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A B S T R A C T

In this paper, we establish continuous and compact embeddings for a new class of Musielak-
Orlicz Sobolev spaces in unbounded domains driven by a double phase operator with variable
exponents that depend on the unknown solution and its gradient. Using these embeddings and
an abstract critical point theorem, we prove the existence and multiplicity of weak solutions
for such problems associated with this new operator in the whole space R𝑑 . This work can be
seen as a continuation of the recent paper by Bahrouni–Bahrouni–Missaoui–Rădulescu (Bahrouni
et al., 2024).

. Introduction

Given 𝑑 ≥ 3, this paper is concerned with the following problem
− div (|∇𝑢|𝑝(𝑥,|∇𝑢|)−2∇𝑢 + 𝜇(𝑥)|∇𝑢|𝑞(𝑥,|∇𝑢|)−2∇𝑢

)

+ 𝑉 (𝑥)
(

|𝑢|𝑝(𝑥,|𝑢|)−2𝑢 + 𝜇(𝑥)|𝑢|𝑞(𝑥,|𝑢|)−2𝑢
)

= 𝜆𝑓 (𝑥, 𝑢), 𝑥 ∈ R𝑑 ,
(1.1)

here 𝑝, 𝑞 , 𝑓 ∶R𝑑 × R → R are three Carathéodory functions satisfying certain assumptions, 𝑉 ∶R𝑑 → R is a measurable function,
≤ 𝜇(⋅) ∈ 𝐶0,1(R𝑁 ), and 𝜆 is a positive constant.

Problems with functionals whose growth conditions depend on the solution or its gradient have been studied very effectively
n various applications, including digital image denoising, non-Newtonian fluid flow through porous media, phase transitions, and
luid dynamics, among others, see the works by Blomgren–Chan–Mulet–Wong [1], Blomgren–Chan–Mulet–Vese–Wan [2], Bollt–
hartrand–Esedoḡlu–Schultz–Vixie [3] and Bahrouni–Bahrouni–Missaoui–Rădulescu [4] for an overview. These problems generally

ocus on minimizing functionals where the growth behavior is closely related to the size of the gradient or the solution itself. This
aper can be seen as a continuation of the work by Bahrouni–Bahrouni–Hlel Missaoui–Rădulescu [4], extending the analysis made
n their work to the entire space R𝑑 . In particular, we establish fundamental results concerning the continuity and compactness of
mbeddings for the associated function spaces related to our operator. Specifically, we prove the important continuous and compact
mbeddings, as outlined in Theorems 1.2, 1.3, 1.4, 1.5 and 1.6.

The study of nonlinear problems in unbounded domains in R𝑑 , such as our problem (1.1), presents significant challenges,
rimarily due to the lack of compactness in the embedding of the solution space into appropriate Lebesgue-type spaces. This
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issue creates substantial difficulties in establishing existence and multiplicity results for possible solutions. Moreover, the specific
ependence of the exponents on the unknown solution and its gradient further complicates the analysis. These challenges require
he development of a refined and innovative technical framework to support our main findings.

Problem (1.1) is driven by the following new double phase type operator

𝑢 ⟼ − div (𝑎(𝑥, |∇𝑢|)∇𝑢) + 𝑉 (𝑥)𝑎(𝑥, |𝑢|)𝑢, (1.2)

where 𝑎∶R𝑑 × R → R is defined as

𝑎(𝑥, 𝜉) = |𝜉|𝑝(𝑥,|𝜉|)−2 + 𝜇(𝑥)|𝜉|𝑞(𝑥,|𝜉|)−2. (1.3)

The main feature of the operator given in (1.2) is its ability to switch seamlessly between the regions {𝑥 ∈ R𝑑 ∶ 𝜇(𝑥) = 0} and
{𝑥 ∈ R𝑑 ∶𝜇(𝑥) > 0}. This continuous switching behavior is what gives it the name ‘‘double phase’’ operator.

In the last decade, the study of double phase problems has attracted great interest due to their ability to model complex
phenomena and materials with heterogeneous properties. Double phase operators, such as

− div (|∇𝑢|𝑝−2∇𝑢 + 𝜇(𝑥)|∇𝑢|𝑞−2∇𝑢
)

(1.4)

(considering the case when 𝑝(𝑥, 𝑡) = 𝑝 and 𝑞(𝑥, 𝑡) = 𝑞 in our operator), with the related energy functional

𝐼(𝑢) = ∫𝛺

(

|∇𝑢|𝑝

𝑝
+ 𝜇(𝑥)

|∇𝑢|𝑞

𝑞

)

d𝑥, (1.5)

with 𝛺 being a domain in R𝑑 , were first introduced by Zhikov [5,6] (see also Zhikov–Kozlov–Oleı̆nik [7]) in connection with
he investigation of materials with strong anisotropy. The differential operator and the energy functional given in (1.4) and

(1.5) appear in various physical applications, such as transonic flows (see Bahrouni–Rădulescu–Repovš [8]), quantum physics
(see Benci–D’Avenia–Fortunato–Pisani [9]), reaction–diffusion systems (see Cherfils–Il’yasov [10]), and non-Newtonian fluids (see
Liu–Dai [11]).

It should be noted that double phase integrals of the form (1.5) are very special cases of the groundbreaking works by
arcellini [12,13] concerning problems with nonstandard growth and 𝑝, 𝑞-growth conditions. In fact, the regularity theory in [12]

also applies to the double phase integrals. In this direction we also mention the recent works with 𝑢-dependence by Cupini–
Marcellini–Mascolo [14] and Marcellini [15], see also the paper by Marcellini [16] concerning recent results about problems with
nonstandard growth. Later, the regularity results obtained by Marcellini for the special case of the double phase setting have been
improved by a series of papers by Baroni–Colombo–Mingione [17–19] and Colombo–Mingione [20,21]. Indeed, in contrast to [12]
in which 𝜇(⋅) must be Lipschitz for the double phase setting, the papers by Baroni, Colombo and Mingione require just a Hölder
continuity of the weight function 𝜇(⋅). Further regularity results for double phase integrals and nonautonomous integrals can be
found in the works by De Filippis–Mingione [22–25], De Filippis–Oh [26] and De Filippis–Palatucci [27], see also the overview
paper by Mingione–Rădulescu [28] about recent developments in problems with nonstandard growth and nonuniform ellipticity.

There is now a considerable amount of literature and a growing interest in double phase equations governed by the oper-
tor (1.4). While it is impossible to provide a comprehensive list, some pioneering works on the existence, nonexistence, and

uniqueness of solutions include the works by Ambrosio–Essebei [29], Arora–Fiscella–Mukherjee–Winkert [30], Biagi–Esposito–
Vecchi [31], Colasuonno–Squassina [32], Gasiński–Papageorgiou [33], Gasiński–Winkert [34], Ge–Pucci [35], Liu–Dai [11,36,37],
Liu–Winkert [38], Papageorgiou–Pudelko–Rădulescu [39], see also the references therein.

The study of the double phase operator and the associated function space was recently advanced by Crespo–Blanco–Gasiński–
Harjulehto–Winkert [40]. Specifically, the authors investigate a quasilinear elliptic equation formulated by the following double
phase operator with variable exponents:

𝐴(𝑢) = − div (|∇𝑢|𝑝(𝑥)−2∇𝑢 + 𝜇(𝑥)|∇𝑢|𝑞(𝑥)−2∇𝑢
)

, for all 𝑢 ∈ 𝑊 1, (𝛺), (1.6)

with 𝑝, 𝑞 ∈ 𝐶(𝛺) such that 1 < 𝑝(𝑥) < 𝑑 , 𝑝(𝑥) < 𝑞(𝑥) for all 𝑥 ∈ 𝛺 and 0 ≤ 𝜇(⋅) ∈ 𝐿1(𝛺) and 𝑊 1, (𝛺) is the corresponding
Musielak–Orlicz Sobolev space being a uniformly convex space. The paper by Crespo–Blanco–Gasiński–Harjulehto–Winkert [40]
was fundamental in this field and led to further studies on the existence, multiplicity and regularity of solutions to different types
f problems driven by the operator 𝐴 using various methods and techniques. We emphasize the works by Arora–Dwivedi [41] and

Liu–Dai–Papageorgiou–Winkert [42], who used the fibering method and the Nehari manifold to establish the existence of at least two
weak solutions for singular double phase problems. Ha–Ho [43] then introduced a Lions-type concentration-compactness principle
or spaces associated with the double phase operator defined in (1.6) to overcome the lack of compactness which is caused by the

presence of a critical exponent in the nonlinear data and allows the existence and concentration of solutions to be investigated.
Subsequently, Ho–Winkert [44] applied an abstract critical point result due to Kajikiya [45] along with recent a priori bounds to
demonstrate a sequence of nontrivial solutions to Kirchhoff double phase problems with variable exponents. Kim–Kim–Oh–Zeng [46]
proved the existence and multiplicity of solutions to concave-convex-type double phase problems, showing that these solutions are
bounded. Finally, Vetro–Winkert [47] used truncation arguments and comparison methods to prove the existence of at least two
constant-sign solutions.

Recently, Bahrouni–Bahrouni–Missaoui–Rădulescu [4] investigated problems involving the operator div (𝑎(𝑥, |∇𝑢|)∇𝑢) in a
ounded Lipschitz domain 𝛺 with 𝑎 as given in (1.3). The novelty of this work, in comparison to the double phase operator with

variable exponents (1.6), lies in the fact that the exponents depend on the gradient of the solution. To the best of our knowledge, it
s noteworthy that the paper in [4] was the first to investigate this problem in a bounded domain with variable exponents whereby
2 
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this is a special case. Under certain assumptions on 𝑝, 𝑞, and 𝜇, the authors explored the properties of the Musielak-Orlicz spaces
 (𝛺) and the Musielak-Orlicz Sobolev spaces 𝑊 1, (𝛺), where  ∶𝛺 × [0,+∞) → R is defined by

(𝑥, 𝑡) = ∫

𝑡

0
ℎ(𝑥, 𝑠) d𝑠, (1.7)

and ℎ∶R𝑑 × R → R is defined by

ℎ(𝑥, 𝑡) ∶=
{

𝑎(𝑥, |𝑡|)𝑡, for 𝑡 ≠ 0,
0, for 𝑡 = 0. (1.8)

with 𝑎(⋅, ⋅) as defined in (1.3). This generalized N-function (see Definition 2.1) is of particular importance due to the novel
dependence of the variable exponents on the unknown solution and its gradient. This dependence creates new complexities and
challenges in the analysis of such operators. Using the recent embedding results in Musielak-Orlicz Sobolev spaces proven by
Cianchi–Diening [48], Bahrouni–Bahrouni–Missaoui–Rădulescu [4] obtained several continuous and compact embedding results
for the spaces 𝑊 1, (𝛺) and 𝑊 1,

0 (𝛺) into Musielak spaces, where 𝛺 is bounded Lipschitz domain in R𝑑 .
Building on the results of the paper [4], we perform a deeper analysis of the operator (1.2) in the whole space, using the

N-function  with variable exponents as a basis. The exponents 𝑝 and 𝑞 satisfy the following hypotheses:

(H) (i) Functions 𝑝 and 𝑞 are bounded, that is,
2 ≤ 𝑝− ∶= essinf (𝑥,𝑡)∈R𝑑×R+

𝑝(𝑥, 𝑡) ≤ 𝑝+ ∶= esssup(𝑥,𝑡)∈R𝑑×R+
𝑝(𝑥, 𝑡) < 𝑑 ,

2 ≤ 𝑞− ∶= essinf (𝑥,𝑡)∈R𝑑×R+
𝑞(𝑥, 𝑡) ≤ 𝑞+ ∶= esssup(𝑥,𝑡)∈R𝑑×R+

𝑞(𝑥, 𝑡) < +∞,

and

𝑝(𝑥, 𝑡) < 𝑞(𝑥, 𝑡) < 𝑝−∗ ∶=
𝑑 𝑝−

𝑑 − 𝑝−
for a.a. 𝑥 ∈ R𝑑 and for all 𝑡 ≥ 0.

(ii) The functions 𝑝 and 𝑞 are two Carathéodory functions. Furthermore, they exhibit a constant behavior equal 𝑝(𝑥) =
𝑝(𝑥, 1) and 𝑞(𝑥) = 𝑞(𝑥, 1), respectively, for all 𝑡 ∈ [0, 1] and a nondecreasing behavior for 𝑡 ≥ 1.

(iii) There exist constant 𝑐𝑝, 𝑐𝑞 > 0 such that

|𝑝(𝑥, 𝑡) − 𝑝(𝑦, 𝑡)| ≤ 𝑐𝑝|𝑥 − 𝑦| and |𝑞(𝑥, 𝑡) − 𝑞(𝑦, 𝑡)| ≤ 𝑐𝑞|𝑥 − 𝑦|,

for all 𝑡 ≥ 0 and for a.a. 𝑥, 𝑦 ∈ R𝑑 .
(iv) 𝑞+

𝑝−
< 1 + 1

𝑑
.

The first objective of this paper is to extend the work of Bahrouni–Bahrouni–Missaoui–Rădulescu [4] by investigating the
mbedding properties of the associated function spaces in R𝑑 . First, we want to establish new continuous embedding results for
usielak-Orlicz Sobolev spaces 𝑊 1, (R𝑑 ) into 𝐿∗ (R𝑑 ), where ∗ is the Sobolev conjugate of  (see Definition 2.19). We must first

give the following definition.

Definition 1.1. We say that a generalized N-function  satisfies the boundedness condition if there exist 𝐶1, 𝐶2 > 0 such that

𝐶1 ≤ (𝑥, 1) ≤ 𝐶2 for all 𝑥 ∈ 𝛺 . ()

Our first result for continuous embeddings reads as follows.

Theorem 1.2 (Continuous Embedding). Let hypotheses (H) be satisfied. Then, the following hold:

(i) the embedding 𝑊 1, (R𝑑 ) ↪ 𝐿∗ (R𝑑 ) is continuous;
(ii) for any generalized N-function  satisfying (),

1 < 𝑣− ≤ 𝑣(𝑥, 𝑡)𝑡
(𝑥, 𝑡) ≤ 𝑣+ < +∞ for all 𝑥 ∈ R𝑑 and for all 𝑡 ≥ 0, (1.9)

with (𝑥, 𝑡) = ∫ 𝑡
0 𝑣(𝑥, 𝑠) d𝑠,

 ≪ ∗, (1.10)

where ≪ is defined in Definition 2.4 and

lim
|𝑡|→0

(𝑥, 𝑡)
(𝑥, 𝑡) = 0 uniformly in 𝑥 ∈ R𝑑 , (1.11)

the embedding

𝑊 1, (R𝑑 ) ↪ 𝐿 (R𝑑 )

is continuous.
3 
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The above theorem is new to the literature, and we have drawn inspiration from the recent work of Cianchi–Diening [48] to
get our continuous embedding results for Musielak-Orlicz Sobolev spaces in R𝑑 . It is important to note that in our case the explicit
orm of  is unknown, which poses an additional challenge when setting up Theorem 1.2.

The main difficulty in the study of problem (1.1) on the whole space R𝑑 is the lack of compactness. To overcome this, one
an use the method of unbounded potential, i.e. the problem contains a term with unbounded potential. Next, we introduce the

hypotheses on the potential function 𝑉 :

(𝑉0) (i) 𝑉 ∈ 𝐶(R𝑑 ,R) and there exists 𝑉0 > 0 such that 𝑉 (𝑥) ≥ 𝑉0 for any 𝑥 ∈ R𝑑 ;
(ii) the set

{

𝑥 ∈ R𝑑 ∶𝑉 (𝑥) < 𝐿} has finite Lebesgue measure for each 𝐿 > 0.

(𝑉1) (i) the same as (𝑉0)(i);
(ii) lim

|𝑥|→+∞ ∫𝐵1(𝑥)
1

𝑉 (𝑦) d𝑦 = 0 with 𝐵1(𝑥) =
{

𝑦 ∈ R𝑑 ∶ |𝑦 − 𝑥| < 1
}

.

Next, we define the following subspace of 𝑊 1, (R𝑑 ):

𝑊 1,
𝑉 (R𝑑 ) ∶=

{

𝑢 ∈ 𝑊 1, (R𝑑 ) ∶ ∫R𝑑
𝑉 (𝑥)(𝑥, 𝑢) d𝑥 < ∞

}

,

endowed with the norm

||𝑢||𝑊 1,
𝑉 (R𝑑 ) ∶= ||∇𝑢||𝐿 (R𝑑 ) + ||𝑢||𝐿

𝑉 (R𝑑 ),

with ||𝑢||𝑊 1, (R𝑑 ) as in (2.6) and

||𝑢||𝐿
𝑉 (R𝑑 ) ∶= inf

{

𝜆 > 0 ∶ ∫R𝑑
𝑉 (𝑥)

(

𝑥,
𝑢(𝑥)
𝜆

)

≤ 1
}

.

Our main results about compact embeddings are given in the next theorems.

Theorem 1.3 (Compact Embedding). Let hypotheses (H) and (𝑉0) be satisfied. Then, the embedding 𝑊 1,
𝑉 (R𝑑 ) ↪ 𝐿 (R𝑑 ) is compact.

As a consequence of the last theorem, we can give the following result.

Theorem 1.4 (Compact Embedding). Assume that conditions (H) and (𝑉0) hold. Let  be a generalized N-function that satisfies (), (1.9),
(1.10), and at least one of the following conditions:

(1) It holds

lim sup
|𝑡|→0

(𝑥, |𝑡|)
(𝑥, |𝑡|)

< +∞ uniformly in 𝑥 ∈ R𝑑 .. (𝐵1)

(2) There exists 𝑎 ∈ (0, 1) such that

(𝑥, |𝑡|) ≤ (𝑥, |𝑡|)𝑎∗(𝑥, |𝑡|)1−𝑎 for all |𝑡| ≤ 1 and all 𝑥 ∈ R𝑑 . (1.12)

Then, the space 𝑊 1,
𝑉 (R𝑑 ) is compactly embedded into 𝐿 (R𝑑 ).

