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a b s t r a c t

In this paper, we study the quasilinear elliptic problem

−∆pu = a
(

u+
)p−1

− b
(

u−
)p−1

in Ω ,

u = constant on ∂Ω ,

0 =
∫

∂Ω

|∇u|p−2∇u · ν dσ,

where the operator is the p-Laplacian and the boundary condition is of type no-
flux. In particular, we consider the Fučík spectrum of the p-Laplacian with no-flux
boundary condition which is defined as the set Πp of all pairs (a, b) ∈ R2 such that
the problem above has a nontrivial solution. It turns out that this spectrum has a
first nontrivial curve C being Lipschitz continuous, decreasing and with a certain
asymptotic behavior. Since (λ2, λ2) lies on this curve C, with λ2 being the second
eigenvalue of the corresponding no-flux eigenvalue problem for the p-Laplacian, we
get a variational characterization of λ2. This paper extends corresponding works
for Dirichlet, Neumann, Steklov and Robin problems.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we are interested in the so-called Fuč́ık spectrum of the p-Laplacian with no-flux boundary
ondition which is defined as the set Πp of all pairs (a, b) ∈ R2 such that the problem

−∆pu = a
(
u+)p−1 − b

(
u−)p−1 in Ω ,

u = constant on ∂Ω ,

0 =
∫

∂Ω

|∇u|p−2 ∇u · ν dσ

(1.1)
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has a nontrivial weak solution, where Ω ⊂ RN , N ≥ 2, is a bounded domain with smooth boundary ∂Ω ,
pu = div(|∇u|p−2 ∇u) is the p-Laplace differential operator with 1 < p < +∞, ν(x) denotes the outer unit
ormal of Ω at the point x ∈ ∂Ω and u± = max{±u, 0} are the positive and negative parts of u, respectively.
he boundary condition is of type no-flux and such problems have their origin in plasma physics. Temam [1]

tudied the problem of the equilibrium of a plasma in a cavity which occurred for the first time in Mercier [2]
nd has the form

Lu = −λbu in Ωρ,

Lu = 0 in Ων = Ω − Ωρ (the vacuum),
u = 0 on Γρ = ∂Ωρ,

du

dν
is continuous on Γρ,

u = constant = γ on Γ (γ unknown),

I =
∫
Γρ

1
x1

du

dν
dΓ ,

u does not vanish in Ωρ,

(1.2)

where I > 0 is given, u, λ and Ωρ are the unknowns, while λ plays the role of an eigenvalue of the self-adjoint
perator L. The solution of (1.2) determines the shape at equilibrium of a confined plasma. A simplified

model of (1.2) has been presented by the same author in [3] given by
−∆u = −λu− in Ω ,

u = constant = γ on ∂Ω ,

I =
∫

∂Ω

du

dν
dσ.

(1.3)

n (1.3) the region u < 0 is the region filled by the plasma and the region u > 0 corresponds to the
acuum. These regions can be found when we solve problem (1.3). The region u = 0 corresponds to the free
oundary which separates the plasma and the vacuum. For other models of type (1.3) we refer to the works
f Berestycki–Brézis [4], Gourgeon–Mossino [5], Kinderlehrer–Spruck [6], Puel [7], Schaeffer [8], Zou [9,10]
nd the references therein. A nice overview about no-flux problems also in the case of variable exponent
roblems can be found in the book chapter of Boureanu [11].

In (1.1) we assume that I = 0 and so it corresponds to nonresonant surfaces called no-flux surfaces on
hich the wave number of the perturbation parallel to the equilibrium magnetic field is zero, see Afrouzi–
irzapour–Rădulescu [12]. Note that when N = 1 and Ω = (a, b), problem (1.1) becomes the periodic

oundary value problem

−
(

|u′|p−2
u′
)′

= λ|u|p−2
u in (a, b),

u(a) = u(b),
u′(a) = u′(b).

In this paper, we are interested in the nontrivial parts of Πp and we show that there exists a first nontrivial
curve C ⊂ Πp which turns out to be Lipschitz continuous, decreasing and with a certain asymptotic behavior.
With this work we close the gap in the literature where the Fuč́ık spectrum of the p-Laplacian has been
already studied for Dirichlet, Neumann, Steklov and Robin boundary condition, respectively.

The idea of considering the set Σ of all pairs (a, b) ∈ R2 such that

Tu = au+ − bu−

has a nontrivial solution with T being self-adjoint, goes back to Fuč́ık [13] (see also Dancer [14]) who
recognized that the set Σ plays an important role in the study of semilinear equations of type

Tu = f(x, u),
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where f :Ω × R → R is a Carathéodory function with jumping nonlinearities satisfying

f(x, s)
s

→ a as s → +∞,
f(x, s)

s
→ b as s → −∞.

ndeed, a systematic study of this spectrum for the one-dimensional Laplacian with periodic boundary
ondition has been done by Fuč́ık [15] who proved that this spectrum is composed of two families of curves
n R2 emanating from the points (λk, λk) determined by the eigenvalues λk. After this, several works on this
pectrum have been published for the negative Laplacian with Dirichlet boundary condition on bounded
omains. In particular, Dancer [14] showed that the lines R × {λ1} and {λ1} × R are isolated in Σ2, where
2 is the Fuč́ık spectrum of −∆ with Dirichlet condition and λ1 > 0 is the first eigenvalue of −∆. A

tarting work on the Fuč́ık spectrum of the p-Laplacian with Dirichlet condition has been done by Cuesta–de
igueiredo–Gossez [16] who proved the existence of a first nontrivial curve in this spectrum, see also a similar
esult for −∆ by de Figueiredo–Gossez [17]. These results have been transferred to Neumann, Steklov and
obin boundary conditions by Arias–Campos–Gossez [18], Mart́ınez–Rossi [19] and Motreanu–Winkert [20],

espectively. We refer to the book chapter of Motreanu–Winkert [21] concerning the differences in these
orks.
In our work, we are going to transfer the techniques of [16,18–20] to our problem (1.1) with no-flux

oundary condition. One difference is that in our problem the first eigenvalue of the corresponding eigenvalue
roblem is zero. Indeed, if a = b = λ, problem (1.1) becomes the following no-flux eigenvalue problem for
he p-Laplacian

