
μ

p
q in (3.9), we conclude from (3.9), (3.10) and (3.11) that

J (tnun) ≥ J

(
(qμ)

1
q

‖un‖ un

)

= J (ṽn)

= 1

p
q

p
q μ

p
q

(‖∇vn‖p
p + ‖vn‖p

p
) + μ

(‖∇vn‖qa,q + ‖vn‖qa,q
)

−
∫

�

F(x, ṽn) dx −
∫

�

G(x, ṽn) dS

≥ min

{
q

p
q

p
, 1

}

μ
p
q 
(vn) −

∫

�

F(x, ṽn) dx −
∫

�

G(x, ṽn) dS

≥ 1

2
min

{
q

p
q

p
, 1

}

μ
p
q ,

for all n ≥ max{n1, n0}. Since μ ≥ 1 is arbitrary, we obtain

J (tnun) → +∞ as n → ∞. (3.12)
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Recall that (3.1) implies J (un) ≤ M1 for all n ∈ N. Obviously J (0) = 0. Hence there exists
n2 ≥ N such that

tn ∈ (0, 1) for all n ≥ n2. (3.13)

It follows from (3.10) and (3.13) by using the chain rule that

0 = tn
d

dt
J (tun)|t=tn = 〈J ′(tnun), tnun〉

= ‖∇ (tnun)‖p
p + ‖tnun‖p

p + ‖∇ (tnun)‖qa,q + ‖tnun‖qa,q

−
∫

�

f (x, tnun)tnun dx −
∫

�

g(x, tnun)tnun dS

for all n ≥ n2, which can be equivalently written as

‖∇ (tnun)‖p
p + ‖tnun‖p

p + ‖∇ (tnun)‖qa,q + ‖tnun‖qa,q

=
∫

�

f (x, tnun)tnun dx +
∫

�

g(x, tnun)tnun dS (3.14)

for all n ≥ n2. Hence, from (3.14) we have

q J (tnun) = q

p

(‖∇ (tnun)‖p
p + ‖tnun‖p

p
) + ‖∇ (tnun)‖qa,q + ‖tnun‖qa,q

−
∫

�

qF(x, tnun) dx −
∫

�

qG(x, tnun) dS

=
(
q

p
− 1

) (‖∇ (tnun)‖p
p + ‖tnun‖p

p
)

+
∫

�

( f (x, tnun)un − qF(x, tnun)) dx

+
∫

�

(g(x, tnun)un − qG(x, tnun)) dS

for all n ≥ n2. It follows from (3.7) that

qϕ(tnun) ≤ M2 for all n ≥ n2.

which contradicts (3.12).
Suppose now v �≡ 0. Let �̂ = � ∪ � and define

�̂+ =
{
x ∈ �̂ : v(x) > 0

}
and �̂− =

{
x ∈ �̂ : v(x) < 0

}
.

Then at least one of these measurable sets has a positive Lebesgue measure onRN .Note that

un(x) → +∞ for a.a. x ∈ �̂+ and un(x) → −∞ for a.a. x ∈ �̂−.

Let �̂1 = �̂+ ∪ �̂− and let | · | be the Lebesgue measure on R
N . Then, |�̂1| > 0. By

(H)(i) and (H)(iii), we have

f (x, y)y − qF(x, y) ≥ c1 for a.a. x ∈ �,

g(x, y)y − qG(x, y) ≥ c2 for a.a. x ∈ �,

for all y ∈ R and for some c1, c2 > 0. Using this, we obtain
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∫

�

( f (x, un)un − qF(x, un)) dx +
∫

�

(g(x, un)un − qG(x, un)) dS

=
∫

�̂1

( f (x, un)un − qF(x, un) + g(x, un)un − qG(x, un)) dx

+
∫

�\�̂1

( f (x, un)un − qF(x, un) + g(x, un)un − qG(x, un)) dx

≥
∫

�̂1

( f (x, un)un − qF(x, un) + g(x, un)un − qG(x, un)) dx + c3|�\�̂1|

for some c3 = min{c1, c2} > 0. From (H)(iii) it follows that
∫

�

( f (x, un)un − qF(x, un)) dx +
∫

�

(g(x, un)un − qG(x, un)) dS → +∞,

which contradicts (3.8). Therefore, {un}n∈N ⊆ X is bounded. This proves the claim.
From the boundedness of the sequence, we can find a subsequence, still denoted by

{un}n∈N, such that

un⇀u in X and un → u in Lr1(�) and in Lr2(∂�).