Consequently, we can establish the following result.

Theorem 1.5 (Compact Embedding). Assume that conditions (H) and (𝑉1) hold.

(i) The continuous embedding 𝑊 1,
𝑉 (R𝑑 ) ↪ 𝐿𝑟(R𝑑 ) holds for 𝑟 ∈ [𝑝−, 𝑝−∗ ], where 𝑝−∗ = 𝑑 𝑝−

𝑑−𝑝− .
(ii) The compact embedding 𝑊 1,

𝑉 (R𝑑 ) ↪ 𝐿𝑟(R𝑑 ) holds for 𝑟 ∈ [𝑝−, 𝑝−∗ [.

Let us discuss the significance of the assumptions (𝑉0) and (𝑉1). The hypotheses (𝑉0) was introduced by Bartsch–Wang [49], which
ensures the compact embedding of the solution space into Lebesgue space while the assumptions in (𝑉1) has been introduced by
Benci–Fortunato [50] in which the authors studied the spectrum of the Schrödinger operator with potential 𝑉 . In 2002, Salvatore [51,
Proposition 3.1 and Remark 3.2] make a comparison between the two hypotheses and conclude that the assumption (𝑉1) is strictly
weaker than (𝑉0). The work by Bartsch–Wang [49] has inspired numerous studies on nonlinear equations involving various operators
nd unbounded potentials. In this context, we cite some relevant works and their references that were fundamental to our study.
nder assumption (𝑉0), Silva–Carvalho–de Albuquerque–Bahrouni [52] demonstrated continuous and compact embedding results

for fractional Orlicz spaces. Similar results are presented by Bahrouni–Missaoui–Ounaies [53] for fractional Musielak-Orlicz Sobolev
spaces. Regarding assumption (𝑉1), Bartolo–Candela–Salvatore [54] examined continuous and compact embeddings of the weighted
Sobolev space 𝑊 1,𝑝

𝑉 (R𝑑 ) into Lebesgue spaces. Building on this, Stegliński [55], established an embedding result for the weighted
Musielak-Orlicz Sobolev spaces associated with the classical double phase N-function (related to the operator (1.4)). Theorems 1.3–
1.5 are a further development of the previous work by dealing with the new double phase problem (1.1), where the exponents
epend on both the solution and its gradient.
4 
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In the next result, we denote by 𝑊 1,
r ad (R𝑑 ) the subspace of 𝑊 1, (R𝑑 ) consisting of all radial functions and we present a key result

concerning the embedding theory within Musielak-Orlicz Sobolev spaces, with a particular focus on radially symmetric functions.
his theorem offers significant insights into the behavior of these functions and their embeddings into other Musielak-Orlicz spaces.

Theorem 1.6 (Strauss Radial Embedding). Let condition (H) be satisfied and  be a generalized N-function satisfying (), (1.9), (1.10),
and (1.11). Then, the space 𝑊 1,

r ad (R𝑑 ) is compactly embedded into 𝐿 (R𝑑 ).
It is generally recognized in the literature that Strauss’ radial embedding results provide an alternative approach to solving

roblems with lack of compactness, especially when the potential 𝑉 is constant. The pioneering work in this field is attributed to
trauss [56], where the potential 𝑉 (⋅) is constant. In this groundbreaking work, Strauss introduced the well-known compactness

lemma for radially symmetric functions, which has since become a fundamental tool in analyzing such problems. The unknown
specific form of the function  and the dependence of the exponents 𝑝 and 𝑞 both on the unknown solution and its gradient make it
difficult to apply classical techniques to prove the Strauss embedding theorem. As a result, it is necessary to extend the well-known
‘‘Lions Lemma’’ to the new Musielak-Orlicz Sobolev spaces in order to establish Theorem 1.6. Note that Liu–Dai [37] have established
a version of Theorem 1.6 with a constant variable exponent by comparing 𝑊 1,

r ad (R𝑑 ) with 𝑊 1,𝑝
r ad (R𝑑 ).

However, in Theorem 1.6 we prove a generalized result for compact embeddings for our radial function space, not in a Lebesgue
space, but in a generalized Musielak-Orlicz space under certain assumptions, despite the challenges posed by the dependence of the
exponents on the solution and its gradient.

Theorem 1.7 (Lions-Type Lemma). Let (H) be satisfied and  be a generalized N-function satisfying (), (1.9), (1.10), and (1.11).
Furthermore, let {𝑢𝑛}𝑛∈N be a bounded sequence in 𝑊 1, (R𝑑 ) such that 𝑢𝑛 ⇀ 0 in 𝑊 1, (R𝑑 ) and

lim
𝑛→+∞

[

sup
𝑦∈R𝑑 ∫𝐵𝑟(𝑦)

(𝑥, 𝑢𝑛) d𝑥
]

= 0 for some 𝑟 > 0. (1.13)

Then, 𝑢𝑛 → 0 in 𝐿 (R𝑑 ).
Having obtained the embedding results, we apply them to study the existence and multiplicity of weak solutions of Eq. (1.1)

involving the double phase operator (1.2). This is our last main goal in this paper. Our main tool in this investigation is a theorem on
he existence of two critical points established by Bonanno–D’Aguì [57, Theorem 2.1 and Remark 2.2]. This theorem is an important
onsequence of Bonanno’s local minimal theorem [58, Theorem 2.3] in conjunction with the Ambrosetti–Rabinowitz theorem.

For the nonlinearity 𝑓 , we suppose the following hypotheses.

(F) 𝑓 ∶R𝑑 ×R → R is a Carathéodory function (i.e. 𝑓 (⋅, 𝑡) is measurable in R𝑑 for all 𝑡 ∈ R and 𝑓 (𝑥, ⋅) is continuous in R for a.a.
𝑥 ∈ R𝑑), such that

(i) There exist a generalized N-function (𝑥, 𝑡) = ∫ 𝑡
0 𝑏(𝑥, 𝑠) d𝑠 such that

|𝑓 (𝑥, 𝑡)| ≤ 𝑏(𝑥, |𝑡|) for all 𝑡 ∈ R and for a.a. 𝑥 ∈ R𝑑 ,

and

𝑞+ ≤ 𝑏− ∶= inf
𝑡>0

𝑏(𝑥, 𝑡)𝑡
(𝑥, 𝑡) ≤ 𝑏+ ∶= sup

𝑡>0

𝑏(𝑥, 𝑡)𝑡
(𝑥, 𝑡) < 𝑝−∗ for a.a. 𝑥 ∈ R𝑑 .

(ii) lim𝑡→±∞
𝐹 (𝑥,𝑡)
|𝑡|𝑞+

= +∞ uniformly in 𝑥 ∈ R, where 𝐹 (𝑥, 𝑡) = ∫ 𝑡
0 𝑓 (𝑥, 𝑠) d𝑠.

(iii) 𝑓 (𝑥, 𝑡) = 𝑜
(

|𝑡|𝑝
−−1) as |𝑡| → 0 uniformly in 𝑥 ∈ R𝑑 .

(iv) 𝐹 (𝑥, 𝑡) = 1
𝑞+ 𝑓 (𝑥, 𝑡)𝑡 − 𝐹 (𝑥, 𝑡) > 0 for |𝑡| large and there exist constants 𝜎 > 𝑑

𝑝− , 𝑐 > 0 and 𝑟0 > 0, such that

|𝑓 (𝑥, 𝑡)|𝜎 ≤ 𝑐|𝑡|(𝑝
−−1)𝜎𝐹 (𝑥, 𝑡) for all (𝑥, 𝑡) ∈ R𝑑 × R with |𝑡| ≥ 𝑟0. (1.14)

Example 1.8. Let 𝑓 ∶R𝑑 × R → R be the function defined by

𝑓 (𝑥, 𝑡) = |𝑡|𝑞
+−2𝑡 ln(1 + |𝑡|) + 1

𝑞+
|𝑡|𝑞

+−1𝑡
1 + |𝑡|

.

Its associated primitive function is given by

𝐹 (𝑥, 𝑡) = 1
𝑞+

|𝑡|𝑞
+
ln(1 + |𝑡|).

It is clear that the nonlinearity 𝑓 satisfies conditions (F)(i)–(iii). To verify (iv), we compute

𝐹 (𝑥, 𝑡) = 1
𝑞+

𝑡𝑓 (𝑥, 𝑡) − 𝐹 (𝑥, 𝑡) = 1
(𝑞+)2

|𝑡|𝑞
++1

1 + |𝑡|
,

which is strictly positive for large values of |𝑡|. Furthermore, the function 𝑓 satisfies the inequality (1.14) for
𝑑
𝑝−

≤ 𝜎 ≤ 𝑞+

𝑞+ − 𝑝− + 1 .
5 
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Now, we present the main existence result of this paper.

Theorem 1.9. Assume that (H), (𝑉0) and (F) hold. Furthermore, suppose that there exist two positive constants 𝑟, 𝜂 satisfying

max {𝜂𝑝− , 𝜂𝑞+} < 𝛿 𝑟, (1.15)

such that
(

H1
)

𝐹 (𝑥, 𝑡) ≥ 0 for a.a. 𝑥 ∈ 𝛺 and for all 𝑡 ∈ [0, 𝜂];
(

H2
)

𝛼(𝑟) < 𝛽(𝜂),
where 𝛿, 𝛼(𝑟), and 𝛽(𝜂) will be defined in Section 4 (see (4.19), (4.20), and (4.21), respectively). Then, for each 𝜆 ∈ 𝛬, where

𝛬 ∶=
[

1
𝛽(𝜂)

, 1
𝛼(𝑟)

]

,

problem (1.1) has at least two nontrivial weak solutions 𝑢𝜆,1, 𝑢𝜆,2 ∈ 𝑊 1,
𝑉 (R𝑑 ) with opposite energy sign.

The condition (iv) in (F) is crucial for proving that every Cerami sequence is bounded (see step 1 in Lemma 4.6). It was initially
introduced by Ding–Lee [59] for some scalar Schrödinger equations and later slightly modified in Bahrouni–Missaoui–Rădulescu [60]
for some nonlinear Robin problems in Orlicz spaces. Note that there are some nonlinearities that fulfill condition (iv) but do not
satisfy the following Ambrosetti–Rabinowitz condition (see [60])

(AR) there exists 𝜃 > 𝑞+ such that 0 < 𝜃 𝐹 (𝑥, 𝑡) ≤ 𝑡𝑓 (𝑥, 𝑡) for a.a. 𝑥 ∈ R𝑑 and for all 𝑡 ≠ 0.

Recently, Amoroso–Bonanno–D’Aguì–Winkert [61] established the existence and multiplicity of bounded solutions for a quasi-
linear problem driven by the operator (1.6) by using [57, Theorem 2.1 and Remark 2.2] which will be also our key tool for the
proof of Theorem 1.9. The main difference between their work and ours (aside from the difference in the operators) lies in the
ssumptions imposed. However, both our assumption (F)(ii), (iv) and their assumption (H𝑓 )(iii), (iv) in [61] avoid the need for 𝑓 to
atisfy the usual Ambrosetti–Rabinowitz condition, making them less restrictive. The assumptions (F) and (H𝑓 ) are similar in that

way that both require the primitive of 𝑓 to be 𝑞+-superlinear. However, instead of the behavior specified by (H𝑓 )(iii) in [61], we
impose a different condition near ±∞, as described in (F)(iv). Additionally, we introduce a condition for the behavior of 𝑓 near the
rigin, see (F)(iii). These changes require a new technical analysis to take the Cerami condition into account (see Lemma 4.6).

The paper is organized as follows. In Section 2, we provide the necessary preliminaries, introducing Musielak-Orlicz Sobolev
paces and discussing the functional setting. In particular, the new Musielak-Orlicz Sobolev space 𝑊 1, (R𝑑 ) and the weighted

Musielak-Orlicz Sobolev space 𝑊 1,
𝑉 (R𝑑 ) are treated in Section 2.2. Section 3 will be devoted to the proofs of the continuous and

compact embedding results, (see Theorems 1.2, 1.3, 1.4, 1.5 and 1.6). Finally, Section 4 explores applications, including some
roperties of the energy functional and the operator related to our problem (1.1), and the proof of Theorem 1.9.

2. Preliminaries

This section is divided into two subsections. In the first part, we recall some known definitions and results about Musielak-
Orlicz Sobolev spaces. In the second part, we define the new Musielak-Orlicz space 𝐿 (R𝑑 ) and the Musielak-Orlicz Sobolev space
𝑊 1, (R𝑑 ). Moreover, we introduce the functional space 𝑊 1,

𝑉 (R𝑑 ) associated with problem (1.1) and establish additional properties
of the Sobolev conjugate of , see Lemmas 2.22 and 2.23.

2.1. Musielak-Orlicz Sobolev spaces

In this subsection, we explore definitions and properties relevant to the Musielak-Orlicz spaces and Musielak-Orlicz Sobolev
paces. We refer to the paper by Bahrouni–Bahrouni–Missaoui–Rădulescu [4], Crespo-Blanco–Gasiński–Harjulehto–Winkert [40],

Fan [62,63] and the monographs by Chlebicka–Gwiazda–Świerczewska-Gwiazda [64], Diening–Harjulehto–Hästö–Růžička [65],
Harjulehto–Hästö [66], Musielak [67], Papageorgiou–Winkert [68].

Definition 2.1. A function  ∶R𝑑 × [0,∞) → [0,∞) is called a generalized N-function if it satisfies the following conditions:

(1) For a.a. 𝑥 ∈ R𝑑 , 𝑡 ↦ (𝑥, 𝑡) is even, continuous, nondecreasing and convex, and for all 𝑡 ≥ 0, 𝑥 ↦ (𝑥, 𝑡) is measurable;
(2) lim𝑡→0

(𝑥,𝑡)
𝑡 = 0 for a.a. 𝑥 ∈ R𝑑 ;

(3) lim𝑡→∞
(𝑥,𝑡)

𝑡 = ∞ for a.a. 𝑥 ∈ R𝑑 ;
(4) (𝑥, 𝑡) > 0 for all 𝑡 > 0 and for a.a. 𝑥 ∈ R𝑑 and (𝑥, 0) = 0 for a.a. 𝑥 ∈ R𝑑 .

Remark 2.2. We give an equivalent definition of a generalized N-function that admits an integral representation, see Pick–Kufner–
John–Fučík [69, Definition 4.2.1]. For 𝑥 ∈ R𝑑 and 𝑡 ≥ 0, we denote by ℎ(𝑥, 𝑡) the right-hand derivative of (𝑥, ⋅) at 𝑡, and define
(𝑥, 𝑡) = −ℎ(𝑥,−𝑡) for 𝑡 < 0. Then for each 𝑥 ∈ R𝑑 , the function ℎ(𝑥, ⋅) is odd, ℎ(𝑥, 𝑡) ∈ R for 𝑡 ∈ R, ℎ(𝑥, 0) = 0, ℎ(𝑥, 𝑡) > 0 for
 > 0, ℎ(𝑥, ⋅) is right-continuous and nondecreasing on [0,+∞), ℎ(𝑥, 𝑡) → +∞ as 𝑡 → +∞, and
6 
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(𝑥, 𝑡) = ∫

|𝑡|

0
ℎ(𝑥, 𝑠) d𝑠 for 𝑥 ∈ R𝑑 and 𝑡 ∈ R.

Definition 2.3.
(1) We say that a generalized N-function  satisfies the 𝛥2-condition if there exist 𝐶0 > 0 and a nonnegative function 𝑚 ∈ 𝐿1(R𝑑 )

such that

(𝑥, 2𝑡) ≤ 𝐶0(𝑥, 𝑡) + 𝑚(𝑥) for a.a. 𝑥 ∈ R𝑑 and for all 𝑡 ≥ 0.

(2) A generalized N-function  is said to satisfy the condition:

(A0) if there exists 𝛽 ∈ (0, 1] such that

𝛽 ≤ 𝜑−1(𝑥, 1) ≤ 1
𝛽

for a.a. 𝑥 ∈ R𝑑 ;
(A1) if there exists 𝛽 ∈ (0, 1] such that

𝛽 𝜑−1(𝑥, 𝑡) ≤ 𝜑−1(𝑦, 𝑡)
for every 𝑡 ∈

[

1, 1
|𝐵|

]

, for a.a. 𝑥, 𝑦 ∈ 𝐵, and every ball 𝐵 ⊂ R𝑑 with |𝐵| ≤ 1;

(A2) if for every 𝑠 > 0 there exist 𝛽 ∈ (0, 1] and ℎ ∈ 𝐿1 (R𝑛) ∩ 𝐿∞ (R𝑛) such that

𝛽 𝜑−1(𝑥, 𝑡) ≤ 𝜑−1(𝑦, 𝑡)
for a.a. 𝑥, 𝑦 ∈ R𝑑 and for all 𝑡 ∈ [ℎ(𝑥) + ℎ(𝑦), 𝑠].

Definition 2.4. Let 1 and 2 be two generalized N-functions.

(1) We say that 1 increases essentially slower than 2 near infinity and we write 1 ≪ 2, if for any 𝑘 > 0

lim
𝑡→∞

1(𝑥, 𝑘𝑡)
2(𝑥, 𝑡)

= 0 uniformly in 𝑥 ∈ R𝑑 .

(2) We say that 1 is weaker than 2, denoted by 1 ⪯ 2, if there exist two positive constants 𝐶1, 𝐶2 and a nonnegative function
𝑚 ∈ 𝐿1(R𝑑 ) such that

1(𝑥, 𝑡) ≤ 𝐶12
(

𝑥, 𝐶2𝑡
)

+ 𝑚(𝑥) for a.a. 𝑥 ∈ R𝑑 and for all 𝑡 ≥ 0.

Definition 2.5. For any generalized N-function , the function ̃ ∶R𝑑 × R → R defined by

̃(𝑥, 𝑡) ∶= sup
𝜏≥0

(𝑡𝜏 −(𝑥, 𝜏)) for all 𝑥 ∈ R𝑑 and for all 𝑡 ≥ 0,

is called the conjugate function of .