−∆pu = λ|u|p−2
u in Ω ,

u = constant on ∂Ω ,

0 =
∫

∂Ω

|∇u|p−2 ∇u · ν dσ,

(1.4)

hich has been treated by Lê [22]. Since the first eigenvalue λ1 in (1.4) is zero, all nonzero constants are
orresponding eigenfunctions. Thus, λ1 is simple. Furthermore, from Lê [22] we know that λ1 is isolated,
he spectrum of (1.4) is closed and each eigenfunction corresponding to an eigenvalue λ > 0 changes sign in
. The first eigenfunction can be given as Lp-normalized constant by φ1 = 1

|Ω|
1
p

. As a consequence of our

esults, we obtain a variational characterization of the second eigenvalue λ2 of (1.4) by

λ2 = inf
γ∈Γ

max
u∈γ[−1,1]

[∫
Ω

|∇u|p dx

]
,

here

Γ = {γ ∈ C ([−1, 1] , S) : γ(−1) = −φ1, γ(1) = φ1} ,

S = {u ∈ V : ∥u∥p = 1} ,

V =
{

u ∈ W 1,p(Ω) : u |∂Ω= constant
}

.

t turns out that the point (λ2, λ2) lies on the first nontrivial curve C of Πp, see Fig. 1.
Finally, we mention some existence results for elliptic problems with no-flux boundary condition. As we

lready noted, there are only few works in this direction. We refer to Le–Schmitt [23] for a sub-supersolution
pproach involving general nonhomogeneous operators, Zhao–Zhao–Xie [24] for a mountain-pass solution,
an–Deng [25] for an application on a variational principle due to Ricceri in variable exponent Sobolev spaces
nd Boureanu–Udrea [26,27] for isotropic and anisotropic variable exponent problems. Other references can
e found in the book chapter of Boureanu [11].

The paper is organized as follows. In Section 2 we present some results on the function spaces, the p-

aplacian and state the weak formulation of problem (1.1). Moreover, we recall the mountain-pass theorem

3
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Fig. 1. The curve C.

for manifolds. In Section 3 we describe the Fuč́ık spectrum Πp via critical points of the corresponding
functional and show the existence of a curve of elements of Πp. In Section 4 we prove that this curve is
indeed the first nontrivial curve in Πp. As a consequence we derive a variational characterization of the
second eigenvalue λ2 of (1.4), see Corollary 4.4. Finally, in Section 5, we prove that this first nontrivial
curve is Lipschitz continuous, decreasing and converging in the cases p ≤ N and p > N separately, see
Proposition 5.1 and Theorems 5.2 and 5.4.

2. Preliminaries

In this section we recall some facts about the function space, the operator and tools from critical point
theory. To this end, let Ω be a bounded domain in RN , N ≥ 2, with smooth boundary ∂Ω and let 1 ≤ p < ∞.
We denote by Lp(Ω) := Lp(Ω ;R) and Lp(Ω ;RN ) the usual Lebesgue spaces endowed with the norm ∥ · ∥p

while W 1,p(Ω) stands for the Sobolev space endowed with the norm ∥ · ∥1,p, namely,

∥u∥1,p :=
(∫

Ω

|∇u|p dx +
∫
Ω

|u|p dx

) 1
p

for all u ∈ W 1,p(Ω).

et
V =

{
u ∈ W 1,p(Ω) : u |∂Ω= constant

}
.

hen V is a closed subspace of W 1,p(Ω) and so a reflexive Banach space with norm ∥ · ∥1,p, see Le–
chmitt [23] or Zhao–Zhao–Xie [24, Lemma 2.1]. Note that for any v ∈ V we have that v+, v− ∈
.
A function u ∈ V is said to be a weak solution of (1.1) if∫

Ω

|∇u|p−2 ∇u · ∇v dx =
∫
Ω

a
((

u+)p−1 − b
(
u−)p−1

)
v dx (2.1)

is satisfied for all v ∈ V .
For 1 < p < ∞, we consider the nonlinear operator A : V → V ∗ defined by

⟨A(u), v⟩ :=
∫

|∇u|p−2∇u · ∇v dx (2.2)

Ω

4
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for u, v ∈ V with ⟨·, ·⟩ being the duality pairing between V and its dual space V ∗. The properties of the
perator A : V → V ∗ can be summarized as follows, see, for example, Carl–Le–Motreanu [28, Lemma 2.111].

roposition 2.1. The operator A defined by (2.2) is bounded, continuous, monotone (hence maximal
onotone) and of type (S+), that is,

un ⇀ u in V and lim sup
n→∞

⟨Aun, un − u⟩ ≤ 0,

mply un → u in V .