We choose v = un − u in (3.3) and obtain using the convergence properties above that

lim
n→∞〈L(un), un − u〉H = 0.

Therefore, it follows that un → u in X since L is amapping of type (S+), see Proposition 2.3.

Next, we prove that J : X → R is coercive.

Proposition 3.2 Let hypotheses (1.2)and (H)be satisfied, then the energy functional J : X →
R is coercive.

Proof Note that

d

dt

(
F(x, t)

|t |q
)

= f (x, t)|t |q − q|t |q−2t F(x, t)

|t |2q

= |t |q−2t
(
f (x, t)t − qF(x, t)

)

|t |2q .

From hypothesis (H)(iii), for any δ > 0, there exists Mδ > 0 such that

f (x, t)t − qF(x, t) ≥ δ for a.a. x ∈ � and for all |t | ≥ Mδ.

Hence, we obtain

d

dt

(
F(x, t)

|t |q
)

⎧
⎪⎨

⎪⎩

≥ δ

tq+1 , if t ≥ Mδ,

≤ − δ

|t |q+1 , if t ≤ −Mδ.

Integrating this inequality, we obtain

F(x, t)

|t |q − F(x, u)

|u|q ≥ − δ

q

(
1

|t |q − 1

|u|q
)

(3.15)
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for a.a. x ∈ � and for all |t | ≥ |u| ≥ Mδ. By hypothesis (H)(ii), for any ε > 0, there exists
Mε > 0 such that

F(x, t) ≤ 1

q
(λ1(q) + ε) |t |q for a.a. x ∈ � and for all |t | ≥ Mε.

Using this inequality in (3.15) and letting |t | → ∞, we obtain

1

q
(λ1(q) + ε) − F(x, u)

|u|q ≥ δ

q

1

|u|q ,

that is,

(λ1(q) + ε)|u|q − qF(x, u) ≥ δ

for a.a. x ∈ � and for all |u| ≥ M = max{Mδ, Mε}. Letting ε → 0, we obtain

λ1(q)|u|q − qF(x, u) ≥ δ. (3.16)

Similar arguments apply to G(·, ·), that is, we can show

λ1(q)|u|q − qG(x, u) ≥ δ (3.17)

for a.a. x ∈ � and for all |u| ≥ M .

Now, we claim that J : X → R is coercive. Indeed, for any u ∈ X , it follows from
X ⊂ W 1,H(�) ↪→ W 1,K, (2.4) and (3.16) as well as (3.17) that

J (u) = 1

p

∫

�

(|∇u|p + |u|p) dx + 1

q

∫

�

a(x)(|∇u|q + |u|q) dx

−
∫

�

F(x, u) dx −
∫

�

G(x, u) dS

≥ 1

p

∫

�

(|∇u|p + |u|p) dx + 1

q
λ1(q)

(∫

�

|u|q dx +
∫

�

|u|q dS

)

−
∫

�

F(x, u) dx −
∫

�

G(x, u) dS

= 1

p

∫

�

(|∇u|p + |u|p) dx + 1

q

∫

�

(
λ1(q) |u|q − qF(x, u)

)
dx

+ 1

q

∫

�

(
λ1(q) |u|q − qG(x, u)

)
dS

≥ δ

q
(|�| + |�|)

for a.a. x ∈ � ∪ � and for all |u| ≥ M, which implies that J : X → R is coercive since δ is
arbitrary and |�| , |�| > 0. ��

Finally, we will prove that J : X → R has a local (1, 1)-linking at 0.