In view of the definition of the conjugate function ̃, we have the following Young type inequality:

𝜏 𝜎 ≤ (𝑥, 𝜏) + ̃(𝑥, 𝜎) for all 𝑥 ∈ R𝑑 and for all 𝜏 , 𝜎 ≥ 0. (2.1)

Remark 2.6.
(1) Note that the conjugate function ̃ is also a generalized N-function.
(2) If there exist 𝑚,𝓁 ∈ R such that

1 ≤ 𝑚 ≤ ℎ(𝑥, 𝑡)𝑡
(𝑥, 𝑡) ≤ 𝓁 for all 𝑥 ∈ R𝑑 and for all 𝑡 > 0, (2.2)

then the generalized N-function  satisfies the 𝛥2-condition, see [64].

The next lemma is taken from Bahrouni–Bahrouni–Missaoui–Rădulescu [4, Lemma 2.3].

Lemma 2.7. Let  be a generalized N-function. We suppose that 𝑡 ↦ ℎ(𝑥, 𝑡) is continuous and nondecreasing for a.a. 𝑥 ∈ R𝑑 . Moreover,
we assume that there exist 𝑚,𝓁 ∈ R such that

1 < 𝑚 ≤ ℎ(𝑥, 𝑡)𝑡
(𝑥, 𝑡) ≤ 𝓁 for all 𝑥 ∈ R𝑑 and for all 𝑡 > 0, (2.3)

then,
7 
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̃(𝑥, ℎ(𝑥, 𝑠)) ≤ (𝓁 − 1)(𝑥, 𝑠) for all 𝑠 ≥ 0 and for all 𝑥 ∈ R𝑑 ,

and
𝓁

𝓁 − 1 ∶= 𝑚̃ ≤ ℎ̃(𝑥, 𝑠)𝑠
̃(𝑥, 𝑠)

≤ 𝓁 ∶= 𝑚
𝑚 − 1 for all 𝑥 ∈ R𝑑 and for all 𝑠 > 0,

where ̃(𝑥, 𝑠) = ∫ 𝑠
0 ℎ̃(𝑥, 𝜐) d𝜐.

Remark 2.8. Note that the condition (2.3) implies that  and its conjugate function ̃ satisfy the 𝛥2-condition.

Now, we can define the Musielak-Orlicz space. For 𝑀(R𝑑 ) being the set of all measurable functions 𝑢∶R𝑑 → R, we define

𝐿 (R𝑑 ) ∶= {

𝑢 ∈ 𝑀(R𝑑 ) ∶ 𝜌 (𝜆𝑢) < +∞ for some 𝜆 > 0
}

,

where

𝜌 (𝑢) ∶= ∫R𝑑
(𝑥, 𝑢) d𝑥. (2.4)

The space 𝐿 (R𝑑 ) is endowed with the Luxemburg norm

‖𝑢‖𝐿 (R𝑑 ) ∶= inf
{

𝜆 > 0 ∶ 𝜌
( 𝑢
𝜆

)

≤ 1
}

.

Proposition 2.9. Let  be a generalized N-function that satisfies the 𝛥2-condition, then

𝐿 (R𝑑 ) = {

𝑢 ∈ 𝑀(R𝑑 ) ∶ 𝜌 (𝑢) < +∞
}

.

Proposition 2.10. Let  be a generalized N-function fulfilling (2.3), then the following assertions hold:

(1) min{𝜆𝑚, 𝜆𝓁}(𝑥, 𝑡) ≤ (𝑥, 𝜆𝑡) ≤ max{𝜆𝑚, 𝜆𝓁}(𝑥, 𝑡) for a.a. 𝑥 ∈ R𝑑 and for all 𝜆, 𝑡 ≥ 0.
(2) min

{

‖𝑢‖𝑚
𝐿 (R𝑑 )

, ‖𝑢‖𝓁
𝐿 (R𝑑 )

}

≤ 𝜌 (𝑢) ≤ max
{

‖𝑢‖𝑚
𝐿 (R𝑑 )

, ‖𝑢‖𝓁
𝐿 (R𝑑 )

}

for all 𝑢 ∈ 𝐿 (R𝑑 ).

(3) Let
{

𝑢𝑛
}

𝑛∈N ⊆ 𝐿 (R𝑑 ) and 𝑢 ∈ 𝐿 (R𝑑 ), then

‖𝑢𝑛 − 𝑢‖𝐿 (R𝑑 ) → 0 ⟺ 𝜌 (𝑢𝑛 − 𝑢) → 0 as 𝑛 → +∞.

As a consequence of (2.1), we have the following result.

Lemma 2.11 (Hölder’s Type Inequality). Let  be a generalized N-function that satisfies (2.3), then
|

|

|

|

∫R𝑑
𝑢𝑣 d𝑥

|

|

|

|

≤ 2‖𝑢‖𝐿 (R𝑑 )‖𝑣‖𝐿̃ (R𝑑 ) for all 𝑢 ∈ 𝐿 (R𝑑 ) and for all 𝑣 ∈ 𝐿̃ (R𝑑 ).

The subsequent proposition deals with some topological properties of the Musielak-Orlicz space, see Musielak [67, Theorem 7.7
and Theorem 8.5].

Proposition 2.12. Let  be a generalized N-function.

(i) The space
(

𝐿 (R𝑑 ), ‖ ⋅ ‖𝐿 (R𝑑 )
)

is a Banach space.
(ii) If  satisfies (2.2), then 𝐿 (R𝑑 ) is a separable space.

(iii) If  satisfies (2.3), then 𝐿 (R𝑑 ) is a reflexive space.

Now, we are ready to define the Musielak-Orlicz Sobolev space. Let  be a generalized N-function. The Musielak-Orlicz Sobolev
pace is defined as follows

𝑊 1, (R𝑑 ) ∶= {

𝑢 ∈ 𝐿 (R𝑑 ) ∶ |∇𝑢| ∈ 𝐿 (R𝑑 )
}

.

The space 𝑊 1, (R𝑑 ) is endowed with the norm

‖𝑢‖𝑊 1, (R𝑑 ) ∶= ‖𝑢‖𝐿 (R𝑑 ) + ‖∇𝑢‖𝐿 (R𝑑 ) for all 𝑢 ∈ 𝑊 1, (R𝑑 ),

where ‖∇𝑢‖𝐿 (R𝑑 ) ∶= ‖ |∇𝑢| ‖𝐿 (R𝑑 ).

Remark 2.13. If  satisfies (2.3), then the space 𝑊 1, (R𝑑 ) is a reflexive and separable Banach space with respect to the norm
⋅ ‖𝑊 1, (𝛺).
8 
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2.2. Functional setting

In this subsection, we turn our attention to the specific generalized N-function , see (1.7) and (1.8). It was developed to solve
roblems involving a double phase operator with variable exponents, such as in problem (1.1), where the exponents depend on both

the unknown solution and its gradient. Based on the previous subsection, we establish key properties of , its conjugate function
̃ , and its associated Sobolev conjugate ∗. We then introduce the space 𝑊 1, (R𝑑 ) and summarize its essential properties, see the
ork of Bahrouni–Bahrouni–Missaoui–Rădulescu [4]. In the last part of this subsection, we focus on the function space 𝑊 1,

𝑉 (R𝑑 )
hich is relevant to our problem, and we rigorously prove its basic properties.

To this end, we introduce the function  ∶R𝑑 × [0,+∞[→ [0,+∞[ by

(𝑥, 𝑡) = ∫

𝑡

0
ℎ(𝑥, 𝑠) d𝑠 = ∫

𝑡

0

(

𝑠𝑝(𝑥,𝑠)−1 + 𝜇(𝑥)𝑠𝑞(𝑥,𝑠)−2
)

d𝑠,

where 0 ≤ 𝜇(⋅) ∈ 𝐶0,1(R𝑑 ) and 𝑝(⋅, ⋅) as well as 𝑞(⋅, ⋅) satisfy (H).
We start with the following proposition, which is proven by Bahrouni–Bahrouni–Missaoui–Rădulescu [4, Propositions 3.1 and

.3].

Proposition 2.14. Let hypotheses (H) (i), (ii) be satisfied. Then following hold:

(i)  is a generalized N-function.
(ii)  and ̃ fulfill the 𝛥2-condition, and we have that

𝑝− ≤ ℎ(𝑥, 𝑡)𝑡
(𝑥, 𝑡) ≤ 𝑞+ for all 𝑡 > 0 and for a.a. 𝑥 ∈ R𝑑 . (2.5)

The following proposition plays a crucial role in the proof of the continuous embedding theorem related to 𝑊 1, (R𝑑 ).

Proposition 2.15. Let hypotheses (H) (i)–(iv) be satisfied. Then,  satisfies (A0), (A1) and (A2).

Proof. For conditions (A0) and (A1), the proofs are similar to those done by Bahrouni–Bahrouni–Missaoui–Rădulescu [4, Proposition
.10]. We only need to prove that  satisfies (A2). To this end, for 𝑡 ∈ [0, 𝑠] and from (H) (ii) and Proposition 2.14, we have

(𝑥, 𝑡) ≈ 𝑡𝑝(𝑥),

where ‘‘≈’’ indicates that there exist positive constants 𝑐1 and 𝑐2 depending on 𝑠 such that 𝑐1𝑡𝑝
− ≤ (𝑥, 𝑡) ≤ 𝑐2𝑡𝑝

− for a.a. 𝑥 ∈ R𝑑 and
for all 0 ≤ 𝑡 ≤ 𝑠. Hence, the condition (A2) follows from Lemma 4.2.5 by Harjulehto–Hästö [66, Lemma 4.2.5]. □

Thanks to Proposition 2.14, we are ready to define the Musielak–Orlicz space 𝐿 (R𝑑 ) by

𝐿 (R𝑑 ) = {

𝑢 ∈ 𝑀(R𝑑 ) ∶ 𝜌 (𝑢) < +∞
}

,

endowed with the following norm

‖𝑢‖𝐿 (R𝑑 ) = inf
{

𝜆 > 0 ∶ 𝜌
( 𝑢
𝜆

)

≤ 1
}

,

where 𝜌 is defined as in (2.4). Proceeding similarly to Section 2.1, we can introduce the space 𝑊 1, (R𝑑 ) equipped with the norm

‖𝑢‖𝑊 1, (R𝑑 ) ∶= ‖𝑢‖𝐿 (R𝑑 ) + ‖∇𝑢‖𝐿 (R𝑑 ). (2.6)

Remark 2.16. According to Proposition 2.14, the results presented in the previous subsection remain valid with our special
N-function . This includes Proposition 2.10 with 𝑚 = 𝑝− and 𝓁 = 𝑞+ as well as Lemma 2.11 and Proposition 2.12.

Based on the work by de Albuquerque–de Assis–Carvalho–Salort [70], we present an adaptation of the classical Brézis-Lieb
Lemma (see Brézis–Lieb [71]) for modular functions associated with our function .

Proposition 2.17 (Brézis-Lieb Lemma in Musielak-Orlicz Spaces). Assume that (H) (i), (ii) hold. Let {𝑢𝑛}𝑛∈N be a sequence in 𝐿 (R𝑑 )
uch that 𝑢𝑛 ⇀ 𝑢 weakly in 𝐿 (R𝑑 ). Then,

lim
𝑛→∞

(

𝜌 (𝑢𝑛) − 𝜌ℎ(𝑢𝑛 − 𝑢) − 𝜌 (𝑢)
)

= 0.

Lemma 2.18. Let (H) (i), (ii) be satisfied and 𝐵 ⊂ R𝑑 be a measurable set with |𝐵| < ∞. Then, there exist 𝐶1, 𝐶2 > 0 such that

𝐶1 min
{

|𝐵|
1
𝑝− , |𝐵|

1
𝑞+

}

≤ ‖𝜒𝐵‖𝐿 (R𝑑 ) ≤ 𝐶2 max
{

|𝐵|
1
𝑝− , |𝐵|

1
𝑞+

}

.

9 
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Proof. Using Proposition 2.10 and Remark 2.16, we infer that

min
{

‖

‖

‖

𝜒
𝐵
‖

‖

‖

𝑝−

𝐿 (R𝑑 )
, ‖‖
‖

𝜒
𝐵
‖

‖

‖

𝑞+

𝐿 (R𝑑 )

}

≤ ∫R𝑑
(𝑥, 𝜒

𝐵
(𝑥)) d𝑥 ≤ max

{

‖

‖

‖

𝜒
𝐵
‖

‖

‖

𝑝−

𝐿 (R𝑑 )
, ‖‖
‖

𝜒
𝐵
‖

‖

‖

𝑞+

𝐿 (R𝑑 )

}

. (2.7)

Furthermore, using assumption (H) (i), we find that
1
𝑝−

|𝐵| ≤ ∫R𝑑
(𝑥, 𝜒

𝐵
(𝑡)) d𝑥 = ∫𝐵

(𝑥, 1) d𝑥 ≤ 1
𝑝−

(1 + |𝜇|𝐿∞(R𝑑 )) |𝐵| . (2.8)

By combining (2.7) and (2.8), we deduce that

min
{

(

𝐶1 |𝐵|
)

1
𝑝− ,

(

𝐶1 |𝐵|
)

1
𝑞+

}

≤ ‖

‖

‖

𝜒
𝐵
‖

‖

‖𝐿 (R𝑑 )
≤ max

{

(

𝐶2 |𝐵|
)

1
𝑝− ,

(

𝐶2 |𝐵|
)

1
𝑞+

}

,

where 𝐶1 =
1
𝑝− and 𝐶2 =

1
𝑝− (1 + ‖𝜇‖∞). This concludes the proof. □

Definition 2.19.
(i) The Sobolev conjugate of  is defined as the generalized N-function ∗ given by

∗(𝑥, 𝑡) ∶= 
(

𝑥,−1(𝑥, 𝑡)) for 𝑥 ∈ R𝑑 and 𝑡 ≥ 0,

where  ∶R𝑑 × [0,+∞) → [0,+∞) is the function defined by

 (𝑥, 𝑡) ∶=
⎛

⎜

⎜

⎝

∫

𝑡

0

(

𝜏
(𝑥, 𝜏)

)
1

𝑑−1

𝑑 𝜏
⎞

⎟

⎟

⎠

1
𝑑′

for 𝑥 ∈ R𝑑 and 𝑡 ≥ 0, (2.9)

with 𝑑′ ∶= 𝑑
𝑑−1 and

(𝑥, 𝑡) ∶=
⎧

⎪

⎨

⎪

⎩

2 max
{


(

𝑥,−1(𝑥, 1)𝑡
)

, 2𝑡 − 1} − 1 if 𝑡 ≥ 1
lim sup
|𝑥|→+∞

max
{


(

𝑥,−1(𝑥, 1)𝑡
)

, 2𝑡 − 1} if 0 ≤ 𝑡 < 1,

for all 𝑥 ∈ R𝑑 .
(ii) Assume that 𝜑 is a generalized N-function. The homogeneous Musielak-Orlicz Sobolev space 𝑉 1,𝜑(𝛺) is defined as

𝑉 1,𝜑(R𝑑 ) =
{

𝑢 ∈ 𝑊 1,1
loc (R

𝑑 ) ∶ |∇𝑢| ∈ 𝐿𝜑(R𝑑 )
}

.

Let 𝛺 be a bounded open set such that 𝛺 ⊂ R𝑑 , then

‖𝑢‖𝐿1(𝛺) + ‖∇𝑢‖𝐿𝜑(R𝑑 )

defines a norm on 𝑉 1,𝜑(R𝑑 ).
(iii) We also define the space

𝑉 1,𝜑
d (R𝑑 ) = {

𝑢 ∈ 𝑉 1,𝜑(R𝑑 ) ∶ |{|𝑢| > 𝑡}| < ∞ for every 𝑡 > 0
}

,

where | ⋅ | is the Lebesgue measure and it can equipped with the norm

||∇𝑢||𝐿𝜑(R𝑑 ).

Remark 2.20. By Propositions 2.14 and 2.15, we know that  satisfies the 𝛥2-condition and (A0). Therefore, invoking the recent
ork by Cianchi–Diening [48], the function  is equivalent, in the sense of the relation ≈, to the function

◦(𝑥, 𝑡) ∶=
⎧

⎪

⎨

⎪

⎩

(𝑥, 𝑡) if 𝑡 ≥ 1

∞(𝑡) ∶= lim sup
|𝑥|→+∞

(𝑥, 𝑡) =∶ 𝑡𝑝∞
𝑝∞

+
𝜇∞
𝑞∞

𝑡𝑞∞ if 0 ≤ 𝑡 < 1,

for all 𝑥 ∈ R𝑑 , where 𝑝∞, 𝑞∞ and 𝜇∞ represent the supremum limits of 𝑝(𝑥), 𝑞(𝑥), and 𝜇(𝑥), respectively, as |𝑥| → +∞. Thus,
y [48, Remark 3.2], we can replace  with ◦ in definition of ∗. This equivalence and substitution are crucial for simplifying
ur subsequent analysis and ensuring consistency within the framework of our definitions and propositions.

Proposition 2.21. Assume hypotheses (H)(i) and (ii). Then the following hold:

(1) min
{

𝜉𝑝− , 𝜉𝑞+
}

◦(𝑥, 𝑡) ≤ ◦(𝑥, 𝜉 𝑡) ≤ max
{

𝜉𝑝− , 𝜉𝑞+
}

◦(𝑥, 𝑡).
(2) 𝑝− ≤ ℎ◦(𝑥,𝑡)𝑡

◦(𝑥,𝑡) ≤ 𝑞+ for all 𝑡 > 0 and for a.a. 𝑥 ∈ R𝑑 , where

ℎ◦(𝑥, 𝑡) =
{

ℎ(𝑥, 𝑡), for 𝑡 ≥ 1,
′
∞(𝑡), if 0 ≤ 𝑡 < 1.

10 
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Proof. Clearly, ◦(𝑥, 𝑡) = (𝑥, 𝑡) for a.a. 𝑥 ∈ R𝑑 and for all 𝑡 ≥ 1. Therefore, for 𝑡 ≥ 1, conditions (1) and (2) follow from
Propositions 2.10 and 2.14. For 0 ≤ 𝑡 ≤ 1, consider the function 𝐺∶R𝑑 × R → R defined by

𝐺(𝑥, 𝑡) = 𝑡𝑝∞
𝑝∞

+
𝜇∞
𝑞∞

𝑡𝑞∞ .