Let X be a reflexive Banach space, let X∗ be its dual space and let φ ∈ C1(X,R). We say that
un}n∈N ⊂ X is a Palais–Smale sequence ((PS)-sequence for short) for φ if {φ(un)}n∈N ⊆ R is bounded
nd

φ′(un) → 0 in X∗ as n → ∞.

e say that φ satisfies the Palais–Smale condition ((PS)-condition for short) if any (PS)-sequence {un}n∈N
f φ admits a convergent subsequence in X.

The following version of the mountain-pass theorem in the sense of manifolds will be used in the sequel.
e refer to Ghoussoub [29, Theorem 3.2].

heorem 2.2. Let X be a Banach space and let g, f ∈ C1(X,R). Further, suppose that 0 is a regular value
f g and let M = {u ∈ X : g(u) = 0}, u0, u1 ∈ M and ε > 0 such that ∥u1 − u0∥X > ε and

inf {f(u) : u ∈ M and ∥u − u0∥X = ε} > max {f(u0), f(u1)} .

ssume that f satisfies the (PS)-condition on M and that

Γ = {γ ∈ C ([−1, 1], M) : γ(−1) = u0 and γ(1) = u1}

s nonempty. Then
c = inf

γ∈Γ
max

u∈γ[−1,1]
f(u),

s a critical value of f|M .

. The Fučík spectrum through critical points

In this section, we are going to determine the elements of the Fuč́ık spectrum Πp through critical points.
Let s ∈ R be a real nonnegative parameter and consider the functional Js : V → R defined by

Js(u) =
∫
Ω

|∇u|p dx − s

∫
Ω

(
u+)p dx. (3.1)

t is clear that Js ∈ C1 (V,R). Recall that

S =
{

u ∈ V : I(u) =
∫
Ω

|u|p dx = 1
}

.

e know that S is a smooth submanifold of V and so, J̃s = Js|S is a C1-function in the sense of manifolds.
Applying the Lagrange multiplier rule, we note that u ∈ S is a critical point of J̃s (in the sense of

anifolds) if and only if there exists t ∈ R such that J ′
s(u) = tI ′(u), that is∫

Ω

|∇u|p−2 ∇u · ∇v dx − s

∫
Ω

(
u+)p−1

v dx = t

∫
Ω

|u|p−2
uv dx (3.2)

or all v ∈ V .
˜
First, we investigate the relationship between the critical points of Js and the Fuč́ık spectrum Πp.

5
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Lemma 3.1. Let s be a nonnegative real parameter. The point (s + t, t) ∈ R2 belongs to the spectrum Πp if
nd only if there exists a critical point u ∈ S of J̃s such that t = Js(u).

roof. From the definition of a weak solution of (1.1), see (2.1), we observe that (t + s, t) ∈ Πp if and only
f there exists u ∈ S that solves the following no-flux problem

−∆pu = (t + s)
(
u+)p−1 − t

(
u−)p−1 in Ω ,

u = constant on ∂Ω ,

0 =
∫

∂Ω

|∇u|p−2 ∇u · ν dσ.

owever, the corresponding weak solution of the problem above is given in (3.2). Taking v = u in (3.2) we
ave that t = Js(u) and the proof is complete. □

Lemma 3.1 allows us to find points in Πp by the critical points of J̃s. Next we are going to look for
inimizers of J̃s.

roposition 3.2. There hold:

(i) the first eigenfunction φ1 = 1

|Ω|
1
p

is a global minimizer of J̃s;

(ii) the point (0, −s) ∈ R2 belongs to Πp.

roof. (i) Since s ≥ 0 we have for u ∈ S

J̃s(u) =
∫
Ω

|∇u|p dx − s

∫
Ω

(
u+)p dx ≥ −s

∫
Ω

(
u+)p dx ≥ −s = Js(φ1)

or all u ∈ S. Hence, the first eigenfunction φ1 = 1

|Ω|
1
p

∈ V is a global minimizer of J̃s.

(ii) From (i) and Lemma 3.1 we get the assertion. □

Now we obtain a second critical point of J̃s as local minimizer.

roposition 3.3. There hold:

(i) the negative eigenfunction −φ1 = − 1

|Ω|
1
p

is a strict local minimizer of J̃s;

(ii) the point (s, 0) ∈ R2 belongs to Πp.

Proof. (i) Suppose by contradiction that there exists a sequence {un}n∈N ⊂ S with un ̸= −φ1, un → −φ1
n V and

J̃s(un) ≤ 0 = λ1 = J̃s(−φ1). (3.3)

e claim that un changes sign for n sufficiently large. Observe that, since un → −φ1, un must be < 0
omewhere. Suppose that un ≤ 0 for a. a. x ∈ Ω . Then we obtain

J̃s(un) =
∫
Ω

|∇un|p dx > 0 = λ1,

ince un ̸= −φ1 and un ̸= φ1 contradicting J̃s(un) ≤ 0 = λ1. Therefore, un changes sign. We set

wn = u+
nu+ and rn = ∥∇wn∥p . (3.4)

n p

6
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Claim: rn → +∞ as n → +∞
Arguing by contradiction, suppose {rn}n∈N ⊆ R is bounded. Then from (3.4) we know that {wn}n∈N is

ounded in V . Hence we find a subsequence (still denoted by {wn}n∈N) such that wn → w in Lp(Ω) for
ome w ∈ X. Since ∥wn∥p = 1 and wn ≥ 0 for a. a. x ∈ Ω , we see that ∥w∥p = 1 and w ≥ 0. Therefore,
he Lebesgue measure of the set {x ∈ Ω : un(x) > 0} does not approach 0 when n → +∞. However, this
ontradicts the assumption that un → −φ1 in Lp(Ω) which means that {x ∈ Ω : un(x) > 0} → 0. This
roves the Claim.