Proposition 3.3 Let hypotheses (1.2) and (H) be satisfied, then the energy functional J : X →
R has a local (1, 1)-linking at 0.

Proof Let V denote the space spanned by ũ1(p) and let

W =
{
u ∈ X :

∫

�

|ũ1|p−1u dx +
∫

�

|ũ1|p−1u dS = 0

}
.

123



Partial Differential Equations and Applications             (2023) 4:18 Page 13 of 17    18 

We claim that

X = V ⊕ W . (3.18)

Indeed, for any u ∈ X , writing u = αũ1 + w where w ∈ X and

α = λ̃1(p)

∫
�

|ũ1|p−1u dx + ∫
�

|ũ1|p−1u dS
∫
�

|∇ũ1|p dx .

Recall that

λ̃1(p) =
∫
�

|∇ũ1|p dx∫
�

|ũ1|p dx + ∫
�

|ũ1|p dS ,

see (2.5). Thus we obtain
∫

�

|ũ1|p−1w dx +
∫

�

|ũ1|p−1w dS = 0.

Hence, w ∈ W and our claim is true.
We may assume that KJ is finite, otherwise we would have found infinite number of

critical points of J which are solutions of problem (1.1). Now, let

Bρ = {u ∈ X : ‖u‖ ≤ ρ}
and choose ρ ∈ (0, 1) small enough such that KJ ∩ Bρ = {0}. Furthermore, let ε > 0 small
enough such that the hypothesis (H)(iv) holds, that is,

λ̃1(p) |t |p ≤ θ |t |p ≤ pF(x, t) ≤ λ̃ |t |p ≤ λ̃2(p) |t |p , (3.19)

λ̃1(p) |t |p ≤ θ |t |p ≤ pG(x, t) ≤ λ̃ |t |p ≤ λ̃2(p) |t |p , (3.20)

for all |t | ≤ ε.Recall that all norms are equivalent on a finite-dimensional normed space, see,
for example, Papageorgiou–Winkert [34, Proposition 3.1.17, p.183]. Thus making ρ ∈ (0, 1)
smaller if necessary, we can obtain that ‖u‖ ≤ ρ implies

|u| ≤ ε for all u ∈ V . (3.21)

Then for t ũ1 = u ∈ V ∩ Bρ with t ∈ (0, 1), by (3.19), (3.20) and (3.21) we have

J (u)

≤ λ̃1(p)t p

p

(∫

�

|ũ1|p dx +
∫

�

|ũ1|p dS
)

+ tq

q

∫

�

a(x)(|∇ũ1|q + |ũ1|q) dx

− θ t p

p

(∫

�

|ũ1|p dx +
∫

�

|ũ1|p dS
)

= tq

q

∫

�

a(x)(|∇ũ1|q + |ũ1|q) dx − t p

p

(
θ − λ̃1(p)

) (∫

�

|ũ1|p dx +
∫

�

|ũ1|p dS
)

= c1t
q − c2t

p for some c1, c2 > 0.

Taking ρ ∈ (0, 1) small enough yields

J |V∩Bρ
< 0 (3.22)

since 1 < p < q. Recall that X = V ⊕ W . It is clear that
∫

�

|∇u|p dx ≥ λ̃2(p)

(∫

�

|u|p dx +
∫

�

|u|p dS

)
for all u ∈ W . (3.23)
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Then for all u ∈ W ∩ Bρ\{0}, by hypothesis (H)(iv) and (3.23), we have

J (u)

=
∫

�

(
1

p
(|∇u|p + |u|p) + a(x)

q
(|∇u|q + |u|q)

)
dx −

∫

�∩{|u|<ε}
F(x, u) dx

−
∫

�∩{|u|≥ε}
F(x, u) dx −

∫

�∩{|u|<ε}
G(x, u) dS −

∫

�∩{|u|≥ε}
G(x, u) dS

≥ 1

p

∫

�

|∇u|p dx − λ̃

p

(∫

�

|u|p dx +
∫

�

|u|p dS
)