Note that 𝐺 is a generalized N-function that satisfies (2.3) with 𝑚 = 𝑝− and 𝓁 = 𝑞+, and therefore satisfies the conditions of
Propositions 2.10 and 2.14. Thus, since ∞ = 𝐺

|[0,1]
for 0 ≤ 𝑡 ≤ 1, we can conclude the proof. □

Now, we require the following two lemmas.

Lemma 2.22. Under the assumptions (H)(i), (ii), the following inequality holds:

min
{

𝑡𝑝
−
∗ , 𝑡𝑞+∗

}

∗(𝑥, 𝜉) ≤ ∗(𝑥, 𝑡𝜉) ≤ max
{

𝑡𝑝
−
∗ , 𝑡𝑞+∗

}

∗(𝑥, 𝜉), for all 𝑡, 𝜉 ≥ 0,

where 𝑝−∗ ∶= 𝑑 𝑝−
𝑑−𝑝− and 𝑞+∗ ∶= 𝑑 𝑞+

𝑑−𝑞+ .

Proof. By the definition of  (see (2.9) and Remark 2.20), for all 𝑡 > 0 and 𝜉 ≥ 0, we have

 (𝑥, 𝑡𝜉) =
⎛

⎜

⎜

⎝

∫

𝑡𝜉

0

(

𝑠
◦(𝑥, 𝑠)

)
1

𝑑−1
d𝑠
⎞

⎟

⎟

⎠

𝑑−1
𝑑

= 𝑡
𝑑−1
𝑑

⎛

⎜

⎜

⎝

∫

𝜉

0

(

𝑡𝑠
◦(𝑥, 𝑡𝑠)

)
1

𝑑−1
d𝑠
⎞

⎟

⎟

⎠

𝑑−1
𝑑

.

Using Proposition 2.21-(1), for all 0 < 𝑡 ≤ 1 and 𝜉 ≥ 0, we get

 (𝑥, 𝑡𝜉) ≤ 𝑡
𝑑−1
𝑑

⎛

⎜

⎜

⎝

∫

𝜉

0

(

𝑡𝑠
𝑡𝑞+◦(𝑥, 𝑠)

)
1

𝑑−1
d𝑠
⎞

⎟

⎟

⎠

𝑑−1
𝑑

= 𝑡
(

𝑑−1
𝑑 − 𝑞+−1

𝑑

)

⎛

⎜

⎜

⎝

∫

𝜉

0

(

𝑠
◦(𝑥, 𝑠)

)
1

𝑑−1
d𝑠
⎞

⎟

⎟

⎠

𝑑−1
𝑑

= 𝑡
𝑑−𝑞+
𝑑  (𝑥, 𝜉)

and

 (𝑥, 𝑡𝜉) ≥ 𝑡
𝑑−1
𝑑

⎛

⎜

⎜

⎝

∫

𝜉

0

(

𝑡𝑠
𝑡𝑝−◦(𝑥, 𝑠)

)
1

𝑑−1
d𝑠
⎞

⎟

⎟

⎠

𝑑−1
𝑑

= 𝑡
(

𝑑−1
𝑑 − 𝑝−−1

𝑑

)

⎛

⎜

⎜

⎝

∫

𝜉

0

(

𝑠
◦(𝑥, 𝑠)

)
1

𝑑−1
d𝑠
⎞

⎟

⎟

⎠

𝑑−1
𝑑

= 𝑡
𝑑−𝑝−
𝑑  (𝑥, 𝜉).

Thus,

𝑡
𝑑−𝑝−
𝑑  (𝑥, 𝜉) ≤  (𝑥, 𝑡𝜉) ≤ 𝑡

𝑑−𝑞+
𝑑  (𝑥, 𝜉), for all 0 ≤ 𝑡 ≤ 1 and all 𝜉 ≥ 0.

Similarly, we have

𝑡
𝑑−𝑞+
𝑑  (𝑥, 𝜉) ≤  (𝑥, 𝑡𝜉) ≤ 𝑡

𝑑−𝑝−
𝑑  (𝑥, 𝜉), for all 𝑡 > 1 and all 𝜉 ≥ 0.

Combining these results, we obtain

𝜁0(𝑡) (𝑥, 𝜉) ≤  (𝑥, 𝑡𝜉) ≤ 𝜁1(𝑡) (𝑥, 𝜉), for all 𝑡, 𝜉 ≥ 0, (2.10)

where

𝜁0(𝑡) = min
{

𝑡
𝑑−𝑝−
𝑑 , 𝑡 𝑑−𝑞

+
𝑑

}

and 𝜁1(𝑡) = max
{

𝑡
𝑑−𝑝−
𝑑 , 𝑡 𝑑−𝑞

+
𝑑

}

.

Therefore, inserting 𝜏 =  (𝑥, 𝜉) and 𝜅 = 𝜁0(𝑡) into the inequality (2.10), i.e., 𝜉 = −1(𝑥, 𝜏) and 𝑡 = 𝜁−10 (𝜅), we get

𝜅 𝜏 ≤  (𝑥, 𝜁−10 (𝜅)−1(𝑥, 𝜏)).
Since −1 is non-decreasing, we infer that

−1(𝑥, 𝜅 𝜏) ≤ 𝜁−10 (𝜅)−1(𝑥, 𝜏), for all 𝜅 , 𝜏 > 0.

Similarly, putting 𝜏 =  (𝑥, 𝜉) and 𝜅 = 𝜁1(𝑡) into the inequality (2.10), we obtain

𝜁−11 (𝜅)−1(𝑥, 𝜏) ≤ −1(𝑥, 𝜅 𝜏), for all 𝜅 , 𝜏 > 0.

From these results, it follows that

min
{

𝑡
𝑑

𝑑−𝑝− , 𝑡
𝑑

𝑑−𝑞+
}

−1(𝑥, 𝜉) ≤ −1(𝑥, 𝑡𝜉) ≤ max
{

𝑡
𝑑

𝑑−𝑝− , 𝑡
𝑑

𝑑−𝑞+
}

−1(𝑥, 𝜉), for all 𝑡, 𝜉 ≥ 0.
11 
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It follows, from Proposition 2.21-(1), that

min
{

𝑡𝑝
−
∗ , 𝑡𝑞+∗

}

∗(𝑥, 𝜉) ≤ ∗(𝑥, 𝑡𝜉) ≤ max
{

𝑡𝑝
−
∗ , 𝑡𝑞+∗

}

∗(𝑥, 𝜉), for all 𝑡, 𝜉 ≥ 0,

where 𝑝−∗ = 𝑑 𝑝−
𝑑−𝑝− and 𝑞+∗ = 𝑑 𝑞+

𝑑−𝑞+ . This completes the proof. □

Lemma 2.23. Let hypotheses (H)(i), (ii), be satisfied.

(i) It holds

𝑝−∗ ≤
ℎ∗(𝑥, 𝑡)𝑡
∗(𝑥, 𝑡)

≤ 𝑞+∗ , for all 𝑡 > 0,

where ∗(𝑥, 𝑡) = ∫ 𝑡
0 ℎ∗(𝑥, 𝑠) d𝑠.

(ii) The function ∗ satisfies the 𝛥2-condition and it holds

min
{

‖𝑢‖𝑝
−
∗
𝐿∗ (R𝑑 )

, ‖𝑢‖𝑞
+
∗
𝐿∗ (R𝑑 )

}

≤ ∫R𝑑
∗(𝑥, 𝑢) d𝑥 ≤ max

{

‖𝑢‖𝑝
−
∗
𝐿∗ (R𝑑 )

, ‖𝑢‖𝑞
+
∗
𝐿∗ (R𝑑 )

}

,

for all 𝑢 ∈ 𝐿∗ (R𝑑 ).

Proof. (i) From Lemma 2.22, we have

𝑡𝑝
−
∗ ∗(𝑥, 𝑧) ≤ ∗(𝑥, 𝑡𝑧) ≤ 𝑡𝑞

+
∗ ∗(𝑥, 𝑧) for all 𝑡 > 1 and for all 𝑧 > 0,

which implies that
𝑡𝑝−∗ − 1𝑝−∗
𝑡 − 1 ∗(𝑥, 𝑧) ≤

∗(𝑥, 𝑡𝑧) −∗(𝑥, 𝑧)
𝑡 − 1 ≤ 𝑡𝑞+∗ − 1𝑞+∗

𝑡 − 1 ∗(𝑥, 𝑧)
for all 𝑡 > 1 and for all 𝑧 > 0. Taking the limit as 𝑡 → 1, we deduce that

𝑝−∗ ≤
ℎ∗(𝑥, 𝑧)𝑧
∗(𝑥, 𝑧)

≤ 𝑞+∗ for all 𝑧 > 0.

(ii) Assertion (ii) follows directly from (i) and Remark 2.8. This concludes the proof. □

Using an argument similar to the one presented in the proof of Lemma 2.14 by Bahrouni–Missaoui–Ounaies [53], we derive the
following lemma.

Lemma 2.24. Let hypotheses (H)(i), (ii) be satisfied. Then, there exists a generalized N-function  that satisfies the following conditions:

(1) 1 < 𝑟− ≤ 𝑟(𝑥, 𝑡)𝑡
(𝑥, 𝑡) ≤ 𝑟+ <

𝑝−∗
𝑞+

for a.a. 𝑥 ∈ R𝑑 and for all 𝑡 ≥ 0.

(2) There exist constants 𝑐1, 𝑐2 > 0 such that

𝑐1 < (𝑥, 1) < 𝑐2 for a.a. 𝑥 ∈ R𝑑 .

(3) ◦ ≪ ∗.

In the following paragraph, we focus on the weighted functional space associated with our problem (1.1) where 𝑉 ≢ 1. We
onsider the function 𝑉 defined as

𝑉 ∶R𝑑 × [0,+∞[→ [0,+∞[, (𝑥, 𝑡) ↦ 𝑉 (𝑥)(𝑥, 𝑡).
For the rest of this part, we assume that 𝑉 fulfills the assumption (𝑉0)(i). Invoking the hypothesis (𝑉0)(i) and Proposition 2.14,

it is easy to prove that 𝑉 is a generalized N-function and satisfies the 𝛥2-condition under the assumption (H)(i), (ii). By this fact
we can define the weighted Musielak-Orlicz space

(

𝐿
𝑉 (R𝑑 ), ‖ ⋅ ‖𝐿

𝑉 (R𝑑 )

)

as

𝐿
𝑉 (R𝑑 ) ∶=

{

𝑢 ∈ 𝑀(R𝑑 ) ∶ ∫R𝑑
𝑉 (𝑥, |𝑢|) d𝑥 < +∞

}

,

endowed with the Luxemburg norm

‖𝑢‖𝐿
𝑉 (R𝑑 ) ∶= inf

{

𝜆 > 0 ∶ ∫R𝑑
𝑉

(

𝑥,
|𝑢|
𝜆

)

d𝑥 ≤ 1
}

.

Remark 2.25. Clearly, the function 𝑉 satisfies the inequality (2.3) with 𝑚 = 𝑝− and 𝓁 = 𝑞+. Therefore, the results of
Proposition 2.12 regarding the space 𝐿𝑉 (R𝑁 ) are valid. Moreover, the relationships between the norm in 𝐿𝑉 (R𝑁 ) and the modular
ssociated with 𝑉 still hold, as described in Proposition 2.10.

Next, we define the weighted Musielak-Orlicz Sobolev space 𝑊 1,
𝑉 (R𝑑 ) by

1, 𝑑 {  𝑑  𝑑 }
𝑊𝑉 (R ) = 𝑢 ∈ 𝐿𝑉 (R ) ∶ |∇𝑢| ∈ 𝐿 (R ) ,

12 
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and it is equipped with the norm

‖𝑢‖𝑊 1,
𝑉 (R𝑑 ) = ‖|∇𝑢|‖𝐿 (R𝑑 ) + ‖𝑢‖𝐿

𝑉 (R𝑑 ).

Let us define 𝜌∶𝑊 1,
𝑉

(

R𝑑) → R by 𝜌(𝑢) = 𝜌 (∇𝑢) + 𝜌𝑉 , (𝑢), i.e.

𝜌(𝑢) = ∫R𝑑
 (𝑥, |∇𝑢|) d𝑥 + ∫R𝑑

𝑉 (𝑥, |𝑢|) d𝑥.

The norm ‖ ⋅ ‖𝑊 1,
𝑉 (R𝑑 ) and the modular 𝜌 have the following relationships. We refer to Zhang–Zuo–Rădulescu [72, Lemma 2.4]

for the case of constant exponent.

Proposition 2.26. Let (H) and (𝑉0) (i) be satisfied. Then, the following hold:

(i) If ‖𝑢‖𝑊 1,
𝑉 (R𝑑 ) < 1, then ‖𝑢‖𝑞

+

𝑊 1,
𝑉 (R𝑑 )

⩽ 𝜌(𝑢) ⩽ ‖𝑢‖𝑝
−

𝑊 1,
𝑉 (R𝑑 )

.

(ii) If ‖𝑢‖𝑊 1,
𝑉 (R𝑑 ) > 1, then ‖𝑢‖𝑝

−

𝑊 1,
𝑉 (R𝑑 )

⩽ 𝜌(𝑢) ⩽ ‖𝑢‖𝑞
+

𝑊 1,
𝑉 (R𝑑 )

.

(iii) ‖𝑢‖𝑊 1,
𝑉 (R𝑑 ) → 0 ⟺ 𝜌(𝑢) → 0.

(iv) ‖𝑢‖𝑊 1,
𝑉 (R𝑑 ) → +∞ ⟺ 𝜌(𝑢) → +∞.

3. Embedding results

In this section, based on the papers by Bahrouni–Missaoui–Ounaies [53] and Cianchi–Diening [48], we present our main
embedding results (continuous and compact) for the three spaces 𝑊 1, (R𝑑 ), 𝑊 1,

𝑉 (R𝑑 ) and 𝑊 1,
r ad (R𝑑 ). Therefore, we divide this

ection into three parts.

3.1. Continuous embedding of 𝑊 1, (R𝑑 ) (Theorem 1.2)

We begin by stating the following lemma, which will be useful in the proof of Theorem 1.2.

Lemma 3.1. Let (H) (i), (ii) be satisfied. Then, the embedding

𝑊 1, (R𝑑 ) ↪ 𝑉 1,
d (R𝑑 ). (3.1)

is continuous.

Proof. First, it is clear that

||𝑢||𝑉 1,
d (R𝑑 ) ≤ ||𝑢||𝑊 1, (R𝑑 ).

Hence, it suffices to prove that

𝑊 1, (R𝑑 ) ⊆ 𝑉 1,
d (R𝑑 ). (3.2)

To this end, let 𝑢 ∈ 𝑊 1, (R𝑑 ). Arguing by contradiction, suppose that there exists 𝜆0 > 0 such that ||
|

{

𝑥 ∈ R𝑑 ∶ |𝑢(𝑥)| > 𝜆0
}

|

|

|

= +∞.
Since 𝑢 ∈ 𝐿 (R𝑑 ), one has

∫R𝑑
(𝑥, 𝑢) d𝑥 < ∞. (3.3)

Moreover, using Proposition 2.14(ii), we obtain

∫R𝑑
(𝑥, 𝑢) d𝑥 ≥ ∫𝐸∶={𝑥∈R𝑑 ∶ |𝑢|>𝜆0}

(𝑥, 𝑢) d𝑥 ≥ ∫𝐸
(𝑥, 𝜆0) d𝑥 ≥ 1

𝑞+ ∫𝐸
𝜆0ℎ(𝑥, 𝜆0) d𝑥

= 1
𝑞+ ∫𝐸

(

𝜆𝑝(𝑥,𝜆0)0 + 𝜇(𝑥)𝜆𝑞(𝑥,𝑢0)0

)

d𝑥 ≥ 1
𝑞+

min
{

𝜆𝑞
+

0 , 1
}

|𝐸| = +∞,

and this contradicts (3.3). The inclusion (3.2) is therefore established. The proof is complete. □

Now, we are in the position to prove Theorem 1.2.

Proof of Theorem 1.2. (i) First, invoking Proposition 2.15, we know that  satisfies the conditions (A0), (A1), and (A2). Moreover,
since 𝑝+ < 𝑑, we can see that

∫0

(

𝑡
∞(𝑡)

)
1

𝑑−1
d𝑡 ≤ ∫0

1

𝑡
𝑝+−1
𝑑−1

d𝑡 < +∞.

Therefore, according to Theorem 3.1 by Cianchi–Diening [48], we have that

𝑉 1,
d (R𝑑 ) ↪ 𝐿∗ (R𝑑 ). (3.4)
13 
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Combining (3.1) and (3.4), we conclude that

𝑊 1, (R𝑑 ) ↪ 𝑉 1,
d (R𝑑 ) ↪ 𝐿∗ (R𝑑 ).

Then, we conclude (i).
(ii) Invoking conditions (1.10) and (1.11), we can find 𝛿 , 𝑇 > 0 such that

(𝑥, 𝑡) ≤ (𝑥, 𝑡) for all |𝑡| ≤ 𝛿 and for all 𝑥 ∈ R𝑑 ,

(𝑥, 𝑡) ≤ ∗(𝑥, 𝑡) for all |𝑡| ≥ 𝑇 and for all 𝑥 ∈ R𝑑 .