From (3.3) and (3.4) we get that

0 ≥ J̃s(un) =
∫
Ω

⏐⏐∇u+
n

⏐⏐p dx +
∫
Ω

⏐⏐∇u−
n

⏐⏐p dx − s

∫
Ω

(
u+

n

)p dx

≥ (rn − s)
∫
Ω

(
u+

n

)p dx.

ence, 0 ≥ rn − s which contradicts the Claim. This completes the proof of (i).
(ii) This follows from Lemma 3.1 since Js(−φ1) = 0. □

Using the two local minima from Propositions 3.2 and 3.3 we are looking for a third critical point of J̃s

y using the mountain-pass theorem in its version on C1-manifolds.
First, we define a norm of the derivative of the restriction J̃s of Js to S at the point u ∈ S byJ̃ ′

s(u)


∗ = min
{

∥J ′
s(u) − tT ′(u)∥∗ : t ∈ R

}
ith T (·) = ∥ · ∥p

p and ∥ · ∥∗ being the norm in the dual space V ∗ of V .

emma 3.4. The functional J̃s : S → R satisfies the (PS)-condition on S in the sense of manifolds.

roof. Let {un}n∈N ⊆ S be a (PS)-sequence, that is, {J̃s(un)}n∈N is bounded and ∥J̃ ′
s(un)∥∗ → 0 as

→ ∞. Then we find a sequence {tn}n∈N ⊆ R such that⏐⏐⏐⏐∫
Ω

|∇un|p−2 ∇un · ∇v dx − s

∫
Ω

(
u+

n

)p−1
v dx − tn

∫
Ω

|un|p−2
unv dx

⏐⏐⏐⏐
≤ εn ∥v∥1,p ,

(3.5)

or all v ∈ V with εn → 0+.
Since {un}n∈N ⊆ S we have Js(un) ≥ ∥∇un∥p

p − s and because {Js(un)}n∈N ⊆ R is bounded, we know
hat {un}n∈N is bounded in V . So we may assume, for a subsequence if necessary, that

un ⇀ u in V and un → u in Lp(Ω).

e choose v = un in (3.5) and note again that {un}n∈N ⊆ S. Hence, the sequence {tn}n∈N ⊆ R is bounded.
aking v = un − u in (3.5) we obtain that∫

Ω

|∇un|p−2 ∇un · ∇(un − u) dx

= s

∫
Ω

(
u+

n

)p−1 (un − u) dx + tn

∫
Ω

|un|p−2
un(un − u) dx + O(εn),

(3.6)

here the right-hand side of (3.6) goes to zero as n → ∞. Hence, we have∫
Ω

|∇un|p−2 ∇un · ∇(un − u) dx → 0 as n → ∞.

rom the (S+)-property of −∆p (see Proposition 2.1), we conclude that un → u in V . Thus, J̃s fulfills the

PS)-condition. □

7
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Now we prove the existence of a third critical point of J̃s which is different from φ1 and −φ1.

Proposition 3.5.

(i) Let
Γ =

{
γ ∈ C ([−1, 1], S) : γ(−1) = −φ1, γ(1) = φ1

}
.

For each s ≥ 0 we have that
c(s) =: inf

γ∈Γ
max

u∈γ[−1,1]
Js(u) (3.7)

is a critical value of J̃s such that c(s) > max{J̃s(−φ1), J̃s(φ1)} = 0.
(ii) The point (s + c(s), c(s)) belongs to Πp.

roof. (i) First note that −φ1 is a strict local minimizer of J̃s with J̃s (−φ1) = 0 by Proposition 3.3 and
1 is a global minimizer of J̃s with J̃s (φ1) = −s by Proposition 3.2. Similar to the proof of Lemma 2.9 in
uesta–de Figueiredo–Gossez [16] we can show by using Ekeland’s variational principle that

inf
{

J̃s(u) : u ∈ S and ∥u − (−φ1)∥1,p = ε
}

> max{J̃s(−φ1), J̃s(φ1)} = λ1,

ith small ε > 0. We choose ε > 0 small enough such that

2 ∥φ1∥1,p = ∥φ1 − (−φ1)∥1,p > ε.

oreover, from Lemma 3.4 we know that J̃s : S → R satisfies the (PS)-condition on the manifold S.
herefore, we can apply the mountain-pass theorem, stated as Theorem 2.2, which guarantees that c(s)

ntroduced in (3.7) is a critical value of J̃s with c(s) > 0. Hence, we have a third critical point different from
φ1 and φ1.
(ii) Using the fact that c(s) given in (3.7) is a critical value of J̃s in combination with Lemma 3.1 shows

hat (s + c(s), c(s)) ∈ Πp. □

. The first nontrivial curve

In Proposition 3.5(ii) we have shown that the point (s + c(s), c(s)) belongs to Πp for s ≥ 0. Since Πp is
ymmetric with respect to the diagonal, we can complete it with its symmetric part and obtain the following
urve in Πp

C =
{

(s + c(s), c(s)), (c(s), s + c(s)) : s ≥ 0
}

. (4.1)

n this section, we are going to prove that the curve C is the first nontrivial curve in Πp. We start by showing
hat the lines {0} × R and R × {0} are isolated in Πp.

roposition 4.1. There is no sequence {an, bn}n∈N ∈ Πp with an > 0 and bn > 0 such that {an, bn}n∈N →
a, b} with a = 0 or b = 0.

roof. We argue by contradiction and suppose there exist sequences {an, bn}n∈N ⊆ Πp and {un}n∈N ⊆ V

ith an → 0, bn → b, an > 0, bn > 0, ∥un∥p = 1 and

−∆pun = an

(
u+

n

)p−1 − bn

(
u−

n

)p−1 in Ω ,

un = constant on ∂Ω ,

0 =
∫

|∇un|p−2 ∇un · ν dσ.