+ 1

p

∫

�

|u|p dx

+ 1

q

∫

�

a(x)(|∇u|q + |u|q) dx −
∫

�∩{|u|≥ε}
F(x, u) dx −

∫

�∩{|u|≥ε}
G(x, u) dS

≥ 1

p

(

1 − λ̃

λ̃2(p)

) ∫

�

|∇u|p dx + 1

q

∫

�

a(x)(|∇u|q + |u|q) dx

+ 1

p

∫

�

|u|p dx − c1

∫

�

|u|r1 dx − c2

∫

�

|u|r2 dx

≥ 1

q

(

1 − λ̃

λ̃2(p)

)


(u) − c3 ‖u‖r1 − c4 ‖u‖r2

≥ 1

q

(

1 − λ̃

λ̃2(p)

)

‖u‖q − c3 ‖u‖r1 − c4 ‖u‖r2 .

Since r1, r2 > q and ρ ∈ (0, 1) is sufficiently small, we have

J |W∩Bρ\{0} > 0. (3.24)

Now let

U = B̄ρ, E0 = V ∩ ∂Bρ and E = V ∩ Bρ.

Then we have 0 /∈ E0 ⊆ E ⊆ U and from (3.22) as well as (3.24) we obtain E0 ∩ W = ∅.

From (3.18), for every u ∈ X , we can write it in the form

u = v + w with v ∈ V and w ∈ W .

Let h : [0, 1] × (X\W ) → X\W defined by

h(t, u) = (1 − t)u + tρ
v

‖v‖ for all [0, 1] and for all u ∈ X\W .

This implies

h(0, u) = u and h(1, u) = ρ
v

‖v‖ ∈ E0.

By Papageorgiou–Rădulescu [29, Definition 5.3.10], we know that E0 is a deformation
retract of X\W . So we have that

i∗ : H0(E0) → H0(X\{0})
is an isomorphism, see Eilenberg–Steenrod [13, Theorem 11.5] and Papageorgiou–
Rădulescu–Repovš [32, Remark 6.1.6]. Moreover, E = V ∩ Bρ is contractible. Hence
H0(E, E0) = 0 due to Eilenberg–Steenrod [13, Theorem 11.5]. Let j∗ : H0(E0) → H0(E),
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then we have dim im j∗ = 1, see Eilenberg–Steenrod [13, Remark 6.1.26]. Therefore, we
have

dim im i∗ − dim im j∗ = 2 − 1 = 1.

Then we obtain that J : X → R has a local (1, 1)-linking at 0, see Definition 2.6.

By Proposition 3.3 and Theorem 6.6.17 of Papageorgiou–Rădulescu–Repovš [32], we
know that

dimC1(J , 0) ≥ 1.

Based on the results above, we are now in the position to prove Theorem 1.1.

Proof of Theorem 1.1 First, since W 1,H(�) ↪→ Lr1(�) and W 1,H(�) ↪→ Lr2(∂�) are
compact due to Proposition 2.1, we know that J : X → R is sequentially weakly lower
semicontinuous. From Proposition 3.2 we conclude that J : X → R is coercive as well.
Therefore, by Proposition 2.5, we deduce that there exists u1 ∈ X such that

J (u1) = min{J (u) : u ∈ X}.
By the proof of Proposition 3.3, we see that

J (u1) < 0 = J (0),

which implies that u1 �= 0 and u1 ∈ KJ , that is, u1 ∈ KJ is a nontrivial solution of problem
(1.1). Moreover, it follows from Propositions 2.7, 3.1 and 3.3 that there exists u2 ∈ KJ such
that u2 /∈ {0, u1}, which implies that u2 is the second nontrivial solution of problem (1.1).
From Theorem 3.1 of Gasiński–Winkert [15] we conclude that u1 and u2 are bounded.
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