From (1.9), (), and Proposition 2.10, it follows that

∫R𝑑
(𝑥, 𝑢(𝑥)) d𝑥

≤ ∫{|𝑢|≥𝑇 }
∗(𝑥, 𝑢(𝑥)) d𝑥 + ∫{|𝑢|≤𝛿}

(𝑥, 𝑢(𝑥)) d𝑥 + ∫{𝛿 <|𝑢|<𝑇 }
(𝑥, 𝑢(𝑥)) d𝑥

≤ ∫{|𝑢|≥𝑇 }
∗(𝑥, 𝑢(𝑥)) d𝑥 + ∫{|𝑢|≤𝛿}

(𝑥, 𝑢(𝑥)) d𝑥 + ∫{𝛿 <|𝑢|<𝑇 }
(𝑥, 𝑇 ) d𝑥

≤ ∫{|𝑢|≥𝑇 }
∗(𝑥, 𝑢(𝑥)) d𝑥 + ∫{|𝑢|≤𝛿}

(𝑥, 𝑢(𝑥)) d𝑥

+ max
{

𝑇 𝑣− , 𝑇 𝑣+
}

∫{𝛿 <|𝑢|<𝑇 }
(𝑥, 1) d𝑥

≤ ∫{|𝑢|≥𝑇 }
∗(𝑥, 𝑢(𝑥)) d𝑥 + ∫{|𝑢|≤𝛿}

(𝑥, 𝑢(𝑥)) d𝑥

+ 𝐶3 max{𝑇 𝑣− , 𝑇 𝑣+}|{𝛿 < |𝑢| < 𝑇 }|, for all 𝑢 ∈ 𝑊 1, (R𝑑 )

(3.5)

and for some constant 𝐶3 > 0. On the other hand, using () and Proposition 2.10, we obtain

|{𝛿 < |𝑢| < 𝑇 }| ≤ ∫{𝛿 <|𝑢|<𝑇 }
1

(𝑥, 𝛿)(𝑥, 𝑢(𝑥)) d𝑥

≤ 1
min{𝛿𝑝− , 𝛿𝑞+} ∫{𝛿 <|𝑢|<𝑇 }

1
(𝑥, 1)

(𝑥, 𝑢(𝑥)) d𝑥

≤ 1
𝐶1 min{𝛿𝑝− , 𝛿𝑞+} ∫{𝛿 <|𝑢|<𝑇 }

(𝑥, 𝑢(𝑥)) d𝑥

≤ 1
𝐶1 min{𝛿𝑝− , 𝛿𝑞+} ∫R𝑑

(𝑥, 𝑢(𝑥)) d𝑥.

(3.6)

Combining (3.5) and (3.6), we get our desired result. This concludes the proof. □

3.2. Compact embedding of 𝑊 1,
𝑉 (R𝑑 )

In this subsection we give the proofs of Theorems 1.3, 1.4 and 1.5.

Proof of Theorem 1.3. Let
{

𝑢𝑛
}

𝑛∈N ⊂ 𝑊 1,
𝑉 (R𝑑 ) be a sequence such that 𝑢𝑛 ⇀ 𝑢 weakly in 𝑊 1,

𝑉 (R𝑑 ). First, from (𝑉0)(i), it is clear
hat 𝑊 1,

𝑉 (R𝑑 ) ↪ 𝑊 1, (R𝑑 ). Consequently, by applying [4, Theorem 3.12], we obtain that 𝑢𝑛 → 𝑢 strongly in 𝐿
loc(R

𝑑 ). We aim to
demonstrate that 𝑢𝑛 → 𝑢 strongly in 𝐿 (R𝑑 ). By Brézis-Lieb’s theorem, see Proposition 2.17, it suffices to show that

𝛼𝑛 ∶= ∫R𝑑
(𝑥, 𝑢𝑛) d𝑥 → ∫R𝑑

(𝑥, 𝑢) d𝑥.

Given a bounded sequence
{

𝛼𝑛
}

𝑛∈N in R, we can extract a subsequence such that 𝛼𝑛 → 𝛼. Hence, by Fatou’s lemma, we have

𝛼 ≥ ∫R𝑑
(𝑥, 𝑢) d𝑥. (3.7)

Utilizing [4, Theorem 3.12], we obtain

∫𝐵𝑟

(𝑥, 𝑢𝑛) d𝑥 → ∫𝐵𝑟

(𝑥, 𝑢) d𝑥, (3.8)

where 𝐵𝑟 ∶= 𝐵𝑟(0).

Claim: For a given 𝜀 > 0, there exists 𝑟 = 𝑟(𝜀) > 0 such that

∫𝐵𝑐
𝑟

(𝑥, 𝑢𝑛) d𝑥 < 𝜀,

for 𝑛 ∈ N sufficiently large.
Indeed, for a given 𝜀 > 0, let 𝐿 > 0 be such that

2 max
{

𝑀 , supmax
{

‖𝑢𝑛‖
𝑝− , ‖𝑢𝑛‖

𝑞+
}}

< 𝐿, (3.9)

𝜀 𝑛 𝑊 1,

𝑉 (R𝑑 ) 𝑊 1,
𝑉 (R𝑑 )

14 
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where 𝑀 will be specified later. Applying Lemma 2.24, we can find a generalized N-function  such that ◦ ≪ ∗, which implies
the existence of constants 𝐶4 > 0 and 𝑇 > 0 satisfying

(𝑥,(𝑥, 𝑡)) ≤ 𝐶4∗(𝑥, 𝑡) for all 𝑥 ∈ R𝑑 and for all 𝑡 ≥ 𝑇 . (3.10)

Now, we define the function 𝑓 ∶ [0,+∞) → R by

𝑓 (𝑡) ∶= max
{

𝑡
𝑟+−1
𝑟+ , 𝑡 𝑟

−−1
𝑟−

}

for all 𝑡 ≥ 0,

where 𝑟− and 𝑟+ are defined in Lemma 2.24. It is clear that 𝑓 is continuous and lim𝑡→0 𝑓 (𝑡) = 0. According to (𝑉0)(ii), we can choose
 > 1 sufficiently large such that

𝑓
(

|

|

|

{

𝑥 ∈ 𝐵𝑐
𝑟 (0) ∶𝑉 (𝑥) < 𝐿}||

|

)

≤ 𝜀
2𝑀

. (3.11)

Next, define the sets

 ∶=
{

𝑥 ∈ 𝐵𝑐
𝑟 (0) ∶𝑉 (𝑥) ≥ 𝐿

}

and  ∶=
{

𝑥 ∈ 𝐵𝑐
𝑟 (0) ∶𝑉 (𝑥) < 𝐿} .

By Proposition 2.10 and (3.9), one has

∫
(𝑥, 𝑢𝑛) d𝑥 ≤ ∫

𝑉 (𝑥)
𝐿

(𝑥, 𝑢𝑛) d𝑥 ≤ 1
𝐿

max
{

‖𝑢𝑛‖
𝑝−

𝑊 1,
𝑉 (R𝑑 )

, ‖𝑢𝑛‖
𝑞+

𝑊 1,
𝑉 (R𝑑 )

}

≤ 𝜀
2
. (3.12)

On the other hand, from Lemma 2.24 and Hölder’s inequality, we obtain

∫
(𝑥, 𝑢𝑛) d𝑥 ≤ 2 ‖

‖

(𝑥, 𝑢𝑛)‖‖𝐿()
‖

‖

𝜒‖‖𝐿̃(R𝑑 ) , (3.13)

where ̃ is the conjugate function of . Using Lemmas 2.7, 2.18, and 2.24, we find

‖𝜒‖𝐿̃(R𝑑 ) ≤ 𝐶5 max
{

||
𝑟+−1
𝑟+ , ||

𝑟−−1
𝑟−

}

= 𝐶5𝑓 (||). (3.14)

Applying (3.10), Proposition 2.10, and Lemma 2.24(2), we deduce that

∫
(𝑥,(𝑥, 𝑢𝑛)) d𝑥

= ∫∩[|𝑢𝑛|≤𝑇 ]
(𝑥,(𝑥, 𝑢𝑛)) d𝑥 + ∫∩[|𝑢𝑛|>𝑇 ]

(𝑥,(𝑥, 𝑢𝑛)) d𝑥

≤ ∫∩[|𝑢𝑛|≤𝑇 ]
(𝑥,(𝑥, 𝑇 )) d𝑥 + 𝐶4 sup

𝑛 ∫R𝑑
∗(𝑥, 𝑢𝑛) d𝑥

≤ ∫∩[|𝑢𝑛|≤𝑇 ]


(

𝑥,max
{

𝑇 𝑝− , 𝑇 𝑞+
}

(𝑥, 1)
)

d𝑥 + 𝐶4 sup
𝑛 ∫R𝑑

∗(𝑥, 𝑢𝑛) d𝑥

≤ ∫∩[|𝑢𝑛|≤𝑇 ]


(

𝑥,max
{

𝑇 𝑝− , 𝑇 𝑞+
}

𝐶2

)

d𝑥 + 𝐶4 sup
𝑛 ∫R𝑑

∗(𝑥, 𝑢𝑛) d𝑥

≤ ∫∩[|𝑢𝑛|≤𝑇 ]
max

{

(

max
{

𝑇 𝑝− , 𝑇 𝑞+
}

𝐶2

)𝑟−
,
(

max
{

𝑇 𝑝− , 𝑇 𝑞+
}

𝐶2

)𝑟+
}

(𝑥, 1) d𝑥

+ 𝐶4 sup
𝑛 ∫R𝑑

∗(𝑥, 𝑢𝑛) d𝑥

≤ ∫∩[|𝑢𝑛|≤𝑇 ]
𝑐2 max

{

(

max
{

𝑇 𝑝− , 𝑇 𝑞+
}

𝐶2

)𝑟−
,
(

max
{

𝑇 𝑝− , 𝑇 𝑞+
}

𝐶2

)𝑟+
}

d𝑥

+ 𝐶4 sup
𝑛 ∫R𝑑

∗(𝑥, 𝑢𝑛) d𝑥

≤ |1|𝑇1 + 𝐶4 sup
𝑛 ∫R𝑑

∗(𝑥, 𝑢𝑛) d𝑥,

(3.15)

where  ⊂ 1, for all 0 < 𝜀 < 1 small enough, and

𝑇1 ∶= 𝑐2 max
{

(

max
{

𝑇 𝑝− , 𝑇 𝑞+
}

𝐶2

)𝑟−
,
(

max
{

𝑇 𝑝− , 𝑇 𝑞+
}

𝐶2

)𝑟+
}

.

Next, we define

𝑀 ∶= 2𝐶5|1|𝑇1 + 2𝐶4𝐶5 sup
𝑛 ∫R𝑑

∗(𝑥, 𝑢𝑛) d𝑥 + 2𝐶5.

Thus, by (3.11), (3.13), (3.14), and (3.15), we obtain

∫
(𝑥, 𝑢𝑛) d𝑥 ≤ 𝐵2 max

{

||
𝑟+−1
𝑟+ , ||

𝑟−−1
𝑟−

}

= 𝑀 𝑓 (||) ≤ 𝜀
2
. (3.16)

Therefore, in light of (3.12) and (3.16), we conclude that

(𝑥, 𝑢𝑛) d𝑥 = (𝑥, 𝑢𝑛) d𝑥 + (𝑥, 𝑢𝑛) d𝑥 < 𝜀.
∫𝐵𝑐
𝑟 (0)

∫ ∫

15 
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This shows the Claim.
Exploiting the Claim and (3.8), we find that

∫R𝑑
(𝑥, 𝑢) d𝑥 = ∫𝐵𝑟(0)

(𝑥, 𝑢) d𝑥 + ∫𝐵𝑐
𝑟 (0)

(𝑥, 𝑢) d𝑥

≥ lim
𝑛→∞∫𝐵𝑟(0)

(𝑥, 𝑢𝑛) d𝑥

= lim
𝑛→∞∫R𝑑

(𝑥, 𝑢𝑛) d𝑥 − lim
𝑛→∞∫𝐵𝑐

𝑟 (0)
(𝑥, 𝑢𝑛) d𝑥

≥ 𝛼 − 𝜀.

(3.17)

Consequently, combining (3.7) and (3.17), we deduce the proof of the theorem. □

Proof of Theorem 1.4. Given  ≪ ∗, for any 𝜀 > 0, we can find 𝑇 > 0 such that
(𝑥, |𝑡|)
∗(𝑥, |𝑡|)

≤ 𝜀
2𝜅

for |𝑡| ≥ 𝑇 and for all 𝑥 ∈ R𝑑 , (3.18)

where 𝜅 > 0 will be specified later. Consider the sequence {𝑢𝑛}𝑛∈N ⊂ 𝑊 1,
𝑉 (R𝑑 ) such that 𝑢𝑛 ⇀ 0 in 𝑊 1,

𝑉 (R𝑑 ). According to
Theorem 1.3, this implies that

𝑢𝑛 → 0 in 𝐿 (R𝑑 ). (3.19)

We then decompose the integral as follows

∫R𝑑
(𝑥, |𝑢𝑛|) d𝑥 = ∫{|𝑢𝑛|≥𝑇 }

(𝑥, |𝑢𝑛|) d𝑥 + ∫{|𝑢𝑛|<𝑇 }
(𝑥, |𝑢𝑛|) d𝑥. (3.20)

By invoking Theorem 1.2, we set

𝜅 ∶= sup
𝑛 ∫R𝑑

∗(𝑥, |𝑢𝑛|) d𝑥 < +∞.

From (3.18), one has

∫{|𝑢𝑛|≥𝑇 }
(𝑥, |𝑢𝑛|) d𝑥 ≤ 𝜀

2𝜅 ∫R𝑑
∗(𝑥, |𝑢𝑛|) d𝑥 ≤ 𝜀

2
. (3.21)

To complete the proof, we need to analyze the integral in (3.20) over the set {|𝑢𝑛| < 𝑇 }. For this purpose, we will use either
ssumption (𝐵1) or (1.12).
Under assumption (𝐵1):

Let 𝜃 ∈ (0, 1). By applying Hölder’s inequality, we obtain

∫{|𝑢𝑛|<𝑇 }
(𝑥, |𝑢𝑛|) d𝑥 ≤

⎡

⎢

⎢

⎣

∫{|𝑢𝑛|<𝑇 }

(

(𝑥, |𝑢𝑛|)
(𝑥, |𝑢𝑛|)𝜃

)
1

1−𝜃
d𝑥

⎤

⎥

⎥

⎦

1−𝜃
[

∫R𝑑
(𝑥, |𝑢𝑛|) d𝑥

]𝜃
. (3.22)

By assumption (𝐵1), there exist constants 𝛿 , 𝐶6 > 0 such that

(𝑥, |𝑢𝑛|) ≤ 𝐶6(𝑥, |𝑢𝑛|) for all |𝑢𝑛| ≤ 𝛿 and for all 𝑥 ∈ R𝑑 .

If 𝛿 < 𝑇 , then using () and Proposition 2.10, we have

(𝑥, |𝑢𝑛|)
(𝑥, |𝑢𝑛|)

≤ (𝑥, 𝑇 )
(𝑥, 𝛿) ≤

max
{

𝑇 𝑣+ , 𝑇 𝑣−
}

(𝑥, 1)

min
{

𝛿𝑝− , 𝛿𝑞+}(𝑥, 1)
≤ 𝐶

max
{

𝑇 𝑣− , 𝑇 𝑣+
}

min
{

𝛿𝑝− , 𝛿𝑞+} ,

for |𝑢𝑛| ∈ [𝛿 , 𝑇 ] and 𝑥 ∈ R𝑑 with some constant 𝐶 > 0 independent of 𝑥. Hence,
(𝑥, |𝑢𝑛|)
(𝑥, |𝑢𝑛|)

≤ 𝐶1−𝜃
1 for all |𝑢𝑛| ≤ 𝑇 and for all 𝑥 ∈ R𝑑 ,

where 𝐶1−𝜃
1 ∶= max

{

𝐶6, 𝐶
max{𝑇 𝑣− , 𝑇 𝑣+}
min{𝛿𝑝− , 𝛿𝑞+}

}

. Consequently,
(

(𝑥, |𝑢𝑛|)
(𝑥, |𝑢𝑛|)𝜃

)
1

1−𝜃
≤ 𝐶1(𝑥, |𝑢𝑛|) for all |𝑢𝑛| ≤ 𝑇 and for all 𝑥 ∈ R𝑑 . (3.23)

From (3.19), there exists 𝑛0 ∈ N such that

∫R𝑑
(𝑥, |𝑢𝑛|) d𝑥 < 𝜀

2𝐶1−𝜃
1

for all 𝑛 > 𝑛0. (3.24)

Therefore, combining (3.21), (3.22), (3.23), and (3.24), we deduce that

∫R𝑑
(𝑥, |𝑢𝑛|) d𝑥 < 𝜀. (3.25)

This completes the proof.
16 
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Under assumption (1.12):
Fix 𝜀 > 0. Then, from (3.19), there exists 𝑛0 ∈ N such that

∫R𝑑
(𝑥, |𝑢𝑛|) d𝑥 ≤ min

⎧

⎪

⎨

⎪

⎩

𝜀
4𝐶3

,
(

𝜀
4𝑘1−𝑎

)
1
𝑎
⎫

⎪

⎬

⎪

⎭

for all 𝑛 ≥ 𝑛0, (3.26)

where 𝐶3 will be defined later.
Again, by (3.19) and assumption (1.12), we obtain

∫{|𝑢𝑛|≤1}
(𝑥, |𝑢𝑛|) d𝑥 ≤ ∫{|𝑢𝑛|≤1}

(𝑥, |𝑢𝑛|)𝑎∗(𝑥, |𝑢𝑛|)1−𝑎 d𝑥

≤

(

∫{|𝑢𝑛|≤1}
(𝑥, |𝑢𝑛|) d𝑥

)𝑎 (

∫{|𝑢𝑛|≤1}
∗(𝑥, |𝑢𝑛|) d𝑥

)1−𝑎

≤ 𝜀
4
.