(4.2)
∂Ω

8
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The weak formulation of (4.2) is given by∫
Ω

|∇un|p−2 ∇un · ∇v dx = an

∫
Ω

(
u+

n

)p−1
v dx − bn

∫
Ω

(
u−

n

)p−1
v dx (4.3)

for all v ∈ V . We first test (4.3) with v = un and obtain

∥∇un∥p
p = an

∫
Ω

(
u+

n

)p−1
un dx − bn

∫
Ω

(
u−

n

)p−1
un dx

= an

∫
Ω

(
u+

n

)p dx + bn

∫
Ω

(
u−

n

)p dx ≤ an + bn.

Hence, {un}n∈N is bounded in V . We may assume, for a subsequence if necessary, that

un ⇀ u in V and un → u in Lp(Ω).

Testing (4.3) with v = un − u gives∫
Ω

|∇un|p−2 ∇un · ∇(un − u) dx

= an

∫
Ω

(
u+

n

)p−1 (un − u) dx − bn

∫
Ω

(
u−

n

)p−1 (un − u) dx.

This implies
lim

n→+∞

∫
Ω

|∇un|p−2 ∇un · ∇(un − u) dx = 0.

From the (S+)-property of −∆p (see Proposition 2.1), we conclude that un → u in V . Hence, u solves the
quation ∫

Ω

|∇u|p−2 ∇u · ∇v dx = −b

∫
Ω

(
u−)p−1

v dx, (4.4)

or all v ∈ V . If we take v = u+ in (4.4), we see that∫
Ω

⏐⏐∇u+⏐⏐p dx = 0.

his means that either u+ = 0 or u+ = φ1 since ∥u∥p = 1.
Let us first suppose that u+ = 0. Then u ≤ 0 and from (4.3) we know that u is an eigenfunction of the

-Laplacian with no-flux boundary condition, see (1.4). Therefore, u = −φ1 since the only eigenfunctions
hat have constant sign are those related to λ1 = 0. We conclude that {un}n∈N converges either to φ1 or to
φ1 in Lp(Ω). This implies that either

|{x ∈ Ω : un(x) < 0}| → 0 or |{x ∈ Ω : un(x) > 0}| → 0, (4.5)

espectively, with | · | being the Lebesgue measure.
Taking v = u+

n as test function in (4.3) along with Hölder’s inequality and the continuous embedding
↪→ Lr(Ω) for any r ∈ (p, p∗] with embedding constant C > 0 we get∫

Ω

⏐⏐∇u+
n

⏐⏐p dx +
∫
Ω

(
u+

n

)p dx

= an

∫
Ω

(
u+

n

)p dx +
∫
Ω

(
u+

n

)p dx

= (an + 1)
∫
Ω

(
u+

n

)p dx

≤ (an + 1)Cp |{x ∈ Ω : un(x) > 0}|1− p
r
u+

n

p

1,p
.

9
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From this we conclude that

|{x ∈ Ω : un(x) > 0}|1− p
r ≥ (an + 1)−1C−p (4.6)

imilarly, if we use v = u−
n in (4.3) we obtain

|{x ∈ Ω : un(x) < 0}|1− p
r ≥ (bn + 1)−1C−p. (4.7)

ecause {an, bn}n∈N ⊆ Πp does not belong to the trivial lines of Πp, we have that un changes sign. Hence,
from (4.6) and (4.7) we reach a contradiction to (4.5). This completes the proof. □

Before we state the main result in this section, we need the following lemma.

Lemma 4.2. For every r > infS Js = −s, each connected component of {u ∈ S : Js(u) < r} contains a
critical point which is a local minimizer of J̃s.

Proof. Let C be a connected component of {u ∈ S : Js(u) < r} and let d = inf{Js(u) : u ∈ C}.
Claim: There exists u0 ∈ C such that J̃s(u0) = d.
Let {un}n∈N ⊂ C be a sequence such that J̃s(un) ≤ d + 1

n2 . From Ekeland’s variational principle applied
o J̃s on C we get a sequence {vn}n∈N ⊂ C such that

J̃s(vn) ≤ J̃s(un), (4.8)

∥un − vn∥1,p ≤ 1
n

, (4.9)

J̃s(vn) ≤ J̃s(v) + 1
n

∥v − vn∥1,p , (4.10)

or all v ∈ C.
From (4.8) and n sufficiently large we have that

J̃s(vn) ≤ J̃s(un) ≤ d + 1
n2 < r.

Moreover, applying (4.10), we are able to show that {vn}n∈N is a (PS)-sequence for J̃s. Then by Lemma 3.4
nd (4.9) we conclude, for a subsequence if necessary, that un → u0 in V with u0 ∈ C and J̃s(u0) = d. Finally,
ote that u0 ̸∈ ∂C since otherwise the maximality of C as a connected component would be contradicted.
hus, u0 is a local minimizer of J̃s. □

The next results show that C is the first nontrivial curve in Πp.

heorem 4.3. Let s ≥ 0. Then (s + c(s), c(s)) ∈ C is the first nontrivial point of Πp in the intersection
etween Πp and the line (s, 0) + t(1, 1) with t > 0.

roof. We are going to show the assertion by contradiction. Let 0 < µ < c(s) and suppose that
s + µ, µ) ∈ Πp. Taking Proposition 4.1 and the closedness of Πp into account, we may suppose that µ

s the minimum number with the required property. By using Lemma 3.1 it is clear that µ is a critical value
f the functional J̃s and there is no critical value of J̃s in the interval (0, µ).