(3.27)

If 𝑇 > 1, then by (3.26), (), and Proposition 2.10, for all 𝑛 ≥ 𝑛0, we have

∫{1≤|𝑢𝑛|≤𝑇 }
(𝑥, |𝑢𝑛|) d𝑥 ≤ ∫R𝑑

(𝑥, 𝑇 )
(𝑥, 1)

(𝑥, |𝑢𝑛|) d𝑥

≤ max
{

𝑇 𝑣+ , 𝑇 𝑣−
}

∫R𝑑

(𝑥, 1)
(𝑥, 1)

(𝑥, |𝑢𝑛|) d𝑥

≤ 𝐶2 max
{

𝑇 𝑣+ , 𝑇 𝑣−
}

∫R𝑑
(𝑥, |𝑢𝑛|) d𝑥

≤ 𝐶3 ∫R𝑑
(𝑥, |𝑢𝑛|) d𝑥

< 𝜀
4
,

(3.28)

for some constants 𝐶2 > 0 and 𝐶3 ∶= 𝐶2 max
{

𝑇 𝑣+ , 𝑇 𝑣−
}

. Thus, by combining (3.21), (3.26), (3.27), and (3.28), we conclude that
3.25) holds. □

Proof of Theorem 1.5. Let us consider the weighted Sobolev space

𝑊 1,𝑝−
𝑉 (R𝑑 ) ∶=

{

𝑢 ∈ 𝑊 1,𝑝− (R𝑑 ) ∶ ∫R𝑑
𝑉 (𝑥)|𝑢|𝑝

−
d𝑥 < +∞

}

,

endowed with the norm

‖𝑢‖𝑊 1,𝑝−
𝑉 (R𝑑 ) ∶= ‖𝑢‖𝐿𝑝−

𝑉 (R𝑑 ) + ‖∇𝑢‖𝐿𝑝− (R𝑑 ).

The proof of Theorem 1.5 can be directly obtained by noting that 𝑊 1,
𝑉 (R𝑑 ) ↪ 𝑊 1,𝑝−

𝑉 (R𝑑 ) and invoking Lemma 7 by Stegliński
55]. □

3.3. Compact embedding of 𝑊 1,
r ad (R𝑑 ) (Theorem 1.6 )

In this paragraph, we focus on proving the Strauss-type embedding theorem given in Theorem 1.6. For this purpose, we first
need to demonstrate the Lions-type lemma given in Theorem 1.7.

Proof of Theorem 1.7. Let {𝑢𝑛}𝑛∈N ⊂ 𝑊 1, (R𝑑 ) be a sequence satisfying (1.13). Given  ≪ ∗, for any 𝜀 > 0, there exists 𝑇 > 0
uch that

(𝑥, |𝑡|)
∗(𝑥, |𝑡|)

≤ 𝜀
3𝜅

for all |𝑡| ≥ 𝑇 and for all 𝑥 ∈ R𝑑 , (3.29)

where 𝜅 is defined as

𝜅 = sup
𝑛 ∫R𝑑

∗(𝑥, |𝑢𝑛|) d𝑥 < +∞.

From (1.11), there exists 𝛿 > 0 such that
(𝑥, |𝑡|)
(𝑥, |𝑡|)

≤ 𝜀
3𝜃

for all |𝑡| < 𝛿 and for all 𝑥 ∈ R𝑑 , (3.30)

where

𝜃 = sup
𝑛 ∫R𝑑

(𝑥, |𝑢𝑛|) d𝑥 < +∞.

Consider the decomposition
17 
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∫R𝑑
(𝑥, |𝑢𝑛|) d𝑥 = ∫{|𝑢𝑛|≤𝛿}

(𝑥, |𝑢𝑛|) d𝑥 + ∫{𝛿 <|𝑢𝑛|<𝑇 }
(𝑥, |𝑢𝑛|) d𝑥 + ∫{|𝑢𝑛|≥𝑇 }

(𝑥, |𝑢𝑛|) d𝑥.

Using (3.29), we obtain

∫{|𝑢𝑛|≥𝑇 }
(𝑥, |𝑢𝑛|) d𝑥 ≤ 𝜀

3𝜅 ∫R𝑑
∗(𝑥, |𝑢𝑛|) d𝑥 ≤ 𝜀

3
. (3.31)

Similarly, from (3.30), we have

∫{|𝑢𝑛|≤𝛿}
(𝑥, |𝑢𝑛|) d𝑥 ≤ 𝜀

3𝜃 ∫{|𝑢𝑛|≤𝛿}
(𝑥, |𝑢𝑛|) d𝑥 ≤ 𝜀

3
. (3.32)

In the rest of the proof, we consider two cases

Case 1: Suppose

lim
𝑛→∞

|{𝛿 < |𝑢𝑛| < 𝑇 }| = 0.
Thus, there exists 𝑛0 ∈ N such that

|{𝛿 < |𝑢𝑛| < 𝑇 }| < 𝜀
3𝐶5𝐶4

for all 𝑛 ≥ 𝑛0, (3.33)

where 𝐶4, 𝐶5 > 0 are constants defined later. Consequently, we have

∫{𝛿 <|𝑢𝑛|<𝑇 }
(𝑥, 𝑢𝑛) d𝑥 ≤ ∫{𝛿 <|𝑢𝑛|<𝑇 }

(𝑥, 𝑇 ) d𝑥

≤ max
{

𝑇 𝑝− , 𝑇 𝑞+
}

∫{𝛿 <|𝑢𝑛|<𝑇 }
(𝑥, 1) d𝑥

≤ 𝐶2 max
{

𝑇 𝑝− , 𝑇 𝑞+
}

|{𝛿 < |𝑢𝑛| < 𝑇 }|
= 𝐶5|{𝛿 < |𝑢𝑛| < 𝑇 }| ≤ 𝜀

3𝐶4
.

(3.34)

For 𝑛 ≥ 𝑛0, using Proposition 2.10, (), (3.33), and (3.34) we find

∫{𝛿 <|𝑢𝑛|<𝑇 }
(𝑥, 𝑢𝑛) d𝑥 ≤ ∫{𝛿 <|𝑢𝑛|<𝑇 }

(𝑥, 𝑇 )
(𝑥, 𝛿)(𝑥, 𝑢𝑛) d𝑥

≤ max{𝑇 𝑣+ , 𝑇 𝑣−}
min{𝛿𝑝− , 𝛿𝑞+} ∫{𝛿 <|𝑢𝑛|<𝑇 }

(𝑥, 1)
(𝑥, 1)

(𝑥, 𝑢𝑛) d𝑥

≤ 𝐶3
max{𝑇 𝑣+ , 𝑇 𝑣−}
min{𝛿𝑝− , 𝛿𝑞+} ∫{𝛿 <|𝑢𝑛|<𝑇 }

(𝑥, 𝑢𝑛) d𝑥

≤ 𝐶4 ∫{𝛿 <|𝑢𝑛|<𝑇 }
(𝑥, 𝑢𝑛) d𝑥

< 𝜀
3
,

(3.35)

for some 𝐶3 > 0 and 𝐶4 = 𝐶3
max{𝑇 𝑣+ , 𝑇 𝑣−}
min{𝛿𝑝− , 𝛿𝑞+} . Therefore, using (3.31), (3.32), and (3.35), we conclude that

∫R𝑑
(𝑥, 𝑢𝑛) d𝑥 ≤ 𝜀 for any 𝜀 > 0.

This completes the proof for the first case.

Case 2: Assume, up to a subsequence, that

lim
𝑛→∞

|{𝛿 < |𝑢𝑛| < 𝑇 }| = 𝑀 ∈ (0,∞).

We will show that this case cannot occur. Consider the following claim:

Claim: There exist 𝑦0 ∈ R𝑑 and 𝜎 > 0 such that

0 < 𝜎 ≤ |{𝛿 < |𝑢𝑛| < 𝑇 } ∩ 𝐵𝑟(𝑦0)|

holds true for a subsequence of {𝑢𝑛}𝑛∈N, which is also labeled as
{

𝑢𝑛
}

𝑛∈N. The proof follows by contradiction. Indeed, for each 𝜀 > 0
and 𝑘 ∈ N, we have

|{𝛿 < |𝑢𝑛| < 𝑇 } ∩ 𝐵𝑟(𝑦)| <
𝜀
2𝑘

(3.36)

for all 𝑦 ∈ R𝑑 . Notice that the last estimate holds for any subsequence of
{

𝑢𝑛
}

𝑛∈N. Without loss of generality, we consider just the
sequence

{

𝑢𝑛
}

𝑛∈N. Now, choose {𝑦𝑘}𝑘∈N ⊂ R𝑑 such that ∪∞
𝑘=1𝐵𝑟(𝑦𝑘) = R𝑑 . Using (3.36), we write

|{𝛿 < |𝑢𝑛| < 𝑇 }| = |{𝛿 < |𝑢𝑛| < 𝑇 } ∩ (∪∞
𝑘=1𝐵𝑟(𝑦𝑘))|

≤
∞
∑

|{𝛿 < |𝑢𝑛| < 𝑇 } ∩ 𝐵𝑟(𝑦𝑘)|

𝑘=1

18 
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≤
∞
∑

𝑘=1

𝜀
2𝑘

= 𝜀,

where 𝜀 > 0 is arbitrary. Up to a subsequence, it follows from the last estimate that

0 < 𝑀 = lim
𝑛→∞

|{𝛿 < |𝑢𝑛| < 𝑇 }| ≤ 𝜀,

which does not make sense for 𝜀 ∈ (0, 𝑀). Thus, the proof of the claim is finished.
At this point, using the Claim, (1.13), (), and Proposition 2.10, we observe that

0 < 𝜎 ≤ |{𝛿 < |𝑢𝑛| < 𝑇 } ∩ 𝐵𝑟(𝑦0)| ≤ ∫𝐵𝑟(𝑦0)

1
(𝑥, 𝛿)(𝑥, 𝑢𝑛) d𝑥

≤ min
{

𝛿𝑝
−
, 𝛿𝑞+

}

∫𝐵𝑟(𝑦0)

1
(𝑥, 1)

(𝑥, 𝑢𝑛) d𝑥

≤ 𝐶6 min
{

𝛿𝑝
−
, 𝛿𝑞+

}

sup
𝑦∈R𝑑 ∫𝐵𝑟(𝑦)

(𝑥, 𝑢𝑛) d𝑥 → 0 as 𝑛 → ∞.

This contradiction proves that the second case is impossible. In other words, we prove that 𝑀 = 0 is always verified. Hence, our
result follows from the first case. This ends the proof. □

Proof (Proof of the Strauss Embedding Theorem (Theorem 1.6)). Let {𝑢𝑛}𝑛∈N ⊂ 𝑊 1,
r ad (R𝑑 ) be a bounded sequence. Since 𝑊 1,

r ad (R𝑑 ) is
a reflexive space, up to a subsequence, still denoted by

{

𝑢𝑛
}

𝑛∈N,

𝑢𝑛 ⇀ 𝑢 in 𝑊 1,
r ad (R𝑑 ).

Without loss of generality, we may assume that 𝑢 ≡ 0. Using the continuous embedding 𝑊 1, (R𝑑 ) ↪ 𝐿 (R𝑑 ), we can find a constant
7 > 0 such that

∫R𝑑
(𝑥, 𝑢𝑛) d𝑥 < 𝐶7. (3.37)

Let us fix 𝑟 > 0. Since 𝑢𝑛 is radially symmetric for all 𝑛 ∈ N,

∫𝐵𝑟(𝑦1)
(𝑥, 𝑢𝑛) d𝑥 = ∫𝐵𝑟(𝑦2)

(𝑥, 𝑢𝑛) d𝑥 for all 𝑦1, 𝑦2 ∈ R𝑑 with |𝑦1| = |𝑦2|. (3.38)

In the sequel, for each 𝑦 ∈ R𝑑 , |𝑦| > 𝑟, we denote by 𝛾(𝑦) the maximum number of integers 𝑗 ≥ 1 such that there exist
𝑦1, 𝑦2,… , 𝑦𝑗 ∈ R𝑑 , with

|𝑦1| = |𝑦2| = ⋯ = |𝑦𝑗 | = |𝑦| and 𝐵𝑟(𝑦𝑖) ∩ 𝐵𝑟(𝑦𝑘) = ∅ whenever 𝑖 ≠ 𝑘.

From the above definition, it is clear that

𝛾(𝑦) → +∞ as |𝑦| → +∞. (3.39)

Let 𝑦 ∈ R𝑑 , |𝑦| > 𝑟, and choose 𝑦1,… , 𝑦𝛾(𝑦) ∈ R𝑑 as above. Thus, by (3.37), (3.38), and (3.39), we obtain

𝐶7 > ∫R𝑑
(𝑥, 𝑢𝑛) d𝑥 ≥

𝛾(𝑦)
∑

𝑖=1
∫𝐵𝑟(𝑦𝑖)

(𝑥, 𝑢𝑛) d𝑥

≥ 𝛾(𝑦)∫𝐵𝑟(𝑦)
(𝑥, 𝑢𝑛) d𝑥.

It follows, by (3.39), that

∫𝐵𝑟(𝑦)
(𝑥, 𝑢𝑛) d𝑥 ≤

𝐶7
𝛾(𝑦)

→ 0 as |𝑦| → +∞.

Therefore, for arbitrary 𝜀 > 0, there exists 𝑅𝜀 > 0 such that

sup
|𝑦|≥𝑅𝜀

∫𝐵𝑟(𝑦)
(𝑥, 𝑢𝑛) d𝑥 ≤ 𝜀 for 𝑛 ∈ N. (3.40)

On the other hand, by [4, Theorem 3.12], we have the compact embedding

𝑊 1, (𝐵𝑟+𝑅𝜀
(0)) ↪ 𝐿 (𝐵𝑟+𝑅𝜀

(0)).

Hence, 𝑢𝑛 → 0 in 𝐿 (𝐵𝑟+𝑅𝜀
(0)), and

∫𝐵𝑟+𝑅𝜀 (0)
(𝑥, 𝑢𝑛) d𝑥 → 0 as 𝑛 → +∞,

which implies that

sup
|𝑦|<𝑅𝜀

∫𝐵𝑟(𝑦)
(𝑥, 𝑢𝑛) d𝑥 → 0 as 𝑛 → +∞. (3.41)

Putting (3.40) and (3.41) together, and applying Theorem 1.7, we deduce that
19 
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𝑢𝑛 → 0 in 𝐿 (R𝑑 ). □

4. Application

In this section, we prove our main multiplicity result. Recall that the problem under consideration is the following one
− div (|∇𝑢|𝑝(𝑥,|∇𝑢|)−2∇𝑢 + 𝜇(𝑥)|∇𝑢|𝑞(𝑥,|∇𝑢|)−2∇𝑢

)

+ 𝑉 (𝑥)
(

|𝑢|𝑝(𝑥,|𝑢|)−2𝑢 + 𝜇(𝑥)|𝑢|𝑞(𝑥,|𝑢|)−2𝑢
)

= 𝜆𝑓 (𝑥, 𝑢), 𝑥 ∈ R𝑑 ,

First, we recall the definition of the Cerami condition, which will be needed.

Definition 4.1. Let 𝑋 be a Banach space, and denote by 𝑋∗ its topological dual space. Given 𝐿 ∈ 𝐶1(𝑋), we say that 𝐿 satisfies
the Cerami-condition, (C)-condition for short, if every sequence

{

𝑢𝑛
}

𝑛∈N ⊆ 𝑋 such that

(C1)
{

𝐿
(

𝑢𝑛
)}

𝑛≥1 ⊆ R is bounded,
(C2)

(

1 + ‖

‖

𝑢𝑛‖‖𝑋
)

𝐿′ (𝑢𝑛
)

→ 0 in 𝑋∗ as 𝑛 → ∞,

admits a strongly convergent subsequence in 𝑋.
To prove Theorem 1.9, we will use the following theorem, which can be found in the paper by Bonanno and D’Aguì [57, Theorem

2.1 and Remark 2.2].

Theorem 4.2. Let 𝑋 be a real Banach space and let 𝜌, 𝐾 ∶𝑋 → R be two continuously Gâteaux differentiable functionals such that

inf
𝑋

𝜌 = 𝜌(0) = 𝐾(0) = 0.

Assume that 𝜌 is coercive and there exist 𝑟 ∈ R and 𝑢̃ ∈ 𝑋, with 0 < 𝜌(𝑢̃) < 𝑟, such that
sup𝑢∈𝜌−1([−∞,𝑟]) 𝐾(𝑢)

𝑟
<

𝐾(𝑢̃)
𝜌(𝑢̃)

(4.1)

and, for each 𝜆 ∈

[

𝜌(𝑢̃)
𝐾(𝑢̃)

, 𝑟
sup𝑢∈𝜌−1([−∞,𝑟]) 𝐾(𝑢)

]

, the functional 𝐽𝜆 = 𝜌 − 𝜆𝐾 satisfies the (C)-condition and it is unbounded from below.

Then, for each 𝜆 ∈

[

𝜌(𝑢̃)
𝐾(𝑢̃)

, 𝑟
sup𝑢∈𝜌−1([−∞,𝑟]) 𝐾(𝑢)

]

, the functional 𝐽𝜆 admits at least two nontrivial critical points 𝑢𝜆,1, 𝑢𝜆,2 such that

𝐽𝜆
(

𝑢𝜆,1
)

< 0 < 𝐽𝜆
(

𝑢𝜆,2
)

.

As shown in the statement of Theorem 4.2, the proof of our existence result depends on certain properties of the energy
functional associated with the problem (1.1). Therefore, we divide this section into two parts. First, we examine the properties of the
corresponding energy functional. In the second part, we check the geometric conditions of Theorem 4.2 to ensure the multiplicity
of weak solutions.

4.1. Some properties of the energy functional

In this subsection, we work under the assumptions of Theorem 1.9. We introduce the new double phase operator defined in
(1.2), which is associated with our problem (1.1), along with its corresponding energy functional. Let

(

𝑊 1,
𝑉 (R𝑑 )

)∗
be the dual

pace of 𝑊 1,
𝑉 (R𝑑 ) with its duality pairing denoted by ⟨⋅, ⋅⟩. We say that 𝑢 ∈ 𝑊 1,

𝑉 (R𝑑 ) is a weak solution of problem (1.1), if

∫R𝑑

(

|∇𝑢|𝑝(𝑥,|∇𝑢|)−2∇𝑢 ⋅ ∇𝑣 + 𝜇(𝑥)
(

|∇𝑢|𝑞(𝑥,|∇𝑢|)−2∇𝑢 ⋅ ∇𝑣
))

d𝑥

+ ∫R𝑑
𝑉 (𝑥)

(

|𝑢|𝑝(𝑥,|𝑢|)−2𝑢𝑣 + 𝜇(𝑥)
(

|𝑢|𝑞(𝑥,|𝑢|)−2𝑢𝑣
))

d𝑥 = 𝜆∫R𝑑
𝑓 (𝑥, 𝑢)𝑣 d𝑥

for all 𝑣 ∈ 𝑊 1,
𝑉 (R𝑑 ). We define the functionals 𝜌, 𝐾 ∶𝑊 1,

𝑉 (R𝑑 ) → R by

𝜌(𝑢) = ∫R𝑑
 (𝑥, |∇𝑢|) d𝑥 + ∫R𝑑

𝑉 (𝑥, |𝑢|) d𝑥 and 𝐾(𝑢) = ∫R𝑁
𝐹 (𝑥, 𝑢) d𝑥.

We are now prepared to examine the key properties of the functionals 𝜌 and 𝐾.

Theorem 4.3. Let hypotheses (H) and (𝑉0) be satisfied. Then the functional 𝜌 is well-defined and of class 𝐶1 with
⟨

𝜌′(𝑢), 𝑣⟩ = ∫R𝑑

(

|∇𝑢|𝑝(𝑥,|∇𝑢|)−2∇𝑢 ⋅ ∇𝑣 + 𝜇(𝑥)
(

|∇𝑢|𝑞(𝑥,|∇𝑢|)−2∇𝑢 ⋅ ∇𝑣
))

d𝑥

+ ∫R𝑑
𝑉 (𝑥)

(

|𝑢|𝑝(𝑥,|𝑢|)−2𝑢𝑣 + 𝜇(𝑥)
(

|𝑢|𝑞(𝑥,|𝑢|)−2𝑢∇𝑣
))

d𝑥.
(4.2)

Moreover, the operator 𝜌′ has the following properties:
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(i) The operator 𝜌′ ∶𝑊 1,
𝑉 (R𝑑 ) →

(

𝑊 1,
𝑉 (R𝑑 )

)∗
is continuous, bounded, and strictly monotone.

(ii) The operator 𝜌′ fulfills the
(

S+
)

-property, i.e.,
𝑢𝑛 ⇀ 𝑢 in 𝑊 1,

𝑉 (R𝑑 ) and lim sup
𝑛→∞

⟨

𝜌′
(

𝑢𝑛
)

, 𝑢𝑛 − 𝑢
⟩

≤ 0,

imply 𝑢𝑛 → 𝑢 in 𝑊 1,
𝑉 (R𝑑 ).

(iii) The operator 𝜌′ is a homeomorphism.
(iv) The operator 𝜌′ is strongly coercive, that is,

lim
‖𝑢‖

𝑊 1,
𝑉 (R𝑑 )

→+∞

⟨𝜌′(𝑢), 𝑢⟩
‖𝑢‖𝑊 1,

𝑉 (R𝑑 )
→ +∞.

Proof. The formula (4.2) can be derived in a manner similar to the proof of [4, Proposition 3.16]. The rest of the proof follows
with similar arguments as in [4, Proposition 3.17]. □

Proposition 4.4. Let (H), (𝑉0) and (F) be satisfied. Then, the following hold:

(i) The functional 𝐾 ∶𝑊 1,
𝑉 (R𝑑 ) → R is of class 𝐶1 with

⟨

𝐾 ′(𝑢), 𝑣⟩ = ∫R𝑑
𝑓 (𝑥, 𝑢)𝑣 d𝑥

for all 𝑢, 𝑣 ∈ 𝑊 1,
𝑉 (R𝑑 ).

(ii) The functional 𝐽𝜆 = 𝜌 − 𝜆𝐾 is of class 𝐶1 with
⟨

𝐽 ′
𝜆(𝑢), 𝑣

⟩

=
⟨

𝜌′(𝑢), 𝑣⟩ − 𝜆
⟨

𝐾 ′(𝑢), 𝑣⟩ for all 𝑢, 𝑣 ∈ 𝑊 1,
𝑉 (R𝑑 ).

Remark 4.5. From Proposition 4.4, it follows that the solutions of (1.1) correspond to the critical points of the Euler–Lagrange
energy functional 𝐽𝜆.

First, we present the following lemma that will be used in the proof of the main existence result.

Lemma 4.6. Let the assumptions (H), (𝑉0) and (F) be satisfied. Then, the functional 𝐽𝜆 = 𝜌− 𝜆𝐾 satisfies the (C)-condition for all 𝜆 > 0.

Proof. Let
{

𝑢𝑛
}

𝑛∈N ⊆ 𝑊 1,
𝑉 (R𝑑 ) be a sequence such that

(

C1
)

and
(

C2
)

from Definition 4.1 hold. We divide the proof into two
steps.

Step 1. We prove that
{

𝑢𝑛
}

𝑛∈N is bounded in 𝑊 1,
𝑉 (R𝑑 ).

First, from
(

C1
)

we have that there exists a constant 𝑀 > 0 such that for all 𝑛 ∈ N one has |

|

|

𝐽𝜆
(

𝑢𝑛
)

|

|

|

≤ 𝑀 , so
|

|

|

|

∫R𝑑

(


(

𝑥, |∇𝑢𝑛|
)

+ 𝑉 (𝑥)
(

𝑥, |𝑢𝑛|
))

d𝑥 − 𝜆∫R𝑑
𝐹
(

𝑥, 𝑢𝑛
)

d𝑥
|

|

|

|

≤ 𝑀 ,

which implies that

𝜌(𝑢𝑛) − 𝜆∫R𝑑
𝐹
(

𝑥, 𝑢𝑛
)

d𝑥 ≤ 𝑀 for all 𝑛 ∈ N. (4.3)

Besides, from
(

C2
)

, there exists
{

𝜀𝑛
}

𝑛∈N with 𝜀𝑛 → 0+such that

|

|

|

⟨

𝐽 ′
𝜆
(

𝑢𝑛
)

, 𝑣⟩||
|

≤
𝜀𝑛‖𝑣‖𝑊 1,

𝑉 (R𝑑 )

1 + ‖

‖

𝑢𝑛‖‖𝑊 1,
𝑉 (R𝑑 )

for all 𝑛 ∈ N and for all 𝑣 ∈ 𝑊 1,
𝑉 (R𝑑 ). (4.4)

Choosing 𝑣 = 𝑢𝑛, one has
|

|

|

|

∫R𝑑

(

𝑎(𝑥, |∇𝑢𝑛|)|∇𝑢𝑛|
2 + 𝑉 (𝑥)𝑎(𝑥, |𝑢𝑛|)|𝑢𝑛|

2) d𝑥 − 𝜆∫R𝑑
𝑓
(

𝑥, 𝑢𝑛
)

𝑢𝑛 d𝑥
|

|

|

|

≤ 𝜀𝑛,

which, multiplied by −1
𝑞+ , leads to

− 1
𝑞+ ∫R𝑑

(

𝑎(𝑥, |∇𝑢𝑛|)|∇𝑢𝑛|
2 + 𝑉 (𝑥)𝑎(𝑥, |𝑢𝑛|)|𝑢𝑛|

2) d𝑥 + 𝜆
𝑞+ ∫R𝑑

𝑓
(

𝑥, 𝑢𝑛
)

𝑢𝑛 d𝑥 ≤ 𝑐1,

for some 𝑐1 > 0 and for all 𝑛 ∈ N. Invoking (2.5), we conclude that

− 𝜌(𝑢 ) + 𝜆 𝑓
(

𝑥, 𝑢 )

𝑢 d𝑥 ≤ 𝑐 for all 𝑛 ∈ N. (4.5)
𝑛 𝑞+ ∫R𝑑
𝑛 𝑛 1
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Adding (4.3) and (4.5) we obtain
𝐶 ≥ ∫R𝑑

[

1
𝑞+

𝑓 (𝑥, 𝑢𝑛)𝑢𝑛 − 𝐹 (𝑥, 𝑢𝑛)
]

d𝑥 = ∫R𝑑
𝐹 (𝑥, 𝑢𝑛) d𝑥 (4.6)

for all 𝑛 ∈ N with some constant 𝐶 > 0.

Arguing by contradiction, we assume that ‖𝑢𝑛‖𝑊 1,
𝑉 (R𝑑 ) → +∞. Then ‖𝑢𝑛‖𝑊 1,

𝑉 (R𝑑 ) ≥ 1 for 𝑛 large enough. Let 𝑣𝑛 =
𝑢𝑛

‖𝑢𝑛‖𝑊 1,
𝑉 (R𝑑 )

∈

𝑊 1,
𝑉 (R𝑑 ), so ‖𝑣𝑛‖𝑊 1,

𝑉 (R𝑑 ) = 1 and, up to subsequence, we can assume that

𝑣𝑛 ⇀ 𝑣 in 𝑊 1,
𝑉 (R𝑑 ) and 𝑣𝑛(𝑥) → 𝑣(𝑥) a.e. in R𝑑 .

Note that, exploiting Propositions 2.14 and 2.26, we find that, for 𝑛 large enough,
⟨𝐽 ′

𝜆(𝑢𝑛), 𝑢𝑛⟩ = ⟨𝜌(𝑢𝑛), 𝑢𝑛⟩ − 𝜆∫R𝑑
𝑓 (𝑥, 𝑢𝑛)𝑢𝑛 d𝑥

= ∫R𝑑
𝑎(𝑥, |∇𝑢𝑛|)|∇𝑢𝑛|

2 d𝑥 + ∫R𝑑
𝑉 (𝑥)𝑎(𝑥, |𝑢𝑛|)|𝑢𝑛|

2 d𝑥 − 𝜆∫R𝑑
𝑓 (𝑥, 𝑢𝑛)𝑢𝑛 d𝑥

≥ 𝑝−𝜌(𝑢𝑛) − 𝜆∫R𝑑
𝑓 (𝑥, 𝑢𝑛)𝑢𝑛 d𝑥

≥ ‖𝑢𝑛‖
𝑝−

𝑊 1,
𝑉 (R𝑑 )

− 𝜆∫R𝑑
𝑓 (𝑥, 𝑢𝑛)𝑢𝑛 d𝑥,

since ‖𝑢𝑛‖𝑊 1,
𝑉 (R𝑑 ) ≥ 1. Thus

⟨𝐽 ′
𝜆(𝑢𝑛), 𝑢𝑛⟩

‖𝑢𝑛‖
𝑝−

𝑊 1,
𝑉 (R𝑑 )

≥ 1 − ∫R𝑑

𝑓 (𝑥, 𝑢𝑛)
‖𝑢𝑛‖

𝑝−

𝑊 1,
𝑉 (R𝑑 )

𝑢𝑛 d𝑥. (4.7)

From (4.4) and (4.7) it follows that

lim sup
𝑛→+∞ ∫R𝑑

𝑓 (𝑥, 𝑢𝑛)
‖𝑢𝑛‖

𝑝−

𝑊 1,
𝑉 (R𝑑 )

𝑢𝑛 d𝑥 ≥ 1. (4.8)

For 𝑟 ≥ 0 we set

F(𝑟) ∶= inf {𝐹 (𝑥, 𝑠) ∶ 𝑥 ∈ R𝑑 and 𝑠 ∈ R with 𝑠 ≥ 𝑟
}

.

By (F)(ii)–(iv), we have

F(𝑟) > 0 for all 𝑟 large and F(𝑟) → +∞ as 𝑟 → +∞. (4.9)

For 0 ≤ 𝑎 < 𝑏 ≤ +∞ let

𝐴𝑛(𝑎, 𝑏) ∶=
{

𝑥 ∈ R𝑑 ∶ 𝑎 ≤ |𝑢𝑛(𝑥)| < 𝑏} ,

𝑐𝑏𝑎 ∶= inf
{

𝐹 (𝑥, 𝑠)
|𝑠|𝑝−

∶ 𝑥 ∈ R𝑑 and 𝑠 ∈ R ⧵ {0} with 𝑎 ≤ |𝑠| < 𝑏
}

.

Note that

𝐹 (𝑥, 𝑢𝑛) ≥ 𝑐𝑏𝑎|𝑢𝑛|
𝑝− for all 𝑥 ∈ 𝐴𝑛(𝑎, 𝑏).

It follows from (4.6) that
𝐶 ≥ ∫R𝑑

𝐹 (𝑥, 𝑢𝑛) d𝑥

= ∫𝐴𝑛(0,𝑎)
𝐹 (𝑥, 𝑢𝑛) d𝑥 + ∫𝐴𝑛(𝑎,𝑏)

𝐹 (𝑥, 𝑢𝑛) d𝑥 + ∫𝐴𝑛(𝑏,+∞)
𝐹 (𝑥, 𝑢𝑛) d𝑥

≥ ∫𝐴𝑛(0,𝑎)
𝐹 (𝑥, 𝑢𝑛) d𝑥 + 𝑐𝑏𝑎 ∫𝐴𝑛(𝑎,𝑏)

|𝑢𝑛|
𝑝− d𝑥 + F(𝑏)|𝐴𝑛(𝑏,+∞)|

(4.10)

for 𝑏 large enough. Using Theorem 1.5, we get 𝛾𝑟 > 0 such that ‖𝑣𝑛‖𝑟𝐿𝑟(R𝑑 )
≤ 𝛾𝑟‖𝑣𝑛‖𝑟𝑊 1,

𝑉 (R𝑑 )
= 𝛾3 with 𝑝− ≤ 𝑟 < 𝑝−∗ . Let 0 < 𝜀 < 1

3 . By
ssumption (F)(iii), there exists 𝑎 > 0 such that
𝜀
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|𝑓 (𝑥, 𝑠)| ≤ 𝜀
3𝛾𝑝−

|𝑠|𝑝
−−1 for all |𝑠| ≤ 𝑎𝜀. (4.11)

From (4.11) and Theorem 1.5, we obtain

∫𝐴𝑛(0,𝑎𝜀)

𝑓 (𝑥, 𝑢𝑛)
‖𝑢𝑛‖𝑝

− 𝑢𝑛 d𝑥 ≤ 𝜀
3𝛾𝑝− ∫𝐴𝑛(0,𝑎𝜀)

|𝑢𝑛|
𝑝−

‖𝑢𝑛‖𝑝
− d𝑥

≤ 𝜀
3𝛾𝑝− ∫𝐴𝑛(0,𝑎𝜀)

|𝑣𝑛|
𝑝− d𝑥

≤ 𝜀
3𝛾𝑝−

𝛾𝑝−‖𝑣𝑛‖
𝑝−

= 𝜀
3

for all 𝑛 ∈ N.

(4.12)

Now, exploiting (4.10) and assumption (F)(iv), we see that

𝐶 ≥ ∫𝐴𝑛(𝑏,+∞)
𝐹 (𝑥, 𝑢𝑛) d𝑥 ≥ F(𝑏)|𝐴𝑛(𝑏,+∞)|.

It follows, using (4.9), that

|𝐴𝑛(𝑏,+∞)| → 0 as 𝑏 → +∞ uniformly in 𝑛. (4.13)

Set 𝜎′ = 𝜎
𝜎−1 where 𝜎 is defined in (F)(iv). Since 𝜎 > 𝑑

𝑝− , one sees that 𝑝−𝜎′ ∈ (𝑝−, 𝑝−∗ ).
Let 𝜏 ∈ (𝑝−𝜎′, 𝑝−∗ ). Using Theorem 1.5, Hölder’s inequality and (4.13), for 𝑏 large, we find

(

∫𝐴𝑛(𝑏,+∞)
|𝑣𝑛|

𝑝−𝜎′ d𝑥

)
1
𝜎′

≤ |𝐴𝑛(𝑏,+∞)|
𝜏−𝑝−𝜎′
𝜏 𝜎′

(

∫𝐴𝑛(𝑏,+∞)
|𝑣𝑛|

𝑝−𝜎′ 𝜏
𝑝−𝜎′ d𝑥

)
𝑝−
𝜏

≤ |𝐴𝑛(𝑏,+∞)|
𝜏−𝑝−𝜎′
𝜏 𝜎′

(

∫𝐴𝑛(𝑏,+∞)
|𝑣𝑛|

𝜏 d𝑥

)
𝑝−
𝜏

≤ |𝐴𝑛(𝑏,+∞)|
𝜏−𝑝−𝜎′
𝜏 𝜎′ 𝛾𝜏‖𝑣𝑛‖

𝑝−

= |𝐴𝑛(𝑏,+∞)|
𝜏−𝑝−𝜎′
𝜏 𝜎′ 𝛾𝜏

≤ 𝜀

3 (𝑐 𝐶)
1
𝜎

uniformly in 𝑛.

(4.14)

By (F)(iv), Hölder’s inequality, (4.10) and (4.14), we can choose 𝑏𝜀 ≥ 𝑟0 large so that

∫𝐴𝑛(𝑏𝜀 ,+∞)

|

|

|

|

𝑓 (𝑥, 𝑢𝑛)
‖𝑢𝑛‖𝑝

− 𝑢𝑛
|

|

|

|

d𝑥 ≤ ∫𝐴𝑛(𝑏𝜀 ,+∞)

|𝑓 (𝑥, 𝑢𝑛)|
|𝑢𝑛|

𝑝−−1
|𝑣𝑛|

𝑝− d𝑥

≤

(

∫𝐴𝑛(𝑏𝜀 ,+∞)

|

|

|

|

|

𝑓 (𝑥, 𝑢𝑛)
|𝑢𝑛|

𝑝−−1

|

|

|

|

|

𝜎

d𝑥

)
1
𝜎
(

∫𝐴𝑛(𝑏𝜀 ,+∞)
|𝑣𝑛|

𝑝−𝜎′ d𝑥

)
1
𝜎′

≤

(

𝑐 ∫𝐴𝑛(𝑏𝜀 ,+∞)
𝐹 (𝑥, 𝑢𝑛) d𝑥

)
1
𝜎
(

∫𝐴𝑛(𝑏𝜀 ,+∞)
|𝑣𝑛|

𝑝−𝜎′ d𝑥

)
1
𝜎′

≤ 𝜀
3

uniformly in 𝑛.