Let u ∈ S be a critical point of J̃s at level µ. We have for all v ∈ V∫
|∇u|p−2 ∇u · ∇v dx = (s + µ)

∫ (
u+)p−1

v dx − µ

∫ (
u−)p−1

v dx,

Ω Ω Ω

10
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see Lemma 3.1. Choosing v = u+ gives∫
Ω

⏐⏐∇u+⏐⏐p dx = (s + µ)
∫
Ω

(
u+)p dx. (4.11)

Similarly, if we take v = −u− we obtain∫
Ω

⏐⏐∇u−⏐⏐p dx = µ

∫
Ω

(
u−)p dx. (4.12)

Using (4.11) and (4.12) we see that

J̃s

(
u+

∥u+∥p

)
= J̃s

(
−u−

∥u−∥p

)
= µ,

nd

J̃s

(
u−

∥u−∥p

)
= µ − s. (4.13)

Now, we introduce for all t ∈ [0, 1] the following paths defined by

u1(t) = (1 − t)u + tu+

∥(1 − t)u + tu+∥p

,

u2(t) = tu+ + (1 − t)u−

∥tu+ + (1 − t)u−∥p

,

u3(t) = −tu− + (1 − t)u
∥−tu− + (1 − t)u∥p

.

ote that these paths are well-defined in S. It is easy to see that u1(t) goes from u to u+

∥u+∥
p

, u2(t) goes

rom u+

∥u+∥p

to u−

∥u−∥p

and u3(t) goes from u to −u−

∥u−∥p

.

By means of (4.11) and (4.12) it is easy to see that

J̃s(u1(t)) = µ = J̃s(u3(t)),

J̃s(u2(t)) = µ − stp
∥u−∥p

p

∥tu+ + (1 − t)u−∥p
p

≤ µ

or all t ∈ [0, 1].
From this we know that we can move from u to u−

∥u−∥
p

via u1(t) and u2(t) which lies at level µ − s, so we
tay at level ≤ µ. Let us investigate the levels below µ − s. We introduce

Υ = {v ∈ S : J̃s(v) < µ − s}.

We observe that φ1 ∈ Υ and −φ1 ∈ Υ if µ > s. Due to the minimality property of µ, we know that φ1
nd −φ1 are the only possible critical points of J̃s in Υ . Since u−

∥u−∥p

does not change sign and vanishes on

set of positive measure, it cannot be a critical point of J̃s. Hence, we find a path β : [−ε, ε] → S of class
1 with β(0) = u−

∥u−∥
p

and d
dt J̃s(β(t))|t=0 ̸= 0. Using this path and (4.13) we can move from u−

∥u−∥
p

to a

oint v by a path in S such that J̃s(v) < µ − s. In particular, we have v ∈ Υ .
Applying Lemma 4.2 we obtain that the connected component of Υ containing v crosses {φ1, −φ1}. Let

s suppose that we can continue from v to φ1, the case continuing to −φ1 can be argued similarly. Therefore,
here exists a path u4(t) in Υ from u−

∥u−∥
p

to φ1, whose symmetric path −u4(t) goes from − u−

∥u−∥
p

to −φ1.

s u4(t) ∈ S, we have that
J̃ (−u (t)) ≤ J̃ (u (t)) + s < µ − s + s = µ,
s 4 s 4

11
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since for each û ∈ S it holds ⏐⏐J̃s(û) − J̃s(−û)
⏐⏐ ≤ s.

We already observed that we go from −φ1 to −u−

∥u−∥p

via −u4(t) by staying at level lower then µ. Finally

rom the path u3(t) we go from u to −u−

∥u−∥
p

by staying at level µ.

In summary, we have shown that we constructed a path joining u and φ1 via u1(t), u2(t) as well as u4(t)
nd we have a path joining u and −φ1 via u3(t) and −u4(t). Putting these paths together we have a path
(t) on S joining φ1 and −φ1 with J̃s(γ(t)) ≤ µ. In particular we have that J̃s has a critical value µ with
1 < µ < c(s), but there is no critical value in the interval ]λ1, µ[ and this contradicts the definition of c(s)

n (3.7). □

A direct consequence of Theorem 4.3 is a variational characterization of the second eigenvalue λ2 of
roblem (1.4).

orollary 4.4. The second eigenvalue λ2 of (1.4) has the following variational characterization

λ2 = inf
γ∈Γ

max
u∈γ[−1,1]

[∫
Ω

|∇u|p dx

]
.

roof. We apply Theorem 4.3, Proposition 3.5(i) and (3.1) for s = 0 in order to get

c(0) = inf
γ∈Γ

max
u∈γ[−1,1]

J0(u) = inf
γ∈Γ

max
u∈γ[−1,1]

[∫
Ω

|∇u|p dx

]
. □

. Properties of the first curve

In this section, we are going to prove some properties of the curve C defined in (4.1) and we study its
symptotic behavior.

roposition 5.1. The curve s ↦→ (s + c(s), c(s)) is Lipschitz continuous with Lipschitz constant L ≤ 1 and
ecreasing.

roof. Let s1 and s2 be such that s1 < s2. Then we have J̃s1(u) ≥ J̃s2(u) for all u ∈ S and so c(s1) ≥ c(s2).
For every ε > 0 we find a path γ ∈ Γ such that

max
u∈γ[−1,1]

J̃s2(u) ≤ c(s2) + ε,

his implies
0 ≤ c(s1) − c(s2) ≤ max

u∈γ[−1,1]
J̃s1(u) − max

u∈γ[−1,1]
J̃s2(u) + ε.

Let u0 ∈ γ[−1, 1] be such that
max

u∈γ[−1,1]
J̃s1(u) = J̃s1(u0),

rom which we conclude that

0 ≤ c(s1) − c(s2) ≤ J̃s1(u0) − J̃s2(u0) + ε = s1 − s2 + ε.

s ε > 0 was arbitrary, we obtain that the curve s ↦→ (s + c(s), c(s)) is Lipschitz continuous with Lipschitz
onstant L ≤ 1.

Let us prove that the curve is decreasing. To this end, let 0 < s1 < s2. Theorem 4.3 implies that
1 + c(s1) < s2 + c(s2) since (s1 + c(s1), c(s1)), (s2 + c(s2), c(s2)) ∈ Πp. From the first part of the proof, we

lready mentioned that c(s1) ≥ c(s2). This completes the proof. □

12
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Next, we study the asymptotic behavior of the curve C. Since c(s) is decreasing and positive, there exists
lims→∞ c(s). As it was done in [18–20], we distinguish between the two cases p ≤ N and p > N . We define
or 1 < p < ∞

λ(N, p) = inf
{∫

Ω

|∇u|p dx : u ∈ S and u changes sign in Ω

}
nd for p > N

λ = inf
{∫

Ω

|∇u|p dx : u ∈ S and u vanishes somewhere in Ω

}
. (5.1)

ince W 1,p
0 (Ω) is compactly embedded in C0(Ω) when p > N , the definition (5.1) makes sense and the

infimum is achieved. So, λ > 0. Moreover, we see that λ(N, p) = λ when p > N and λ(N, p) = 0 when
≤ N , see Arias–Campos–Gossez [18]. Note that the sequences defined in [18, Remark 2.7] can be also used

n our setting.
We start with the case p ≤ N .

Theorem 5.2. Let p ≤ N . Then
lim

s→+∞
c(s) = 0.

roof. Arguing by contradiction we assume that there exists ε > 0 such that

max
u∈γ[−1,1]

J̃s(u) ≥ ε (5.2)

or all γ ∈ Γ and for all s ≥ 0. Since p ≤ N , we can choose a function ϕ ∈ V which is unbounded from
bove. Consider the path γ ∈ Γ defined by

γ(t) = tφ1 + (1 − |t|)ϕ
∥tφ1 + (1 − |t|)ϕ∥p

or t ∈ [−1, 1]. The maximum of J̃s on γ[−1, 1] is achieved at ts ∈ [−1, 1], that is

max
u∈γ[−1,1]

J̃s (γ(t)) = J̃s (γ(ts)) .

Taking vs = tsφ1 + (1 − |ts|)ϕ we obtain from (5.2) that

J̃s (vs) ≥ ε ∥vs∥p
p ,

that is ∫
Ω

|∇vs|p dx − s

∫
Ω

(
v+

s

)p dx ≥ ε

∫
Ω

|vs|p dx. (5.3)

If we let s → +∞, we may assume that ts → t̂ ∈ [−1, 1] (for a subsequence if necessary). Since vs is
bounded in V , from (5.3) we have that∫

Ω

(
v+

s

)p dx → 0 as s → +∞,

from which we conclude that
t̂φ1 + (1 − |t̂|)ϕ ≤ 0.

ince ϕ is unbounded from above, this is only possible for t̂ = −1. Then taking t̂ = −1 and passing to the
imit in (5.3) we get

0 =
∫
Ω

|∇φ1|p dx ≥ ε

∫
Ω

|φ1|p dx.

his implies ε ≤ 0 and so we have a contradiction. □
13
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Let Π̃p be the nontrivial part of Πp, that is, Π̃p = Πp \ {(0 × R) ∪ (R × 0)}. Theorem 5.2 implies the
following corollary.

Corollary 5.3. Let p ≤ N . Then there does not exist ε > 0 such that Π̃p is contained in the set
{(a, b) ∈ R2 : a and b > ε}.

Let us now study the case p > N .

Theorem 5.4. Let p > N . Then
lim

s→+∞
c(s) = λ > 0, (5.4)

here λ is defined in (5.1).

Proof. By contradiction we suppose that there exists ε > 0 such that

max
u∈γ[−1,1]

J̃s(u) > λ + ε (5.5)

or all γ ∈ Γ and for all s ≥ 0. Let u be a minimizer of (5.1) and consider the path γ ∈ Γ defined by

γ(t) = tφ1 + (1 − |t|)u
∥tφ1 + (1 − |t|)u∥p

for t ∈ [−1, 1]. The path is well defined because u vanishes somewhere, but φ1 does not and it belongs to Γ .
As in the proof of Theorem 5.2, for every s > 0, we fix ts ∈ [−1, 1] such that

max
u∈γ[−1,1]

J̃s (γ(t)) = J̃s (γ(ts)) .