(4.15)

Next, from (4.10), we have

∫𝐴𝑛(𝑎,𝑏)
|𝑣𝑛|

𝑝− d𝑥 = 1
‖𝑢𝑛‖

𝑝−

𝑊 1,
𝑉 (R𝑑 )

∫𝐴𝑛(𝑎,𝑏)
|𝑢𝑛|

𝑝− d𝑥

≤ 𝐶
𝑐𝑏𝑎‖𝑢𝑛‖

𝑝−

𝑊 1,
𝑉 (R𝑑 )

→ 0 as 𝑛 → +∞.
(4.16)
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Since 𝑓 (𝑥,𝑠)
|𝑠|𝑝−−1 is continuous on 𝑎 ≤ |𝑠| ≤ 𝑏, there exists 𝑐 > 0 depending on 𝑎 and 𝑏 and independent from 𝑛, such that

|𝑓 (𝑥, 𝑢𝑛)| ≤ 𝑐|𝑢𝑛|
𝑝−−1 for all 𝑥 ∈ 𝐴𝑛(𝑎, 𝑏). (4.17)

Using (4.16) and (4.17), we can choose 𝑛0 large enough such that

∫𝐴𝑛(𝑎𝜀 ,𝑏𝜀)

|

|

|

|

|

|

|

|

𝑓 (𝑥, 𝑢𝑛)
‖𝑢𝑛‖

𝑝−

𝑊 1,
𝑉 (R𝑑 )

𝑢𝑛

|

|

|

|

|

|

|

|

d𝑥 ≤ ∫𝐴𝑛(𝑎𝜀 ,𝑏𝜀)

|𝑓 (𝑥, 𝑢𝑛)|
|𝑢𝑛|

𝑝−−1
|𝑣𝑛|

𝑝− d𝑥

≤ 𝑐 ∫𝐴𝑛(𝑎𝜀 ,𝑏𝜀)
|𝑣𝑛|

𝑝− d𝑥

≤ 𝑐 𝐶
𝑐𝑏𝜀𝑎𝜀‖𝑢𝑛‖

𝑝−

𝑊 1,
𝑉 (R𝑑 )

≤ 𝜀
3

for all 𝑛 ≥ 𝑛0.

(4.18)

Combining (4.12), (4.15) and (4.18), we find that

∫R𝑑

𝑓 (𝑥, 𝑢𝑛)
‖𝑢𝑛‖

𝑝−

𝑊 1,
𝑉 (R𝑑 )

𝑢𝑛 d𝑥 ≤ 𝜀 for all 𝑛 ≥ 𝑛0,

which contradicts to (4.8). Therefore, {𝑢𝑛}𝑛∈N is bounded in 𝑊 1,
𝑉 (R𝑑 ).

Step 2. 𝑢𝑛 → 𝑢 in 𝑊 1,
𝑉 (R𝑑 ) as 𝑛 → +∞ up to a subsequence.

Since
{

𝑢𝑛
}

𝑛∈N ⊂ 𝑊 1,
𝑉 (R𝑑 ) is bounded by Step 1 and 𝑊 1,

𝑉 (R𝑑 ) is a reflexive space, there exists a subsequence, not relabeled,
hat converges weakly in 𝑊 1,

𝑉 (R𝑑 ) and strongly in 𝐿𝑏+ (R𝑑 ) (see Theorem 1.5), that is,
𝑢𝑛 ⇀ 𝑢 in 𝑊 1,

𝑉 (R𝑑 ) and 𝑢𝑛 → 𝑢 in 𝐿𝑏+ (R𝑑 ).

Note that, from (F)(i), we have 𝑓 (𝑥, 𝑡) ≤ 𝑐|𝑡|𝑏
+−1. Therefore, using this in (4.4) with 𝑣 = 𝑢𝑛 − 𝑢 and passing to the limit as 𝑛 → +∞,

we obtain
⟨

𝜌′
(

𝑢𝑛
)

, 𝑢𝑛 − 𝑢
⟩

→ 0 as 𝑛 → +∞.

Since 𝜌′ satisfies the
(

𝑆+
)

-property, see Theorem 4.3(ii), we get the desired assertion of the theorem. □

Proof of Theorem 1.9. First, we assume that the assumptions of Theorem 1.9 are satisfied. Before proving the main existence
result, we introduce some notation. We fix an open ball centered at 𝑥0 ∈ R𝑑 with radius 𝑅, which we denote by 𝐵(𝑥0, 𝑅), and we
set 𝜔𝑅 as the Lebesgue measure of the ball 𝐵(𝑥0, 𝑅) in R𝑑 , which is given by

𝜔𝑅 ∶= |

|

𝐵(𝑥0, 𝑅)|| = 𝜋
𝑑
2

𝛤 (1 + 𝑑
2 )

𝑅𝑑 .

Next, let

𝛿 ∶=
𝑝− min

{

𝑅𝑝− , 𝑅𝑞+
}

max
{

1, ‖𝜇‖∞
}

𝜔𝑅
(

𝑉∞ min
{

𝑅𝑝− , 𝑅𝑞+
}

+ 2𝑞++1−𝑑 (2𝑑 − 1)) , (4.19)

where 𝑉∞ will be defined later. Further, we define

𝛼(𝑟) ∶=
𝛾̄ max

{

(

𝑞+𝑟
)
𝑏+
𝑝− ,

(

𝑞+𝑟
)

𝑏−
𝑞+

}

𝑟
, (4.20)

𝛽(𝜂) ∶= 𝛿
∫
𝐵
(

𝑥0 ,
𝑅
2

) 𝐹 (𝑥, 𝜂) d𝑥

max {𝜂𝑝− , 𝜂𝑞+} , (4.21)

where 𝛾̄ = max
{

𝛾𝑏+ , 𝛾𝑏−
}

and 𝑏 is given in (F)(i).
Now, let 𝜌 and 𝐾 be as given in Section 4.1. First we see that 𝜌 and 𝐾 fulfill all the required regularity properties in Theorem 4.2.

Indeed, 𝜌 is coercive due to Proposition 2.26(iv) and the functional 𝐽𝜆 is unbounded from below because of (F)(ii). Now, fix 𝜆 ∈ 𝛬,
which is nonempty because of (H2), and consider 𝑢̃ ∈ 𝑊 1,

𝑉 (R𝑑 ) defined by

𝑢̃(𝑥) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

0 if 𝑥 ∈ R𝑑∖𝐵
(

𝑥0, 𝑅
)

,

𝑢𝑅 ∶=
2𝜂
𝑅

(𝑅 − |𝑥 − 𝑥0|) if 𝑥 ∈ 𝐵
(

𝑥0, 𝑅
)

∖𝐵
(

𝑥0,
𝑅
2

)

=∶ 𝑆 ,
𝜂 if 𝑥 ∈ 𝐵

(

𝑥0,
𝑅
)

.

⎩

2
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First, for 𝑥 ∈ 𝑆, we have that

|𝑢𝑅| =
|

|

|

|

2𝜂
𝑅

(𝑅 − |𝑥 − 𝑥0|)
|

|

|

|

=
|

|

|

|

2𝜂
𝑅

|

|

|

|

|

|

(𝑅 − |𝑥 − 𝑥0|)||

≤
|

|

|

|

2𝜂
𝑅

|

|

|

|

|

|

|

|

𝑅
2
|

|

|

|

= 𝜂 .
(4.22)

Moreover, since 𝑉 ∈ 𝐶(R𝑑 ,R), we have 𝑉 ∈ 𝐿∞(𝐵
(

𝑥0, 𝑅
)

) and so we set 𝑉∞ ∶= ‖𝑉 ‖𝐿∞(𝐵(𝑥0 ,𝑅)).

Step 1. 0 < 𝜌(𝑢̃) < 𝑟.
To simplify, we rewrite the functional 𝜌 as

𝜌(𝑢̃) = 𝜌 (∇𝑢̃) + 𝜌𝑉
(𝑢̃),

where

𝜌 (∇𝑢̃) = ∫R𝑑
(𝑥, |∇𝑢̃|) d𝑥 and 𝜌𝑉

(𝑢̃) = ∫R𝑑
𝑉 (𝑥, |𝑢̃|) d𝑥.

Using (2.5) and proceeding as in [61, Theorem 3.2, p. 743], we easily show that

𝜌 (∇𝑢̃) = ∫R𝑑
(𝑥, |∇𝑢̃|) d𝑥

≤ 1
𝑝− ∫R𝑑

ℎ(𝑥, |∇𝑢̃|)|∇𝑢̃| d𝑥

= 1
𝑝− ∫𝑆

⎛

⎜

⎜

⎝

(

2𝜂
𝑅

)𝑝(𝑥, 2𝜂𝑅 )
+ 𝜇(𝑥)

(

2𝜂
𝑅

)𝑞(𝑥, 2𝜂𝑅 )⎞
⎟

⎟

⎠

d𝑥

≤ 2𝑞++1−𝑑 (2𝑑 − 1)
𝑝−

max
{

1, ‖𝜇‖∞
}

min
{

𝑅𝑝− , 𝑅𝑞+
} max

{

𝜂𝑝
−
, 𝜂𝑞+

}

𝜔𝑅.

(4.23)

Again, by (2.5) and invoking (4.22), it yields that

𝜌𝑉
(𝑢̃) = ∫R𝑑

𝑉 (𝑥, |𝑢̃|) d𝑥 ≤ 1
𝑝− ∫R𝑑

𝑉 (𝑥)ℎ(𝑥, |𝑢̃|)|𝑢̃| d𝑥

= 1
𝑝− ∫𝑆

𝑉 (𝑥)
(

|𝑢𝑅|
𝑝(𝑥,|𝑢𝑅|) + 𝜇(𝑥)|𝑢𝑅|

𝑞(𝑥,|𝑢𝑅|)
)

d𝑥

+ 1
𝑝− ∫𝐵

(

𝑥0 ,
𝑅
2

)
𝑉 (𝑥)

(

𝜂𝑝(𝑥,𝜂) + 𝜇(𝑥)𝜂𝑞(𝑥,𝜂)
)

d𝑥

≤ 1
𝑝− ∫𝑆

𝑉 (𝑥)
(

𝜂𝑝(𝑥,𝜂) + 𝜇(𝑥)𝜂𝑞(𝑥,𝜂)
)

d𝑥

+ 1
𝑝− ∫𝐵

(

𝑥0 ,
𝑅
2

)
𝑉 (𝑥)

(

𝜂𝑝(𝑥,𝜂) + 𝜇(𝑥)𝜂𝑞(𝑥,𝜂)
)

d𝑥

= 1
𝑝− ∫𝐵(𝑥0 ,𝑅)

𝑉 (𝑥)
(

𝜂𝑝(𝑥,𝜂) + 𝜇(𝑥)𝜂𝑞(𝑥,𝜂)
)

d𝑥

≤
𝑉∞
𝑝−

max
{

1, ‖𝜇‖∞
}

max
{

𝜂𝑝
−
, 𝜂𝑞+

}

𝜔𝑅.

(4.24)

Therefore, adding (4.23) and (4.24) and taking (1.15) in mind, it follows that

𝜌(𝑢̃) ≤ max
{

𝜂𝑝
−
, 𝜂𝑞+

}

(

1
𝑝−

max
{

1, ‖𝜇‖∞
}

𝜔𝑅

(

𝑉∞ +
2𝑞++1−𝑑 (2𝑑 − 1)
min {𝑅𝑝− , 𝑅𝑞+}

))

= 1
𝛿
max

{

𝜂𝑝
−
, 𝜂𝑞+

}

< 𝑟.
(4.25)

Step 2. We need to verify the validity of condition (4.1).
From assumption

(

H1
)

and (4.22), we obtain

𝐾(𝑢̃) = ∫𝐵
(

𝑥0 ,
𝑅
2

)
𝐹 (𝑥, 𝜂) d𝑥 + ∫𝑆

𝐹
(

𝑥,
2𝜂
𝑅

(

𝑅 − |

|

𝑥 − 𝑥0||
)

)

d𝑥 ≥ ∫𝐵
(

𝑥0 ,
𝑅
2

)
𝐹 (𝑥, 𝜂) d𝑥.

Hence, in view of (4.25), we infer that

𝐾(𝑢̃)
𝜌(𝑢̃)

≥ 𝛿
∫
𝐵
(

𝑥0 ,
𝑅
2

) 𝐹 (𝑥, 𝜂) d𝑥

max {𝜂𝑝− , 𝜂𝑞+} . (4.26)

On the other hand, fix 𝑢 ∈ 𝑊 1,
𝑉 (R𝑑 ) such that 𝜌(𝑢) ≤ 𝑟. Then, invoking Proposition 2.26, one has

𝑞+𝑟 ≥ 𝑞+𝜌(𝑢) > 𝜌(𝑢) ≥ min
{

‖𝑢‖𝑝
−

𝑊 1,
𝑉 (R𝑑 )

, ‖𝑢‖𝑞
+

𝑊 1,
𝑉 (R𝑑 )

}

. (4.27)

Thus, by (F)(i), Proposition 2.10 and (4.27), we get
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sup
𝑢∈𝜌−1(]−∞,𝑟])

𝐾(𝑢) ≤ sup
𝑢∈𝜌−1(]−∞,𝑟])∫R𝑑

 (𝑥, |𝑢|) d𝑥

= sup
𝑢∈𝜌−1(]−∞,𝑟])

𝜌(𝑢) ≤ sup
𝑢∈𝜌−1(]−∞,𝑟])

(

max
{

‖𝑢‖𝑏
−

𝐿(R𝑑 )
, ‖𝑢‖𝑏

+

𝐿(R𝑑 )

})

≤ sup
𝑢∈𝜌−1(]−∞,𝑟])

(

max
{

𝛾𝑏
+

 , 𝛾𝑏−
}

max
{

‖𝑢‖𝑏
−

𝑊 1,
𝑉 (R𝑑 )

, ‖𝑢‖𝑏
+

𝑊 1,
𝑉 (R𝑑 )

})

≤
(

𝛾̄ max
{

(

𝑞+𝑟
)
𝑏+
𝑝− ,

(

𝑞+𝑟
)

𝑏−
𝑞+

})

.

Then, taking
(

H2
)

and (4.26) into account, we get

sup𝑢∈𝜌−1(]−∞,𝑟]) 𝐾(𝑢)
𝑟

≤

(

𝛾̄ max
{

(

𝑞+𝑟
)
𝑏+
𝑝− ,

(

𝑞+𝑟
)

𝑏−
𝑞+

})

𝑟
= 𝛼(𝑟) < 𝛽(𝜂)

= 𝛿
∫
𝐵
(

𝑥0 ,
𝑅
2

) 𝐹 (𝑥, 𝜂) d𝑥

max {𝜂𝑝− , 𝜂𝑞+} ≤ 𝐾(𝑢̃)
𝜌(𝑢̃)

.

This proves Step 2.
From Steps 1 and 2 and Lemma 4.6 we see that all conditions in Theorem 4.2 are satisfied and so we conclude that problem

1.1) has at least two nontrivial weak solutions 𝑢𝜆,1, 𝑢𝜆,2 ∈ 𝑊 1,
𝑉 (R𝑑 ) such that 𝐽𝜆

(

𝑢𝜆,1
)

< 0 < 𝐽𝜆
(

𝑢𝜆,2
)

. This finishes the proof. □

5. Concluding remarks, perspectives, and open problems

(i) Building on the key results established in this paper (Theorems 1.2, 1.3, 1.4, and 1.5) together with those obtained by
Bahrouni–Bahrouni–Missaoui–Rădulescu [4], we believe that a comprehensive investigation of Eq. (1.1) is within reach,
including aspects such as existence, uniqueness, multiplicity, and regularity.

(ii) In a forthcoming paper, we will investigate the multiplicity and uniqueness of solutions for the non-variational case of problem
(1.1). In particular, we will study problem (1.1) involving the gradient term ∇𝑢 (or convection term) in the nonlinear data.

(iii) Throughout this paper, we focused on cases where the exponent depends on the gradient of the solution. A natural extension
of this work would be to explore what happens if, instead of the gradient, the exponent depends directly on the solution
itself. Specifically, we consider the following equation:

− div (|∇𝑢|𝑝(𝑥,|𝑢|)−2∇𝑢 + 𝜇(𝑥)|∇𝑢|𝑞(𝑥,|𝑢|)−2∇𝑢
)

+ 𝑉 (𝑥)
(

|𝑢|𝑝(𝑥,|𝑢|)−2𝑢 + 𝜇(𝑥)|𝑢|𝑞(𝑥,|𝑢|)−2𝑢
)

= 𝜆𝑓 (𝑥, 𝑢), 𝑥 ∈ R𝑑 .
(5.1)

As described in detail in [4], the key difference between the equation above and Eq. (1.1) lies in the absence of appropriate
Musielak-Orlicz Sobolev spaces. As a result, the proof of Theorem 1.9 cannot be directly extended to Eq. (5.1). The original
approach for addressing problem (5.1) involves constructing an auxiliary problem and then demonstrating the existence of
a solution to Eq. (5.1) by passing to the limit. We believe that for the auxiliary problem introduced in [4], it is possible
to establish the existence of two solutions using methods analogous to those in the proof of Theorem 1.9. However, when
passing to the limit, these two solutions may coincide. It is therefore interesting to investigate whether Theorem 1.9 still
applies to Eq. (5.1).

(iv) Note that the proofs of Theorems 1.3, 1.4, and 1.5 rely heavily on Theorem 1.2. However, the proof of Theorem 1.2 is specific
to the particular N-function . Therefore, it is important to check whether the same results can be obtained for a more general
N-function.

(v) We would like to highlight that the result obtained in Theorem 1.5 is not optimal. Specifically, we established the compact
embedding of 𝑊 1,

𝑉 (R𝑑 ) into a Lebesgue space with a variable exponent. To achieve the optimal result, and following the
approach used by Berger–Schechter [73], a new compact embedding theorem for 𝑊 1, (𝛺) is required, where 𝛺 is a specific
unbounded domain. Proving this result involves considerable effort, so we consider it an open problem.
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