enoting vs = tsφ1 + (1 − |ts|)u, from (5.5) it follows

J̃s (vs) ≥
(
λ + ε

)
∥vs∥p

p ,

that is, ∫
Ω

|∇vs|p dx − s

∫
Ω

(v+
s )p dx ≥

(
λ + ε

) ∫
Ω

|vs|p dx. (5.6)

Letting s → +∞, we can assume, for a subsequence, ts → t ∈ [−1, 1]. The uniform boundedness of vs implies
Ω

(v+
s )p dx → 0 due to (5.6). Since vs → vt̂ in V , we have v+

t̂
= 0 in Ω , then

t̂φ1 ≤ −(1 − |t̂|)u in Ω . (5.7)

Since u vanishes somewhere in Ω and φ1 ≡ 1

|Ω|
1
p

> 0, from (5.7) we obtain that t̂ ≤ 0. Passing to the limit

n (5.6) we obtain ∫
Ω

⏐⏐∇ (t̂φ1 + (1 − |t̂|)u
)⏐⏐p dx ≥

(
λ + ε

) ∫
Ω

|t̂φ1 + (1 − |t̂|)u|p dx.

ince ∇φ1 ≡ 0 and due to (c + d)p ≥ cp + dp for c, d ≥ 0, we arrive at(
1 − |t̂|

)p
∫
Ω

|∇u|p dx ≥
(
λ + ε

) ∫
Ω

|t̂φ1 + (1 − |t̂|)u|p dx

≥
(
λ + ε

) [
|t̂|p
∫

φp
1 dx + (1 − |t̂|)p

∫
|u|p dx

]
.

(5.8)
Ω Ω

14
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If t̂ = −1, (5.8) becomes

0 ≥
(
λ + ε

) ∫
Ω

φp
1 dx,

hus, λ + ε ≤ 0 which is a contradiction.
If t̂ ∈] − 1, 0], since u is a minimizer of (5.1), (5.8) becomes(

1 − |t̂|
)p

λ ≥
(
λ + ε

) (
1 − |t̂|

)p
.

So, ε ≤ 0, a contradiction. This shows (5.4). □

As a consequence of (5.4), we have the following result.

Proposition 5.5. Let p > N . Then Π̃p is contained in the open set {(a, b) ∈ R2 : a and b > λ}, where λ

s the largest number such that this inclusion holds. In particular, λ2 > λ.

First, we prove the following lemma.

Lemma 5.6. Let p > N and let u be a minimizer of (5.1). Then u does not change sign in Ω and u vanishes
t exactly one point in Ω .

roof. Let u be a minimizer of (5.1), let x0 ∈ Ω and let

Vx0 = {v ∈ V : v(x0) = 0}.

We are going to show that, if u vanishes at x0, then∫
Ω

|∇u|p−2∇u · ∇v dx = λ

∫
Ω

|u|p−2
uv dx (5.9)

for all v ∈ Vx0 . We have that

λ = inf
{∫

Ω

|∇v|p dx : v ∈ S and v ∈ Vx0

}
and the infimum is achieved at u. The Lagrange multiplier rule implies that∫

Ω

|∇u|p−2 ∇u · ∇v dx = λ

∫
Ω

|u|p−2
uv dx (5.10)

or all v ∈ Vx0 and for some λ ∈ R. If we take v = u in (5.10), we obtain that λ = λ and so (5.9) is true.
Let us now assume that u vanishes in at least two points x1, x2 ∈ Ω . The function w = |u| is also a

inimizer in (5.1) which vanishes at x1 and x2, that is, w fulfills (5.9) for all v ∈ Vx1 and also for all
∈ Vx2 . Note that any v ∈ V can be written as v = v1 + v2 with v1 ∈ Vx1 and v2 ∈ Vx2 . Therefore, w

satisfies (5.9) for all v ∈ V . If we then choose v = 1 in (5.9), we see that w ≥ 0 changes sign which is a
contradiction.

Finally, we want to show that the minimizer u does not change sign. Let u+ ̸≡ 0 with u(x0) = 0. This
implies u+(x0) = 0. Taking v = u+ in (5.9) we see that u+

∥u+∥p
is a minimizer in (5.1). Hence, due to the first

art of the proof, u+ vanishes only at x0 and so u ≥ 0. □

Now we can prove Proposition 5.5.
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Proof of Proposition 5.5. Let (a, b) ∈ Π̃p and let u ̸≡ 0 be a corresponding solution of (1.1). Choosing
= 1 as test function in (2.1) we obtain that∫

Ω

(
a
(
u+)p−1 − b(u−)p−1

)
dx = 0.

ence, u changes sign in Ω . Note that u+ and u− both vanish somewhere since u changes sign. Testing (2.1)
ith v = u+ and v = u− we get that

a =

∫
Ω

|∇u+|p dx∫
Ω

|u+|p dx

≥ λ and b =

∫
Ω

|∇u−|p dx∫
Ω

|u−|p dx

≥ λ. (5.11)

Next, we want to show that a, b > λ. Let us assume that a = λ. Then we see from (5.11) that u+

∥u+∥p
is a

inimizer in (5.1). Since u changes sign, u+ vanishes in many points (at least in more than one point) which
ontradicts Lemma 5.6. Hence a > λ and in the same way we can show that b > λ. Therefore, c(s) > λ and

from Theorem 5.4 we know that lims→+∞ c(s) = λ.
Proposition 3.5(ii) implies that (s + c(s), c(s)) ∈ Π̃p ⊂ Πp and in particular, (c(0), c(0)) = (λ2, λ2) ∈ Π̃p.

Since c(s) > λ from the first part of the proof, it follows that λ < λ2. □
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